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Classical realizability and forcing
Part 1: Introduction
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What is classical realizability?

Complete reformulation of the principles of Kleene realizability to
take into account classical reasoning

Based on Griffin’s discovery about the connection between classical
reasoning an control operators (call/cc)

call/cc : ((A⇒ B)⇒ A)⇒ A (Peirce’s law)

Initially designed for PA2, but extends to:

Higher-order arithmetic (PAω)
Zermelo-Fraenkel set theory (ZF)
Interprets the Axiom of Dependent Choices (DC)

Deep connections with Cohen forcing (cf Part 2)

 can be used to define new models of PA2/ZF (cf Part 3)
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Different notions of models

Tarski models: JAK ∈ {0; 1}
Interprets classical provability (correctness/completeness)

Intuitionistic realizability: JAK ∈ P(Λ) [Kleene 45]

Interprets intuitionistic proofs
Independence results in intuitionistic theories
Definitely incompatible with classical logic

Cohen forcing: JAK ∈ P(C ) [Cohen 63]

Independence results, in classical theories
(Negation of continuum hypothesis, Solovay’s axiom, etc.)

Classical realizability: JAK ∈ P(Λc) [Krivine 94, 03]

Interprets classical proofs
Generalizes Tarski models... and forcing!



Introduction Second-order logic Adding axioms The λc -calculus

The Brouwer-Heyting-Kolmogorov (BHK) semantics

Philosophical input: the meaning of a proposition A is the
set JAK of evidences that A holds:

JA⇒ BK = JAK→ JBK (‘computable’ functions)

JA ∧ BK = JAK× JBK (Cartesian product)

JA ∨ BK = JAK + JBK (Disjoint union)

J(∀x ∈N)A(x)K =
∏
n∈N

JA(n)K (Dependent product)

J(∃x ∈N)A(x)K =
∑
n∈N

JA(n)K (Dependent sum)

Typical example: (∀x ∈N)(∃y ∈N) A(x , y)



Introduction Second-order logic Adding axioms The λc -calculus

From philosophy to mathematics

The BHK philosophical interpretation of propositions can be given a
formal (i.e. mathematical) contents: the theory of realizability

t  A

Which notion of an evidence?

Gödel codes of recursive functions [Kleene 45]

λ-terms

Elements of an arbitrary PCA

For which theory?

Heyting Arithmetic (HA)

Second/higher-order Heyting Arithmetic (HA2/HAω)

Intuitionistic Zermelo-Fraenkel Set theory (IZF)
[Myhill-Friedman 73, McCarty 84]
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Building realizers from proofs

Theorem

From a derivation d of A, one can effectively extract a realizer d∗ ∈ JAK

Works in most intuitionistic theories: HA, HA2, HAω, IZF, etc.

Technically: Read each deduction rule as a typing rule and build
the program d∗ accordingly:

x : A ` t : B
` λx . t : A⇒ B

` t : A⇒ B ` u : A
` tu : B

Relies on the property of

Adequacy: If ` t : A, then t  A (i.e. t ∈ JAK)

Axioms are realized separately
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Why BHK is incompatible with classical logic

A simple argument:

The following proposition is classically provable:

(∀x ∈N) (Halt(x) ∨ ¬Halt(x))

But a realizer would solve the halting problem!

Remark: Incompatibility due to the restriction to computable functions.
Vanishes if we introduce non computable realizers (oracles)

Another argument, in 2nd-order logic:

The negation of excluded middle is realizable!

¬∀X (X ∨ ¬X )

Reason: 2nd-order ∀ commutes with ∨ in Kleene’s realizability



Introduction Second-order logic Adding axioms The λc -calculus

A technical defect of BHK semantics

In BHK semantics, we have J⊥K = ∅. Hence:

J¬AK = JAK→ ∅ =

∅ if JAK 6= ∅

Λ if JAK = ∅

Consequences:

Negated formulas have no computational contents

On the fragment formed by all negated formulas, BHK semantics
degenerates to a 2-valued model  Tarski semantics

BHK semantics not suited to be used with ¬¬-translation
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How to cope with classical logic?

1 Keep BHK semantics, but compose it with Friedman’s translation

JAK∗ := JA¬¬R K

Translation A 7→ A¬¬R parameterized by a return formula R,
uses relative negation ¬RA := A⇒ R instead of negation

Useful for witness extraction for Σ0
1/Π0

2-formulas (Friedman’s trick)

Alters the computational meaning of proofs / typing rules

2 Hard-wire Friedman’s translation in the semantics

 get a new semantics: Krivine’s semantics
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Realizability vs. Boolean/Heyting-valued models

In Boolean/Heyting-valued models, conjunction is interpreted as
meet/intersection...

... so that universal quantification amounts to
an infinitary intersection

But in proof theory, universal quantification is very different from an
infinitary conjunction:

` A(x)

` ∀x A(x)

` A(0) ` A(1) · · · ` A(41)

` A(0) ∧ A(1) ∧ · · · ∧ A(41)

In intuitionistic/classical realizability

Conjunction is interpreted as a Cartesian product

Universal quantification (over predicates or sets) is interpreted as an
infinitary intersection (6= infinitary conjunction)
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The missing link

∧ = ∀ = ∩ ∧ = ×, ∀ = ∩

Int. logic Heyting-valued models Int. realizability

Class. logic Boolean-valued models Class. realizability
(Cohen forcing)
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A cardinals’ heresy in classical realizability (teaser)

Recall that in ZFC (= ZF + AC), cardinals are well-ordered
(Since they are represented by ordinals, thanks to Zermelo’s Lemma)

In Realizability algebras II: new models of ZF + DC (2012),
Krivine presents a classical realizability model of ZF + DC
(the model of threads) in which we can find:

(1) An infinite set S ⊆ R which is not equipotent with S × S

(2) Two infinite sets S1, S2 ⊆ R such that there is no surjection in either
direction (and thus no injection in either direction)

(3) An infinite sequence (Sq)q∈Q of infinite subsets of R indexed by Q whose
cardinals are strictly increasing (dense ordering!)

If ZF is consistent, then so is ZF + DC + (1) + (2) + (3)

In Part 3, we shall rephrase Krivine’s result in 2nd-order logic
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The language of (minimal) second-order logic

Second-order logic deals with two kinds of objects:

1st-order objects = individuals (i.e. basic objects of the theory)

2nd-order objects = k-ary relations over individuals

First-order terms and formulas

First-order terms

Formulas

e, e′ ::= x | f (e1, . . . , ek)

A,B ::= X (e1, . . . , ek) | A⇒ B
| ∀x A | ∀X A

Two kinds of variables

1st-order vars: x , y , z , . . .
2nd-order vars: X , Y , Z , . . . of all arities k ≥ 0

Two kinds of substitution:

1st-order subst.: e{x := e0}, A{x := e0} (defined as usual)

2nd-order subst.: A{X := P0}, P{X := P0} (postponed)
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First-order terms

Defined from a first-order signature Σ (as usual):

First-order terms e, e′ ::= x | f (e1, . . . , ek)

f ranges over k-ary function symbols in Σ

In what follows we assume that:

Each k-ary function symbol f is interpreted in N by a function

f N : Nk → N

The signature Σ contains at least a function symbol for every
primitive recursive function (0, s, +, −, ×, /, mod, ↑, . . . ),
each of them being interpreted the standard way

Denotation (in N) of a closed first-order term e written JeK
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Formulas

Formulas of minimal second-order logic

Formulas A,B ::= X (e1, . . . , ek) | A⇒ B
| ∀x A | ∀X A

only based on implication and 1st/2nd-order universal quantification

Other connectives/quantifiers are defined (second-order encodings)

⊥ ≡ ∀Z Z
¬A ≡ A⇒ ⊥

A ∧ B ≡ ∀Z ((A⇒ B ⇒ Z)⇒ Z)
A ∨ B ≡ ∀Z ((A⇒ Z)⇒ (B ⇒ Z)⇒ Z)

∃x A(x) ≡ ∀Z (∀x (A(x)⇒ Z)⇒ Z)
∃X A(X ) ≡ ∀Z (∀X (A(X )⇒ Z)⇒ Z)

e1 = e2 ≡ ∀Z (Z(e1)⇒ Z(e2))

(absurdity)
(negation)

(conjunction)
(disjunction)

(1st-order ∃)
(2nd-order ∃)

(Leibniz equality)
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Predicates

Concrete relations are represented using predicates (syntactic sugar)

Predicates P,Q ::= x̂1 · · · x̂kA0 (of arity k)

Definition (Predicate application and 2nd-order substitution)

1 P(e1, . . . , ek) is the formula defined by

P(e1, . . . , ek) ≡ A0{x1 := e1, . . . , xk := ek}

where P ≡ x̂1 · · · x̂kA0, and where e1, . . . , ek are k first-order terms

2 2nd-order substitution A{X := P} (where X and P are of the same arity k)

consists to replace in the formula A every atomic sub-formula of the form

X (e1, . . . , ek) by the formula P(e1, . . . , ek)

Note: Every k-ary 2nd-order variable X can be seen as a predicate:

X ≡ x̂1 · · · x̂kX (x1, . . . , xk)
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Unary predicates as sets

Unary predicates represent sets of individuals

Syntactic sugar: {x : A} ≡ x̂A, e ∈ P ≡ P(e)

Example: The set N of Dedekind numerals

N ≡ {x : ∀Z (0 ∈ Z ⇒ ∀y (y ∈ Z ⇒ s(y) ∈ Z )⇒ x ∈ Z}

Relativized quantifications:

(∀x ∈P)A(x) ≡ ∀x (x ∈ P ⇒ A(x))

(∃x ∈P)A(x) ≡ ∀Z (∀x (x ∈ P ⇒ A(x)⇒ Z)⇒ Z)
⇔ ∃x (x ∈ P ∧ A(x))

Inclusion and extensional equality:

P ⊆ Q ≡ ∀x (x ∈ P ⇒ x ∈ Q)
P = Q ≡ ∀x (x ∈ P ⇔ x ∈ Q)

Set constructors: P ∪ Q ≡ {x : x ∈ P ∨ x ∈ Q} (etc.)
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A type system for second-order logic (λNK2)

Represent the computational contents of classical proofs using
Curry-style proof terms, with call/cc for classical logic:

t, u ::= x | λx . t | tu | cc

Typing judgement: x1 : A1, . . . , xn : An︸ ︷︷ ︸
typing context Γ

` t : B

Typing rules

Γ ` x : A
(x :A)∈Γ

Γ ` cc : ((A⇒ B)⇒ A)⇒ A

Γ, x : A ` t : B

Γ ` λx . t : A⇒ B
Γ ` t : A⇒ B Γ ` u : A

Γ ` tu : B

Γ ` t : A
Γ ` t : ∀x A

x /∈FV (Γ)
Γ ` t : ∀x A

Γ ` t : A{x := e}

Γ ` t : A
Γ ` t : ∀X A

X /∈FV (Γ)
Γ ` t : ∀X A

Γ ` t : A{X := P}
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From the derivation to the proof term

[∀x (B(x)⇒ C(x))]
g

B(x)⇒ C(x)

[∀x (A(x)⇒ B(x))]
f

A(x)⇒ B(x) [A(x)]
u

B(x)
@

C(x)
@

A(x)⇒ C(x)
λu

∀x (A(x)⇒ C(x))

∀x (B(x)⇒ C(x)) ⇒ ∀x (A(x)⇒ C(x))
λg

∀x (A(x)⇒ B(x)) ⇒ ∀x (B(x)⇒ C(x)) ⇒ ∀x (A(x)⇒ C(x))
λf

λf . λg . λu . g (f u)
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Typing examples

Intuitionistic principles:

pair ≡ λxyz . z x y : ∀X ∀Y (X ⇒ Y ⇒ X ∧ Y )
fst ≡ λz . z (λxy . x) : ∀X ∀Y (X ∧ Y ⇒ X )

snd ≡ λz . z (λxy . y) : ∀X ∀Y (X ∧ Y ⇒ Y )

refl ≡ λz . z : ∀x (x = x)
trans ≡ λxyz . y (x z) : ∀x ∀y ∀z (x = y ⇒ y = z ⇒ x = z)

Excluded middle, double negation elimination:

left ≡ λxuv . u x : ∀X ∀Y (X ⇒ X ∨ Y )
right ≡ λyuv . v y : ∀X ∀Y (Y ⇒ X ∨ Y )

EM ≡ cc (λk . right (λx . k (left x))) : ∀X (X ∨ ¬X )

DNE ≡ λz . cc (λk . z k) : ∀X (¬¬X ⇒ X )

De Morgan laws:

λzy . z (λx . yx) : ∃x A(x) ⇒ ¬∀x ¬A(x)
λzy . cc (λk . z (λx . k (y x))) : ¬∀x ¬A(x) ⇒ ∃x A(x)
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Adding axioms

Defining equations of all primitive recursive functions:

∀x (x + 0 = x) ∀x ∀y (x + s(y) = s(x + y))
∀x (x × 0 = 0) ∀x ∀y (x × s(y) = x × y + x) (etc.)

Peano 3rd and 4th axioms:

(P3) ∀x ∀y (s(x) = s(y)⇒ x = y)
(P4) ∀x ¬(s(x) = 0)

Definition of Second-Order Logic (in this tutorial)

SOL = System NK2
+ Defining equations (of prim. rec. functions)
+ Peano axioms (P3) and (P4)

Remark: No induction axiom!
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Induction

Problem: Induction axiom is not realizable!

Ind ≡ ∀x (x ∈ N)
⇔ ∀Z [0 ∈ Z ⇒ ∀y (y ∈ Z ⇒ s(y) ∈ Z )⇒ ∀x (x ∈ Z )]

Solution: Relativize all 1st-order quantifications to N:

Non-relativized Relativized

∀x A(x)  (∀x ∈N)A(x)
∀x (x∈N⇒A(x))

∃x A(x)  (∃x ∈N)A(x)
∀Z (∀x (A(x)⇒Z)⇒Z) ∀Z (∀x (x∈N⇒A(x)⇒Z)⇒Z)

Theorem

If PA2 ` A, then PA2− Ind ` AN (AN = A relativized to N)
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Terms, stacks and processes

Syntax of the language parameterized by

A countable set K = {cc; . . .} of instructions,
containing at least the instruction cc (call/cc)

A countable set Π0 of stack constants (or stack bottoms)

Terms, stacks and processes

Terms

Stacks

Processes

t, u ::= x | λx . t | tu | κ | kπ

π, π′ ::= α | t · π

p, q ::= t ? π

(κ ∈ K)

(α ∈ Π0, t closed)

(t closed)

A λ-calculus with two kinds of constants:

Instructions κ ∈ K, including cc
Continuation constants kπ, one for every stack π (generated by cc)

Notation: Λ, Π, Λ ? Π (sets of closed terms / stacks / processes)
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Proof-like terms

Proof-like term ≡ Term containing no continuation constant

Proof-like terms t, u ::= x | λx . t | tu | κ (κ ∈ K)

Idea: All realizers coming from actual proofs are of this form,
continuation constants kπ are treated as paraproofs

Notation: PL ≡ set of closed proof-like terms

Natural numbers encoded as proof-like terms by:

Krivine numerals n ≡ sn 0 ∈ PL (n ∈ N)

writing 0 ≡ λxy . x and s ≡ λnxy . y (n x y)

Note: Krivine numerals 6≡ Church numerals, but β-equivalent
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The Krivine Abstract Machine (KAM) (1/2)

We assume that the set Λ ? Π comes with a preorder p � p′ of
evaluation satisfying the following rules:

Krivine Abstract Machine (KAM)

Push
Grab
Save
Restore

tu ? π � t ? u · π
λx . t ? u · π � t{x := u} ? π

cc ? u · π � u ? kπ · π
kπ ? u · π′ � u ? π
· · · · · ·

(+ reflexivity & transitivity)

Evaluation not defined but axiomatized. The preorder p � p′ is
another parameter of the calculus, just like the sets K and Π0

Extensible machinery: can add extra instructions and rules
(We shall see examples later)
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The Krivine Abstract Machine (KAM) (2/2)

Rules Push and Grab implement weak head β-reduction:

Push
Grab

tu ? π � t ? u · π
λx . t ? u · π � t{x := u} ? π

Example: (λxy . t) u v ? π � λxy . t ? u · v · π
� t{x := u}{y := v} ? π

Rules Save and Restore implement backtracking:

Save
Restore

cc ? u · π � u ? kπ · π
kπ ? u · π′ � u ? π

Instruction cc creates continuation constants kπ.
Most often used in the pattern

cc (λk . t) ? π � · · · � t{k := kπ} ? π

Continuation constant kπ restores the saved context π
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Example of extra instructions

The instruction quote

quote ? t · u · π � u ? dte · π
where t 7→ dte is a fixed bijection from Λ to N

Useful to realize the Axiom of Dependent Choices (DC) [Krivine 03]

The instruction eq

eq ? t1 · t2 · u · v · π �

{
u ? π if t1 ≡ t2

v ? π if t1 6≡ t2

Tests syntactic equality t1 ≡ t2

Can be implemented using quote

The instruction t (‘fork’)

t ? u · v · π �

{
u ? π

v ? π

Non-deterministic choice operator
Useful for pedagogy – bad for realizability (collapses to forcing)
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