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A disjunction without alternative

Theorem

At least one of the two numbers e + π and eπ is transcendental

Proof

Reductio ad absurdum: Suppose S = e + π and P = eπ are algebraic.
Then e, π are solutions of the polynomial with algebraic coefficients

X 2 − SX + P = 0

Hence e and π are algebraic. Contradiction.

Proof does not say which of e + π and/or eπ is transcendental
(The problem of the transcendence of e + π and eπ is still open.)

Non constructivity comes from the use of reductio ad absurdum
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An existence without a witness

Theorem

There are two irrational numbers a and b such that ab is rational.

Proof

Either
√

2
√

2 ∈ Q or
√

2
√

2
/∈ Q, by excluded middle. We reason by cases:

If
√

2
√

2 ∈ Q, take a = b =
√

2 /∈ Q.

If
√

2
√

2
/∈ Q, take a =

√
2
√

2
/∈ Q and b =

√
2 /∈ Q, since:

ab =
(√

2
√

2
)√2

= (
√

2)(
√

2×
√

2) = (
√

2)2 = 2 ∈ Q

Proof does not say which of
(√

2,
√

2
)

or
(√

2
√

2
,
√

2
)

is solution

Non constructivity comes from the use of excluded middle

But there are constructive proofs, e.g.: a =
√

2 and b = 2 log2 3
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The first non constructive proof

Historically, excluded middle and reductio ad absurdum are known
since antiquity (Aristotle). But they were never used in an essential
way until the end of the 19th century. Example:

Theorem

There exist transcendental numbers

Constructive proof, by Liouville 1844

The number a =
∞∑
n=1

1

10n!
= 0.110001000000 · · · is transcendental.

Non constructive proof, by Cantor 1874

Since Z[X ] is denumerable, the set A of algebraic numbers is denumerable.
But R ∼ P(N) is not. Hence R \A is not empty and even uncountable.
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Brouwer’s intuitionism

Luitzen Egbertus Jan Brouwer (1881–1966)

1908: The untrustworthiness of the principles of logic

Rejection of non constructive principles such as:

The law of excluded-middle (A ∨ ¬A)

Reductio ad absurdum (deduce A from the absurdity of ¬A)

The Axiom of Choice, actually: only its strongest forms (Zorn)

Principles of intuitionism:

Philosophy of the creative subject

Each mathematical objet is a construction of the mind.
Proofs themselves are constructions (methods, rules...)

Rejection of Hilbert’s formalism (no formal rules!)

Brouwer also made fundamental contributions to classical topology (fixed point
theorem, invariance of the domain)... only to be accepted in the academia
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Intuitionistic Logic (LJ)

Although Brouwer was deeply opposed to formalism,
the rules of Intuitionistic Logic (LJ) were formalised
by his student Arend Heyting (1898–1990)

1930: The formal rules of intuitionistic logic

1956: Intuitionism. An introduction

Intuitively:

Constructions A ∧ B and ∀x A(x) keep their usual meaning, but
constructions A ∨ B and ∃x A(x) get a stronger meaning:

A proof of A ∨ B should implicitly decide which of A or B holds
A proof of ∃x A(x) should implicitly construct x

Implication A⇒ B has now a procedural meaning (cf later)
and negation ¬A (defined as A⇒ ⊥) is no more involutive

Technically: LJ ⊂ LK (LK = classical logic)
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Intuitionistic logic: what we keep / what we lose

We keep the implications...

A ⇒ ¬¬A
(A⇒ B) ⇒ (¬B ⇒ ¬A)
(¬A ∨ B) ⇒ (A⇒ B)

¬A ⇔ ¬¬¬A

(Double negation)
(Contraposition)

(Material implication)
(Triple negation)

but converse implications are lost (but the last)

De Morgan laws:

¬(A ∨ B) ⇔ ¬A ∧ ¬B ¬(A ∧ B) ⇐ ¬A ∨ ¬B
¬(∃x A(x)) ⇔ ∀x ¬A(x) ¬(∀x A(x)) ⇐ ∃x ¬A(x)

Beware! Do not confound the two rules:

A ` ⊥
` ¬A

(
introduction rule of
negation, accepted,
cf proof of

√
2 /∈ Q

)
and

¬A ` ⊥
` A

(
Reductio ad
absurdum,

rejected

)
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Intuitionistic mathematics: what we keep / what we lose

In Algebra:

We keep all basic algebra, but lose parts of spectral theory

The theory of orders is almost entirely kept

The same for combinatorics

In Topology:

General topology needs to be entirely reformulated:
topology without points, formal spaces

In Analysis:

R still exists, but it is no more unique! (Depends on construction)

Functions on compact sets do not reach their maximum

We can reformulate Borel/Lebesgue measure & integral, using the
suitable construction of R [Coquand’02]
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A note on decidability

Intuitionist mathematicians have nothing against statements of the
form A ∨ ¬A. They just need to be proved... constructively

LJ ` (∀x , y ∈N)(x = y ∨ x 6= y) (equality is decidable on N, Z, Q)

LJ 6` (∀x , y ∈R)(x = y ∨ x 6= y) (equality is undecidable on R, C)

More generally, the formula (∀~x ∈S) (A(~x) ∨ ¬A(~x))

is intended to mean: “Predicate/relation A is decidable on S”

This intuitionistic notion of ‘decidability’ can be formally related to
the mathematical (C.S.) notion of decidability using realizability

Variant: Trichotomy

LJ ` (∀x , y ∈N)(x < y ∨ x = y ∨ x > y)

LJ 6` (∀x , y ∈R)(x < y ∨ x = y ∨ x > y), but:

LJ ` (∀x , y ∈R)(x 6= y ⇒ x < y ∨ x > y)
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The jungle of intuitionistic theories

At the lowest levels of mathematics, intuitionism is well-defined:

LJ: Intuitionistic (predicate) logic
HA: Heyting Arithmetic (= intuitionistic arithmetic)
+ some well-known extensions of HA (e.g. Markov principle)

But as we go higher, definition is less clear. Two trends:

Predicative theories: (Swedish school)

Bishop’s constructive analysis
Martin-Löf type theories (MLTT)
Aczel’s constructive set theory (CZF)

Impredicative theories: (French school)

Girard’s system F
Coquand-Huet’s calculus of constructions
The Coq proof assistant
Intuitionistic Zermelo Fraenkel (IZFR , IZFC ) [Myhill-Friedman 1973]
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Brouwer’s contribution to classical mathematics

Brouwer also made fundamental contributions to classical topology,
especially in the theory of topological manifolds:

Theorem (Fixed point Theorem)

Any continuous function f : Bn → Bn has a fixed point (Bn = unit ball of Rn)

Theorem (Invariance of the domain)

Let U ⊆ Rn be an open set, and f : U → Rn continuous.
Then f (U) is open, and the function f is open.

Corollary (Topological invariance of dimension)

Let U ⊆ Rn and V ⊆ Rm be nonempty open sets.
If U and V are homeomorphic, then n = m.

... but these results use classical reasoning in an essential way,
and were never regarded as valid by Brouwer
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What does it mean to be constructive for a theory? (1/2)

There is no fixed criterion for a theory T to be constructive, but a
mix of syntactical, semantical and philosophical criteria

But it should fulfill at least the following 4 criteria:

(1) T should be recursive. Which means that the sets of axioms,
derivations and theorems of T are all recursively enumerable

Note: This is already the case for standard classical theories: PA, ZF, ZFC, etc.

(2) T should be consistent: T 6` ⊥

(3) T should satisfy the disjunction property:

If T ` A ∨ B, then T ` A or T ` B

(where A, B are closed)

(4) T should satisfy the numeric existence property:

If T ` (∃x ∈N) A(x), then T ` A(n) for some n ∈ N
(where A(x) only depends on x)
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What does it mean to be constructive for a theory? (2/2)

In most cases, we also require that:

(5) T should satisfy the existence property (or witness property):

If T ` ∃x A(x), then T ` A(t) for some closed term t

(where A(x) only depends on x)

Note: Needs to be adapted when the language of T has no closed term (e.g. set theory)

Theorem (Non constructivity of classical theories)

If a classical theory is recursive, consistent and contains Q, then it fulfills
none of the disjunction and numeric existence properties

Note: Q = Robinson Arithmetic (⊂ PA), that is: the finitely axiomatized fragment of
Peano Arithmetic (PA) with the only function symbols 0, s, +, ×, and where the induction
scheme is replaced by the (much weaker) axiom ∀x (x = 0 ∨ ∃y (x = s(y)))

Proof. From the hypotheses, Gödel’s 1st incompleteness theorem applies, so we can
pick a closed formula G such that T 6` G and T 6` ¬G . We conclude noticing that:

T ` G ∨ ¬G and T ` (∃x ∈N) ((x = 1 ∧ G) ∨ (x = 0 ∧ ¬G))
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Why using LJ does not ensure constructivity (1/2)

Constructivity is a semantical (and philosophical) criterion, that
cannot be simply ensured by the use of intuitionistic logic (LJ)

Indeed, some awkward axiomatizations in LJ may imply the excluded
middle, and thus lead to non constructive theories. Some examples:

In intuitionistic arithmetic (HA):

The axiom of well-ordering

(∀S ⊆N) [∃x (x ∈ S) ⇒ (∃x ∈ S)(∀y ∈S) x ≤ y ]

implies the excluded middle; it is not constructive. In HA, induction
(which is constructive) does not imply well-ordering
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Why using LJ does not ensure constructivity (2/3)

In constructive analysis: [Bishop 1967]

The axiom of trichotomy

(∀x , y ∈R) (x < y ∨ x = y ∨ x > y)

is not constructive. It has to be replaced by the axiom

(∀x , y ∈R) (x 6= y ⇒ x < y ∨ x > y)

which is classically equivalent

The axiom of completeness

Each inhabited subset of R that has an upper
bound in R has a least upper bound in R

implies excluded middle. It has to be restricted to the inhabited
subsets S ⊆ R that are order located above, i.e., such that:

For all a < b, either (∀x ∈ S) (x ≤ b) or (∃x ∈S) (x ≥ a)
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Why using LJ does not ensure constructivity (3/3)

In Intuitionistic Set Theory:

The classical formulation of the Axiom of Regularity

∀x (x 6= ∅⇒ (∃y ∈ x)(y ∩ x 6= 0))

implies excluded middle. It has to be replaced by the axiom scheme

∀x ((∀y ∈ x) A(y) ⇒ A(x)) ⇒ ∀x A(x)

known as set induction, that is classically equivalent

The Axiom of Choice implies excluded middle [Diaconescu 1975]

In all cases, the constructivity of a given intuitionistic theory T is
justified by realizability techniques (for criteria (2)–(5))
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The language of Arithmetic

First-order terms and formulas

FO-terms e, e1 ::= x | f (e1, . . . , ek) (f of arity k)

Formulas A,B ::= e1 = e2 | > | ⊥ | A⇒ B
| A ∧ B | A ∨ B | ∀x A | ∃x A

We assume given one k-ary function symbol f for each
primitive recursive function of arity k : 0, s, +, −, ×, ↑, etc.

Only one (binary) predicate symbol: = (equality)

Macros: ¬A := A⇒ ⊥, A⇔ B := (A⇒ B) ∧ (B ⇒ A)

Syntactic worship: Free & bound variables. Work up to α-conversion.
Set of free variables: FV (e), FV (A). Substitution: e{x := e0}, A{x := e0}.
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Choice of a deduction system

There are many equivalent ways to present the deduction rules of
intuitionistic (or classical) predicate logic:

1 In the style of Hilbert (only formulas, no sequents)

2 In the style of Gentzen (left & right rules)

3 In the style of Natural Deduction (with or without sequents)

Since these systems define the very same class of provable formulas1

(for a given logic, LJ or LK), choice is just a matter of convenience

Systems only based on formulas (Hilbert’s, N.D. without sequents)
are easier to define, but much more difficult to manipulate

In what follows, we shall systematically use sequents

1In sequent-based systems, formulas are identified with sequents of the form ` A,
that is: with sequents with 0 hypothesis (lhs) and 1 thesis (rhs)
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Sequents

Definition (Sequent) [Gentzen 1934]

A sequent is a pair of finite lists of formulas written

A1, . . . ,An ` B1, . . . ,Bm (n,m ≥ 0)

A1, . . . ,An are the hypotheses (which form the subsequent)

B1, . . . ,Bm are the theses (which form the consequent)

` is the entailment symbol (that reads: ‘entails’)

Note: Some authors use finite multisets (of formulas) rather than finite lists, since
the order is irrelevant, both in the subsequent and in the consequent

Sequents are usually written Γ ` ∆ (Γ,∆ finite lists of formulas)

Intuitive meaning:
∧

Γ ⇒
∨

∆

Empty sequent “ ` ” represents contradiction

Syntactic worship: Notations FV (Γ), Γ{x := t} extended to finite lists Γ



Introduction Intuitionism & constructivity Heyting Arithmetic Kleene realizability PCAs Concl.

Rules of inference & systems of deduction

Formulas and sequents can be used as judgments. Each system of deduction is
based on a set of judgments J (= a set of expressions asserting something)

Given a set of judgments J :

Definition (Rule of inference)

A rule of inference is a pair formed by a finite set of judgments
{J1, . . . , Jn} ⊆J and a judgment J ∈J , usually written

J1 · · · Jn
J

J1, . . . , Jn are the premises of the rule

J is the conclusion of the rule

Definition (System of deduction)

A system of deduction is a set of inference rules
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Derivable judgments (1/2)

Definition (Derivation)

Let S be a system of deduction based on some set of judgments J .

1 Derivations (of judgments) in S are inductively defined as follows:

If d1, . . . , dn are derivations of J1, . . . , Jn in S , respectively, and if
({J1, . . . , Jn}, J) is a rule of S , then

d =


.... d1

J1 · · ·

.... dn
Jn

J

is a derivation of J in S

2 A judgment J is derivable in S when there is a derivation of J in S

By definition, the set of derivable judgments of S is the smallest set
of judgments that is closed under the rules in S

One also uses proof/provable for derivation/derivable
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Derivable judgments (2/2)

Two systems of deduction (based on the same set of judgments) are
equivalent when the induce the same set of derivable judgments

Definition (Admissible rule)

A rule R = ({J1, . . . , Jn}, J) is admissible in a system of deduction S
when: J1, . . . , Jn derivable in S implies J derivable in S .

Admissible rules are usually written

J1 · · · Jn

J

Clearly: R admissible in S iff S ∪ {R} equivalent to S

Remark: In practice, deduction systems are defined as finite sets of
schemes of rules (that is: families of rules), that are still called rules.
The notion of admissible rule immediately extends to schemes
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A remark on implication

In logic, we have (at least) three symbols to represent implication:

The implication symbol ⇒, used in formulas. Represents a potential
point for deduction, but not an actual deduction step

The entailment symbol `, used in sequents. Same thing as ⇒, but
in a sequent, that represents a formula under decomposition:

A1, . . . ,An ` B1, . . . ,Bm

≈ A1 ∧ · · · ∧ An ⇒ B1 ∨ · · · ∨ Bm

(So that ` is a distinguished implication, closer to a point of deduction)

The inference rule “ ”, used in rules & derivations.
This symbol represents an actual deduction step:

P1 · · · Pn

C

(
From P1,...,Pn

deduce C

)
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On the meaning of sequents

Sequents are not intended to enrich the expressiveness of a logical
system; they are only intended to represent a state in a proof, or a
formula under decomposition:

Γ ` ∆ ≈
∧

Γ⇒
∨

∆

(With the conventions
∧

∅ := > and
∨

∅ := ⊥)

Formally: In most (if not all2) systems in the literature, we have:

Γ ` ∆ derivable iff `
(∧

Γ⇒
∨

∆
)

derivable

This equivalence holds, at least:

In Gentzen’s sequent calculus (LK)
In intuitionistic sequent calculus (LJ)
In intuitionistic/classical natural deduction (NJ/NK)
In Linear Logic (LL), replacing ∧, ∨, >, ⊥, ⇒ by ⊗, `, 1, ⊥, (

Exercise: Check it for both systems NJ/NK presented hereafter

2The author knows no exception to this rule
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Intuitionistic Natural Deduction (NJ)

Intuitionistic Natural Deduction (NJ) is a deduction system based on
asymmetric sequents of the form:

A1, . . . ,An ` A or: Γ ` A

These sequents are also called intuitionistic sequents

Recall that: Γ ` A has the same meaning as
∧

Γ⇒ A

System NJ has three kinds of (schemes of) rules:

Introduction rules, defining how to prove each connective/quantifier

Elimination rules, defining how to use each connective/quantifier

The Axiom rule, which is a conservation rule

The Trimūrti of logic:

Introduction rules = Brahma
Elimination rules = Shiva

Axiom rule = Vishnu
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Deduction rules of NJ (1/2)

Rules for the intuitionistic propositional calculus:

(Axiom) Γ ` A
A∈Γ

(⇒)
Γ,A ` B

Γ ` A⇒ B
Γ ` A⇒ B Γ ` A

Γ ` B

(∧)
Γ ` A Γ ` B

Γ ` A ∧ B
Γ ` A ∧ B

Γ ` A
Γ ` A ∧ B

Γ ` B

(∨)
Γ ` A

Γ ` A ∨ B
Γ ` B

Γ ` A ∨ B
Γ ` A ∨ B Γ,A ` C Γ,B ` C

Γ ` C

(>) Γ ` > (no elimination rule)

(⊥) (no introduction rule)
Γ ` ⊥
Γ ` A
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Deduction rules of NJ (2/2)

Introduction & elimination rules for quantifiers:

(∀)
Γ ` A

Γ ` ∀x A
x /∈FV (Γ)

Γ ` ∀x A
Γ ` A{x := e}

(∃)
Γ ` A{x := e}

Γ ` ∃x A
Γ ` ∃x A Γ,A ` B

Γ ` B
x /∈FV (Γ,B)

Introduction & elimination rules for equality:

(=) Γ ` e = e
Γ ` e1 = e2 Γ ` A{x := e1}

Γ ` A{x := e2}

To get Classical Natural Deduction (NK), just replace

Γ ` ⊥
Γ ` A

(ex falso quod libet) by
Γ,¬A ` ⊥

Γ ` A
(reductio ad absurdum)
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Basic properties of NJ/NK

Admissible rules (both in NJ/NK):

Γ ` A

Γ′ ` A
Γ⊆Γ′ (Monotonicity)

Γ ` A

Γ{x := e} ` A{x := e}
(Substitutivity)

where Γ ⊆ Γ′ means: for all A, A ∈ Γ implies A ∈ Γ′

From Monotonicity, we deduce (both in NJ/NK):

Γ ` A

σΓ ` A
(Permutation)

Γ ` A

Γ,B ` A
(Weakening)

Γ,B,B ` A

Γ,B ` A
(Contraction)

We write Γ `NJ A for: ‘Γ ` A is derivable in NJ’ (the same for NK)

Proposition (Inclusion NJ ⊆ NK)

If Γ `NJ A, then Γ `NK A
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The axioms of first-order arithmetic

The axioms of first-order arithmetic are the following closed formulas:

Defining equations of all primitive recursive function symbols:

∀x (x + 0 = x)
∀x ∀y (x + s(y) = s(x + y))

∀x (x × 0 = 0)
∀x ∀y (x × s(y) = x × y + x)

∀x (pred(0) = 0)
∀x (pred(s(x)) = x)

∀x (x − 0 = 0)
∀x ∀y (x − s(y)) = pred(x − y)

etc.

Peano axioms:

(P3) ∀x ∀y (s(x) = s(y)⇒ x = y)

(P4) ∀x ¬(s(x) = 0)

(P5) ∀~z [A(~z , 0) ∧ ∀x (A(~z , x)⇒ A(~z , s(x)))⇒ ∀x A(~z , x)]

for all formulas A(~z, x) whose free variables occur among ~z, x

This set of axioms is written Ax(HA) or Ax(PA)
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Heyting Arithmetic (HA)

Definition (Heyting Arithmetic)

Heyting Arithmetic (HA) is the theory based on first-order intuitionistic
logic (NJ) and whose set of axioms is Ax(HA). Formally:

HA ` A ≡ Γ `NJ A for some Γ ⊆ Ax(HA)

Replacing NJ by NK, we get Peano Arithmetic (same axioms)

When building proofs, it is convenient to integrate the axioms of HA
in the system of deduction, by replacing the Axiom rule

Γ ` A
A∈ Γ

by Γ ` A
A∈ Γ∪Ax(HA)

The extended deduction system is then written HA

Question: Is HA constructive?
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Basic properties

Given a function symbol f and a closed FO-terms e, we write:

f N (: Nk → N) the primitive recursive function associated to f

eN (∈ N) the denotation of e in N (standard model)

Since the system of axioms of HA provides the defining equations of
all primitive recursive functions, we have:

Proposition (Computational completeness)

If N |= e1 = e2, then HA ` e1 = e2

Note: Converse implication amounts to the property of consistency

Corollary (Completeness for Σ0
1-formulas)

If N |= ∃~x (e1(~x) = e2(~x)), then HA ` ∃~x (e1(~x) = e2(~x))

Note: Converse implication is the property of 1-consistency

Gödel’s 1st incompleteness theorem says that HA is not Π0
1-complete
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Background

1908. Brouwer: The untrustworthiness of the principles of logic
(Principles of intuitionism)

1936. Church: An unsolvable problem of elementary number theory
(Application of the λ-calculus to the Entscheidungsproblem)

1936. Turing: On computable numbers, with an application to the
Entscheidungsproblem
(Alternative solution to the Entscheidungsproblem, using Turing machines)

1936. Kleene: λ-definability and recursiveness
(Definition of partial recursive functions)

1945. Kleene: On the interpretation of intuitionistic number theory
(Introduction of realizability, as a semantics for HA)
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Kleene realizability

1945. Kleene: On the interpretation of intuitionistic number theory

Realizability in Heyting Arithmetic (HA)

Definition of the realizability relation n 
 A

n = Gödel code of a partial recursive function
A = closed formula of HA

Theorem: Every provable formula of HA is realized
(But some unprovable formulas are realized too...)

Application to the disjunction & existence properties

Remarks:

Codes for partial recursive functions can be replaced by the elements
of any partial combinatory algebra

Here, we shall take closed terms of PCF (partially computable functions)
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The language of realizers

Terms of PCF (= λ-calculus + primitive pairs & integers)

Terms t, u ::= x | λx . t | tu
| pair | fst | snd

| 0 | S | rec

Syntactic worship: Free & bound variables. Renaming. Work up to α-conversion.
Set of free variables: FV (t). Capture-avoiding substitution: t{x := u}

Notations: 〈t1, t2〉 := pair t1 t2, n̄ := Sn 0 (n ∈ N)

Reduction rules

(λx . t) u � t{x := u}

fst 〈t1, t2〉 � t1 rec t0 t1 0 � t0

snd 〈t1, t2〉 � t2 rec t0 t1 (S u) � t1 u (rec t0 t1 u)

Grand reduction written t �∗ u (reflexive, transitive, context-closed)
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Definition of the relation t 
 A

Recall: For each closed FO-term e, we write eN its denotation in N

Definition of the realizability relation t 
 A (t, A closed)

t 
 e1 = e2 ≡ eN1 = eN2 ∧ t �∗ 0
t 
 ⊥ ≡ ⊥
t 
 > ≡ t �∗ 0
t 
 A⇒ B ≡ ∀u (u 
 A ⇒ tu 
 B)

t 
 A ∧ B ≡ ∃t1 ∃t2 (t �∗ 〈t1, t2〉 ∧ t1 
 A ∧ t2 
 B)

t 
 A ∨ B ≡ ∃u ((t �∗ 〈0̄, u〉 ∧ u 
 A) ∨ (t �∗ 〈1̄, u〉 ∧ u 
 B))

t 
 ∀x A(x) ≡ ∀n (t n̄ 
 A(n))

t 
 ∃x A(x) ≡ ∃n ∃u (t �∗ 〈n̄, u〉 ∧ u 
 A(n))

Lemma (closure under anti-evaluation)

If t �∗ t′ and t′ 
 A, then t 
 A
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We now want to prove the

Theorem (Soundness)

If HA ` A, then t 
 A for some closed PCF-term t

Outline of the proof:

Step 1: Translating FO-terms into PCF-terms

Step 2: Translating derivations of LJ into PCF-terms

Step 3: Adequacy lemma

Step 4: Realizing the axioms of HA

Final step: Putting it all together
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Step 1: Translating FO-terms into PCF-terms

Proposition (Compiling primitive recursive functions in PCF)

Each function symbol f is computed by a closed PCF-term f ∗:

If f N(n1, . . . , nk) = m, then f ∗ n̄1 · · · n̄k �∗ m̄

Proof. Standard exercise of compilation. Examples:

0∗ := 0 (+)∗ := λx , y . rec x (λ , z . S z) y
s∗ := S (×)∗ := λx , y . rec 0 (λ , z . (+)∗ z x) y

pred∗ := λx . rec 0 (λz, . z) x (−)∗ := λx , y . rec x (λ , z . pred∗ z) y

Each FO-term e with free variables x1, . . . , xk is translated into a closed
PCF-term e∗ with the same free variables, letting:

x∗ := x and
(
f (e1, . . . , ek)

)∗
:= f ∗ e∗1 · · · e∗k

Fact: If e is closed, then e∗ �∗ n̄, where n = eN
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Step 2: Translating derivations into PCF-terms (1/3)

Every derivation d : (A1, . . . ,An ` B) is translated into a
PCF-term d∗ with free variables x1, . . . , xk , z1, . . . , zn, where:

x1, . . . , xk are the free variables of A1, . . . ,An,B

z1, . . . , zn are proof variables associated to A1, . . . ,An

The construction of d∗ follows the Curry-Howard correspondence:

(
A1, . . . ,An ` Ai

)∗
:= zi

(
Γ ` >

)∗
:= 0


.... d

Γ ` ⊥
Γ ` A


∗

:= any term


.... d

Γ,A ` B

Γ ` A⇒ B


∗

:= λz . d∗


.... d1

Γ ` A⇒ B

.... d2

Γ ` A
Γ ` B


∗

:= d∗1 d
∗
2
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Step 2: Translating derivations into PCF-terms (2/3)


.... d1

Γ ` A

.... d2

Γ ` B
Γ ` A ∧ B


∗

:= 〈d∗1 , d∗2 〉


.... d

Γ ` A ∧ B
Γ ` A


∗

:= fst d∗


.... d

Γ ` A ∧ B
Γ ` B


∗

:= snd d∗


.... d

Γ ` A
Γ ` A ∨ B


∗

:= 〈0̄, d∗〉


.... d

Γ ` B
Γ ` A ∨ B


∗

:= 〈1̄, d∗〉


.... d

Γ ` A ∨ B

.... d0

Γ,A ` C

.... d1

Γ,B ` C

Γ ` C


∗

:= match d∗ (λz . d∗0 ) (λz . d∗1 )

writing match := λx , x0, x1 . rec (x0 (snd x)) (λ , . x1 (snd x)) (fst x)
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Step 2: Translating derivations into PCF-terms (3/3)


.... d

Γ ` A
Γ ` ∀x A


∗

:= λx . d∗


.... d

Γ ` ∀x A

Γ ` A{x := e}


∗

:= d∗e∗


.... d

Γ ` A{x := e}
Γ ` ∃x A


∗

:= 〈e∗, d∗〉


.... d1

Γ ` ∃x A

.... d2

Γ,A ` B

Γ ` B


∗

:= let 〈x , z〉 = d∗1 in d∗2

(
Γ ` e = e

)∗
:= 0


.... d1

Γ ` e1 = e2

.... d2

Γ ` A{x = e1}
Γ ` A{x := e2}


∗

:= d∗2

writing let 〈x , z〉 = t in u := (λy . (λx , z . u) (fst y) (snd y)) t
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Step 3: Adequacy lemma

Recall that in the definition of d∗, we assumed that each first-order variable x
is also a PCF-variable. (Remaining PCF-variables z are used as proof variables.)

Definition (Valuation)

A valuation is a function ρ : FOVar→ N. A valuation ρ may be applied:

to a formula A; notation: A[ρ] (result is a closed formula)

to a PCF-term t; notation: t[ρ] (result is a possibly open PCF-term)

Lemma (Adequacy)

Let d : (A1, . . . ,An ` B) be a derivation in NJ. Then:

for all valuations ρ,

for all realizers t1 
 A1[ρ], . . . , tn 
 An[ρ],

we have: d∗[ρ]{z1 := t1, . . . , zn := tn} 
 B[ρ]

Proof: By induction on d , using that {t : t 
 B} is closed under anti-evaluation
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Step 4: Realizing the axioms of HA

Lemma (Realizing true Π0
1-formulas)

Let e1(~x), e2(~x) be FO-terms depending on free variables ~x .
If N |= ∀~x (e1(~x) = e2(~x)), then λ~x . 0̄ 
 ∀~x (e1(~x) = e2(~x))

Since all defining equations of function symbols are Π0
1:

Corollary

All defining equations of function symbols are realized

Lemma (Realizing Peano axioms)

λxyz . z 
 ∀x ∀y (s(x) = s(y)⇒ x = y)

any term 
 ∀x (s(x) 6= 0)

λ~z . rec 
 ∀~z [A(~z , 0)⇒ ∀x (A(~z , x)⇒ A(~z , s(x)))⇒ ∀x A(~z , x)]
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Final step: Putting it all together

Theorem (Soundness)

If HA ` A, then t 
 A for some closed PCF-term t

Proof. Assume HA ` A, so that there are axioms A1, . . . ,An and a derivation
d : (A1, . . . ,An ` A) in LJ. Take realizers t1, . . . , tn of A1, . . . ,An. By adequacy,
we have d∗{z1 := t1, . . . , zn := tn} 
 A.

Corollary (Consistency)

HA is consistent: HA 6` ⊥

Proof. If HA ` ⊥, then the formula ⊥ is realized, which is impossible by definition

Remark. Since HA ⊆ PA and PA is consistent (from the existence of the
standard model), we already knew that HA is consistent
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Σ0
1-soundness and completeness

Proposition (Σ0
1-soundness/completeness)

For every closed Σ0
1-formula, the following are equivalent:

(1) HA ` ∃~x (e1(~x) = e2(~x)) (formula is provable)

(2) t 
 ∃~x (e1(~x) = e2(~x)) for some t (formula is realized)

(3) N |= ∃~x (e1(~x) = e2(~x)) (formula is true)

Proof. (1)⇒ (2) by soundness
(2)⇒ (3) by definition of t 
 ∃~x (e1(~x) = e2(~x))
(3)⇒ (1) by Σ0

1-completeness

Corollary (Existence property for Σ0
1-formulas)

If HA ` ∃~x (e1(~x) = e2(~x)), then HA ` e1(~n) = e2(~n) for some ~n ∈ N

Proof. Use (1)⇒ (3), and conclude by computational completeness
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The halting problem

Let h be the binary function symbol associated to the primitive
recursive function hN : N2 → N defined by

hN(n, k) =

{
1 if Turing machine n stops after k evaluation steps

0 otherwise

Write H(x) := ∃y (H(x , y) = 1) (halting predicate)

Proposition

The formula ∀x (H(x) ∨ ¬H(x)) is not realized

Proof. Let t 
 ∀x (H(x) ∨ ¬H(x)), and put u := λx . fst (t x). We check that:

For all n ∈ N, either u n̄ �∗ 0̄ or u n̄ �∗ 1̄

If u n̄ �∗ 0̄, then H(n) is realized, so that Turing machine n halts

If u n̄ �∗ 1̄, then H(n) is not realized so that Turing machine n loops

Therefore, the program u solves the halting problem, which is impossible
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EM is not derivable in HA

By soundness we get: HA 6` ∀x (H(x) ∨ ¬H(x)). Hence:

Theorem (Unprovability of EM)

The law of excluded middle (EM) is not provable in HA

Remark: We actually proved that the open instance H(x) ∨ ¬H(x)
of EM is not provable in HA. On the other hand we can prove (classically)
that each closed instance of EM is realizable:

Proposition (Realizing closed instances of EM)

For each closed formula A, the formula A ∨ ¬A is realized

Proof. Using meta-theoretic EM (in the model), we distinguish two cases:

Either A is realized by some term t. Then 〈0̄, t〉 
 A ∨ ¬A
Either A is not realized. Then t 
 ¬A (t any), hence 〈1̄, t〉 
 A ∨ ¬A

But this proof is not accepted by intuitionists (uses meta-theoretic EM)
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Unprovable, but realizable (1/3)

We have already seen that the Halting Problem

(HP) ∀x (H(x) ∨ ¬H(x))

is not realized. Therefore:

Proposition

any term 
 ¬HP, but: HA 6` ¬HP (since: PA 6` ¬HP)

Proof. Since HP is not realized, its negation is realized by any term. On the other
hand we have PA 6` ¬HP (since PA ` HP), so that HA 6` ¬HP

Morality:

PA takes position for the excluded middle

HA actually takes no position (for or against) the excluded middle.
In practice, it is 100% compatible with classical logic

Kleene realizability takes position against excluded middle. Many
realized formulas (such as ¬HP) are classically false
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Unprovable, but realizable (2/3)

Recall that all true Π0
1-formulas are realized:

If N |= ∀~x (e1(~x) = e2(~x)), then λ~x . 0̄ 
 ∀~x (e1(~x) = e2(~x))

But Gödel undecidable formula G is a true Π0
1-formula. Therefore:

Proposition

λz . 0̄ 
 G , but: HA 6` G (since: PA 6` G )

Remarks:

Like ¬HP, the formula G is realized but not provable

Unlike ¬HP, the formula G is classically true
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Unprovable, but realizable (3/3)

Markov Principle (MP) is the following scheme of axioms:

∀x (A(x) ∨ ¬A(x))⇒ ¬¬∃x A(x)⇒ ∃x A(x)

Obviously: PA ` MP

Proposition (MP is realized)

tMP 
 ∀x (A(x) ∨ ¬A(x))⇒ ¬¬∃x A(x)⇒ ∃x A(x)

where tMP := λz .Y (λrx . if fst (z x) = 0 then 〈x , snd (z x)〉 else r (S x))
Y := λf . (λx . f (x x)) (λx . f (x x))

Using modified realizability, one can show: HA 6` MP [Kreisel]

We have the strict inclusions:

HA ⊂ HA + MP ⊂ PA
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To sum up

True in N Realized

HP ¬HPMP

G

HEYTING
ARITHMETIC

PEANO
ARITHMETIC

HP⇔ G

∀x∃y (y > x ∧ prime(y))

⊥
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Towards the disjunction and existence properties

Proposition (Semantic disjunction & existence properties)

1 If HA ` A ∨ B, then A is realized or B is realized

2 If HA ` ∃x A(x), then A(n) is realized for some n ∈ N

Proof. From main Theorem & definition of realizability:

1 If HA ` A ∨ B, then t 
 A ∨ B for some t, so that:
either t �∗ 〈0̄, u〉 for some u 
 A, or t �∗ 〈1̄, u〉 for some u 
 B

2 If HA ` ∃x A(x), then t 
 ∃x A(x) for some t, so that:
t �∗ 〈n̄, u〉 for some n ∈ N and u 
 A(n)

This weak forms of the disjunction & existence properties are now
widely accepted as criteria of constructivity

To prove the strong form, we need to introduce glued realizability
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Glued realizability (1/3)

Let P be a set of closed formulas such that:

P contains all theorems of HA

P is closed under modus ponens: (A⇒ B) ∈ P, A ∈ P ⇒ B ∈ P

Definition of the relation t 
P A (t, A closed)

t 
P e1 = e2 ≡ eN1 = eN2 ∧ t �∗ 0
t 
P ⊥ ≡ ⊥
t 
P > ≡ t �∗ 0
t 
P A⇒ B ≡ ∀u (u 
P A ⇒ tu 
P B) ∧ (A⇒ B) ∈ P
t 
P A ∧ B ≡ ∃t1 ∃t2 (t �∗ 〈t1, t2〉 ∧ t1 
P A ∧ t2 
P B)

t 
P A ∨ B ≡ ∃u ((t �∗ 〈0̄, u〉 ∧ u 
P A) ∨ (t �∗ 〈1̄, u〉 ∧ u 
P B))

t 
P ∀x A(x) ≡ ∀n (t n̄ 
P A(n)) ∧ (∀x A(x)) ∈ P
t 
P ∃x A(x) ≡ ∃n ∃u (t �∗ 〈n̄, u〉 ∧ u 
P A(n))

Plain realizability = case where P contains all closed formulas
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Glued realizability (2/3)

Theorem [Kleene’45]

1 If t 
P A, then A ∈ P
2 If HA ` A, then t 
P A for some PCF-term t

Proof.

1 By a straightforward induction on A

2 Same proof as for plain realizability. Extracted program t is the same as before
(definitions of f 7→ f ∗, e 7→ e∗, d 7→ d∗ unchanged). Only change appears in
the statement & proof of Adequacy (step 3), that uses 
P rather than 
.

To sum up: For each set of closed formulas P that contains all
theorems of HA and that is closed under modus ponens:

provable in HA ⊆ P-realized ⊆ P
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Glued realizability (3/3)

Particular case: P = HA: (= set of theorems of HA)

Proposition

HA ` A iff t 
HA A for some closed PCF-term t

From this we deduce:

Corollary (Disjunction/existence properties)

1 If HA ` A ∨ B, then HA ` A or HA ` B

2 If HA ` ∃x A(x), then HA ` A(n) for some n ∈ N

Proof. Same proof as before, using the fact that HA ` A iff A is HA-realized
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Program extraction

Proposition (Provably total functions are recursive)

If HA ` ∀~x ∃y A(~x , y) (i.e. the relation A(~x , y) is provably total in HA),

then there exists a total recursive function φ : Nk → N such that:

HA ` A(~n, φ(~n)) for all ~n = (n1, . . . , nk) ∈ Nk

Proof. Let d be a derivation of A in HA, and d∗ the corresponding closed PCF-term
(constructed in Steps 1, 2, 4). We take φ := λ~x . fst (d∗ ~x)

Note: The relation A(~x , y) may not be functional. In this case, the
extracted program φ := λ~x . fst (d∗ ~x) associated to the derivation d
chooses one output φ(~n) for each input ~n ∈ Nk

Optimizing extracted program φ: Using modified realizability [Kreisel],
we can ignore all sub-proofs corresponding to Harrop formulas:

Harrop formulas H ::= e1 = e2 | > | ⊥
| H1 ∧ H2 | A⇒ H | ∀x H
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Plan

1 Introduction

2 Intuitionism & constructivity

3 Heyting Arithmetic

4 Kleene realizability

5 Partial combinatory algebras

6 Conclusion
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Kleene’s original presentation (1/2)

Kleene did not consider closed PCF-terms as realizers, but natural
numbers, used as Gödel codes for partial recursive functions

Definition of realizability parameterized by:

A recursive injection 〈·, ·〉 : N×N→ N (pairing)

An enumeration (φn)n∈N of all partial recursive functions of arity 1

Kleene application: n · p := φn(p) (partial operation)

Realizability relation: n 
 A (n ∈ N, A closed formula)

Theorem

If HA ` A, then n 
 A for some n ∈ N

As before, we can also realize many unprovable formulas, such as the
negation of the Halting Problem (¬HP), Gödel undecidable formula G
and Markov Principle (MP), as well as Church’s Thesis (CT) (cf later)



Introduction Intuitionism & constructivity Heyting Arithmetic Kleene realizability PCAs Concl.

Kleene’s original presentation (2/2)

Definition of the realizability relation n 
 A (n ∈ N, A closed)

n 
 e1 = e2 ≡ eN1 = eN2 ∧ n = 0

n 
 ⊥ ≡ ⊥
n 
 > ≡ n = 0

n 
 A⇒ B ≡ ∀p (p 
 A ⇒ n · p 
 B)

n 
 A ∧ B ≡ ∃n1 ∃n2 (n = 〈n1, n2〉 ∧ n1 
 A ∧ n2 
 B)

n 
 A ∨ B ≡ ∃m ((n = 〈0,m〉 ∧ m 
 A) ∨ (n = 〈1,m〉 ∧ m 
 B))

n 
 ∀x A(x) ≡ ∀p (n · p 
 A(p))

n 
 ∃x A(x) ≡ ∃p ∃m (n = 〈p,m〉 ∧ m 
 A(p))

Proof of Main Theorem is essentially the same as before. But:

We need to work with Hilbert’s system for LJ (rather than with NJ)
Gödel codes induce a lot of code obfuscation...

As before, we can define glued realizability, prove the disjunction &
existence properties, extract program from proofs, etc.



Introduction Intuitionism & constructivity Heyting Arithmetic Kleene realizability PCAs Concl.

Church’s Thesis (CT)

Let h′ be the ternary function symbol associated to the primitive recursive
function h′

N
: N3 → N defined by

h′
N

(n, p, k) =


s(r) if Turing machine n applied to p stops after

k evaluation steps and returns r

0 otherwise

and put: x · y = z := ∃k (h′(x , y , k) = s(z))

Church’s Thesis (CT) internalizes in the language of HA the fact that
every provably total function is recursive:

(CT) ∀x ∃y A(x , y) ⇒ ∃n ∀x ∃y (n · x = y ∧ A(x , y))

Clearly: PA ` ¬CT (take A(x, y) := (H(x) ∧ y = 1) ∨ (¬H(x) ∧ y = 0))

Proposition

CT is realized by some n ∈ N (although HA 6` CT)
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Towards partial combinatory algebras

Idea: To define a language of realizers, we need a set A whose elements
behave as partial functions on A, and that is ‘closed under λ-abstraction’

Definition (Partial applicative structure – PAS)

A partial applicative structure (PAS) is a set A equipped with a partial
function (·) : A×A⇀ A, called application

Notation: abc = (a · b) · c, etc. (application is left-associative)

Intuition: Each element a of a partial applicative structure A
represents a partial function on A: (b 7→ ab) : A⇀ A

A PAS is combinatorialy complete when it contains enough elements
to represent all closed λ-terms (Formal definition given later)

Definition (Partial combinatory algebra – PCA)

A partial combinatory algebra (PCA) is a combinatorially complete PAS
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Combinatorial completeness (1/3)

Let A be a partial applicative structure

Definition (A-expressions)

Combinatory terms over A (or A-expressions) are defined by:

A-expressions t, u ::= x | a | tu (a ∈ A)

Syntactic worship: Free variables FV (t), substitution t{x := u}

Remark: Set of A-expr. = free magma generated by A ] Var

We define a (partial) interpretation function t 7→ tA from the set
of closed A-expressions to A, using the inductive definition:

aA = a (tu)A = tA · uA

Notations: t ↓ when tA is defined
t ↑ when tA is undefined
t ∼= u when either t, u ↑ or t, u ↓ and tA = uA
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Combinatorial completeness (2/3)

Definition (Combinatorial completeness)

A partial applicative structure A is combinatorially complete when
for each A-term t(x1, . . . , xn) with free variables among x1, . . . , xn
(n ≥ 1), there exists a ∈ A such that for all a1, . . . , an ∈ A:

1 aa1 · · · an−1 ↓
2 aa1 · · · an ∼= t(a1, . . . , an)

Notation: a = (x1, . . . , xn 7→ t(x1, . . . , xn))A (not unique, in general)

Theorem (Combinatorial completeness)

A partial applicative structure A is combinatorially complete iff
there are two elements K,S ∈ A s.t. for all a, b, c ∈ A:

1 Kab ↓ and Kab = a

2 Sab ↓ and Sabc ∼= ac(bc)
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Combinatorial completeness (3/3)

Condition is necessary: by combinatorial completeness, take

K = (x , y 7→ x)A and S = (x , y , z 7→ xz(yz))A

To prove that condition is sufficient, use combinators K,S ∈ A to
define λ-abstraction on the set of A-expressions:

Definition of λx . t:

λx . x := SKK λx . y := K y if y 6≡ x
λx . a := K a λx . tu := S (λx . t) (λx . u)

By construction we have FV (λx . t) = FV (t) \ {x}, and for each
A-expression t(x) that depends (at most) on x :

λx . t(x) ↓ and (λx . t(x)) a ∼= t(a) for all a ∈ A

Condition is sufficient: if K,S ∈ A exist, put

(x1, . . . , xn 7→ t(x1, . . . , xn))A := (λx1 · · · xn . t(x1, . . . , xn))A
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Examples of partial combinatory algebras

Definition (Partial combinatory algebra – PCA)

A partial combinatory algebra (PCA) is a combinatorially complete PAS

Examples of total combinatory algebras:

The set of closed λ-terms quotiented by β-conversion

The set of closed PCF-terms quotiented by β-conversion

The free magma generated by constants K,S and quotiented by the
relations K a b = a, S a b c = ac(bc) (Combinatory Logic)

Examples of (really) partial combinatory algebras:

The set of closed λ-terms in normal form, equipped with the partial
application defined by: t · u = NF(tu)

N equipped with Kleene application: n · p = φn(p)
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Using partial combinatory algebras

Using combinatory completeness, we can encode all constructs of
PCF in any partial combinatory algebra A, for example:

pair := (λxyz . zxy)A

fst := (λz . z (λxy . x))A

snd := (λz . z (λxy . y))A

0 := (λxf . x)A (= K)

succ := (λnxf . f n)A [Parigot]

Y := (λf . (λx . f (x x)) (λx . f (x x)))A [Church]

rec := (λx0x1 .Y (λrn . n x0 (λz . x1 z (r z))))A

Using these constructions, we can define the relation or realizability
a 
 A, where a ∈ A and A is a closed formula (exercise)

Main Theorem holds in all PCA A (exercise), and depending on the
choice of A, we can realize more or less formulas
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Where do the combinators K,S come from?

Through the CH correspondence, the types of combinators
K = λxy . x and S = λxyz . xz(yz) correspond to the axioms of
Hilbert deduction for minimal propositional logic:

K = λxy . x : A⇒ B ⇒ A
S = λxyz . xz(yz) : (A⇒ B ⇒ C )⇒ (A⇒ B)⇒ A⇒ C

Hilbert deduction for LJ

Rules:

` A⇒ B ` A
` B

` A⇒ B
` A⇒ ∀x B

x /∈FV (A)
` A⇒ B
` ∃x A⇒ B

x /∈FV (B)

Axioms:
A⇒ B ⇒ A (A⇒ B ⇒ C)⇒ (A⇒ B)⇒ A⇒ C

A⇒ B ⇒ A ∧ B A ∧ B ⇒ A A ∧ B ⇒ B > ⊥ ⇒ A

A⇒ A ∨ B B ⇒ A ∨ B (A⇒ C)⇒ (B ⇒ C)⇒ A ∨ B ⇒ C

∀x A⇒ A{x := e} A{x := e} ⇒ ∃x A
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Extensions and variants

Extensions:

To second- & higher-order arithmetic [Troelstra]

To intuitionistic & constructive set theories:

IZFR , IZFC [Myhill-Friedman 1973, McCarty 1984]
CZF [Aczel 1977]

Variants:

Modified realizability [Kreisel]

Techniques of reducibility candidates [Tait, Girard, Parigot]

Categorical realizability:

Strong connections with topoi [Scott, Hyland, Johnstone, Pitts]

Realizability for classical logic:

Kleene realizability via a negative translation [Kohlenbach]

Classical realizability in PA2, in ZF [Krivine 1994, 2001–2013]
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