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What is classical realizability?

Complete reformulation of the principles of Kleene realizability to
take into account classical reasoning [Krivine 2009]

Based on Griffin’s discovery about the connection between classical
reasoning an control operators (call/cc)

call/cc : ((A⇒ B)⇒ A)⇒ A (Peirce’s law)

Interprets the Axiom of Dependent Choices (DC) [K. 2003]

Initially designed for PA2, but extends to:

Higher-order arithmetic (PAω)

Zermelo-Fraenkel set theory (ZF) [K. 2001, 2012]

The calculus of inductive constructions (CIC) [M. 2007]
(with classical logic in Prop)

Deep connections with Cohen forcing [K. 2011]

 can be used to define new models of PA2/ZF [K. 2012]
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The language of (minimal) second-order logic

Second-order logic deals with two kinds of objects:

1st-order objects = individuals (i.e. basic objects of the theory)

2nd-order objects = k-ary relations over individuals

First-order terms and formulas

First-order terms

Formulas

e, e′ ::= x | f (e1, . . . , ek)

A,B ::= X (e1, . . . , ek) | A⇒ B
| ∀x A | ∀X A

Two kinds of variables

1st-order vars: x , y , z , . . .
2nd-order vars: X , Y , Z , . . . of all arities k ≥ 0

Two kinds of substitution:

1st-order subst.: e{x := e0}, A{x := e0} (defined as usual)

2nd-order subst.: A{X := P0}, P{X := P0} (postponed)
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First-order terms

Defined from a first-order signature Σ (as usual):

First-order terms e, e′ ::= x | f (e1, . . . , ek)

f ranges over k-ary function symbols in Σ

In what follows we assume that:

1 Each k-ary function symbol f is interpreted in N by a function

f N : Nk → N

2 The signature Σ contains at least a function symbol for every
primitive recursive function (0, s, pred, +, −, ×, /, mod, . . . ),
each of them being interpreted the standard way

Denotation (in N) of a closed first-order term e written eN
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Formulas

Formulas of minimal second-order logic

Formulas A,B ::= X (e1, . . . , ek) | A⇒ B
| ∀x A | ∀X A

only based on implication and 1st/2nd-order universal quantification

Other connectives/quantifiers defined via second-order encodings:

⊥ ≡ ∀Z Z
¬A ≡ A⇒ ⊥

A ∧ B ≡ ∀Z ((A⇒ B ⇒ Z)⇒ Z)
A ∨ B ≡ ∀Z ((A⇒ Z)⇒ (B ⇒ Z)⇒ Z)

∃x A(x) ≡ ∀Z (∀x (A(x)⇒ Z)⇒ Z)
∃X A(X ) ≡ ∀Z (∀X (A(X )⇒ Z)⇒ Z)

e1 = e2 ≡ ∀Z (Z(e1)⇒ Z(e2))

(absurdity)
(negation)

(conjunction)
(disjunction)

(1st-order ∃)
(2nd-order ∃)

(Leibniz equality)
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Predicates

Concrete relations are represented using predicates (syntactic sugar)

Predicates P,Q ::= x̂1 · · · x̂kA0 (of arity k)

Definition (Predicate application and 2nd-order substitution)

1 P(e1, . . . , ek) is the formula defined by

P(e1, . . . , ek) ≡ A0{x1 := e1, . . . , xk := ek}

where P ≡ x̂1 · · · x̂kA0, and where e1, . . . , ek are k first-order terms

2 2nd-order substitution A{X := P} (where X and P are of the same arity k)

consists to replace in the formula A every atomic sub-formula of the form

X (e1, . . . , ek) by the formula P(e1, . . . , ek)

Note: Every k-ary 2nd-order variable X can be seen as a predicate:

X ≡ x̂1 · · · x̂kX (x1, . . . , xk)
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Unary predicates as sets

Unary predicates represent sets of individuals

Syntactic sugar: {x : A} ≡ x̂A, e ∈ P ≡ P(e)

Example: The set N of Dedekind numerals

N ≡ {x : ∀Z (0 ∈ Z ⇒ ∀y (y ∈ Z ⇒ s(y) ∈ Z )⇒ x ∈ Z}

Relativized quantifications:

(∀x ∈P)A(x) ≡ ∀x (x ∈ P ⇒ A(x))

(∃x ∈P)A(x) ≡ ∀Z (∀x (x ∈ P ⇒ A(x)⇒ Z)⇒ Z)
⇔ ∃x (x ∈ P ∧ A(x))

Inclusion and extensional equality:

P ⊆ Q ≡ ∀x (x ∈ P ⇒ x ∈ Q)
P = Q ≡ ∀x (x ∈ P ⇔ x ∈ Q)

Set constructors: P ∪ Q ≡ {x : x ∈ P ∨ x ∈ Q} (etc.)
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Natural deduction for classical 2nd-order logic (NK2)

Rules of system NK2

Γ ` A
A∈Γ

Γ ` ((A⇒ B)⇒ A)⇒ A

Γ,A ` B

Γ ` A⇒ B
Γ ` A⇒ B Γ ` A

Γ ` B

Γ ` A
Γ ` ∀x A

x /∈FV (Γ)
Γ ` ∀x A

Γ ` A{x := e}

Γ ` A
Γ ` ∀X A

X /∈FV (Γ)
Γ ` ∀X A

Γ ` A{X := P}

From these rules, one can derive the introduction & elimination rules
for ⊥, ∧, ∨, ∃1, ∃2, = using their 2nd-order definition

Classical logic obtained via Peirce’s law: ((A⇒ B)⇒ A)⇒ A

Elimination rule for 2nd-order ∀ implies all comprehension axioms:

∀~z ∀~Z ∃X ∀~x [X (~x) ⇔ A(~x ,~z , ~Z )]
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A type system for classical 2nd-order logic (λNK2)

Represent the computational contents of classical proofs using
Curry-style proof terms, with call/cc for classical logic:

t, u ::= x | λx . t | tu | cc

Typing judgement: x1 : A1, . . . , xn : An︸ ︷︷ ︸
typing context Γ

` t : B

Typing rules

Γ ` x : A
(x :A)∈Γ

Γ ` cc : ((A⇒ B)⇒ A)⇒ A

Γ, x : A ` t : B

Γ ` λx . t : A⇒ B
Γ ` t : A⇒ B Γ ` u : A

Γ ` tu : B

Γ ` t : A
Γ ` t : ∀x A

x /∈FV (Γ)
Γ ` t : ∀x A

Γ ` t : A{x := e}

Γ ` t : A
Γ ` t : ∀X A

X /∈FV (Γ)
Γ ` t : ∀X A

Γ ` t : A{X := P}

Note: ∀ interpreted uniformly; type checking/inference undecidable
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From the derivation to the proof term

Deduction system NK2 and type system λNK2 are equivalent:

A1, . . . ,An `NK2 A iff x1 : A1, . . . , xn : An `NK2 t : A for some t

[∀x (B(x)⇒ C(x))]
g

B(x)⇒ C(x)

[∀x (A(x)⇒ B(x))]
f

A(x)⇒ B(x) [A(x)]
u

B(x)
@

C(x)
@

A(x)⇒ C(x)
λu

∀x (A(x)⇒ C(x))

∀x (B(x)⇒ C(x)) ⇒ ∀x (A(x)⇒ C(x))
λg

∀x (A(x)⇒ B(x)) ⇒ ∀x (B(x)⇒ C(x)) ⇒ ∀x (A(x)⇒ C(x))
λf

λf . λg . λu . g (f u)
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Typing examples

Intuitionistic principles:

pair ≡ λxyz . z x y : ∀X ∀Y (X ⇒ Y ⇒ X ∧ Y )
fst ≡ λz . z (λxy . x) : ∀X ∀Y (X ∧ Y ⇒ X )

snd ≡ λz . z (λxy . y) : ∀X ∀Y (X ∧ Y ⇒ Y )

refl ≡ λz . z : ∀x (x = x)
trans ≡ λxyz . y (x z) : ∀x ∀y ∀z (x = y ⇒ y = z ⇒ x = z)

Excluded middle, double negation elimination:

left ≡ λxuv . u x : ∀X ∀Y (X ⇒ X ∨ Y )
right ≡ λyuv . v y : ∀X ∀Y (Y ⇒ X ∨ Y )

EM ≡ cc (λk . right (λx . k (left x))) : ∀X (X ∨ ¬X )

DNE ≡ λz . cc (λk . z k) : ∀X (¬¬X ⇒ X )

De Morgan laws:

λzy . z (λx . yx) : ∃x A(x) ⇒ ¬∀x ¬A(x)
λzy . cc (λk . z (λx . k (y x))) : ¬∀x ¬A(x) ⇒ ∃x A(x)
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Axioms of classical 2nd-order arithmetic (PA2)

Defining equations of all primitive recursive functions:

∀x (x + 0 = x)
∀x ∀y (x + s(y) = s(x + y))

∀x (x × 0 = 0)
∀x ∀y (x × s(y) = x × y + x)

∀x (pred(0) = 0)
∀x (pred(s(x)) = x)

∀x (x − 0 = 0)
∀x ∀y (x − s(y)) = pred(x − y)

etc.

Peano axioms:

(P3) ∀x ∀y (s(x) = s(y)⇒ x = y)

(P4) ∀x ¬(s(x) = 0)

(P5) ∀x (x ∈ N)

Remark: Induction is now a single axiom: (thanks to 2nd-order ∀)

Ind ≡ ∀x (x ∈ N)
⇔ ∀Z [0 ∈ Z ⇒ ∀y (y ∈ Z ⇒ s(y) ∈ Z )⇒ ∀x (x ∈ Z )]
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The problem of induction

Problem: Induction axiom Ind ≡ ∀x (x ∈ N) is not realizable!
(Due to uniform interpretation of ∀)

Solution: Restrict to PA2− := PA2− Ind and relativize all
1st-order quantifications to N:

Non-relativized Relativized

∀x A(x)  (∀x ∈N)A(x)
∀x (x∈N⇒A(x))

∃x A(x)  (∃x ∈N)A(x)
∀Z (∀x (A(x)⇒Z)⇒Z) ∀Z (∀x (x∈N⇒A(x)⇒Z)⇒Z)

Theorem

If PA2 ` A, then PA2− ` AN (AN = A relativized to N)

Requires to check that PA2− ` (∀x1, . . . , xk ∈N) (f (x1, . . . , xk ) ∈ N)
for all primitive recursive function symbols f
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The full standard model of PA2

Full standard model of PA2 = Tarski model M in which:

1st-order variables x are interpreted by natural numbers n ∈ N
2nd-order variables X are interpreted by all relations R ⊆ P(Nk)

(⇒, ∀ are given the usual Tarski interpretation)

Theorem (Soundness)

If PA2 ` A, then M |= A

More generally, we say that a Tarski model M of PA2 is:

Standard when NM = N

In general, we only have NM ⊃ N (non standard elements)

Full when (RelkN)M = P((NM )k)

In general, we only have (RelkN)M ⊂ P((NM )k) (may be countable)

The full standard model of PA2 is unique, up to unique isomorphism
(in the sense of models), but it is uncountable
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Terms, stacks and processes

Syntax of the language parameterized by

A countable set K = {cc; . . .} of instructions,
containing at least the instruction cc (call/cc)

A countable set Π0 of stack constants (or stack bottoms)

Terms, stacks and processes

Terms

Stacks

Processes

t, u ::= x | λx . t | tu | κ | kπ

π, π′ ::= α | t · π

p, q ::= t ? π

(κ ∈ K)

(α ∈ Π0, t closed)

(t closed)

A λ-calculus with two kinds of constants:

Instructions κ ∈ K, including cc
Continuation constants kπ, one for every stack π (generated by cc)

Notation: Λ, Π, Λ ? Π (sets of closed terms / stacks / processes)
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Proof-like terms

Proof-like term ≡ Term containing no continuation constant

Proof-like terms t, u ::= x | λx . t | tu | κ (κ ∈ K)

Idea: All realizers coming from actual proofs are of this form,
continuation constants kπ are treated as paraproofs

Notation: PL ≡ set of closed proof-like terms

Natural numbers encoded as proof-like terms by:

Krivine numerals n ≡ sn 0 ∈ PL (n ∈ N)

writing 0 ≡ λxy . x and s ≡ λnxy . y (n x y)

Note: Krivine numerals 6≡ Church numerals, but β-equivalent
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The Krivine Abstract Machine (KAM) (1/2)

We assume that the set Λ ? Π comes with a preorder p � p′ of
evaluation satisfying the following rules:

Krivine Abstract Machine (KAM)

Push
Grab
Save
Restore

tu ? π � t ? u · π
λx . t ? u · π � t{x := u} ? π

cc ? u · π � u ? kπ · π
kπ ? u · π′ � u ? π
· · · · · ·

(+ reflexivity & transitivity)

Evaluation not defined but axiomatized. The preorder p � p′ is
another parameter of the calculus, just like the sets K and Π0

Extensible machinery: can add extra instructions and rules
(We shall see examples later)
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The Krivine Abstract Machine (KAM) (2/2)

Rules Push and Grab implement weak head β-reduction:

Push
Grab

tu ? π � t ? u · π
λx . t ? u · π � t{x := u} ? π

Example: (λxy . t) u v ? π � λxy . t ? u · v · π
� t{x := u}{y := v} ? π

Rules Save and Restore implement backtracking:

Save
Restore

cc ? u · π � u ? kπ · π
kπ ? u · π′ � u ? π

Instruction cc most often used in the pattern

cc (λk . t) ? π � cc ? (λk . t) · π
� (λk . t) ? kπ · π
� t{k := kπ} ? π
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Representing functions

Definition (function representation)

A partial function f : Nk ⇀ N is represented by a λc -term f̂ ∈ Λ if

f̂ ? n̄1 · · · n̄k · u · π � u ? f (n1, . . . , nk) · π

for all (n1, . . . , nk) ∈ dom(f ) and for all u ∈ Λ, π ∈ Π

Call by value encoding:

Consumes k values and returns 1 value on the stack
Control is given to the extra argument u (continuation, return block)

Examples: ŝ := λxk . k (s̄ x)
+̂ := λxyk . y k (λk ′z . ŝ z k) x
×̂ := λxyk . y k (λk ′z . +̂ z x k) 0̄

Theorem (Representation of recursive functions)

All partial recursive functions are represented in the λc -calculus
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Example of extra instructions (1/2)

Numbering terms (or stacks): the instruction quote:

quote ? t · u · π � u ? dte · π
where t 7→ dte is a fixed bijection from Λ to N

Useful to realize the axiom of dependent choices (DC) [Krivine 03]

Testing syntactic equality: the instruction eq:

eq ? t1 · t2 · u · v · π �
{
u ? π if t1 ≡ t2

v ? π if t1 6≡ t2

Can be implemented using quote

Non-deterministic choice operator: the instruction fork:

fork ? u · v · π �
{
u ? π
v ? π

Useful for pedagogy – bad for realizability (collapses to forcing)
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Example of extra instructions (2/2)

The instruction stop:

stop ? π 6�

Stops execution. Final result returned on the stack π

The instruction print:

print ? n · u · π � u ? π (formal specification)

and prints integer n on standard output (informal specification)

Useful to display intermediate results without stopping the machine
(Poor man’s side effect)

The instruction hace mate:

hace mate ? u · π � u ? π + hace el mate
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Classical realizability: principles

Intuitions:

term = “proof” / stack = “counter-proof”
process = “contradiction” (slogan: never trust a classical realizer!)

Classical realizability model parameterized by a pole ⊥⊥
= set of processes closed under anti-evaluation

Each formula A is interpreted as two sets:

A set of stacks ‖A‖ (falsity value)
A set of terms |A| (truth value)

Falsity value ‖A‖ defined by induction on A (negative interpretation)

Truth value |A| defined by orthogonality:

|A| = ‖A‖⊥⊥ = {t ∈ Λ : ∀π ∈ ‖A‖ t ? π ∈ ⊥⊥}
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Architecture of the realizability model

The realizability model M⊥⊥ is defined from:

The full standard model M of PA2: the ground model
(but we could take any model M of PA2 as well)

An instance (K,Π0,�) of the λc -calculus

A saturated set of processes ⊥⊥ ⊆ Λ ? Π (the pole)

Architecture:

First-order terms/variables interpreted as natural numbers n ∈ N
Formulas interpreted as falsity values S ∈ P(Π)

k-ary second-order variables (and k-ary predicates) interpreted as
falsity functions F : Nk → P(Π).

Formulas with parameters A,B ::= · · · | Ḟ (e1, . . . , ek)

Add a predicate constant Ḟ for every falsity function F : Nk → P(Π)
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Interpreting closed formulas with parameters

Let A be a closed formula (with parameters)

Falsity value ‖A‖ defined by induction on A:

‖Ḟ (e1, . . . , ek)‖ = F (eN1 , . . . , e
N
k )

‖A⇒ B‖ = |A| · ‖B‖ = {t · π : t ∈ |A|, π ∈ ‖B‖}

‖∀x A‖ =
⋃
n∈N

‖A{x := n}‖

‖∀X A‖ =
⋃

F :Nn→P(Π)

‖A{X := Ḟ}‖

Truth value |A| defined by orthogonality:

|A| = ‖A‖⊥⊥ = {t ∈ Λ : ∀π ∈ ‖A‖ t ? π ∈ ⊥⊥}
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The realizability relation

Falsity value ‖A‖ and truth value |A| depend on the pole ⊥⊥
 write them (sometimes) ‖A‖⊥⊥ and |A|⊥⊥ to recall the dependency

Realizability relations

t 
 A ≡ t ∈ |A|⊥⊥
t � A ≡ ∀⊥⊥ t ∈ |A|⊥⊥

(Realizability w.r.t. ⊥⊥)

(Universal realizability)
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From computation to realizability (1/2)

Fundamental idea: The computational behavior of a term determines
the formula(s) it realizes:

Example 1: A closed term t is identity-like if:

t ? u · π � u ? π for all u ∈ Λ, π ∈ Π

Proposition

If t is identity-like, then t � ∀X (X ⇒ X )

Proof: Exercise! (Remark: converse implication holds – exercise!)

Examples of identity-like terms:

λx . x , (λx . x) (λx . x), etc.
λx . cc (λk . x), λx . cc (λk . k x), λx . cc (λk . k x ω), etc.
λx . quote x λn . unquote n (λz . z)
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From computation to realizability (2/2)

Example 2: Control operators:

cc ? t · π � t ? kπ · π
kπ ? t · π′ � t ? π

“Typing” kπ: kπ ? t · π′ � t ? π

Lemma

If π ∈ ‖A‖, then kπ 
 A⇒ B (B any)

Proof: Exercise

“Typing” cc: cc ? t · π � t ? kπ · π

Proposition (Realizing Peirce’s law)

cc � ((A⇒ B)⇒ A)⇒ A

Proof: Exercise
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Anatomy of the model (1/2)

Denotation of universal quantification:

Falsity value: ‖∀x A‖ =
⋃
n∈N

‖A{x := n}‖ (by definition)

Truth value: |∀x A| =
⋂
n∈N

|A{x := n}| (by orthogonality)

(and similarly for 2nd-order universal quantification)

Denotation of implication:

Falsity value: ‖A⇒ B‖ = |A| · ‖B‖ (by definition)

Truth value: |A⇒ B| ⊆ |A| → |B| (by orthogonality)

writing |A| → |B| = {t ∈ Λ : ∀u ∈ |A| tu ∈ |B|} (realizability arrow)
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Anatomy of the model (2/2)

Degenerate case: ⊥⊥ = ∅

Classical realizability mimics the Tarski interpretation:

Degenerated interpretation

In the case where ⊥⊥ = 0, for every closed formula A:

|A| =

{
Λ if M |= A

∅ if M 6|= A

Non degenerate cases: ⊥⊥ 6= ∅

Every truth value |A| is inhabited:

If t0 ? π0 ∈ ⊥⊥, then kπ0t0 ∈ |A| for all A (paraproof)

We shall only consider realizers that are proof-like terms (∈PL)
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Adequacy (1/2)

Aim: Prove the theorem of adequacy

t : A (in the sense of λNK2) implies t 
 A (in the sense of realizability)

Closing typing judgments x1 : A1, . . . , xn : An ` t : A

We close logical objects (1st-order terms, formulas, predicates) using
semantic objects (natural numbers, falsity values, falsity functions)

We close proof-terms using realizers

Definition (Valuations)

1 A valuation is a function ρ such that

ρ(x) ∈ N for each 1st-order variable x
ρ(X ) : Nk → P(Π) for each 2nd-order variable X of arity k

2 Closure of A with ρ written A[ρ] (formula with parameters)
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Adequacy (2/2)

Definition (Adequate judgment, adequate rule)

Given a fixed pole ⊥⊥:

1 A judgment x1 : A1, . . . , xn : An ` t : A is adequate if for every
valuation ρ and for all u1 
 A1[ρ], . . . , un 
 An[ρ] we have:

t{x1 := u1, . . . , xn := un} 
 A[ρ]

2 A typing rule is adequate if it preserves the property of adequacy
(from the premises to the conclusion of the rule)

Theorem

1 All typing rules of λNK2 are adequate

2 All derivable judgments of λNK2 are adequate

Corollary: If ` t : A (A closed formula), then t � A
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Extending adequacy to subtyping

Definition (Adequate subtyping judgment)

Judgment A ≤ B adequate ≡ ‖B[ρ]‖ ⊆ ‖A[ρ]‖ (for all valuations)

Remark: Implies |A[ρ]| ⊆ |B[ρ]| (for all ρ), but strictly stronger

Some adequate typing/subtyping rules:

A ≤ A

A ≤ B B ≤ C

A ≤ C

Γ ` t : A A ≤ B

Γ ` t : B

∀x A ≤ A{x := e} ∀X A ≤ A{X := P}

A ≤ B

A ≤ ∀x B
x /∈FV (A)

A ≤ B

A ≤ ∀X B
X /∈FV (A)

A′ ≤ A B ≤ B′

A⇒ B ≤ A′ ⇒ B′

∀x (A⇒ B) ≤ A⇒ ∀x B
x /∈FV (A)

∀X (A⇒ B) ≤ A⇒ ∀X B
X /∈FV (A)

Example: ∀X ∀Y (((X ⇒ Y )⇒ X )⇒ X )︸ ︷︷ ︸
Peirce’s law

≤ ∀X (¬¬X ⇒ X )︸ ︷︷ ︸
DNE
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Realizing equalities

Equality between individuals defined by

e1 = e2 ≡ ∀Z (Z (e1)⇒ Z (e2)) (Leibniz equality)

Denotation of Leibniz equality

Given two closed first-order terms e1, e2 (and a pole ⊥⊥)

‖e1 = e2‖ =

{
‖1‖ = {t · π : (t ? π) ∈ ⊥⊥} if Je1K = Je2K
‖> ⇒ ⊥‖ = Λ · Π if Je1K 6= Je2K

writing 1 ≡ ∀Z (Z ⇒ Z) and > ≡ ∅̇

Intuitions:

A realizer of a true equality (in the model) behaves as the identity
function λz . z

A realizer of a false equality (in the model) behaves as a point of
backtrack (breakpoint)



Introduction 2nd-order arithmetic (PA2) The λc -calculus Realizability Adequacy Witness extraction

Realizing axioms

Corollary 1 (Realizing true equations)

If M |= ∀~x (e1(~x) = e2(~x)) (truth in the ground model)

then I ≡ λz . z � ∀~x (e1(~x) = e2(~x)) (universal realizability)

Corollary 2

All defining equations of primitive recursive function symbols
(+, −, ×, /, mod, ↑, etc.) are universally realized by I ≡ λz . z

Corollary 3 (Realizing Peano axioms 3 and 4)

I � ∀x ∀y (s(x) = s(y)⇒ x = y)
λz . z I � ∀x ¬(s(x) = 0)

Theorem: If PA2− ` A, then θ � A for some θ ∈ PL
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Realizing true Horn formulas

Definition (Horn formulas)

1 A (positive/negative) literal is a formula L of the form

L ≡ e1 = e2 or L ≡ e1 6= e2

2 A (positive/negative) Horn formula is a closed formula H of the form

H ≡ ∀~x [L1 ⇒ · · · ⇒ Lp ⇒ Lp+1] (p ≥ 0)

where L1, . . . , Lp are positive; Lp+1 positive or negative

Theorem (Realizing true Horn formulas) [M. 2014]

If M |= H, then:
I ≡ λz . z � H

λz1 · · · zp+1 . z1 (· · · (zp+1 I) · · · ) � H
(if H positive)

(if H negative)

All axioms of PA2− := PA2− Ind are Horn formulas

Quantifications not relativized to N  H holds for all individuals
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Provability, universal realizability and truth

From what precedes:

1 A provable ⇒ A universally realized (by a proof-like term)

2 A universally realized ⇒ A true (in the full standard model)

 Universal realizability: an intermediate notion
between provability and truth

Beware!

Intuitionistic proofs of A ⊆ Classical proofs of A

∩ ∩

Intuitionistic realizers of A
*
+

Classical realizers of A
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Program extraction

Extracting a program from a proof in PA2

If PA2 ` A, then there is θ ∈ PL such that θ � AN

(AN obtained from A by relativizing all 1st-order quantifications to N)

In practice:

Only apply the adequacy theorem to the computationally relevant
parts of the proof

For the computationally irrelevant parts (i.e. Horn formulas), use
‘default realizers’  realizer optimization

Example 1: λxy . I � (∀x , y ∈N) (x + y = y + x)

Example 2: Fermat’s last theorem1

(∀x , y , z , n∈N) (x ≥ 1⇒ y ≥ 1⇒ n ≥ 3⇒ xn + yn 6= zn)

1. realized by: λxyznu1u2u3v . u1 (u2 (u3 (v I)))
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Some problems of classical realizability

1 The specification problem

Given a formula A, characterize its universal realizers
from their computational behavior

Specifying Peirce’s law [Guillermo-M. 2014]

2 Witness extraction from classical realizers (cf next slides)

3 Realizability algebras + Cohen forcing

Realizability algebras: a program to well-order R [Krivine 2011]
Forcing as a program transformation [M. 2011]

4 Models induced by classical realizability

What are the interesting formulas that are realized in M⊥⊥
that are not already true in the ground model M ?

Realizability algebras II: new models of ZF + DC [Krivine 2012]
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The problem of witness extraction

Problem: Extract a witness from a universal realizer (or a proof)

t0 � (∃x ∈N)A(x)

i.e. some n ∈ N such that A(n) is true

This is not always possible!

t0 � (∃x ∈N) ((x = 1 ∧ C ) ∨ (x = 0 ∧ ¬C ))

(C = Continuum hypothesis, Goldbach’s conjecture, etc.)

Two possible compromises:

Intuitionistic logic: restrict the shape of the realizer t0

(by only keeping intuitionistic reasoning principles)

Classical logic: restrict the shape of the formula A(x)

(typically: ∆0
0-formulas)
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Storage operators (1/2)

The call-by-value implication:

Formulas A,B ::= · · · | {e} ⇒ A

with the semantics: ‖{e} ⇒ A‖ = {n̄ · π : n = eN, π ∈ ‖A‖}

From the definition: e ∈ N⇒ A ≤ {e} ⇒ A

so that: I � ∀x ∀Z [(x ∈ N⇒ Z)⇒ ({x} ⇒ Z)] (direct implication)

Definition (Storage operator)

A storage operator is a closed proof-like term M such that:

M � ∀x ∀Z [({x} ⇒ Z)⇒ (x ∈ N⇒ Z)] (converse implication)

Theorem (Existence)

Storage operators exist, e.g.: M := λfn . n f (λhx . h (s̄ x)) 0̄
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Storage operators (2/2)

Intuitively, a storage operator

M � ∀x ∀Z [({x} ⇒ Z )⇒ (x ∈ N⇒ Z )]

is a proof-like term that is intended to be applied to

a function f that only accepts values (i.e. intuitionistic integers)

a classical integer t 
 n ∈ N (n arbitrary)

and that evaluates (or ‘smoothes’) the classical integer t into a
value of the form n̄ before passing this value to f

By subtyping, we also have:

M � ∀Z [∀x ({x} ⇒ Z (x)) ⇒ (∀x ∈N)Z (x)]

This means that if a property Z (x) holds for all intuitionistic
integers, then it holds for all classical integers too

Conclusion: e ∈ N⇒ A and {e} ⇒ A interchangeable
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Computing with storage operators

Given a k-ary function symbol f , we let:

Total(f ) := (∀x1 ∈N) · · · (∀xk ∈N)(f (x1, . . . , xk) ∈ N)

Comput(f ) := ∀x1 · · · ∀xk ∀Z [{x1} ⇒ · · · ⇒ {xk} ⇒
({f (x1, . . . , xk)} ⇒ Z)⇒ Z ]

Theorem (Specification of the formula Comput(f ))

For all t ∈ Λ, the following assertions are equivalent:

1 t � Comput(f )

2 t computes f : for all (n1, . . . , nk) ∈ Nk , u ∈ Λ, π ∈ Π:

t ? n1 · · · nk · u · π � u ? f (n1, . . . , nk) · π

Using a storage operator M, we can build proof-like terms:

ξk � Total(f ) ⇒ Comput(f )
ξ′k � Comput(f ) ⇒ Total(f )
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The naive extraction method

A classical realizer t0 � (∃x ∈N)A(x) always evaluates to a
pair witness/justification:

Naive extraction

If t0 � (∃x ∈N)A(x), then there are n ∈ N and u ∈ Λ such that:

t0 ?M(λxy . stop x y) · π � stop ? n · u · π

(where u 
 A(n) w.r.t. the particular pole ⊥⊥... needed to prove the property)

But n ∈ N might be a false witness because the justification
u 
 A(n) is cheating! (u might contain hidden continuations)

In the case where t0 comes from an intuitionistic proof,
extracted witness n ∈ N is always correct

(Can be proved using Kleene realizability adapted to PA2−)
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Extraction in the Σ0
1-case

Extraction in the Σ0
1-case (+ display intermediate results)

If t0 � (∃x ∈N)(f (x) = 0), then

t0 ?M(λxy . print x y (stop x)) · π � stop ? n · π

for some n ∈ N such that f (n) = 0

Storage operator M used to evaluate 1st component (x)

2nd component (y) used as a breakpoint
(Relies on the particular structure of equality realizers)

Holds independently from the instruction set

Supports any representation of numerals
(One has to implement the storage operator M accordingly)
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Example: the minimum principle

Given a unary function symbol f , write:

Total(f ) := (∀x ∈N)(f (x) ∈ N)

x ≤ y := x − y = 0

(totality predicate)

(truncated subtraction)

Theorem (Minimum principle – MinP)

PA2− ` Total(f ) ⇒ (∃x ∈N) (∀y ∈N) (f (x) ≤ f (y))︸ ︷︷ ︸
undecidable

Proof. Reductio ad absurdum + course by value induction

The minimum principle is not intuitionistically provable (oracle)

We cannot apply the Σ0
1-extraction technique to the above proof

(applied to a totality proof of f ), since the conclusion is Σ0
2

The body (∀y ∈N) (f (x) ≤ f (y)) of ∃-quantification is undecidable
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Using the minimum principle to prove a Σ0
1-formula

Idea: The value x given by the minimum principle can be used to
prove a Σ0

1-formula, so that we can perform program extraction:

Corollary

PA2− ` Total(f ) ⇒ (∃x ∈N) (f (x) ≤ f (2x + 1))︸ ︷︷ ︸
decidable

More generally: PA2− ` Total(f ) ∧ Total(g) ⇒ (∃x ∈N) (f (x) ≤ f (g(x)))

Proof. Take the point x given by the minimum principle

Applying Σ0
1-extraction to the above non-constructive proof,

we get a correct witness in finitely many evaluation steps

How is this witness computed?
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The algorithm underlying Σ0
1-extraction

Minimum Principle (oracle)
(∃x ∈N) (∀y ∈N) ( f (x) ≤ f (y))

Σ0
1-Corollary

(∃x ∈N) ( f (x) ≤ f (2x + 1))

witness x + justification
of (∀y ∈N) ( f (x) ≤ f (y))

witness x (same as above)
+ justif. of f (x) ≤ f (2x + 1)

• Extract witness x + justification
• Evaluate witness x (using storage op.)

Return witness x

Correct: continue

Incorrect: backtrackEvaluate
justification

Σ0
1-extractor

(half conditional)

t0 :

t1 :

t2 :
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Transcript of the extraction process

Take f (x) = |x − 1000| (real minimum at x = 1000)

and apply Σ0
1-extraction to the proof of (∃x ∈N) (f (x) ≤ f (2x + 1))

Step 1 Oracle says: take x = 0 since (∀y ∈N) (f (0) ≤ f (y)) (false)
Corollary says: take x = 0 since f (0) ≤ f (1) (false)
Σ0

1-extractor evaluates incorrect justification and backtracks

Step 2 Oracle says: take x = 1 since (∀y ∈N) (f (1) ≤ f (y)) (false)
Corollary says: take x = 1 since f (1) ≤ f (3) (false)
Σ0

1-extractor evaluates incorrect justification and backtracks

Step 3 Oracle says: take x = 3 since (∀y ∈N) (f (3) ≤ f (y)) (false)
Corollary says: take x = 3 since f (3) ≤ f (7) (false)
Σ0

1-extractor evaluates incorrect justification and backtracks

Step 4 Oracle says: take x = 7 since (∀y ∈N) (f (7) ≤ f (y)) (false)
. . . . . . . .

Step 11 Oracle says: take x = 1023 since (∀y ∈N) (f (1023) ≤ f (y)) (false)
Corollary says: take x = 1023 since f (1023) ≤ f (2047) (true)
Σ0

1-extractor evaluates correct justification and returns x = 1023

Note that answer x = 1023 is correct... but not the point where f reaches its minimum
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Extraction in the Σ0
n-case (1/2)

Definition (Conditional refutation)

rA ∈ Λ is a conditional refutation of the predicate A(x) if

For all n ∈ N such that M 6|= A(n): rA n � ¬A(n)

Such a conditional refutation can be constructed for every predicate
A(x) of 1st-order arithmetic

This result is a consequence of the following

Theorem (Realizing true arithmetic formulas) [Krivine-Miquey]

For every formula A(x1, . . . , xk) of 1st-order arithmetic, there exists a
closed proof-like term tA such that:

If M |= A(n1, . . . , nk), then tA n̄1 · · · n̄k � A(n1, . . . , nk)

(for all n1, . . . , nk ∈ N)
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Extraction in the Σ0
n-case (2/2)

The Kamikaze extraction method [M. 2009]

Let

1 t0 � (∃x ∈N)A(x)

2 rA a conditional refutation of the predicate A(x)

Then the process

t0 ?M (λxy . print x (rA x y)) · π

displays a correct witness after finitely many evaluation steps

Remark: No correctness invariant is ensured as soon as the (first)
correct witness has been displayed!

After, anything may happen: crash, infinite loop, displaying incorrect
witnesses, etc. (Kamikaze behavior)
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Interlude: on numeration systems

Numeration systems used in the History:

Tally sticks (35000 BC)

Babylonian (3100 BC)

Egyptian (3000 BC)

Roman (1000 BC) XLII

Hindu-Arabic (300 AD) 42

Numeration systems used in Logic:

Peano: ssssssssssssssssssssssssssssssssssssssssss0

Church: λxf . f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (
f (f (f (f (f (f (f (f (f (f (f (f x)))))))))))))))))))))))))))))))))))))))))

Krivine: (λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λxf .x)))))))))))))))))))))))))))))))))))))))))))
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Primitive numerals (1/2)

To get rid of Krivine numerals n̄ = sn0 (cf paleolithic numeration)

we extend the machine with the following instructions:

For every natural number n ∈ N, an instruction n̂ ∈ K
with no evaluation rule (i.e. inert constant: pure data)

Intuition: n̂ ? π � segmentation fault

An instruction null ∈ K with the rules

null ? n̂ · u · v �
{
u ? π if n = 0
v ? π otherwise

Instructions f̌ ∈ K with the rules

f̌ ? n̂1 · · · n̂k · u · π � u ? m̂ · π where m = f (n1, . . . , nk)

for all the usual arithmetic operations
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Primitive numerals (2/2)

Call-by-value implication, yet another definition:

Formulas A,B ::= · · · | [e]⇒ A

with the semantics: ‖{e} ⇒ A‖ = {n̂ · π : n = eN, π ∈ ‖A‖}

Redefining the set of natural numbers:

N′ := {x : ∀Z (([x ]⇒ Z)⇒ Z)}

box := λk . k x � ∀x ([x]⇒ x ∈ N′)
box n̂ � n ∈ N′
λn . n λx . š x box � (∀x ∈N′)(s(x) ∈ N′)
λnm . n λx .m λy . (+̌) x y box � (∀x , y ∈N′)(x + y ∈ N′)

rec cbv := λz0zs .Y λrx . null x z0 ((−̌) x 1̂λy . zs y (r y))
� ∀Z [Z(0) ⇒ ∀y ([y ]⇒ Z(y)⇒ Z(s(y))) ⇒ ∀x ([x]⇒ Z(x))]

rec := λz0zsn . n λx . rec cbv z0 (λyz . zs (box y) z) x
� ∀Z [Z(0)⇒ (∀y ∈N′)(Z(y)⇒ Z(s(y))) ⇒ (∀x ∈N′)Z(x)]

Conclusion: � ∀x (x ∈ N′ ⇔ x ∈ N)
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Krivine’s realizability vs the LRS-translation (1/2)

Krivine’s realizability can be seen as the composition of the
Lafont-Reus-Streicher (LRS) translation with Kleene realizability:

CPS ◦ Krivine = Kleene ◦ LRS [Oliva-Streicher 2008]

The dictionary

Classical realizability (Krivine) Lafont-Reus-Streicher translation

Pole ⊥⊥ Return formula R

Falsity value ‖A‖ Negative translation A⊥

‖A⇒ B‖ := |A| · ‖B‖ (A⇒ B)⊥ := ALRS ∧ B⊥

Truth value |A| := ‖A‖⊥⊥ ALRS := A⊥ ⇒ R

Through the CPS-translation, Krivine’s extraction method in the
Σ0

1-case is exactly Friedman’s trick (transposed to LRS) [M. 2010]
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Krivine’s realizability vs the LRS-translation (2/2)

Beware of reductionism!

The decomposition holds only for pure classical reasoning
(extra instructions are not taken into account)

Classical realizers are easier to understand than their
CPS-translations (and more efficient)

Classical realizability is more than Kleene’s realizability composed
with the Lafont-Reus-Streicher translation

An image:

2H2 + O2 −→ 2H2O

but can we deduce the properties of water from the ones of H2 and O2?
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