Introduction Second-order logic Adding axioms The Ac-calculus
000000000000 000000000 000 000000

Classical realizability and forcing
Part 1: Introduction

Alexandre Miquel

e
>
o
=
=
=
=
=

c <
INGENIERIA 20\

UNIVERSIDAD
DE LA REPUBLICA
URUGUAY

Logic Colloquium (LC'14)
Vienna Summer of Logic — July 17th, 2014 — Vienna

Introduction Second-order logic Adding axioms The Ac-calculus
900000000000 000000000 [e]e]e} 000000

What is classical realizability?

@ Complete reformulation of the principles of Kleene realizability to
take into account classical reasoning

o Based on Griffin's discovery about the connection between classical
reasoning an control operators (call/cc)

call/cc : (A=B)=A)=A (Peirce’s law)

@ Initially designed for PA2, but extends to:

o Higher-order arithmetic (PAw)
o Zermelo-Fraenkel set theory (ZF)
o Interprets the Axiom of Dependent Choices (DC)

@ Deep connections with Cohen forcing (cf Part 2)
~> can be used to define new models of PA2/ZF (cf Part 3)

Introduction Second-order logic Adding axioms The Ac-calculus
080000000000 000000000 [e]e]e} 000000

Different notions of models

Tarski models: [A] € {0;1}

o Interprets classical provability (correctness/completeness)

(]

Intuitionistic realizability: [A] € P(A) [Kleene 45]

o Interprets intuitionistic proofs
o Independence results in intuitionistic theories
o Definitely incompatible with classical logic

o Cohen forcing: [A] € B(C) [Cohen 63]
o Independence results, in classical theories
(Negation of continuum hypothesis, Solovay's axiom, etc.)

o Classical realizability: [A] € PB(A.) [Krivine 94, 03]
o Interprets classical proofs
o Generalizes Tarski models... and forcing!

Introduction Second-order logic Adding axioms The Ac-calculus
00@000000000 000000000 [e]e]e} 000000

The Brouwer-Heyting-Kolmogorov (BHK) semantics

o Philosophical input: the meaning of a proposition A is the
set [A] of evidences that A holds:

[A=B] = [A] —[8B] (‘computable’ functions)
[ANB] = T[A] x[B] (Cartesian product)
[AvB] = [Al+1B] (Disjoint union)

[[(VX S |N) A(X)]] = H [[A(n)ﬂ (Dependent product)
nelN

[GxeN)A)] = > AN (Dependent sum)
nelN

e Typical example: (VxeIN)(3y € IN) A(x,y)

Introduction Second-order logic Adding axioms The Ac-calculus
000@00000000 000000000 [e]e]e} 000000

From philosophy to mathematics

The BHK philosophical interpretation of propositions can be given a
formal (i.e. mathematical) contents: the theory of realizability

tiFA

@ Which notion of an evidence?
o Godel codes of recursive functions [Kleene 45]
e \-terms

o Elements of an arbitrary PCA

@ For which theory?
o Heyting Arithmetic (HA)
o Second/higher-order Heyting Arithmetic (HA2/HAw)

o Intuitionistic Zermelo-Fraenkel Set theory (I1ZF)
[Myhill-Friedman 73, McCarty 84]

Introduction Second-order logic Adding axioms The Ac-calculus
00000000000 000000000 [e]e]e} 000000

Building realizers from proofs

From a derivation d of A, one can effectively extract a realizer d* € [A]

@ Works in most intuitionistic theories: HA, HA2, HAw, |ZF, etc.

@ Technically: Read each deduction rule as a typing rule and build
the program d* accordingly:
x:AFt: B Ft:A=B Fu:A
FXx.t:A=B Ftu:B

@ Relies on the property of

Adequacy: If Ft:A then tIFA (ie. te [[A]])J

@ Axioms are realized separately

Introduction Second-order logic Adding axioms
000008000000 000000000 000

Why BHK is incompatible with classical logic

The Ac-calculus
000000

@ A simple argument:
e The following proposition is classically provable:
(Vx €IN) (Halt(x) v —Halt(x))

e But a realizer would solve the halting problem!

@ Remark: Incompatibility due to the restriction to computable functions.
Vanishes if we introduce non computable realizers (oracles)

@ Another argument, in 2nd-order logic:
o The negation of excluded middle is realizable!
VX (X V =X)

o Reason: 2nd-order V commutes with V in Kleene's realizability

The Ac-calculus

Adding axioms
000000

[e]e]e}

Introduction Second-order logic

000000800000 000000000

A technical defect of BHK semantics

o In BHK semantics, we have [Ll]=@. Hence:
o if [A] # 2
AN if[A]l=2

[-A] = [A] —» @

e Consequences:
o Negated formulas have no computational contents

e On the fragment formed by all negated formulas, BHK semantics
degenerates to a 2-valued model ~- Tarski semantics

o BHK semantics not suited to be used with —=—-translation

Introduction

Second-order logic
000000080000

000000000

How to cope with classical logic?

Adding axioms
[e]e]e}

The Ac-calculus
000000

@ Keep BHK semantics, but compose it with Friedman's translation

[A" = [A7]

o Translation A+ A77R parameterized by a return formula R,
uses relative negation —rA := A= R instead of negation

o Useful for witness extraction for X9 /M3-formulas (Friedman'’s trick)

o Alters the computational meaning of proofs / typing rules

@ Hard-wire Friedman'’s translation in the semantics

~> get a new semantics: Krivine's semantics

Introduction Second-order logic Adding axioms The Ac-calculus
000000008000 000000000 [e]e]e} 000000

Realizability vs. Boolean/Heyting-valued models

@ In Boolean/Heyting-valued models, conjunction is interpreted as
meet /intersection...
... so that universal quantification amounts to
an infinitary intersection

@ But in proof theory, universal quantification is very different from an
infinitary conjunction:

FA(x) FA() FA(I) - F A4
- Vx A(x) FAQ0) AA(L) A --- A A(4L)

@ In intuitionistic/classical realizability

o Conjunction is interpreted as a Cartesian product

o Universal quantification (over predicates or sets) is interpreted as an
infinitary intersection (infinitary conjunction)

Introduction Second-order logic Adding axioms The Ac-calculus
000000000800 000000000 [e]e]e} 000000

The missing link

A=V=n A=x,V=n

Int. logic Heyting-valued models Int. realizability

Class. logic | Boolean-valued models | Class. realizability
(Cohen forcing)

Introduction Second-order logic Adding axioms The Ac-calculus
000000000080 000000000 [e]e]e} 000000

A cardinals’ heresy in classical realizability (teaser)

@ Recall that in ZFC (= ZF + AC), cardinals are well-ordered

(Since they are represented by ordinals, thanks to Zermelo's Lemma)

e In Realizability algebras Il: new models of ZF + DC (2012),
Krivine presents a classical realizability model of ZF + DC
(the model of threads) in which we can find:

(1) An infinite set S C IR which is not equipotent with S x S

(2) Two infinite sets S1,S> C IR such that there is no surjection in either
direction (and thus no injection in either direction)

(3) An infinite sequence (Sq)qeq of infinite subsets of IR indexed by @ whose
cardinals are strictly increasing (dense ordering!)

If ZF is consistent, then so is ZF + DC + (1) + (2) + (3)

@ In Part 3, we shall rephrase Krivine's result in 2nd-order logic

© Introduction
© Second-order logic
© Adding axioms

@ The)\ -calculus

© Introduction

© Second-order logic

© Adding axioms

@ The A\ .-calculus

Introduction Second-order logic Adding axioms The Ac-calculus
000000000000 0@0000000 [e]e]e} 000000

The language of (minimal) second-order logic

@ Second-order logic deals with two kinds of objects:

o lst-order objects = individuals (i.e. basic objects of the theory)
o 2nd-order objects = k-ary relations over individuals

First-order terms and formulas

First-order terms e,e = x | f(en,..., &)
Formulas AB = X(e,...,ex) | A=B
| VxA | VXA

@ Two kinds of variables

o l1st-order vars: x, y, z, ...

o 2nd-order vars: X, Y, Z, ... of all arities k > 0
@ Two kinds of substitution:

o Ist-order subst.: e{x:=e&}, A{x:=e} (defined as usual)
o 2nd-order subst.: A{X := Py}, P{X:= Po} (postponed)

Introduction Second-order logic Adding axioms
000000000000 008000000 (e]e]e}

First-order terms

@ Defined from a first-order signature X (as usual):

First-order terms e, e = x | f(e,...

The Ac-calculus
000000

, €k) J

o f ranges over k-ary function symbols in

@ In what follows we assume that:

o Each k-ary function symbol f is interpreted in IN by a function

NI S IN

o The signature ¥ contains at least a function symbol for every
primitive recursive function (0, s, +, —, X, /, mod, 1, ...),

each of them being interpreted the standard way

@ Denotation (in IN) of a closed first-order term e written [e]

Introduction Second-order logic Adding axioms The Ac-calculus
000000000000 000@00000 [e]e]e} 000000

Formulas

@ Formulas of minimal second-order logic

Formulas A B = X(en,...,ex) | A=B
| VxA | VXA J

only based on implication and 1st/2nd-order universal quantification

@ Other connectives/quantifiers are defined (second-order encodings)

1L = vzz (absurdity)

-A = A= L (negation)
ANB = VZ(A=B=2)=2) (conjunction)
AVB = YZ(A=2)=(B=2Z)=2) (disjunction)
IxA(x) = VZ(¥x(A(x)= Z)= 2) (1st-order 3)
IXAX) = YZ(YX(AX) = 2) = 2) (2nd-order 3)
ee=e = VZ(Z(a)=Z(e)) (Leibniz equality)

Introduction Second-order logic Adding axioms The Ac-calculus
000000000000 000080000 [e]e]e} 000000

Predicates

@ Concrete relations are represented using predicates (syntactic sugar)

Predicates P,Q := X - XA (of arity k))

Definition (Predicate application and 2nd-order substitution)

©Q P(e,...,e) is the formula defined by
P(er,...,e) = Ao{x1:=e1,...,xk ‘= e}

where P = X1 - - - XcAo, and where e, ..., ek are k first-order terms

@ 2nd-order substitution A{X := P} (where X and P are of the same arity k)
consists to replace in the formula A every atomic sub-formula of the form

X(e,...,ek) by the formula P(ei,...,ek)

@ Note: Every k-ary 2nd-order variable X can be seen as a predicate:

X =)A<1~~-)?kX(X1,...,Xk)

Introduction Second-order logic
000000000000 00000@000

Unary predicates as sets

Adding axioms

The Ac-calculus
[e]e]e}

000000

@ Unary predicates represent sets of individuals

Syntactic sugar: {x: A} = XA ee P = P(e)

Example: The set IN of Dedekind numerals
N={x:VZ0eZ=Vy(yeZ=5s(y)eZ)=xcZ}

@ Relativized quantifications:

(VxeP)A(x) = Vx(xeP= A(x))

(3xeP)A(x) = VZ(Vx(xeP=A(x)=2)=Z)
< x(x € PAA(x))

@ Inclusion and extensional equality:

PCQ = ¥x(xeP=xeQ)
P=Q = VYVx(xeP&exeQ)
@ Set constructors: PUQ = {x : xePVxeQ} (etc.)

Introduction Second-order logic Adding axioms The Ac-calculus
000000000000 000000800 [e]e]e} 000000

A type system for second-order logic (ANK2)

@ Represent the computational contents of classical proofs using
Curry-style proof terms, with call/cc for classical logic:

t,bu = x | M.t | tuv | «

e Typing judgement: X1 AL, ., xptAp F B

typing context I

Typing rules

— (x:A)er
Fr=x:A FrNxc: (A=B)=A)= A
Fx:AFt:B FFt:A=>B TFu:A
Fr-Xx.t:A=B -tu:B
FrEt: A F-t:VxA
——— x¢FV(T _—
Th oA T E L Ao
Fr-t: A X¢FV(T) r-t:vXA
FT-t:VXA T t: A{X = P}

From the derivation to the proof term

[(AG) = BE)
[Vx (B(x) = C(x))] A(x) = B(x) [A(X)] o

B(x) = C(x) B(x) o

C(x)
Ax) = Cx)
Vx (A(x) = C(x)) g
Vx (B(x) = C(x)) = Vx(A(x) = C(x))
Vx (A(x) = B(x)) = Vx(B(x) = C(x)) = Vx(A(x) = C(x))

Af

M. Ag . Au.g(fu)

Introduction Second-order logic Adding axioms The Ac-calculus
000000000000 00000000e [e]e]e} 000000

Typing examples

@ Intuitionistic principles:

pair = Axyz.zxy D VXVY (X =Y =XAY)
fst = Mz.z(Mxy.x) @ VXVY(XAY =X)
snd = Xz.z(MAxy.y) @ VXVY(XAY=Y)
refl = X\z.z © Vx(x=x)
trans = Mxyz.y(xz) = YxVyVz(x=y=>y=z=x=2)

@ Excluded middle, double negation elimination:

left = Jdxuv.ux : VXVY(X=XVY)
right = Muv.vy @ YXVY (Y= XVY)

EM = a«(\k.right Ox.k(leftx))) : VX (XV=X)
DNE = Xz.c(Mk.zk) : V¥X(—=X = X)

@ De Morgan laws:

Azy.z(Ax.yx) : IxA(x) = Vx-A(x)
Azy.c(Ak.z(Ax. k(yx))) : —Vx-A(x) = IxA(x)

© Introduction

© Second-order logic

© Adding axioms

@ The A\ .-calculus

Introduction Second-order logic Adding axioms The Ac-calculus
000000000000 000000000 oeo 000000

Adding axioms

o Defining equations of all primitive recursive functions:

Vx(x+0=x) VxVy (x + s(y) =s(x+y))
Vx (x x 0=0) VxVy (x X s(y) =x x y + x) (etc.)
@ Peano 3rd and 4th axioms:

(P3) VxVy(s(x) =s(y) = x=y)
(P4) Vx—(s(x)=0)

Definition of Second-Order Logic (in this tutorial)

SOL = System NK2
+ Defining equations (of prim. rec. functions)
+ Peano axioms (P3) and (P4)

@ Remark: No induction axiom!

Introduction Second-order logic Adding axioms The Ac-calculus
000000000000 000000000 ooe 000000

Induction

@ Problem: Induction axiom is not realizable!

Ind = Vx(xelN)
& VZ[0eZ=Vy(yeZ=s(y) e Z)=Vx(x e Z)]

@ Solution: Relativize all 1st-order quantifications to IN:

Non-relativized Relativized
Vx A(x) ~ (Vx €IN) A(x)
Vx (x€IN=A(x))
Ix A(x) ~ (3x e N) A(x)
VZ (Vx (A(x)=2Z)=2Z) VZ (Vx (xEN=>A(x)=>Z)=Z)

If PA2+- A, then PA2 —Ind+- AN (AN = A relativized to IN)

© Introduction

© Second-order logic

© Adding axioms

@ The)\ -calculus

Introduction Second-order logic Adding axioms The Ac-calculus
000000000000 000000000 [e]e]e} 080000

Terms, stacks and processes

@ Syntax of the language parameterized by

o A countable set K = {«; ...} of instructions,
containing at least the instruction a« (call/cc)

o A countable set Mg of stack constants (or stack bottoms)

Terms, stacks and processes

Terms tbu = x | M.t | tu | & | ke (k € K)
Stacks mr = a | tew (a € Mo, t closed)
Processes p,q = txm (t closed)

@ A MA-calculus with two kinds of constants:

e Instructions k € K, including «
o Continuation constants k,, one for every stack 7 (generated by)

@ Notation: A, T, AxIl (sets of closed terms / stacks / processes)

Introduction Second-order logic Adding axioms The Ac-calculus
000000000000 000000000 [e]e]e} 00@000

Proof-like terms

@ Proof-like term = Term containing no continuation constant

Proof-like terms t,bu = x | M.t | tu | kK (r€K) |

o ldea: All realizers coming from actual proofs are of this form,
continuation constants k. are treated as paraproofs

o Notation: PL = set of closed proof-like terms

@ Natural numbers encoded as proof-like terms by:

Krivine numerals n = 350 € PL (neN)

writing 0= Axy.x and 5= Anxy.y(nxy)

o Note: Krivine numerals # Church numerals, but S-equivalent

Introduction Second-order logic Adding axioms The Ac-calculus
000000000000 000000000 [e]e]e} 000e00

The Krivine Abstract Machine (KAM) (1/2)

@ We assume that the set A x 1 comes with a preorder p = p’ of
evaluation satisfying the following rules:

Krivine Abstract Machine (KAM)

Push tu *x T — t x u-m
Grab Ax.t * u-m = t{xi=u} x 7w
Save @ K« u-mT > u * ky-m
Restore ky * u-m = u * m

(+ reflexivity & transitivity)

@ Evaluation not defined but axiomatized. The preorder p = p’ is
another parameter of the calculus, just like the sets IC and Iy

@ Extensible machinery: can add extra instructions and rules
(We shall see examples later)

Introduction Second-order logic Adding axioms The Ac-calculus
000000000000 000000000 [e]e]e} 000080

The Krivine Abstract Machine (KAM) (2/2)

@ Rules Push and Grab implement weak head (3-reduction:

Push tu % - txu-m
Grab M.t u-m = t{x:=u}xm
o Example: (Axy . t)uvxm = Axy.txu-v-m

= t{x=ul{y =v}ixw

@ Rules Save and Restore implement backtracking:

Save CTxu-mT = Uxkg-w
Restore ke xu-m = uxm

o Instruction a creates continuation constants k.
Most often used in the pattern

a(Ak.t)xm > - = t{ki=kg}x7

o Continuation constant k. restores the saved context 7

Introduction Second-order logic Adding axioms The Ac-calculus
000000000000 000000000 [e]e]e} 00000e

Example of extra instructions

@ The instruction quote
quotext-u-m > u*m-ﬂ
where t — [t] is a fixed bijection from A to IN
o Useful to realize the Axiom of Dependent Choices (DC) [Krivine 03]

@ The instruction eq

uxm ift1 =t
eqxty-th-u-v-m .
vxm ifty £t

o Tests syntactic equality t; =
o Can be implemented using quote

@ The instruction M (‘fork’)
uxTm
hxu-v-m > {
VX

o Non-deterministic choice operator
o Useful for pedagogy — bad for realizability (collapses to forcing)

	Introduction
	Second-order logic
	Adding axioms
	The c-calculus

