Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
[ele] 0000000000000 00000000 000000000 000000000 0000000000000000000

An introduction to Krivine realizability J

Alexandre Miquel

\
oS

%
INGENIERIA

4d avLIINDVA

Yy Q’
UNIVERSIDAD L\
DE LA REPUBLICA

URUGUAY

April 28th, IMERL

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
o0 0000000000000 00000000 000000000 000000000 000000000000 0000000

What is classical realizability?

@ Complete reformulation of the principles of Kleene realizability to
take into account classical reasoning [Krivine 2009]

o Based on Griffin's discovery about the connection between classical
reasoning an control operators (call/cc)

call/cc : (A=B)=A)=A (Peirce’s law)

o Interprets the Axiom of Dependent Choices (DC) [K. 2003]

o Initially designed for PA2, but extends to:
o Higher-order arithmetic (PAw)
o Zermelo-Fraenkel set theory (ZF) [K. 2001, 2012]

e The calculus of inductive constructions (CIC) [M. 2007]
(with classical logic in Prop)

@ Deep connections with Cohen forcing [K. 2011]
~> can be used to define new models of PA2/ZF [K. 2012]

Plan

@ Introduction

© Second-order arithmetic (PA2)
© The A\ -calculus

@ Realizability interpretation

© Adequacy

@ Witness extraction

@ Introduction

© Second-order arithmetic (PA2)
© The A\ .-calculus
@ Realizability interpretation

© Adequacy

@ Witness extraction

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
oo 0@00000000000 00000000 000000000 000000000 000000000000 0000000

The language of (minimal) second-order logic

@ Second-order logic deals with two kinds of objects:
o lst-order objects = individuals (i.e. basic objects of the theory)
o 2nd-order objects = k-ary relations over individuals

First-order terms and formulas

First-order terms e, e = x | f(en,..., &)
Formulas A B = X(e,...,ex) | A=B
| VxA | VXA

@ Two kinds of variables

o lst-order vars: x, y, z, ...
o 2nd-order vars: X, Y, Z, ... of all arities k > 0

@ Two kinds of substitution:

o Ist-order subst.: e{x:=e&}, A{x:=e} (defined as usual)
o 2nd-order subst.: A{X := Py}, P{X:= Po} (postponed)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
oo 00@0000000000 00000000 000000000 000000000 000000000000 0000000

First-order terms

@ Defined from a first-order signature X (as usual):

First-order terms e,/ = x | fle,...,ek) J

o f ranges over k-ary function symbols in

@ In what follows we assume that:

@ Each k-ary function symbol f is interpreted in IN by a function
M N =N
@ The signature X contains at least a function symbol for every

primitive recursive function (0, s, pred, +, —, X, /, mod, ...),
each of them being interpreted the standard way

o Denotation (in IN) of a closed first-order term e written e

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
oo 000@000000000 00000000 000000000 000000000 000000000000 0000000

Formulas

@ Formulas of minimal second-order logic

Formulas AB = X(e,....,ex) | A=B
| VxA | VXA J

only based on implication and 1st/2nd-order universal quantification

@ Other connectives/quantifiers defined via second-order encodings:

1L = vzz (absurdity)

A = A= 1 (negation)

AANB = VZ((A =B=27)=2) (conjunction)

AVB = VZ(A=2)=(B=2Z)= 2) (disjunction)

IxAx) = VZ(IVx(A(x)=2Z)= 2) (1st-order 3)

IXAX) = VZWVX(AX)= 2Z2)= 2) (2nd-order 3)
e=e = VZ(Z(a)=Z(e)) (Leibniz equality)l

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
oo 0000800000000 00000000 000000000 000000000 000000000000 0000000

Predicates

@ Concrete relations are represented using predicates (syntactic sugar)

Predicates P,Q = X1 - XA (of arity k))

Definition (Predicate application and 2nd-order substitution)

©Q P(e,...,e) is the formula defined by
P(ei,...,e) = Ao{x1:=e1,...,xk ‘= e}

where P = X1 - - - XAo, and where e, ..., ek are k first-order terms

@ 2nd-order substitution A{X := P} (where X and P are of the same arity k)
consists to replace in the formula A every atomic sub-formula of the form

X(e,...,ek) by the formula P(er,...,ek)

@ Note: Every k-ary 2nd-order variable X can be seen as a predicate:

X =)A<1~~-)?kX(X1,...,Xk)

Introduction 2nd-order arithmetic (PA2) The Ac-calculus Realizability

Adequacy Witness extraction
oo 0000080000000 00000000 000000000

000000000 000000000000 0000000

Unary predicates as sets
@ Unary predicates represent sets of individuals
Syntactic sugar: {x: A} = %A ee P = P(e)

Example: The set IN of Dedekind numerals

N={x:VZ0eZ=Vy(yeZ=5s(y)eZ)=xcZ}

@ Relativized quantifications:

(VxeP)A(x) = Vx(xeP= A(x))

(3xeP)A(x) = VZ(Vx(xeP=A(x)=2)=2)
< 3x(x € PAA(x))

@ Inclusion and extensional equality:

PCQ = ¥x(xeP=xeQ)
P=Q = VYVx(xeP&exeQ)
@ Set constructors: PUQ = {x : xePVxeQ} (etc.)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction

[o]e] 0000008000000 00000000 000000000 000000000 0000000000000 000000
Natural deduction for classical 2nd-order logic (NK2)
Rules of system NK2
r-a s TF(A=B)=A) = A
AFEB rFA=B TFA
-A= B r-B
A [VxA
FrvxA V0 TR Ax = e
A VXA
M VXA M- A{X = P}

v

@ From these rules, one can derive the introduction & elimination rules
for L, A, v, 31, 32, = using their 2nd-order definition

o Classical logic obtained via Peirce’s law: ((A= B) = A)= A

@ Elimination rule for 2nd-order V implies all comprehension axioms:

VZVZ IX VX [X(R) < AR, Z 2Z)|)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
oo 0000000800000 00000000 000000000 000000000 000000000000 0000000

A type system for classical 2nd-order logic (ANK2)

@ Represent the computational contents of classical proofs using
Curry-style proof terms, with call/cc for classical logic:

tbu = x | M.t | tw | «

e Typing judgement: X1 AL, .., xp Ay FE B

typing context I

Typing rules

_ A)elr
TR A e TFc:(A=>B)=>A) = A
Mx:AkFt:B r-t:A=_8B r-u:A
r'-Xx.t: A= B -tu:B
rt: A =t:VxA
——————— x@FV(l _—
Thoawea o e A=
FEGEAL oy FrEt:YXA
Fr-t:VXA I t: A{X := P}

Note: V interpreted uniformly; type checking/inference undecidable

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
[ele] 000000000000 00000000 000000000 000000000 0000000000000000000

From the derivation to the proof term

@ Deduction system NK2 and type system ANK2 are equivalent:
AL, A ENke A ff xpAg, o xn tApEnke £ A for some t

g [Vx (A(x) = B(x))] .
[vx (B(x) = C(x))] A(x) = B(x) [A()] o
B(x) = C(x) B(x) o
C(x)
A(x) = Cq)

Mg Au.g(fu)

Introduction 2nd-order arithmetic (PA2) The Ac-calculus
oo 0000000008000 00000000

Typing examples

@ Intuitionistic principles:

pair
fst
snd

refl
trans

AXyz.zxy
Az.z(Axy . x)
Az.z(Axy.y)
Az.z
Axyz.y(xz)

Realizability Adequacy Witness extraction
000000000 000000000 000000000000 0000000

VXVY (X =Y =XAY)
VXYY (XA Y = X)

VXYY (XAY = Y)

Vx (x = x)
VxVyVz(x=y=>y=z=x=2)

@ Excluded middle, double negation elimination:

left
right
EM
DNE

AXUV . U X
Ayuv.vy

@ De Morgan laws:

VXYY (X = XV Y)
VXYY (Y = XV Y)

« (\k.right Ox . k (left x))) : VX (X V =X)
= Az.ac(Ak.zk)

VX (~=X = X)

Azy.z(Ax.yx) : IxA(x) = Vx-A(x)
Azy.c(Ak.z(Ax. k(yx))) : —Vx—-A(x) = IxA(x)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction

oo 0000000000800 00000000 000000000 000000000 000000000000 0000000

Axioms of classical 2nd-order arithmetic (PA2)

@ Defining equations of all primitive recursive functions:

Vx (x +0=x) Vx (x x 0 =0)
VxVy (x +s(y) = s(x +y)) VxVy (x x s(y) = x X y + x)
Vx (pred(0) = 0) Vx (x —0=0) "
¥x (pred(s(x)) = x) VxVy (x = s(y)) = pred(x —y) =
@ Peano axioms:
(P3) xVy(s(x) =s(y) = x=y)
(P4) Vx —(s(x) = 0)
(P5) ¥x(x € IN)
@ Remark: Induction is now a single axiom: (thanks to 2nd-order V)

Ind = Vx(x€IN)
& VZ[0eZ=Vy(yeZ=s(y)eZ)=Vx(xe Z)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
oo 0000000000080 00000000 000000000 000000000 000000000000 0000000

The problem of induction

@ Problem: Induction axiom Ind = Vx(x € IN) is not realizable!
(Due to uniform interpretation of V)

@ Solution: Restrict to PA2™ := PA2 —Ind and relativize all
1st-order quantifications to IN:
Non-relativized Relativized
Vx A(x) ~ (Yx € IN) A(x)
Vx (xeIN=A(x))
Ix A(x) ~s (Ix e N) A(x)
VZ (Vx (A(X)=2Z)=Z) VZ (Vx (x€EN=A(x)=2Z)=Z)

If PA2+ A, then PA2™ | AN (AN = A relativized to IN)

Requires to check that PA2™ F (Vxy,...,xx €IN) (f(x1,...,xk) € N)
for all primitive recursive function symbols f

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
oo 00000000000 0e 00000000 000000000 000000000 000000000000 0000000

The full standard model of PA2

o Full standard model of PA2 = Tarski model .#Z in which:

o lst-order variables x are interpreted by natural numbers n € IN
o 2nd-order variables X are interpreted by all relations R C R(IN¥)

(=, V are given the usual Tarski interpretation)

Theorem (Soundness)

If PA2F A, then #Z A

@ More generally, we say that a Tarski model .Z of PA2 is:
o Standard when IN“4 = IN

In general, we only have IN“% > IN (non standard elements)

o Full when (Rel“IN) = P((IN-7)k)
In general, we only have (Rel“IN)# B((IN“#)*) (may be countable)

@ The full standard model of PA2 is unique, up to unique isomorphism
(in the sense of models), but it is uncountable

@ Introduction

© Second-order arithmetic (PA2)
© The A\ -calculus
@ Realizability interpretation

© Adequacy

@ Witness extraction

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 0@000000 000000000 000000000 000000000000 0000000

Terms, stacks and processes

@ Syntax of the language parameterized by

o A countable set L = {«; ...} of instructions,
containing at least the instruction & (call/cc)

o A countable set Iy of stack constants (or stack bottoms)

Terms, stacks and processes

Terms tbu = x | M.t | tu | & | ke (k € K)
Stacks mr = a | tew (a € Mo, t closed)
Processes p,q = txm (t closed)

@ A MA-calculus with two kinds of constants:

e Instructions k € K, including &
o Continuation constants k,, one for every stack 7 (generated by)

o Notation: A, T, AxIl (sets of closed terms / stacks / processes)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00@00000 000000000 000000000 000000000000 0000000

Proof-like terms

@ Proof-like term = Term containing no continuation constant

Proof-like terms t,bu = x | M.t | tu | kK (r€K) |

o ldea: All realizers coming from actual proofs are of this form,
continuation constants k. are treated as paraproofs

o Notation: PL = set of closed proof-like terms

@ Natural numbers encoded as proof-like terms by:

Krivine numerals A = 50 € PL (n € N)

writing 0= Axy.x and 5= Anxy.y(nxy)

o Note: Krivine numerals # Church numerals, but S-equivalent

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 000e0000 000000000 000000000 000000000000 0000000

The Krivine Abstract Machine (KAM) (1/2)

@ We assume that the set A x 1 comes with a preorder p = p’ of
evaluation satisfying the following rules:

Krivine Abstract Machine (KAM)

Push tu x T — t x u-m
Grab Ax.t * u-m = t{xi=u} x 7w
Save @ K« u-mT > u * ky-m
Restore ky * u-m = u * m

(+ reflexivity & transitivity)

@ Evaluation not defined but axiomatized. The preorder p = p’ is
another parameter of the calculus, just like the sets IC and Iy

@ Extensible machinery: can add extra instructions and rules
(We shall see examples later)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 0000e000 000000000 000000000 000000000000 0000000

The Krivine Abstract Machine (KAM) (2/2)

@ Rules Push and Grab implement weak head (-reduction:

Push tuxm - txu-m
Grab M. .txu-m = t{x:=u}lxm
o Example: (Mxy.t)uvxm > Axy.txu-v-m

= t{x=ul{y:=v}*m

@ Rules Save and Restore implement backtracking:

Save CcrxU-T = Uxkp-T
Restore ke xu-m = uxm

o Instruction ac most often used in the pattern

c(Ak.t)xm = a@x(Ak.t) 7
= (Ak.t)xky-m
= t{k:=kn}*m

Witness extraction

The X\ c-calculus Realizability Adequacy
000000000000 0000000

Introduction 2nd-order arithmetic (PA2)
000000000 000000000

[o]e] 0000000000000 00000800

Representing functions

Definition (function representation)

A partial function f : IN¥ — IN is represented by a Ac-term feNif
/f:*ﬁl~--r_7k~u'7r - u*f(nl,...,nk)~7r

for all (ny,...,ng) € dom(f) and for all u € A, w € T

o Call by value encoding:
o Consumes k values and returns 1 value on the stack
o Control is given to the extra argument v (continuation, return block)

= Axk.k(5x)
= Mxyk.yk(A'z.5zk)x
= Myk.yk(MAK'z. 5 zxk)0

o Examples:

X)+) w)

Theorem (Representation of recursive functions)

All partial recursive functions are represented in the \.-calculus

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000080 000000000 000000000 000000000000 0000000

Example of extra instructions (1/2)

@ Numbering terms (or stacks): the instruction quote:

quotext-u-m > ux|[t]-T }

where t — [t] is a fixed bijection from A to IN

o Useful to realize the axiom of dependent choices (DC) [Krivine 03]
@ Testing syntactic equality: the instruction eq:

uxm ift1 =t
eqxty-th-u-v-m >

vxm ifty £t

o Can be implemented using quote

@ Non-deterministic choice operator: the instruction fork:

forkxu-v-m > {u*ﬂ- J

V % T

o Useful for pedagogy — bad for realizability (collapses to forcing)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 0000000 000000000 000000000 000000000000 0000000

Example of extra instructions (2/2)

@ The instruction stop:
stopxm ¥ J

Stops execution. Final result returned on the stack 7

@ The instruction print:

printxn-u-m > uUxT (formal specification)J

and prints integer n on standard output (informal specification)

o Useful to display intermediate results without stopping the machine
(Poor man'’s side effect)

@ The instruction hace_mate:

hace_matexu-m > wu*xm + hace el mate)

@ Introduction

© Second-order arithmetic (PA2)
© The A\ .-calculus
@ Realizability interpretation

© Adequacy

@ Witness extraction

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 0@0000000 000000000 000000000000 0000000

Classical realizability: principles

@ Intuitions:

o term = “proof’ / stack = “counter-proof”

e process = “contradiction” (slogan: never trust a classical realizer!)
@ Classical realizability model parameterized by a pole L

= set of processes closed under anti-evaluation

@ Each formula A is interpreted as two sets:

o A set of stacks ||A|| (falsity value)
o A set of terms |A| (truth value)

Falsity value ||A|| defined by induction on A (negative interpretation)

Truth value |A| defined by orthogonality:

A = JAIY = {teA:vVrel|A| txmel}

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 00@000000 000000000 000000000000 0000000

Architecture of the realizability model

@ The realizability model .# is defined from:

o The full standard model .# of PA2: the ground model
(but we could take any model .# of PA2 as well)

o An instance (/C, Mo,) of the Ac-calculus
o A saturated set of processes 1L C Ax[1 (the pole)

@ Architecture:
o First-order terms/variables interpreted as natural numbers n € IN
o Formulas interpreted as falsity values S € (M)

o k-ary second-order variables (and k-ary predicates) interpreted as
falsity functions F : IN¥ — 3(IT).

Formulas with parameters AB == - | F(ey,...,e) J

Add a predicate constant F for every falsity function F : INK — P(M)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000e00000 000000000 000000000000 0000000

Interpreting closed formulas with parameters

Let A be a closed formula (with parameters)

e Falsity value ||A| defined by induction on A:

IF(er,...,e)ll = F(elN,...,eN
A= B| = |A-|B|l = {t-m: telA, m€|B|}
Ivx Al = | IIA{x = n}|
nelN
VX Al = |J IA{X = F}|
FiINo—3()

@ Truth value |A| defined by orthogonality:

Al = A1 = {teA : Vre|A] txrecu} |

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 0000@0000 000000000 000000000000 0000000

The realizability relation

Falsity value ||A|| and truth value |A| depend on the pole 1L
~» write them (sometimes) ||A|| L and |A| L to recall the dependency

Realizability relations

tIFA = telAw (Realizability w.r.t. 1)
tIFA = VI te|AwL (Universal realizability)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 00000e000 000000000 000000000000 0000000

From computation to realizability (1/2)
Fundamental idea: The computational behavior of a term determines
the formula(s) it realizes:

Example 1: A closed term t is identity-like if:

txu-m = u*xm forallue A, m el

Proposition

If t is identity-like, then ¢ lIF VX (X = X)

Proof: Exercise! (Remark: converse implication holds — exercise!)

o Examples of identity-like terms:

o Ax.x, (Ax.x)(Ax.x), etc
o Mx.a(Ak.x), Ix.c(Mk.kx), Ix.c(Ak.kxw), etc.
e Ax.quotex An.unquote n (Az. z)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000800 000000000 000000000000 0000000

From computation to realizability (2/2)

Example 2: Control operators:

cxt-m = txky-mw
kyxt-m = txm

o “Typing” ku: kext-m = txmw

If 7el||A], then kyIFA= B (B any)

Proof: Exercise

o “Typing" «: c*xt-m = txkp-w

Proposition (Realizing Peirce's law)

clF (A=B)=A)=A

Proof: Exercise

Introduction 2nd-order arithmetic (PA2) The Ac-calcul
(oo} 0000000000000 00000000

Anatomy of the model

us

Realizability
000000080

o Denotation of universal quantification:

Falsity value: [IVx Al|

Truth value: [Vx Al

Adequacy Witness extraction
000000000 000000000000 0000000

(1/2)

U |A{x := n}|| (by definition)
neN
ﬂ |A{x := n}| (by orthogonality)
nelN

(and similarly for 2nd-order universal quantification)

o Denotation of implication:
Falsity value: IIA= B

Truth value: |A= B|
Yu€el|A|l tu€ |B|}

writing |A| = |B] = {t €A :

c

Al 1Bl
Al = [B]

(by definition)
(by orthogonality)

(realizability arrow)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 00000000e 000000000 000000000000 0000000

Anatomy of the model (2/2)

o Degenerate case: | =g

o Classical realizability mimics the Tarski interpretation:

Degenerated interpretation

In the case where I = 0, for every closed formula A:

Al = AN if#=A
o fa A

o Non degenerate cases: I # &

e Every truth value |A| is inhabited:
If toxmo € A, then kxoto €|A| forall A (paraproof)

o We shall only consider realizers that are proof-like terms (€ PL)

@ Introduction

© Second-order arithmetic (PA2)
© The A\ .-calculus
@ Realizability interpretation

© Adequacy

@ Witness extraction

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 0@0000000 000000000000 0000000

Adequacy (1/2)

Aim: Prove the theorem of adequacy

t: A (in the sense of ANK2) implies tI- A (in the sense of realizability))

@ Closing typing judgments X1 AL Xp t AR DA

o We close logical objects (1st-order terms, formulas, predicates) using
semantic objects (natural numbers, falsity values, falsity functions)

o We close proof-terms using realizers

Definition (Valuations)

@ A valuation is a function p such that

e p(x)eN for each 1st-order variable x
e p(X): INK — g3() for each 2nd-order variable X of arity k

@ Closure of A with p written A[p] (formula with parameters)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 00@000000 000000000000 0000000

Adequacy (2/2)

Definition (Adequate judgment, adequate rule)

Given a fixed pole I :
Q Ajudgment xy:Ai,...,xp:A,FE t: A isadequate if for every
valuation p and for all uy IF Aqfp], ..., un IF As[p] we have:
t{x1 = u1,..., X%, := up} I Alp]

@ A typing rule is adequate if it preserves the property of adequacy
(from the premises to the conclusion of the rule)

© All typing rules of ANK2 are adequate

@ All derivable judgments of ANK2 are adequate

Corollary: If Ft:A (Aclosed formula), then tlFA J

Introduction 2nd-order arithmetic (PA2) The Ac-calculus Realizability
(oo} 0000000000000 00000000 000000000

Extending adequacy to subtyping

Adequacy Witness extraction
000800000 000000000000 0000000

Definition (Adequate subtyping judgment)

Judgment A < B adequate

= [IBlalll < IA[]l

Remark: Implies |A[p]| C |B[p]| (for all p), but strictly stronger

(for all valuations)

e Some adequate typing/subtyping rules:

A<B B<C TFt:A A<B
A<A AL C r-t:B
VxA < A{x:=e}

VXA < A{X = P}
AsB ZFV(A) A
< VxB

AN<A B<B
—— X X¢FV(A)
A A < VXB

A= B < A= B

x¢ FV(A)
Vx(A=B) < A= VxB

X&FV(A)
VX(A=B) < A=VXB

e Example: VXVY ((X=Y)=X)=X) < ¥X (X = X)

Peirce's law

DNE

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 0000@0000 000000000000 0000000

Realizing equalities

e Equality between individuals defined by
ee=e = VZ(Z(a)= Z()) (Leibniz equality)

Denotation of Leibniz equality

Given two closed first-order terms e;, e (and a pole 1)
le =e| = 1] = {t-7m : (tx7) € L} if [e] = [e2]
IT=1l =A-0 if [es] # [e2]

writing 1=VZ(Z=2) and T=9

@ Intuitions:

o A realizer of a true equality (in the model) behaves as the identity
function Az .z

o A realizer of a false equality (in the model) behaves as a point of
backtrack (breakpoint)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 000008000 000000000000 0000000

Realizing axioms

Corollary 1 (Realizing true equations)
If M = VX (e(R) = ex(X)) (truth in the ground model)

then I = Xz.z IF VX (e(X) = e(X)) (universal realizability)

Corollary 2

All defining equations of primitive recursive function symbols
(+, — %, /, mod, 1, etc.) are universally realized by | = A\z.z

N

Corollary 3 (Realizing Peano axioms 3 and 4)

I IF VxVy(s(x) =s(y) = x=y)
Az.zIl lIF Vx—(s(x) =0)

N

Theorem: If PA2 A, then 6l A for some 6 € PL

D

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 000000e00 000000000000 0000000

Realizing true Horn formulas

Definition (Horn formulas)

@ A (positive/negative) literal is a formula L of the form
L= ¢ =6 or L =e#e
@ A (positive/negative) Horn formula is a closed formula H of the form

H = VX[Li= = L,= L] (p>0)
where Ly, ..., L, are positive; L, positive or negative
Theorem (Realizing true Horn formulas) [M. 2014]

If # E H, then:

|l = X\z.z I H (if H positive)
Azy - Zpt+1-21 (¢ o (Zp+1 |) soc) = H (if H negative)
o All axioms of PA2™ := PA2 —Ind are Horn formulas

@ Quantifications not relativized to IN ~» H holds for all individuals

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 000000080 000000000000 0000000

Provability, universal realizability and truth

@ From what precedes:

© A provable = A universally realized (by a proof-like term)
@ A universally realized = A true (in the full standard model)

~> Universal realizability: an intermediate notion
between provability and truth

o Beware!
Intuitionistic proofs of A C Classical proofs of A
N N

Intuitionistic realizers of A Classical realizers of A

™R

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 00000000e 000000000000 0000000

Program extraction

Extracting a program from a proof in PA2

If PA2F A, then thereis 6 € PL such that 6 - AN
(AN obtained from A by relativizing all 1st-order quantifications to IN)

o In practice:

o Only apply the adequacy theorem to the computationally relevant
parts of the proof

o For the computationally irrelevant parts (i.e. Horn formulas), use
‘default realizers’ ~- realizer optimization

o Example 1: Axy . b IIE (Vx,yeN) (x+y =y +x)
e Example 2: Fermat’s last theorem?

(Vx,y,z,neN)(x>1=y>1=n>3=x"4+y"#2")

1. realized by: Axyznujupuzv . uy (uz (uz (v1)))

@ Introduction

© Second-order arithmetic (PA2)
© The A\ .-calculus
@ Realizability interpretation

© Adequacy

@ Witness extraction

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 000000000 0@00000000000000000

Some problems of classical realizability

© The specification problem

Given a formula A, characterize its universal realizers
from their computational behavior

Specifying Peirce’s law [Guillermo-M. 2014]
@ Witness extraction from classical realizers (cf next slides)

© Realizability algebras + Cohen forcing
Realizability algebras: a program to well-order R [Krivine 2011]
Forcing as a program transformation [M. 2011]
@ Models induced by classical realizability

What are the interesting formulas that are realized in .4
that are not already true in the ground model .7

Realizability algebras II: new models of ZF + DC [Krivine 2012]

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 000000000 00®0000000000000000

The problem of witness extraction

@ Problem: Extract a witness from a universal realizer (or a proof)
to IF (Ix€IN) A(x)

i.e. some n € IN such that A(n) is true

@ This is not always possible!
to IF (3xelN)((x=1AC)V(x=0A-C))

(C = Continuum hypothesis, Goldbach’s conjecture, etc.)

@ Two possible compromises:

o Intuitionistic logic: restrict the shape of the realizer ty

(by only keeping intuitionistic reasoning principles)

o Classical logic: restrict the shape of the formula A(x)
(typically: Ad-formulas)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy
(oo} 0000000000000 00000000 000000000
Storage operators

Witness extraction
000000000 000@000000000000000

(1/2)
@ The call-by-value implication:
Formulas A, B

with the semantics:

| {e}=A

T

{e} = All = {n

n=e" melAl}
@ From the definition:

eeN=A< {e}=A
so that: I lIF VxVZ[(x € N= Z) = ({x} = Z)]

(direct implication)
Definition (Storage operator)

A storage operator is a closed proof-like term M such that:
M IF VxVZ[({x} = Z) = (x € N = Z)]

(converse implication)
Theorem (Existence)

Storage operators exist, e.g.:

M = Mn.nf(Ahx.h(5x))0

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 000000000 0000000000000 00000

Storage operators (2/2)

@ Intuitively, a storage operator

M IF YxVZ[({x} = Z) = (x € N = Z)] |

is a proof-like term that is intended to be applied to

e a function f that only accepts values (i-e. intuitionistic integers)

o a classical integer tlFneIN (n arbitrary)
and that evaluates (or ‘'smoothes’) the classical integer t into a
value of the form n before passing this value to f
@ By subtyping, we also have:

M lIF VZ [Vx ({x} = Z(x)) = (Vx€IN)Z(x)] J

This means that if a property Z(x) holds for all intuitionistic
integers, then it holds for all classical integers too

@ Conclusion: ecIN=A and {e}=- A interchangeable

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 000000000 000008000000 0000000

Computing with storage operators

@ Given a k-ary function symbol f, we let:
Total(f) (Vx1 €IN) - - (Vxi € IN)(F(xa, . . ., xc) € IN)

Comput(f) = Vxi - -V VZ[{xi} = = {x}=
{f(xy.. o x)} = Z) = Z]

Theorem (Specification of the formula Comput(f))

For all t € A, the following assertions are equivalent:
Q t I Comput(f)
@ t computes f: for all (ny,...,nk) € IN ueA, well:

txni---Ng-U-T > u*f(nl,...,nk)~7r

@ Using a storage operator M, we can build proof-like terms:

& lIF Total(f) = Comput(f)
& IF Comput(f) = Total(f)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 000000000 000000e000000000000

The naive extraction method

o A classical realizer tp lIF (3x€IN) A(x) always evaluates to a
pair witness/justification:

Naive extraction

If to IIF (3xeIN)A(x), then there are n € IN and u € A such that:
tox M(Axy .stopxy)-m > stop*xfA-u-T

(where u Ik A(n) w.r.t. the particular pole ... needed to prove the property)

@ But n € IN might be a false witness because the justification
ulk A(n) is cheating! (u might contain hidden continuations)

@ In the case where ty comes from an intuitionistic proof,
extracted witness n € IN is always correct

(Can be proved using Kleene realizability adapted to PA27)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 000000000 0000000e00000000000

Extraction in the ¥9-case

Extraction in the ¥9-case (+ display intermediate results)

If to Ik (3xeIN)(f(x) =0), then
to * M(Axy . printx y (stopx)) -m > stop*x7-7

for some n € IN such that f(n) =0

Storage operator M used to evaluate 1st component (x)

2nd component (y) used as a breakpoint

(Relies on the particular structure of equality realizers)

Holds independently from the instruction set

Supports any representation of numerals

(One has to implement the storage operator M accordingly)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 000000000 000000008000 0000000

Example: the minimum principle

@ Given a unary function symbol f, write:

Total(f) = (VxeIN)(f(x) € IN) (totality predicate)

x<y = x—y=0 (truncated subtraction)

Theorem (Minimum principle — MinP)
PA2™ F Total(f) = (IxelN) (VyeIN) (f(x) < f(y))

undecidable

Proof. Reductio ad absurdum + course by value induction J

@ The minimum principle is not intuitionistically provable (oracle)

@ We cannot apply the X 9-extraction technique to the above proof
(applied to a totality proof of f), since the conclusion is ¥9

The body (Vy €IN) (f(x) < f(y)) of 3-quantification is undecidable

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 000000000 000000000800 0000000

Using the minimum principle to prove a ¥ {-formula

o Idea: The value x given by the minimum principle can be used to
prove a ¥9-formula, so that we can perform program extraction:

PA2™ + Total(f) = (3xeIN) (f(x) < f(2x+ 1))

decidable
More generally: PA2~ F Total(f) A Total(g) = (Ix€IN) (f(x) < f(g(x)))

Proof. Take the point x given by the minimum principle)

e Applying ¥%-extraction to the above non-constructive proof,
we get a correct witness in finitely many evaluation steps

@ How is this witness computed?

Introduction

2nd-order arithmetic (PA2)
(oo} 0000000000000

The X\ c-calculus
00000000

Realizability
000000000

Adequacy
000000000

The algorithm underlying ¥%-extraction

tol

t11

Minimum Principle (oracle)

Witness extraction
0000000000800 000000

FxelN) (VyeN) (f(x) < f(1)

witness x + justification

of (YyeIN) (f(x) < f(»)

x{-Corollary
@xelN) (f(x) < f2x+ 1))

witness x (same as above)
+ justif. of f(x) < f2x+1)

x9-extractor

tg:

o Extract witness x + justification
o Evaluate witness x (using storage op.)

Evaluate Incorrect: backtrack

(half conditional)

justification

Correct: continue

Return witness x

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 000000000 0000000000080 000000

Transcript of the extraction process

Take f(x) = |x — 1000] (real minimum at x = 1000)
and apply ¥{-extraction to the proof of (Ix € IN) (f(x) < f(2x + 1))

Step 1 Oracle says: take x =0 since (Vy € IN) (£(0) < f(y)) (false)
Corollary says: take x =0 since £(0) < (1) (false)
Z?—extractor evaluates incorrect justification and backtracks

Step 2 Oracle says: take x =1 since (Vy € IN) (f(1) < f(y)) (false)
Corollary says: take x =1 since f(1) < f(3) (false)
Z?—extractor evaluates incorrect justification and backtracks

Step 3 Oracle says: take x =3 since (Vy € IN) (f(3) < f(y)) (false)
Corollary says: take x =3 since f(3) < f(7) (false)

Z?—extractor evaluates incorrect justification and backtracks

Step 4 Oracle says: take x =7 since (Vy € IN) (f(7) < f(y)) (false)

Step 11 Oracle says: take x = 1023 since (Vy € IN)(£(1023) < f(y)) (false)
Corollary says: take x = 1023 since f(1023) < £(2047) (true)
Z?—extractor evaluates correct justification and returns x = 1023

Note that answer x = 1023 is correct... but not the point where f reaches its minimum

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 000000000 000000000000 e000000

Extraction in the ¥%-case (1/2)

Definition (Conditional refutation)

ra € A s a conditional refutation of the predicate A(x) if

For all n € IN such that .# [~ A(n): ran IIE —A(n)

@ Such a conditional refutation can be constructed for every predicate
A(x) of 1st-order arithmetic

This result is a consequence of the following

Theorem (Realizing true arithmetic formulas) [Krivine-Miquey]

For every formula A(xi, ..., xx) of 1st-order arithmetic, there exists a
closed proof-like term t4 such that:

If A= A(m,...,nk), then tany---nx IF A(ng, ..., ng)

(for all ny, ..., nx € IN)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction

[e]e] 0000000000000 00000000 000000000 000000000 000000000000 0e00000
Extraction in the ¥%-case (2/2)
The Kamikaze extraction method [M. 2009]

Let
Q t - (3xeN)A(x)
@ ra a conditional refutation of the predicate A(x)

Then the process

tox M (Axy .printx (raxy))-m

displays a correct witness after finitely many evaluation steps

e Remark: No correctness invariant is ensured as soon as the (first)
correct witness has been displayed!

After, anything may happen: crash, infinite loop, displaying incorrect
witnesses, etc. (Kamikaze behavior)

Introduction
(oo}

2nd-order arithmetic (PA2)
0000000000000

The X\ c-calculus
00000000

Realizability
000000000

Adequacy
000000000

Interlude: on numeration systems

@ Numeration systems used in the History:

Tally sticks (35000 BC)
Babylonian (3100 BC)
Egyptian (3000 BC)
Roman (1000 BC)
Hindu-Arabic (300 AD)

HHH S i A
LT

nnNNll
XLII
42

Witness extraction
0000000000000 0e0000

@ Numeration systems used in Logic:

Peano:

555S0

Church:
FF(F(F(F(
Krivine:

(Anxf . f(nxf)
(Anxf . f(nxf
(Anxf . f(nxf
(Anxf . f(nxf
(Anxf . f(nxf
()

(
(
(
(
(
(
(
Axf.x)))))))))

)
)
)
)
)
)
)
)

Mxf . F(F(F(F(F(F(F(FCFCFCFCFCFCFCFCFCFCFCFCF(F
f(F(f M)

(FCEEEE>))NNNN))

(AnXF . £(nxF))((AnxF . f(nxf)
(AnxF . £(nxf))((AnxF . £ (nxf)
(Anxf . f(nxf)
(Anxf.f(nxf)
(Anxf.f(nxf)
(Xnxf . f(nxf
(
)

Xnxf . £(nxf)) ((AnxF. £ (nxf))((N
Xt . £(nxf)) ((Anxf . £ (nxf)) ((N
Xt . £(nxf)) ((Anxf . £ (nxf))((N
Xt £(nxf)) (Anxf . £(nxf))(Anxf . £ (nxf))((AnxF . £ (nxf))(
nxf . £(nxf)) ((Anxf . £(nxf)) ((N
Anxf .f(nxf)))(()
Anxf .f(nxf)) N((N
NN

Anxf . f(n;
MM

Anxf .f(nxf))

Anxf . f(nxf)

(
(Xnxf.f(nxf)
(Anxf . f(nxf))

(
((Xnxf.f(nxf

(FOFCFCF(EC
M)

f
)

((Anxf.f(nxf
Xnxf . £ (nxf))((Anxf . f (nxf
Xnxf £ (nxf))((Anxf . f (nxf

nxf . F(nxf))((Anxf . (nxf
((Xnxf.f(nxf
((Xnxf.f(nxf

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction

[o]e] 0000000000000 00000000 000000000 000000000 000000000000 000e000
Primitive numerals (1/2)
To get rid of Krivine numerals n = 5"0 (cf paleolithic numeration)

we extend the machine with the following instructions:

o For every natural number n € IN, an instruction n € K
with no evaluation rule (i.e. inert constant: pure data)

Intuition: nxm > segmentation fault

@ An instruction null € K with the rules

uxm ifn=0

nullxn-u-v > .
v 7 otherwise

e Instructions f € K with the rules

A ~

fxni--Ne-u-m = uxm-m wherem:f(nl,...,nk)J

for all the usual arithmetic operations

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 000000000 000000000000 0000e00

Primitive numerals (2/2)

o Call-by-value implication, yet another definition:
Formulas AB = - | [e]=A

with the semantics: ||{e} = AH {ﬁ STl oNnN= eIN, T E ||AH}

@ Redefining the set of natural numbers:

N = {x : VZ(([x] = Z) = Z2)}

box = Ak.kx - Vx([x] = x € IN')
boxn I nelN
An.nXx.3xbox I (Yx€IN")(s(x) € IN")
Anm.nAx.mMAy.(+)xybox I (¥x,y€IN)(x+y € IN')
rec.cbv = Azpzs. Y Arx.nullxz ((Z)x1Ay.zsy (ry))
I VZ[Z(0) = Wy (] = Z() = Z(()) = ¥x (1] = Z())]
rec := Azpzsn.nAx.rec_cbvzy (Ayz.zs (boxy) z) x

IF VZ[Z(0) = (Vy e IN')(Z(y) = Z(s(y))) = (Vx€IN')Z(x)]

e Conclusion: I Vx(x € N < x e IN)

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 000000000 0000000000000 0000e0

Krivine's realizability vs the LRS-translation (1/2)

@ Krivine's realizability can be seen as the composition of the
Lafont-Reus-Streicher (LRS) translation with Kleene realizability:

CPS o Krivine = Kleeneo LRS [Oliva-Streicher 2008]

The dictionary

Classical realizability (Krivine) | Lafont-Reus-Streicher translation
Pole 1L Return formula R
Falsity value ||A]| Negative translation A+
la= B = |A- 8] (A= B)t = ALRS p B
Truth value |A] = |A|* ALRS = AL = R

@ Through the CPS-translation, Krivine's extraction method in the
¥ 9-case is exactly Friedman's trick (transposed to LRS) [M. 2010]

Introduction 2nd-order arithmetic (PA2) The X\ c-calculus Realizability Adequacy Witness extraction
(oo} 0000000000000 00000000 000000000 000000000 000000000000 000000e

Krivine's realizability vs the LRS-translation (2/2)

Beware of reductionism!

@ The decomposition holds only for pure classical reasoning

(extra instructions are not taken into account)

o Classical realizers are easier to understand than their
CPS-translations (and more efficient)

o Classical realizability is more than Kleene's realizability composed
with the Lafont-Reus-Streicher translation

An image:
2H, 4+ 05 — 2H,0

but can we deduce the properties of water from the ones of H, and 057

	Introduction
	Second-order arithmetic (PA2)
	The c-calculus
	Realizability interpretation
	Adequacy
	Witness extraction

