An introduction to Krivine realizability

Alexandre Miquel

April 28th, IMERL

Introduction •O

What is classical realizability?

- Complete reformulation of the principles of Kleene realizability to take into account classical reasoning [Krivine 2009]
 - Based on Griffin's discovery about the connection between classical reasoning an control operators (call/cc)

$$call/cc : ((A \Rightarrow B) \Rightarrow A) \Rightarrow A$$
 (Peirce's law)

- Interprets the Axiom of Dependent Choices (DC) [K. 2003]
- Initially designed for PA2, but extends to:
 - Higher-order arithmetic (PA ω)
 - Zermelo-Fraenkel set theory (ZF)

[K. 2001, 2012]

 The calculus of inductive constructions (CIC) (with classical logic in Prop) [M. 2007]

• Deep connections with Cohen forcing

[K. 2011]

→ can be used to define new models of PA2/ZF

[K. 2012]

Plan

0

Introduction

- Introduction
- Second-order arithmetic (PA2)
- 3 The λ_c -calculus
- Realizability interpretation
- 5 Adequacy
- 6 Witness extraction

Plan

- Introduction
- Second-order arithmetic (PA2)
- 3 The λ_c -calculus
- Realizability interpretation
- 6 Adequacy
- 6 Witness extraction

- Second-order logic deals with two kinds of objects:
 - 1st-order objects = individuals (i.e. basic objects of the theory)
 - 2nd-order objects = k-ary relations over individuals

First-order terms and formulas

First-order terms

$$e, e' ::= x \mid f(e_1, \ldots, e_k)$$

Formulas

$$A, B ::= X(e_1, \dots, e_k) \mid A \Rightarrow B$$

 $\mid \forall x A \mid \forall X A$

- Two kinds of variables
 - 1st-order vars: *x*, *y*, *z*, . . .
 - 2nd-order vars: X, Y, Z, \ldots of all arities $k \ge 0$
- Two kinds of substitution:
 - 1st-order subst.: $e\{x:=e_0\}$, $A\{x:=e_0\}$ (defined as usual) • 2nd-order subst.: $A\{X:=P_0\}$, $P\{X:=P_0\}$ (postponed)

First-order terms

• Defined from a first-order signature Σ (as usual):

First-order terms

$$e,e'$$
 ::= $x \mid f(e_1,\ldots,e_k)$

- ullet f ranges over k-ary function symbols in Σ
- In what follows we assume that:
 - **1** Each k-ary function symbol f is interpreted in \mathbb{N} by a function

$$f^{\mathsf{IN}} : \mathsf{IN}^k \to \mathsf{IN}$$

- ② The signature Σ contains at least a function symbol for every primitive recursive function $(0, s, \text{pred}, +, -, \times, /, \text{mod}, ...)$, each of them being interpreted the standard way
- Denotation (in IN) of a closed first-order term e written e^{IN}

Formulas

Formulas of minimal second-order logic

Formulas
$$A, B ::= X(e_1, ..., e_k) \mid A \Rightarrow B \mid \forall x A \mid \forall X A$$

only based on implication and 1st/2nd-order universal quantification

Other connectives/quantifiers defined via second-order encodings:

Predicates

• Concrete relations are represented using predicates (syntactic sugar)

Predicates

$$P, Q ::= \hat{x}_1 \cdots \hat{x}_k A_0$$

(of arity
$$k$$
)

Definition (Predicate application and 2nd-order substitution)

 $P(e_1,\ldots,e_k)$ is the formula defined by

$$P(e_1, \ldots, e_k) \equiv A_0\{x_1 := e_1, \ldots, x_k := e_k\}$$

where $P \equiv \hat{x}_1 \cdots \hat{x}_k A_0$, and where e_1, \dots, e_k are k first-order terms

2 2nd-order substitution $A\{X := P\}$ (where X and P are of the same arity k) consists to replace in the formula A every atomic sub-formula of the form

$$X(e_1,\ldots,e_k)$$
 by the formula $P(e_1,\ldots,e_k)$

Note: Every k-ary 2nd-order variable X can be seen as a predicate:

$$X \equiv \hat{x}_1 \cdots \hat{x}_k X(x_1, \dots, x_k)$$

Unary predicates as sets

Unary predicates represent sets of individuals

Syntactic sugar:
$$\{x:A\} \equiv \hat{x}A, \quad e \in P \equiv P(e)$$

Example: The set IN of Dedekind numerals

$$\mathbb{N} \equiv \{x : \forall Z (0 \in Z \Rightarrow \forall y (y \in Z \Rightarrow s(y) \in Z) \Rightarrow x \in Z\}$$

Relativized quantifications:

$$(\forall x \in P) A(x) \equiv \forall x (x \in P \Rightarrow A(x))$$

$$(\exists x \in P) A(x) \equiv \forall Z (\forall x (x \in P \Rightarrow A(x) \Rightarrow Z) \Rightarrow Z)$$

$$\Leftrightarrow \exists x (x \in P \land A(x))$$

Inclusion and extensional equality:

$$P \subseteq Q \equiv \forall x (x \in P \Rightarrow x \in Q)$$

 $P = Q \equiv \forall x (x \in P \Leftrightarrow x \in Q)$

• Set constructors: $P \cup Q \equiv \{x : x \in P \lor x \in Q\}$ (etc.)

Rules of system NK2

2nd-order arithmetic (PA2) 0000000000000

$$\frac{\Gamma \vdash A}{\Gamma \vdash A} \stackrel{A \in \Gamma}{} \qquad \overline{\Gamma \vdash ((A \Rightarrow B) \Rightarrow A) \Rightarrow A}$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \qquad \frac{\Gamma \vdash A}{\Gamma \vdash B}$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash \forall x A} \stackrel{x \notin FV(\Gamma)}{} \qquad \frac{\Gamma \vdash \forall x A}{\Gamma \vdash A\{x := e\}}$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash \forall X A} \stackrel{X \notin FV(\Gamma)}{} \qquad \frac{\Gamma \vdash \forall X A}{\Gamma \vdash A\{X := P\}}$$

- From these rules, one can derive the introduction & elimination rules for \bot , \land , \lor , \exists^1 , \exists^2 , = using their 2nd-order definition
- Classical logic obtained via Peirce's law: $((A \Rightarrow B) \Rightarrow A) \Rightarrow A$
- Elimination rule for 2nd-order ∀ implies all comprehension axioms:

$$\forall \vec{z} \ \forall \vec{Z} \ \exists X \ \forall \vec{x} \ [X(\vec{x}) \ \Leftrightarrow \ A(\vec{x}, \vec{z}, \vec{Z})]$$

A type system for classical 2nd-order logic

 $(\lambda NK2)$

 Represent the computational contents of classical proofs using Curry-style proof terms, with call/cc for classical logic:

$$t, u ::= x \mid \lambda x . t \mid tu \mid \infty$$

Typing judgement:

$$\underbrace{x_1: A_1, \dots, x_n: A_n}_{\text{typing context } \Gamma} \vdash t: B$$

Typing rules

$$\frac{\Gamma \vdash x : A}{\Gamma \vdash x : A} \xrightarrow{(x:A) \in \Gamma} \qquad \overline{\Gamma \vdash \mathbf{c} : ((A \Rightarrow B) \Rightarrow A) \Rightarrow A}$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \Rightarrow B} \qquad \frac{\Gamma \vdash t : A \Rightarrow B}{\Gamma \vdash t : B}$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall x A} \xrightarrow{x \notin FV(\Gamma)} \qquad \frac{\Gamma \vdash t : \forall x A}{\Gamma \vdash t : A\{x := e\}}$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall x A} \xrightarrow{x \notin FV(\Gamma)} \qquad \frac{\Gamma \vdash t : \forall x A}{\Gamma \vdash t : A\{X := P\}}$$

Note: ∀ interpreted uniformly; type checking/inference undecidable

From the derivation to the proof term

• Deduction system NK2 and type system λ NK2 are equivalent:

$$A_1, \dots, A_n \vdash_{\mathsf{NK2}} A$$
 iff $\mathbf{x}_1 : A_1, \dots, \mathbf{x}_n : A_n \vdash_{\mathsf{NK2}} \mathbf{t} : A$ for some t

$$\frac{\underbrace{\left[\forall x \left(B(x) \Rightarrow C(x)\right)\right]}_{B(x) \Rightarrow C(x)}^{g} \underbrace{\frac{\left[\forall x \left(A(x) \Rightarrow B(x)\right)\right]}{A(x) \Rightarrow B(x)}}^{f} \underbrace{\frac{I}{\left[A(x)\right]}_{Q}^{u}}_{Q}$$

$$\frac{\underbrace{\frac{C(x)}{A(x) \Rightarrow C(x)}}_{\forall x \left(A(x) \Rightarrow C(x)\right)}^{\lambda u} \underbrace{\frac{C(x)}{A(x) \Rightarrow C(x)}}_{\forall x \left(A(x) \Rightarrow C(x)\right)}^{\lambda g}$$

$$\frac{\underbrace{\frac{C(x)}{A(x) \Rightarrow C(x)}}_{\forall x \left(A(x) \Rightarrow C(x)\right)}^{\lambda g} \underbrace{\frac{A}{\left[A(x) \Rightarrow B(x)\right]}_{A(x) \Rightarrow C(x)}^{\lambda g}}_{A(x) \Rightarrow B(x) \Rightarrow \forall x \left(A(x) \Rightarrow C(x)\right)}^{\lambda g}$$

$$\lambda f . \lambda g . \lambda u . g (f u)$$

Typing examples

Intuitionistic principles:

```
\mathbf{pair} \equiv \lambda xyz \cdot z x y \qquad : \quad \forall X \, \forall Y \, (X \Rightarrow Y \Rightarrow X \land Y)
    \mathsf{fst} \equiv \lambda z \cdot z (\lambda xy \cdot x) : \forall X \forall Y (X \land Y \Rightarrow X)
   snd \equiv \lambda z . z (\lambda xy . y) : \forall X \forall Y (X \land Y \Rightarrow Y)
   refl = \lambda z . z
                                      : \forall x (x = x)
trans \equiv \lambda xyz \cdot y(xz) : \forall x \forall y \forall z (x = y \Rightarrow y = z \Rightarrow x = z)
```

Excluded middle, double negation elimination:

```
left \equiv \lambda x u y \cdot u x : \forall X \forall Y (X \Rightarrow X \lor Y)
right \equiv \lambda yuv \cdot vy : \forall X \forall Y (Y \Rightarrow X \lor Y)
  EM \equiv \alpha(\lambda k \cdot \text{right}(\lambda x \cdot k(\text{left } x))) : \forall X(X \vee \neg X)
DNE
          \equiv \lambda z \cdot \alpha (\lambda k \cdot z k) : \forall X (\neg \neg X \Rightarrow X)
```

De Morgan laws:

$$\lambda zy \cdot z (\lambda x \cdot yx) : \exists x A(x) \Rightarrow \neg \forall x \neg A(x)$$
$$\lambda zy \cdot \alpha (\lambda k \cdot z (\lambda x \cdot k (y x))) : \neg \forall x \neg A(x) \Rightarrow \exists x A(x)$$

Axioms of classical 2nd-order arithmetic (PA2)

Defining equations of all primitive recursive functions:

$$\forall x (x + 0 = x) \qquad \forall x (x \times 0 = 0)$$

$$\forall x \forall y (x + s(y) = s(x + y)) \qquad \forall x \forall y (x \times s(y) = x \times y + x)$$

$$\forall x (\mathsf{pred}(0) = 0) \qquad \forall x (x - 0 = 0)$$

$$\forall x (\mathsf{pred}(s(x)) = x) \qquad \forall x \forall y (x - s(y)) = \mathsf{pred}(x - y)$$
etc.

Peano axioms:

(P3)
$$\forall x \forall y (s(x) = s(y) \Rightarrow x = y)$$

$$(P4) \qquad \forall x \, \neg (s(x) = 0)$$

(P5)
$$\forall x (x \in \mathbb{N})$$

Remark: Induction is now a single axiom: (thanks to 2nd-order \forall)

Ind
$$\equiv \forall x (x \in \mathbb{N})$$

 $\Leftrightarrow \forall Z [0 \in Z \Rightarrow \forall y (y \in Z \Rightarrow s(y) \in Z) \Rightarrow \forall x (x \in Z)]$

- **Problem:** Induction axiom Ind $\equiv \forall x (x \in \mathbb{N})$ is not realizable! (Due to uniform interpretation of \forall)
- Solution: Restrict to PA2 := PA2 Ind and relativize all 1st-order quantifications to IN:

Non-relativized		Relativized
$\forall x A(x)$	~ →	$(\forall x \in \mathbb{IN}) A(x) \\ \forall x (x \in \mathbb{IN} \Rightarrow A(x))$
$\exists x A(x)$ $\forall Z (\forall x (A(x) \Rightarrow Z) \Rightarrow Z)$	~ →	$(\exists x \in IN) A(x)$ $\forall Z (\forall x (x \in IN \Rightarrow A(x) \Rightarrow Z) \Rightarrow Z)$

Theorem

 $PA2 \vdash A$, then $PA2^- \vdash A^{IN}$ $(A^{IN} = A \text{ relativized to IN})$

Requires to check that PA2⁻ \vdash $(\forall x_1, \dots, x_k \in \mathbb{N}) (f(x_1, \dots, x_k) \in \mathbb{N})$ for all primitive recursive function symbols f

The full standard model of PA2

- Full standard model of PA2 = Tarski model *M* in which:
 - 1st-order variables x are interpreted by natural numbers $n \in \mathbb{N}$
 - ullet 2nd-order variables X are interpreted by all relations $R\subseteq \mathfrak{P}(\mathbb{N}^k)$

 $(\Rightarrow$, \forall are given the usual Tarski interpretation)

Theorem (Soundness)

f PA2 \vdash A, then $\mathscr{M} \models A$

- ullet More generally, we say that a Tarski model ${\mathscr M}$ of PA2 is:
 - Standard when $IN^{\mathcal{M}}=IN$ In general, we only have $IN^{\mathcal{M}}\supset IN$ (non standard elements)
 - Full when $(\operatorname{Rel}^k \operatorname{IN})^{\mathscr{M}} = \mathfrak{P}((\operatorname{IN}^{\mathscr{M}})^k)$ In general, we only have $(\operatorname{Rel}^k \operatorname{IN})^{\mathscr{M}} \subset \mathfrak{P}((\operatorname{IN}^{\mathscr{M}})^k)$ (may be countable)
- The full standard model of PA2 is unique, up to unique isomorphism (in the sense of models), but it is uncountable

Plan

- Introduction
- Second-order arithmetic (PA2)
- 3 The λ_c -calculus
- Realizability interpretation
- 6 Adequacy
- 6 Witness extraction

Terms, stacks and processes

- Syntax of the language parameterized by
 - A countable set $\mathcal{K} = \{\alpha; \ldots\}$ of instructions, containing at least the instruction α (call/cc)
 - A countable set Π_0 of stack constants (or stack bottoms)

Terms, stacks and processes

- A λ -calculus with two kinds of constants:
 - Instructions $\kappa \in \mathcal{K}$, including α
 - Continuation constants k_{π} , one for every stack π (generated by α)
- **Notation:** Λ , Π , $\Lambda \star \Pi$ (sets of closed terms / stacks / processes)

Proof-like terms

• Proof-like term \equiv Term containing no continuation constant

Proof-like terms

$$t, u ::= x \mid \lambda x \cdot t \mid tu \mid \kappa \quad (\kappa \in \mathcal{K})$$

- Idea: All realizers coming from actual proofs are of this form, continuation constants k_π are treated as paraproofs
- ullet Notation: PL \equiv set of closed proof-like terms
- Natural numbers encoded as proof-like terms by:

Krivine numerals

$$\overline{n} \equiv \overline{s}^n \overline{0} \in PL$$

 $(n \in \mathbb{N})$

writing
$$\overline{0} \equiv \lambda xy \cdot x$$
 and $\overline{s} \equiv \lambda nxy \cdot y (n x y)$

• **Note:** Krivine numerals $\not\equiv$ Church numerals, but β -equivalent

• We assume that the set $\Lambda \star \Pi$ comes with a preorder $p \succ p'$ of

evaluation satisfying the following rules:

```
Krivine Abstract Machine (KAM)
Push
                  Grab
                     cc \star u \cdot \pi \succ u \star k_{\pi} \cdot \pi
Save
                     k_{\pi} \star u \cdot \pi' \succ
Restore
                                     u \star \pi
(+ reflexivity & transitivity)
```

- Evaluation not defined but axiomatized. The preorder $p \succ p'$ is another parameter of the calculus, just like the sets \mathcal{K} and Π_0
- Extensible machinery: can add extra instructions and rules (We shall see examples later)

The Krivine Abstract Machine (KAM)

• Rules **Push** and **Grab** implement weak head β -reduction:

Push $tu \star \pi$ $t \star u \cdot \pi$ Grab $\lambda x \cdot t \star u \cdot \pi$ $t\{x := u\} \star \pi$

• Example:
$$(\lambda xy \cdot t) u v \star \pi \succ \lambda xy \cdot t \star u \cdot v \cdot \pi$$

 $\succ t\{x := u\}\{y := v\} \star \pi$

Rules Save and Restore implement backtracking:

Instruction c most often used in the pattern

$$\begin{array}{ccc}
\alpha(\lambda k \cdot t) \star \pi & \succ & \alpha \star (\lambda k \cdot t) \cdot \pi \\
& \succ & (\lambda k \cdot t) \star k_{\pi} \cdot \pi \\
& \succ & t\{k := k_{\pi}\} \star \pi
\end{array}$$

Representing functions

Definition (function representation)

A partial function $f: \mathbb{N}^k \to \mathbb{N}$ is represented by a λ_c -term $\widehat{f} \in \Lambda$ if

$$\widehat{f} \star \overline{n}_1 \cdots \overline{n}_k \cdot u \cdot \pi \quad \succ \quad u \star \overline{f(n_1, \dots, n_k)} \cdot \pi$$

for all $(n_1, \ldots, n_k) \in \text{dom}(f)$ and for all $u \in \Lambda$, $\pi \in \Pi$

- Call by value encoding:
 - Consumes k values and returns 1 value on the stack
 - ullet Control is given to the extra argument u (continuation, return block)

• Examples:
$$\hat{\mathbf{s}} := \lambda x k . k (\bar{\mathbf{s}} x)$$

 $\hat{+} := \lambda x y k . y k (\lambda k' z . \hat{\mathbf{s}} z k) x$
 $\hat{\times} := \lambda x y k . y k (\lambda k' z . \hat{+} z x k) \bar{\mathbf{0}}$

Theorem (Representation of recursive functions)

All partial recursive functions are represented in the λ_c -calculus

Example of extra instructions

(1/2)

• Numbering terms (or stacks): the instruction quote:

$$\mathsf{quote} \star t \cdot u \cdot \pi \quad \succ \quad u \star \overline{\lceil t \rceil} \cdot \pi$$

where $t \mapsto \lceil t \rceil$ is a fixed bijection from Λ to IN

- Useful to realize the axiom of dependent choices (DC) [Krivine 03]
- Testing syntactic equality: the instruction eq:

$$eq \star t_1 \cdot t_2 \cdot u \cdot v \cdot \pi \quad \succ \quad \begin{cases} u \star \pi & \text{if } t_1 \equiv t_2 \\ v \star \pi & \text{if } t_1 \not\equiv t_2 \end{cases}$$

- Can be implemented using quote
- Non-deterministic choice operator: the instruction fork:

fork
$$\star u \cdot v \cdot \pi \quad \succ \quad \begin{cases} u \star \pi \\ v \star \pi \end{cases}$$

Useful for pedagogy – bad for realizability

(collapses to forcing)

Example of extra instructions

(2/2)

• The instruction stop:

$$stop \star \pi \quad \not\succ$$

Stops execution. Final result returned on the stack π

• The instruction print:

$$\mathsf{print} \star \overline{n} \cdot u \cdot \pi \quad \succ \quad u \star \pi \qquad \qquad \mathsf{(formal specification)}$$

and prints integer n on standard output

(informal specification)

- Useful to display intermediate results without stopping the machine (Poor man's side effect)
- The instruction hace_mate:

hace_mate
$$\star u \cdot \pi \rightarrow u \star \pi + \text{hace el mate}$$

Plan

- Introduction
- Second-order arithmetic (PA2)
- 3 The λ_c -calculus
- Realizability interpretation
- 6 Adequacy
- 6 Witness extraction

Classical realizability: principles

- Intuitions:
 - term = "proof" / stack = "counter-proof"
 process = "contradiction" (slogan: never trust a classical realizer!)
- ullet Classical realizability model parameterized by a pole $oldsymbol{\perp}$
 - = set of processes closed under anti-evaluation
- Each formula A is interpreted as two sets:
 - A set of stacks ||A|| (falsity value)
 - A set of terms |A| (truth value)
- Falsity value ||A|| defined by induction on A (negative interpretation)
- Truth value |A| defined by orthogonality:

$$|A| = ||A||^{\perp} = \{t \in \Lambda : \forall \pi \in ||A|| \ t \star \pi \in \perp\}$$

Architecture of the realizability model

- The realizability model \mathcal{M}_{\parallel} is defined from:
 - The full standard model M of PA2: the ground model (but we could take any model \mathcal{M} of PA2 as well)
 - An instance $(\mathcal{K}, \Pi_0, \succ)$ of the λ_c -calculus
 - A saturated set of processes $\bot \subseteq \land \star \sqcap$ (the pole)
- Architecture:
 - First-order terms/variables interpreted as natural numbers $n \in \mathbb{N}$
 - Formulas interpreted as falsity values $S \in \mathfrak{P}(\Pi)$
 - k-ary second-order variables (and k-ary predicates) interpreted as falsity functions $F: \mathbb{N}^k \to \mathfrak{P}(\Pi)$.

Formulas with parameters

 $A, B ::= \cdots$

 $\dot{F}(e_1,\ldots,e_k)$

Add a predicate constant \dot{F} for every falsity function $F: \mathbb{N}^k \to \mathfrak{V}(\Pi)$

Interpreting closed formulas with parameters

Let A be a closed formula (with parameters)

• Falsity value ||A|| defined by induction on A:

$$\|\dot{F}(e_1, \dots, e_k)\| = F(e_1^{\mathbb{N}}, \dots, e_k^{\mathbb{N}})$$

$$\|A \Rightarrow B\| = |A| \cdot \|B\| = \{t \cdot \pi : t \in |A|, \pi \in \|B\|\}$$

$$\|\forall x A\| = \bigcup_{n \in \mathbb{N}} \|A\{x := n\}\|$$

$$\|\forall X A\| = \bigcup_{F : \mathbb{N}^n \to \mathfrak{P}(\Pi)} \|A\{X := \dot{F}\}\|$$

• Truth value |A| defined by orthogonality:

$$|A| = ||A||^{\perp} = \{t \in \Lambda : \forall \pi \in ||A|| \quad t \star \pi \in \perp\}$$

The realizability relation

Falsity value $\|A\|$ and truth value |A| depend on the pole \bot \longrightarrow write them (sometimes) $\|A\|_\bot$ and $|A|_\bot$ to recall the dependency

Realizability relations

$$t \Vdash A \equiv t \in |A|_{\perp}$$
 (Realizability w.r.t. \perp)

 $t \Vdash A \equiv \forall \bot t \in |A|_\bot$ (Universal realizability)

From computation to realizability

Fundamental idea: The computational behavior of a term determines the formula(s) it realizes:

Example 1: A closed term *t* is identity-like if:

$$t \star u \cdot \pi \succ u \star \pi$$

for all $u \in \Lambda$, $\pi \in \Pi$

Proposition

If t is identity-like, then $t \Vdash \forall X (X \Rightarrow X)$

Proof: Exercise! (Remark: converse implication holds – exercise!)

- Examples of identity-like terms:
 - $\lambda x . x$, $(\lambda x . x)(\lambda x . x)$, etc.
 - $\lambda x \cdot \alpha(\lambda k \cdot x)$, $\lambda x \cdot \alpha(\lambda k \cdot k x)$, $\lambda x \cdot \alpha(\lambda k \cdot k x \omega)$, etc.
 - λx . quote $x \lambda n$. unquote $n(\lambda z \cdot z)$

From computation to realizability

Example 2: Control operators:

• "Typing" k_{π} :

$$k_{\pi} \star t \cdot \pi' \succ t \star \pi$$

Lemma

If $\pi \in ||A||$, then $k_{\pi} \Vdash A \Rightarrow B$

(B any)

Proof: Exercise

• "Typing" c:

$$\mathbf{c} \star t \cdot \pi \quad \succ \quad t \star \mathbf{k}_{\pi} \cdot \pi$$

Proposition (Realizing Peirce's law)

$$c \Vdash ((A \Rightarrow B) \Rightarrow A) \Rightarrow A$$

Proof: Exercise

Anatomy of the model

(1/2)

Denotation of universal quantification:

Falsity value:
$$\|\forall x A\| = \bigcup_{n \in \mathbb{N}} \|A\{x := n\}\|$$
 (by definition)

Truth value:
$$|\forall x A| = \bigcap_{n \in \mathbb{N}} |A\{x := n\}|$$
 (by orthogonality)

(and similarly for 2nd-order universal quantification)

Denotation of implication:

Falsity value:
$$||A \Rightarrow B|| = |A| \cdot ||B||$$
 (by definition)

Truth value:
$$|A \Rightarrow B| \subseteq |A| \rightarrow |B|$$
 (by orthogonality)

writing
$$|A| \rightarrow |B| = \{t \in \Lambda : \forall u \in |A| \ tu \in |B|\}$$
 (realizability arrow)

Anatomy of the model

(2/2)

- Degenerate case: $\perp \!\!\! \perp = \varnothing$
 - Classical realizability mimics the Tarski interpretation:

Degenerated interpretation

In the case where $\perp \!\!\! \perp = 0$, for every closed formula A:

$$|A| = \begin{cases} \Lambda & \text{if } \mathscr{M} \models A \\ \varnothing & \text{if } \mathscr{M} \not\models A \end{cases}$$

- Non degenerate cases: $\perp \!\!\! \perp \neq \varnothing$
 - Every truth value |A| is inhabited:

If
$$t_0 \star \pi_0 \in \bot$$
, then $k_{\pi_0} t_0 \in |A|$ for all A (paraproof)

• We shall only consider realizers that are proof-like terms $(\in PL)$

Plan

- Introduction
- 2 Second-order arithmetic (PA2)
- 3 The λ_c -calculus
- Realizability interpretation
- 6 Adequacy
- 6 Witness extraction

Adequacy

(1/2)

Aim: Prove the theorem of adequacy

t:A (in the sense of λ NK2) implies $t \Vdash A$ (in the sense of realizability)

- Closing typing judgments $x_1 : A_1, ..., x_n : A_n \vdash t : A$
 - We close logical objects (1st-order terms, formulas, predicates) using semantic objects (natural numbers, falsity values, falsity functions)
 - We close proof-terms using realizers

Definition (Valuations)

- **1** A valuation is a function ρ such that
 - $\rho(x) \in \mathbb{N}$ • $\rho(X) : \mathbb{N}^k \to \mathfrak{P}(\Pi)$

for each 1st-order variable x for each 2nd-order variable X of arity k

2 Closure of A with ρ written $A[\rho]$

(formula with parameters)

Definition (Adequate judgment, adequate rule)

Given a fixed pole \perp :

1 A judgment $x_1:A_1,\ldots,x_n:A_n\vdash t:A$ is adequate if for every valuation ρ and for all $u_1\Vdash A_1[\rho],\ldots,u_n\Vdash A_n[\rho]$ we have:

$$t\{x_1:=u_1,\ldots,x_n:=u_n\}\Vdash A[\rho]$$

 A typing rule is adequate if it preserves the property of adequacy (from the premises to the conclusion of the rule)

Theorem

- **1** All typing rules of λ NK2 are adequate
- ② All derivable judgments of λ NK2 are adequate

Corollary: If $\vdash t : A$ (A closed formula), then $t \Vdash A$

Extending adequacy to subtyping

Definition (Adequate subtyping judgment)

Implies $|A[\rho]| \subseteq |B[\rho]|$ (for all ρ), but strictly stronger Remark:

Some adequate typing/subtyping rules:

• Example:
$$\forall X \forall Y (((X \Rightarrow Y) \Rightarrow X) \Rightarrow X) \leq \forall X (\neg \neg X \Rightarrow X)$$
Peirce's law

Realizing equalities

Equality between individuals defined by

$$e_1 = e_2 \equiv \forall Z(Z(e_1) \Rightarrow Z(e_2))$$
 (Leibniz equality)

Denotation of Leibniz equality

Given two closed first-order terms e1, e2

(and a pole \perp)

$$\|e_1 = e_2\| = \begin{cases} \|\mathbf{1}\| = \{t \cdot \pi : (t \star \pi) \in \mathbb{L}\} & \text{if } \llbracket e_1 \rrbracket = \llbracket e_2 \rrbracket \\ \|\top \Rightarrow \bot\| = \Lambda \cdot \Pi & \text{if } \llbracket e_1 \rrbracket \neq \llbracket e_2 \rrbracket \end{cases}$$

writing $\mathbf{1} \equiv \forall Z (Z \Rightarrow Z)$ and $\top \equiv \dot{\varnothing}$

- Intuitions:
 - A realizer of a true equality (in the model) behaves as the identity function λz . z
 - A realizer of a false equality (in the model) behaves as a point of backtrack (breakpoint)

Realizing axioms

Corollary 1 (Realizing true equations)

If
$$\mathscr{M} \models \forall \vec{x} (e_1(\vec{x}) = e_2(\vec{x}))$$

then $\mathbf{I} \equiv \lambda z . z \Vdash \forall \vec{x} (e_1(\vec{x}) = e_2(\vec{x}))$

(truth in the ground model)

(universal realizability)

Corollary 2

All defining equations of primitive recursive function symbols $(+, -, \times, /, \text{ mod}, \uparrow, \text{ etc.})$ are universally realized by $\mathbf{I} \equiv \lambda z \cdot z$

Corollary 3 (Realizing Peano axioms 3 and 4)

$$\begin{array}{ccc}
\mathbf{I} & \Vdash & \forall x \, \forall y \, (s(x) = s(y) \Rightarrow x = y) \\
\lambda z \cdot z \, \mathbf{I} & \Vdash & \forall x \, \neg (s(x) = 0)
\end{array}$$

Theorem: If $PA2^- \vdash A$, then $\theta \Vdash A$ for some $\theta \in PL$

Realizing true Horn formulas

Definition (Horn formulas)

 \bullet A (positive/negative) literal is a formula L of the form

$$L \equiv e_1 = e_2$$
 or $L \equiv e_1 \neq e_2$

A (positive/negative) Horn formula is a closed formula H of the form

$$H \equiv \forall \vec{x} [L_1 \Rightarrow \cdots \Rightarrow L_p \Rightarrow L_{p+1}]$$

where L_1, \ldots, L_p are positive; L_{p+1} positive or negative

Theorem (Realizing true Horn formulas)

[M. 2014]

 $(p \geq 0)$

If $\mathcal{M} \models H$, then:

$$\mathbf{I} \equiv \lambda z . z \quad || \vdash \quad H \qquad \qquad \text{(if } H \text{ positive)}$$
$$\lambda z_1 \cdots z_{p+1} . z_1 \left(\cdots \left(z_{p+1} \mathbf{I} \right) \cdots \right) \quad || \vdash \quad H \qquad \qquad \text{(if } H \text{ negative)}$$

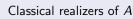
- All axioms of $PA2^- := PA2 Ind$ are Horn formulas
- Quantifications not relativized to $\mathbb{N} \rightsquigarrow H$ holds for all individuals

Provability, universal realizability and truth

- From what precedes:
 - lacktriangledown A provable \Rightarrow A universally realized (by a proof-like term)
 - $oldsymbol{0}$ A universally realized \Rightarrow A true (in the full standard model)
 - Universal realizability: an intermediate notion between provability and truth
- Beware!

Intuitionistic proofs of $A\subseteq Classical$ proofs of $A\cap C$

Intuitionistic realizers of A



Program extraction

Extracting a program from a proof in PA2

If PA2 \vdash A, then there is $\theta \in \mathsf{PL}$ such that $\theta \Vdash A^{\mathsf{IN}}$ (A^{IN} obtained from A by relativizing all 1st-order quantifications to IN)

- In practice:
 - Only apply the adequacy theorem to the computationally relevant parts of the proof
 - For the computationally irrelevant parts (i.e. Horn formulas), use 'default realizers'
 realizer optimization
- Example 1: $\lambda xy \cdot \mathbf{I} \Vdash (\forall x, y \in \mathbf{IN}) (x + y = y + x)$
- Example 2: Fermat's last theorem¹

$$(\forall x, y, z, n \in \mathbb{N}) (x \ge 1 \Rightarrow y \ge 1 \Rightarrow n \ge 3 \Rightarrow x^n + y^n \ne z^n)$$

1. realized by: $\lambda xyznu_1u_2u_3v \cdot u_1(u_2(u_3(v \mathbf{I})))$

Plan

- Introduction
- 2 Second-order arithmetic (PA2)
- 3 The λ_c -calculus
- Realizability interpretation
- 6 Adequacy
- 6 Witness extraction

Some problems of classical realizability

The specification problem

Given a formula A, characterize its universal realizers from their computational behavior

Specifying Peirce's law [Guillermo-M. 2014]

- Witness extraction from classical realizers (cf next slides)
- Realizability algebras + Cohen forcing

Realizability algebras: a program to well-order IR [Krivine 2011]

Forcing as a program transformation [M. 2011]

Models induced by classical realizability

What are the interesting formulas that are realized in \mathcal{M}_{\perp} that are not already true in the ground model \mathcal{M} ?

Realizability algebras II: new models of ZF + DC [Krivine 2012]

The problem of witness extraction

• Problem: Extract a witness from a universal realizer (or a proof)

$$t_0 \Vdash (\exists x \in \mathbb{N}) A(x)$$

i.e. some $n \in \mathbb{N}$ such that A(n) is true

This is not always possible!

$$t_0 \Vdash (\exists x \in \mathbb{N}) ((x = 1 \land C) \lor (x = 0 \land \neg C))$$

(C = Continuum hypothesis, Goldbach's conjecture, etc.)

- Two possible compromises:
 - Intuitionistic logic: restrict the shape of the realizer t₀
 (by only keeping intuitionistic reasoning principles)
 - Classical logic: restrict the shape of the formula A(x) (typically: Δ_0^0 -formulas)

Storage operators

• The call-by-value implication:

Formulas

$$A, B ::= \cdots \mid \{e\} \Rightarrow A$$

$$\|\{e\} \Rightarrow A\| = \{\bar{n} \cdot \pi : n = e^{\mathbb{N}}, \ \pi \in \|A\|\}$$

• From the definition:
$$e \in \mathbb{N} \Rightarrow A \leq \{e\} \Rightarrow A$$

with the semantics:

so that:
$$\mathbf{I} \Vdash \forall x \forall Z [(x \in \mathbb{IN} \Rightarrow Z) \Rightarrow (\{x\} \Rightarrow Z)]$$

(direct implication)

Definition (Storage operator)

A storage operator is a closed proof-like term M such that:

$$M \Vdash \forall x \forall Z [(\{x\} \Rightarrow Z) \Rightarrow (x \in \mathbb{N} \Rightarrow Z)]$$

(converse implication)

Theorem (Existence)

Storage operators exist, e.g.: $M := \lambda f n \cdot n f(\lambda h x \cdot h(\bar{s} x)) \bar{0}$

Storage operators

(2/2)

Intuitively, a storage operator

$$M \Vdash \forall x \forall Z [(\{x\} \Rightarrow Z) \Rightarrow (x \in \mathbb{N} \Rightarrow Z)]$$

is a proof-like term that is intended to be applied to

- a function f that only accepts values (i.e. intuitionistic integers)
- a classical integer $t \Vdash n \in \mathsf{IN}$ (n arbitrary)

and that evaluates (or 'smoothes') the classical integer t into a value of the form \bar{n} before passing this value to f

By subtyping, we also have:

$$M \Vdash \forall Z [\forall x (\{x\} \Rightarrow Z(x)) \Rightarrow (\forall x \in \mathbb{N}) Z(x)]$$

This means that if a property Z(x) holds for all intuitionistic integers, then it holds for all classical integers too

• Conclusion: $e \in \mathbb{N} \Rightarrow A$ and $\{e\} \Rightarrow A$ interchangeable

Computing with storage operators

• Given a k-ary function symbol f, we let:

$$\mathsf{Total}(f) := (\forall x_1 \in \mathsf{IN}) \cdots (\forall x_k \in \mathsf{IN}) (f(x_1, \dots, x_k) \in \mathsf{IN})$$
$$\mathsf{Comput}(f) := \forall x_1 \cdots \forall x_k \, \forall Z \, [\{x_1\} \Rightarrow \cdots \Rightarrow \{x_k\} \Rightarrow (\{f(x_1, \dots, x_k)\} \Rightarrow Z) \Rightarrow Z]$$

Theorem (Specification of the formula Comput(f))

For all $t \in \Lambda$, the following assertions are equivalent:

- 0 $t \Vdash \mathsf{Comput}(f)$
- ② t computes f: for all $(n_1, \ldots, n_k) \in \mathbb{N}^k$, $u \in \Lambda$, $\pi \in \Pi$:

$$t \star \overline{n}_1 \cdots \overline{n}_k \cdot u \cdot \pi \succ u \star \overline{f(n_1, \ldots, n_k)} \cdot \pi$$

• Using a storage operator M, we can build proof-like terms:

$$\xi_k \Vdash \mathsf{Total}(f) \Rightarrow \mathsf{Comput}(f)$$

 $\xi'_k \Vdash \mathsf{Comput}(f) \Rightarrow \mathsf{Total}(f)$

The naive extraction method

• A classical realizer $t_0 \Vdash (\exists x \in \mathbb{N}) A(x)$ always evaluates to a pair witness/justification:

Naive extraction

If $t_0 \Vdash (\exists x \in \mathbb{N}) A(x)$, then there are $n \in \mathbb{N}$ and $u \in \Lambda$ such that:

$$t_0 \star M(\lambda xy \cdot \text{stop} \times y) \cdot \pi \quad \succ \quad \text{stop} \star \overline{n} \cdot u \cdot \pi$$

(where $u \Vdash A(n)$ w.r.t. the particular pole \bot ... needed to prove the property)

- But $n \in \mathbb{N}$ might be a false witness because the justification $u \Vdash A(n)$ is cheating! (u might contain hidden continuations)
- In the case where t₀ comes from an intuitionistic proof, extracted witness n ∈ IN is always correct
 (Can be proved using Kleene realizability adapted to PA2⁻)

Extraction in the Σ_1^0 -case

Extraction in the Σ_1^0 -case (+ display intermediate results)

If
$$t_0 \Vdash (\exists x \in \mathbb{N})(f(x) = 0)$$
, then
$$t_0 \star M(\lambda xy \cdot \operatorname{print} x y \operatorname{(stop} x)) \cdot \pi \quad \succ \quad \operatorname{stop} \star \overline{n} \cdot \pi$$
 for some $n \in \mathbb{N}$ such that $f(n) = 0$

- Storage operator M used to evaluate 1st component (x)
- 2nd component (y) used as a breakpoint (Relies on the particular structure of equality realizers)
- Holds independently from the instruction set
- Supports any representation of numerals (One has to implement the storage operator M accordingly)

Example: the minimum principle

• Given a unary function symbol f, write:

Theorem (Minimum principle – MinP)

$$\mathsf{PA2}^- \vdash \mathsf{Total}(f) \Rightarrow (\exists x \in \mathsf{IN}) \underbrace{(\forall y \in \mathsf{IN}) \left(f(x) \leq f(y) \right)}_{\mathsf{undecidable}}$$

Proof. Reductio ad absurdum + course by value induction

- The minimum principle is not intuitionistically provable (oracle)
- We cannot apply the Σ^0_1 -extraction technique to the above proof (applied to a totality proof of f), since the conclusion is Σ^0_2

The body $(\forall y \in \mathbb{N}) (f(x) \le f(y))$ of \exists -quantification is undecidable

Using the minimum principle to prove a Σ_1^0 -formula

• **Idea:** The value x given by the minimum principle can be used to prove a Σ_1^0 -formula, so that we can perform program extraction:

Corollary

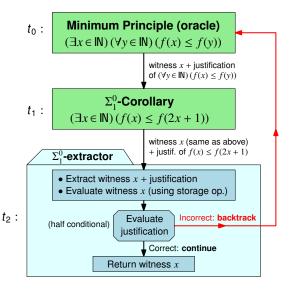
$$\mathsf{PA2}^- \vdash \mathsf{Total}(f) \Rightarrow (\exists x \in \mathsf{IN}) \underbrace{(f(x) \leq f(2x+1))}_{\mathsf{decidable}}$$

More generally: $PA2^- \vdash Total(f) \land Total(g) \Rightarrow (\exists x \in IN) (f(x) \leq f(g(x)))$

Proof. Take the point *x* given by the minimum principle

- Applying Σ_1^0 -extraction to the above non-constructive proof, we get a correct witness in finitely many evaluation steps
- How is this witness computed?

The algorithm underlying Σ_1^0 -extraction



```
f(x) = |x - 1000|
Take
                                                               (real minimum at x = 1000)
and apply \Sigma_1^0-extraction to the proof of (\exists x \in \mathbb{IN}) (f(x) \le f(2x+1))
          Oracle says: take x = 0 since (\forall y \in \mathbb{N}) (f(0) \le f(y))
                                                                                     (false)
Step 1
          Corollary says: take x = 0 since f(0) < f(1)
                                                                                     (false)
          \Sigma^0_{\mbox{\scriptsize 1}}\mbox{-extractor} evaluates incorrect justification and backtracks
Step 2
         Oracle says: take x = 1 since (\forall y \in \mathbb{N}) (f(1) \le f(y))
                                                                                     (false)
          Corollary says: take x = 1 since f(1) < f(3)
                                                                                     (false)
          \Sigma_1^0-extractor evaluates incorrect justification and backtracks
         Oracle says: take x = 3 since (\forall y \in \mathbb{N}) (f(3) < f(y))
Step 3
                                                                                     (false)
          Corollary says: take x = 3 since f(3) < f(7)
                                                                                     (false)
          \Sigma^0_1-extractor evaluates incorrect justification and backtracks
          Oracle says: take x = 7 since (\forall y \in \mathbb{IN}) (f(7) < f(y))
Step 4
                                                                                     (false)
Step 11 Oracle says: take x = 1023 since (\forall y \in \mathbb{N}) (f(1023) \le f(y))
                                                                                     (false)
          Corollary says: take x = 1023 since f(1023) \le f(2047)
                                                                                     (true)
          \Sigma_1^0-extractor evaluates correct justification and returns x = 1023
```

Note that answer x = 1023 is correct... but not the point where f reaches its minimum

Extraction in the Σ_n^0 -case

Definition (Conditional refutation)

 $r_A \in \Lambda$ is a conditional refutation of the predicate A(x) if

For all $n \in \mathbb{N}$ such that $\mathscr{M} \not\models A(n)$: $r_A \overline{n} \Vdash \neg A(n)$

• Such a conditional refutation can be constructed for every predicate A(x) of 1st-order arithmetic

This result is a consequence of the following

Theorem (Realizing true arithmetic formulas)

[Krivine-Miquey]

For every formula $A(x_1,...,x_k)$ of 1st-order arithmetic, there exists a closed proof-like term t_A such that:

If
$$\mathscr{M} \models A(n_1, \ldots, n_k)$$
, then $t_A \bar{n}_1 \cdots \bar{n}_k \Vdash A(n_1, \ldots, n_k)$

(for all $n_1, \ldots, n_k \in \mathbb{N}$)

Extraction in the Σ_n^0 -case

The Kamikaze extraction method

[M. 2009]

Let

- \circ r_A a conditional refutation of the predicate A(x)

Then the process

$$t_0 \star M(\lambda xy \cdot \operatorname{print} x(r_A x y)) \cdot \pi$$

displays a correct witness after finitely many evaluation steps

• **Remark:** No correctness invariant is ensured as soon as the (first) correct witness has been displayed!

After, anything may happen: crash, infinite loop, displaying incorrect witnesses, etc. (Kamikaze behavior)

Interlude: on numeration systems

Numeration systems used in the History:

```
      Tally sticks
      (35000 BC)
      ₩₩₩₩₩₩₩₩
      ₩
      ₩₩₩₩₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
      ₩
```

Numeration systems used in Logic:

```
Peano: sssssssssssssssssssssssssssssssss
```

```
Krivine: (\lambda nxf.f(nxf))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda nxf.f(nx
```

 $(\lambda nxf.f(nxf))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf))(($

 $(\lambda nxf.f(nxf))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))$

Primitive numerals

(1/2)

To get rid of Krivine numerals $\bar{n} = \bar{s}^n \bar{0}$ (cf paleolithic numeration) we extend the machine with the following instructions:

• For every natural number $n \in \mathbb{N}$, an instruction $\widehat{n} \in \mathcal{K}$ with no evaluation rule (i.e. inert constant: pure data)

Intuition: $\widehat{n} \star \pi \succ \text{segmentation fault}$

ullet An instruction null $\in \mathcal{K}$ with the rules

$$\operatorname{null} \star \widehat{n} \cdot u \cdot v \quad \succ \quad \begin{cases} u \star \pi & \text{if } n = 0 \\ v \star \pi & \text{otherwise} \end{cases}$$

• Instructions $\check{f} \in \mathcal{K}$ with the rules

$$\check{f} \star \widehat{n}_1 \cdots \widehat{n}_k \cdot u \cdot \pi \quad \succ \quad u \star \widehat{m} \cdot \pi \quad \text{where } m = f(n_1, \dots, n_k)$$

for all the usual arithmetic operations

Primitive numerals

• Call-by-value implication, yet another definition:

Formulas
$$A,B$$
 ::= \cdots | $[e] \Rightarrow A$ with the semantics: $\|\{e\} \Rightarrow A\| = \{\widehat{n} \cdot \pi : n = e^{\mathbb{IN}}, \ \pi \in \|A\|\}$

Redefining the set of natural numbers:

• Conclusion: $\Vdash \forall x (x \in \mathbb{N}' \Leftrightarrow x \in \mathbb{N})$

Krivine's realizability vs the LRS-translation

• Krivine's realizability can be seen as the composition of the Lafont-Reus-Streicher (LRS) translation with Kleene realizability:

$$\mathsf{CPS} \circ \mathsf{Krivine} = \mathsf{Kleene} \circ \mathsf{LRS}$$

[Oliva-Streicher 2008]

Witness extraction

The dictionary	
Classical realizability (Krivine)	Lafont-Reus-Streicher translation
Pole ⊥	Return formula <i>R</i>
Falsity value $\ A\ $	Negative translation A^\perp
$ A \Rightarrow B := A \cdot B $	$(A\Rightarrow B)^{\perp} := A^{LRS} \wedge B^{\perp}$
Truth value $ A :=\ A\ ^{\perp\!\!\!\perp}$	$A^{LRS} := A^{\perp} \Rightarrow R$

• Through the CPS-translation, Krivine's extraction method in the Σ_1^0 -case is exactly Friedman's trick (transposed to LRS) [M. 2010]

Beware of reductionism!

- The decomposition holds only for pure classical reasoning (extra instructions are not taken into account)
- Classical realizers are easier to understand than their CPS-translations (and more efficient)
- Classical realizability is more than Kleene's realizability composed with the Lafont-Reus-Streicher translation

An image:

$$2H_2 + O_2 \longrightarrow 2H_2O$$

but can we deduce the properties of water from the ones of H_2 and O_2 ?