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Práctico 4: Axioma de elección y cardinales

Axioma de elección

Se dice que un conjunto A es bien ordenable cuando A admite un buen orden.

Ejercicio 1 (Elección sin AC). Demostrar en ZF sin AC los siguientes enunciados:

(1) Todo conjunto finito o numerable es bien ordenable.

(2) Todo conjunto bien ordenable admite una función de elección.

(3) Toda relación de equivalencia sobre un conjunto bien ordenable admite un sistema de
representantes.

(4) Toda función sobreyectiva definida sobre un conjunto bien ordenable admite una inversa
por la derecha.

(5) El producto cartesiano de una familia finita de conjuntos no vacíos nunca es vacío.

Axioma de elección dependiente El axioma de elección dependiente (DC)1 es una forma
débil del axioma de elección (AC) dada por la siguiente fórmula:

(∀A,∅)(∀R⊆ A × A) [(∀x ∈ A)(∃y ∈ A) x R y ⇒
(∃(xn)n∈ω ∈ Aω)(∀n ∈ω) xn R xn+1] (DC)

Así, a partir de un conjunto A , ∅ y de una relación R ⊆ A × A tal que (∀x ∈ A)(∃y ∈ A) x R y,
este axioma elige una sucesión (xn)n∈ω ∈ Aω tal que x0 R x1 R x2 R x3 · · · xn R xn+1 · · ·

Ejercicio 2. Demostrar en ZF que: AC⇒ DC.

A veces, se considera la siguiente formulación del axioma de elección dependiente, que
permite fijar el primer elemento x0 = x de la sucesión (xn)n∈ω ∈ Aω:

∀A (∀R⊆ A × A) [(∀x ∈ A)(∃y ∈ A) x R y ⇒
(∀x ∈ A)(∃(xn)n∈ω ∈ Aω)(x0 = x ∧ (∀n ∈ω) xn R xn+1)] (DC0)

Ejercicio 3. Demostrar en ZF que: DC0 ⇔ DC.

(Sugerencia: para demostrar la implicación DC ⇒ DC0 con un elemento inicial x ∈ A fijado,
se puede considerar el conjunto A′ formado por todas las sucesiones finitas (xi)i≤n ∈ A[0..n] tales
que x0 = x y xi−1 R xi para todo i ∈ [1..n], equipado con la relación R′ ⊆ A′ × A′ definida por:
(xi)i≤n R′ (yi)i≤m ≡ m = n + 1 ∧ (∀i≤ n) xi = yi.)

1Axiom of dependent choices en inglés.
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Axioma de elección numerable El axioma de elección numerable (CC)2 es una forma débil
del axioma de elección (AC) dada por la siguiente fórmula:

∀(Ai)i∈I

[
I numerable ∧ (∀i ∈ I) Ai , ∅ ⇒

(∏
i∈I

Ai

)
, ∅
]
.

Ejercicio 4. Demostrar en ZF que DC0 ⇒ CC, donde DC0 es el axioma de elección depen-
diente con elemento inicial fijado. Deducir (en ZF) que: AC⇒ DC⇒ CC.

Se recuerda que un conjunto A es:

finito cuando A ∼ n para algún n ∈ ω;
infinito cuando A ≁ n para todo n ∈ ω;
Dedekind-infinito cuando existe una función f : A→ A inyectiva y no sobreyectiva.

El objetivo del siguiente ejercicio es demostrar que en ZF + CC, un conjunto A es infinito si y
sólo si A es Dedekind-infinito.

Ejercicio 5. Sea A un conjunto.

(1) Demostrar en ZF (sin CC) que si A es Dedekind-infinito, entonces A es infinito.

Para demostrar la recíproca (con CC), se supone ahora que A es un conjunto infinito.

(2) Demostrar por inducción que para todo n ∈ ω, existe una inyección f : n ↪→ A.
(3) Usando el axioma de elección numerable (CC), deducir que existe una sucesión de in-

yecciones ( fn : n ↪→ A)n∈ω.
(4) A partir de una sucesión cualquiera de inyecciones ( fn : n ↪→ A)n∈ω, construir (sin CC)

otra sucesión de inyecciones ( f ′n : n ↪→ A)n∈ω tal que f ′n ⊆ f ′n+1 para todo n ∈ ω.
(5) Deducir de lo anterior que el conjunto A es Dedekind-infinito.

Cardinales
Ejercicio 6. El objetivo de este ejercicio es demostrar (sin axioma de elección) que todo ordinal
infinito α es equipotente al producto cartesiano α × α, es decir: α ∼ (α × α). Para ello, se
supone por el absurdo que no es el caso, y se escribe λ al ordinal infinito más pequeño tal que
λ ≁ λ × λ. Se equipa el producto cartesiano λ × λ con la relación binaria (≤2) definida3 para
todos (x1, y1), (x2, y2) ∈ λ × λ por

(x1, y1) ≤2 (x2, y2) ≡ máx(x1, y1) < máx(x2, y2) ∨

(máx(x1, y1) = máx(x2, y2) ∧ x1 < x2) ∨

(máx(x1, y1) = máx(x2, y2) ∧ x1 = x2 ∧ y1 ≤ y2) .

(1) Demostrar que la relación (≤2) es un buen orden sobre λ × λ.
(2) Construir un encaje de conjuntos (bien) ordenados f : (λ,≤) ↪→ (λ × λ,≤2),

es decir: una función f : λ→ λ × λ tal que (∀x, y ∈ λ) (x ≤ y⇔ f (x) ≤2 f (y)).

2Axiom of countable choice en inglés.
3Esta definición es debida a Kurt Gödel.
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En lo siguiente, se escriben α al único ordinal isomorfo al conjunto bien ordenado (λ × λ,≤2),
y h : (λ × λ) →̃ α al isomorfismo correspondiente.

(3) Deducir de lo anterior que λ < α.

Como λ ∈ α, se definen (a, b) := h−1(λ) (∈ λ × λ) y γ := máx(a, b) + 1.

(4) Demostrar que el ordinal λ es isomorfo al segmento inicial Seg(a, b) en (λ × λ,≤2).
(5) Demostrar que Seg(a, b) ⊆ (γ × γ). Deducir que el ordinal γ es infinito.
(6) Deducir de lo anterior que existe una inyección λ ↪→ γ.
(7) Mostrar que (6) lleva a una contradicción, lo que acaba la demostración del resultado.
(8) Con el axioma de elección (AC), deducir que A × A ∼ A para todo conjunto infinito A.

Ejercicio 7 (Propiedades de los cardinales infinitos).
(1) Demostrar que todo cardinal infinito es un ordinal límite, y dar ejemplos de ordinales

límites que no son cardinales.
(2) Demostrar que la sucesión transfinita (ℵα)α:On es normal.
(3) Usando los resultados del Ejercicio 1 del Práctico 3, deducir de lo anterior que:

(a) para todo ordinal α, tenemos que α ≤ ℵα;
(b) para todo ordinal α, existe un ordinal β ≥ α tal que β = ℵβ («punto fijo»).

Ejercicio 8 (Teorema de König). En ZFC, se consideran dos familias de conjuntos (Ai)i∈I y
(Bi)i∈I (I cualquiera), tales que Card(Ai) < Card(Bi) para todo i ∈ I. Se escriben:

S :=
∑

i∈I Ai a la suma directa de la familia (Ai)i∈I , equipada con la familia de las inyec-
ciones canónicas σi : Ai → S (i ∈ I).

P :=
∏

i∈I Bi al producto cartesiano (generalizado) de la familia (Bi)i∈I , equipado con la
familia de las proyecciones πi : P→ Bi (i ∈ I).

Sea f : S → P una función cualquiera. Para todo i ∈ I, se considera la función fi : Ai → Bi

definida por fi := πi ◦ f ◦ σi.

(1) Demostrar que existe un elemento p ∈ P tal que πi(p) < img( fi) para todo i ∈ I.
(Sugerencia: usar la hipótesis Card(Ai) < Card(Bi).)

(2) Demostrar que p < img( f ), y deducir que la función f no es sobreyectiva.
(3) Deducir de lo anterior el teorema de König:

Si (κi)i∈I y (µi)i∈I son dos familias de cardinales indizadas por un conjunto I
cualquiera, tales que κi < µi para todo i ∈ I, entonces:∑

i∈I

κi <
∏
i∈I

µi .

¿Qué se observa en el caso particular donde κi = 1 y µi = 2 para todo i ∈ I?

Ejercicio 9 (Aplicación del teorema de König). En este ejercicio, se trabaja en ZFC.

(1) Demostrar que:
∑
n∈ω

ℵn = ℵω.

(2) Con el teorema de König (Ejercicio 8), deducir que: ℵω < ℵ
ℵ0
ω .
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Se recuerda que Card(R) = Card(P(ω)) = 2ℵ0 («potencia del continuo»).

(3) Demostrar que (2ℵ0)ℵ0 = 2ℵ0 , y deducir de lo anterior que 2ℵ0 , ℵω.

Ejercicio 10 (Cardinal del conjunto de los Borelianos de Rn). Fijado n ≥ 1, se escribe A
al conjunto de todos los conjuntos abiertos de Rn. Se define el conjunto B de los Borelianos
de Rn como la menor σ-álgebra de Rn que contiene a A, es decir el menor subconjunto de
P(Rn) que contiene a A y es cerrado por complementos, uniones numerables e intersecciones
numerables. El objetivo de este ejercicio es demostrar B tiene el mismo cardinal que R. Para
ello, se considera la sucesión transfinita (Pα)α:On de subconjuntos de P(Rn) definida por:

P0 = A

Ps(α) =

{⋃
n∈ω

An

∣∣∣∣∣ (An)n∈ω ∈ Pωα
}
∪

{⋂
n∈ω

An

∣∣∣∣∣ (An)n∈ω ∈ Pωα
}
∪
{
Ac
∣∣∣ A ∈ Pα

}
Pα =

⋃
β<α

Pβ si α es límite

Sean ω1 el primer ordinal no numerable y c = Card(R) (« cardinal del continuo »). El objetivo
de las siguientes preguntas es demostrar que Pω1 tiene cardinal c y es igual a B.

(1) Demostrar que Card(A) = c
(2) Demostrar que para cada α < ω1, Card(Pα) = c
(3) Demostrar que Card(Pω1) = c. ¿Se necesita usar la hipótesis del continuo?
(4) Demostrar que cualquier σ-álgebra que contiene aA también contiene a Pω1 .

(De hecho contiene a Pα para cualquier ordinal α.)
(5) Demostrar que Pω1 es una σ-álgebra y concluir que es igual a B.
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