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Practico 4: Axioma de eleccién y cardinales

Axioma de eleccion

Se dice que un conjunto A es bien ordenable cuando A admite un buen orden.

Ejercicio 1 (Eleccién sin AC). Demostrar en ZF sin AC los siguientes enunciados:

(1) Todo conjunto finito o numerable es bien ordenable.
(2) Todo conjunto bien ordenable admite una funcién de eleccion.

(3) Toda relacién de equivalencia sobre un conjunto bien ordenable admite un sistema de
representantes.

(4) Toda funcién sobreyectiva definida sobre un conjunto bien ordenable admite una inversa
por la derecha.

(5) El producto cartesiano de una familia finita de conjuntos no vacios nunca es vacio.

Axioma de eleccion dependiente El axioma de eleccion dependiente (DC)! es una forma
débil del axioma de eleccion (AC) dada por la siguiente férmula:

(VA# D) YRCA X A)[(VxeA)TyeA) xRy =
(H(Xn)rzew € Aw)(vn € 0-)) Xn R xn+1] (DC)

Asi, a partir de un conjunto A # & y de una relacion R € A X A tal que (Vx€ A)(dy€A) xRy,
este axioma elige una sucesion (x,),c, € A talque xoRX1 RXo Rx3-- X, R X471 -+ -

Ejercicio 2. Demostrar en ZF que: AC = DC.

A veces, se considera la siguiente formulacion del axioma de eleccién dependiente, que
permite fijar el primer elemento x, = x de la sucesion (x,),c, € A“:

YA(VRCAXA)[(VxeA)dycA) xRy =
(Vx€A)A(x)new €EAY) X0 = X A (Y€ W) X, R X,11)] (DCy)

Ejercicio 3. Demostrar en ZF que: DC, < DC.

(Sugerencia: para demostrar la implicacién DC = DCj con un elemento inicial x € A fijado,
se puede considerar el conjunto A’ formado por todas las sucesiones finitas (x;);<, € A% tales
que xo = xy x;_; Rx; para todo i € [1..n], equipado con la relacién R* C A’ X A’ definida por:
(XDi<n R Vdism = m=n+1ANi<n)x; =y;.)

'Axiom of dependent choices en inglés.



Axioma de eleccién numerable El axioma de eleccion numerable (CC)? es una forma débil
del axioma de eleccién (AC) dada por la siguiente férmula:

V(A)ies |1 numerable A (YieDA; # @ = (1—[ Ai) 4 @].

iel

Ejercicio 4. Demostrar en ZF que DCy, = CC, donde DC es el axioma de eleccién depen-
diente con elemento inicial fijado. Deducir (en ZF) que: AC = DC = CC.

Se recuerda que un conjunto A es:

= finito cuando A ~ n para algin n € w;
= infinito cuando A ~ n para todo n € w;

» Dedekind-infinito cuando existe una funcién f : A — A inyectiva y no sobreyectiva.

El objetivo del siguiente ejercicio es demostrar que en ZF + CC, un conjunto A es infinito si y
solo si A es Dedekind-infinito.

Ejercicio S. Sea A un conjunto.

(1) Demostrar en ZF (sin CC) que si A es Dedekind-infinito, entonces A es infinito.

Para demostrar la reciproca (con CC), se supone ahora que A es un conjunto infinito.

(2) Demostrar por induccion que para todo n € w, existe una inyeccién f : n — A.

(3) Usando el axioma de eleccién numerable (CC), deducir que existe una sucesion de in-
yecciones (f, : n = A),cw-

(4) A partir de una sucesion cualquiera de inyecciones (f, : n < A),e.,, construir (sin CC)
otra sucesion de inyecciones (f, : n < A),, tal que f, C f7  paratodon € w.

(5) Deducir de lo anterior que el conjunto A es Dedekind-infinito.

Cardinales

Ejercicio 6. El objetivo de este ejercicio es demostrar (sin axioma de eleccién) que todo ordinal
infinito @ es equipotente al producto cartesiano @ X «, es decir: @ ~ (@ X «). Para ello, se
supone por el absurdo que no es el caso, y se escribe A al ordinal infinito més pequefio tal que
A = A x A. Se equipa el producto cartesiano A X A con la relacién binaria (<,) definida® para
todos (xy,y1), (x2,¥2) € A X A por

méx(xl,)’l) < méX(XZa )’2) 4
(Max(xy,y1) = max(xz,y2) A x; < xp) \4
(Max(x,y1) = max(x, y2) Ax; = X2 Ay < y2).

(X1, yl) 52 (x29 y2)

(1) Demostrar que la relacion (<;) es un buen orden sobre A X A.

(2) Construir un encaje de conjuntos (bien) ordenados f : (4,<) — (1 X 4, <),
es decir: una funcién f : 4 - A x Atal que (Vx,yed) (x <y & f(x) < f(y)).

2Axiom of countable choice en inglés.
3Esta definicién es debida a Kurt GODEL.



En lo siguiente, se escriben « al dnico ordinal isomorfo al conjunto bien ordenado (4 X 4, <),
y h: (41X ) = « al isomorfismo correspondiente.

(3) Deducir de lo anterior que 4 < a.
Como A € a, se definen (a,b) := h™' (1) (€ Ax ) y vy := mix(a,b) + 1.

(4) Demostrar que el ordinal A es isomorfo al segmento inicial Seg(a, b) en (1 X 4, <5).
(5) Demostrar que Seg(a, b) € (v X y). Deducir que el ordinal y es infinito.

(6) Deducir de lo anterior que existe una inyeccion 4 < v.

(7) Mostrar que (6) lleva a una contradiccion, lo que acaba la demostracion del resultado.
(8) Con el axioma de eleccion (AC), deducir que A X A ~ A para todo conjunto infinito A.

Ejercicio 7 (Propiedades de los cardinales infinitos).
(1) Demostrar que todo cardinal infinito es un ordinal limite, y dar ejemplos de ordinales
limites que no son cardinales.
(2) Demostrar que la sucesion transfinita (N, )40, €s normal.

(3) Usando los resultados del Ejercicio 1 del Prictico 3, deducir de lo anterior que:
(a) paratodo ordinal @, tenemos que @ < N,;
(b) para todo ordinal a, existe un ordinal > « tal que =8z («punto fijo»).

Ejercicio 8 (Teorema de Konig). En ZFC, se consideran dos familias de conjuntos (A;)c; y
(B))ic; (I cualquiera), tales que Card(A;) < Card(B;) paratodo i € I. Se escriben:

» § = ) A; alasuma directa de la familia (A;),c;, equipada con la familia de las inyec-
ciones candnicas o; : A; > S (i € I).

= P =[], Bi al producto cartesiano (generalizado) de la familia (B;);c;, equipado con la
familia de las proyecciones ; : P — B; (i € I).

Sea f : § — P una funcion cualquiera. Para todo i € I, se considera la funcién f; : A; — B;
definida por f; :=m; 0 f o 0.
(1) Demostrar que existe un elemento p € P tal que m;(p) ¢ img(f;) paratodoi € .
(Sugerencia: usar la hipétesis Card(A;) < Card(B;).)
(2) Demostrar que p ¢ img(f), y deducir que la funcién f no es sobreyectiva.
(3) Deducir de lo anterior el teorema de Konig:

Si (k)icr Yy (U)ies sSon dos familias de cardinales indizadas por un conjunto 1
cualquiera, tales que k; < u; para todo i € I, entonces:

S < [Tae

i€l i€l
(Qué se observa en el caso particular donde x; = 1 y u; = 2 para todo i € I?

Ejercicio 9 (Aplicacion del teorema de Konig). En este ejercicio, se trabaja en ZFC.

(1) Demostrar que: ZN,, = N,.

(2) Con el teorema de Konig (Ejercicio 8), deducir que: 8, < N°.
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Se recuerda que Card(IR) = Card(B(w)) = 2™ («potencia del continuo»).

(3) Demostrar que (28%)% = 2%y deducir de lo anterior que 2% # K.

Ejercicio 10 (Cardinal del conjunto de los Borelianos de IR"). Fijado n > 1, se escribe A
al conjunto de todos los conjuntos abiertos de IR”. Se define el conjunto B de los Borelianos
de R" como la menor o-dlgebra de IR" que contiene a A, es decir el menor subconjunto de
B(IR") que contiene a Ay es cerrado por complementos, uniones numerables e intersecciones
numerables. El objetivo de este ejercicio es demostrar B tiene el mismo cardinal que R. Para
ello, se considera la sucesion transfinita (P, ),.0, de subconjuntos de B(IR") definida por:

P=A
Py = {U Ay | (Aew € P;:} U {ﬂ Ay | (Anew € Pf;’} U{AC | Ae Py
new new
P, = UPﬁ si « es limite

B<a

Sean w el primer ordinal no numerable y ¢ = Card(IR) (« cardinal del continuo »). El objetivo
de las siguientes preguntas es demostrar que P, tiene cardinal ¢ y es igual a 8.

(1) Demostrar que Card(A) = ¢
(2) Demostrar que para cada @ < w;, Card(P,) = ¢
(3) Demostrar que Card(P,,) = ¢. ;Se necesita usar la hip6tesis del continuo?

(4) Demostrar que cualquier o-dlgebra que contiene a A también contiene a P, .
(De hecho contiene a P, para cualquier ordinal «.)

(5) Demostrar que P, es una o-dlgebra y concluir que es igual a 8.



