Introduction 000000000000 Second-order logic

Adding axioms

The λ_c -calculus 000000

Classical realizability and forcing Part 1: Introduction

Alexandre Miquel

Logic Colloquium (LC'14) Vienna Summer of Logic – July 17th, 2014 – Vienna

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
•0000000000	00000000	000	000000
What is classica	al realizability?		

- Complete reformulation of the principles of Kleene realizability to take into account classical reasoning
 - Based on Griffin's discovery about the connection between classical reasoning an control operators (call/cc)

$$\operatorname{call/cc}$$
 : $((A \Rightarrow B) \Rightarrow A) \Rightarrow A$ (Peirce's law)

- Initially designed for PA2, but extends to:
 - Higher-order arithmetic ($PA\omega$)
 - Zermelo-Fraenkel set theory (ZF)
 - Interprets the Axiom of Dependent Choices (DC)
- Deep connections with Cohen forcing (cf Part 2)

 \rightarrow can be used to define new models of PA2/ZF (cf Part 3)

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
0000000000	00000000	000	000000

Different notions of models

- Tarski models: $\llbracket A \rrbracket \in \{0; 1\}$
 - Interprets classical provability

(correctness/completeness)

- Intuitionistic realizability: $\llbracket A \rrbracket \in \mathfrak{P}(\Lambda)$
 - Interprets intuitionistic proofs
 - Independence results in intuitionistic theories
 - Definitely incompatible with classical logic
- Cohen forcing: $\llbracket A \rrbracket \in \mathfrak{P}(C)$
 - Independence results, in classical theories (Negation of continuum hypothesis, Solovay's axiom, etc.)

• Classical realizability: $\llbracket A \rrbracket \in \mathfrak{P}(\Lambda_c)$

[Krivine 94, 03]

[Kleene 45]

[Cohen 63]

- Interprets classical proofs
- Generalizes Tarski models... and forcing!

00000000000	00000000	000	000000
Introduction	Second-order logic	Adding axioms	The λ_c -calculus

The Brouwer-Heyting-Kolmogorov (BHK) semantics

• **Philosophical input:** the meaning of a proposition *A* is the set $[\![A]\!]$ of evidences that *A* holds:

 $\begin{bmatrix} A \Rightarrow B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \rightarrow \begin{bmatrix} B \end{bmatrix} \quad ('computable' functions)$ $\begin{bmatrix} A \land B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \times \begin{bmatrix} B \end{bmatrix} \quad (Cartesian product)$ $\begin{bmatrix} A \lor B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} + \begin{bmatrix} B \end{bmatrix} \quad (Disjoint union)$ $\begin{bmatrix} (\forall x \in \mathbb{N}) A(x) \end{bmatrix} = \prod_{n \in \mathbb{N}} \begin{bmatrix} A(n) \end{bmatrix} \quad (Dependent product)$ $\begin{bmatrix} (\exists x \in \mathbb{N}) A(x) \end{bmatrix} = \sum_{n \in \mathbb{N}} \begin{bmatrix} A(n) \end{bmatrix} \quad (Dependent sum)$

• Typical example: $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N}) A(x, y)$

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
0000000000	00000000	000	000000
From philosophy	to mathematics		

The BHK philosophical interpretation of propositions can be given a formal (i.e. mathematical) contents: the theory of realizability

 $t \Vdash A$

- Which notion of an evidence?
 - Gödel codes of recursive functions
 - λ -terms
 - Elements of an arbitrary PCA
- For which theory?
 - Heyting Arithmetic (HA)
 - Second/higher-order Heyting Arithmetic (HA2/HA ω)
 - Intuitionistic Zermelo-Fraenkel Set theory (IZF)

[Myhill-Friedman 73, McCarty 84]

[Kleene 45]

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
0000000000	00000000	000	000000
Building realizers	from proofs		

Theorem

From a derivation d of A, one can effectively extract a realizer $d^* \in \llbracket A \rrbracket$

- Works in most intuitionistic theories: HA, HA2, HA ω , IZF, etc.
- **Technically:** Read each deduction rule as a typing rule and build the program *d*^{*} accordingly:

$$\frac{\mathbf{x}: A \vdash \mathbf{t}: B}{\vdash \lambda \mathbf{x} \cdot \mathbf{t}: A \Rightarrow B} \qquad \frac{\vdash \mathbf{t}: A \Rightarrow B}{\vdash \mathbf{tu}: B}$$

• Relies on the property of

Adequacy: If $\vdash t : A$, then $t \Vdash A$ (i.e. $t \in \llbracket A \rrbracket$)

Axioms are realized separately

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
0000000000	00000000	000	000000

Why BHK is incompatible with classical logic

- A simple argument:
 - The following proposition is classically provable:

 $(\forall x \in \mathbb{N}) (\operatorname{Halt}(x) \lor \neg \operatorname{Halt}(x))$

- But a realizer would solve the halting problem!
- **Remark:** Incompatibility due to the restriction to computable functions. Vanishes if we introduce non computable realizers (oracles)
- Another argument, in 2nd-order logic:
 - The negation of excluded middle is realizable!

$$\neg \forall X (X \lor \neg X)$$

• Reason: 2nd-order \forall commutes with \lor in Kleene's realizability

Introduction Second-order logic	Adding axioms	The λ_c -calculus
000000000000000000000000000000000000000	000	000000

A technical defect of BHK semantics

• In BHK semantics, we have $[\bot] = \emptyset$. Hence:

$$\llbracket \neg A \rrbracket = \llbracket A \rrbracket \to \varnothing = \begin{cases} \varnothing & \text{if } \llbracket A \rrbracket \neq \varnothing \\ \Lambda & \text{if } \llbracket A \rrbracket = \varnothing \end{cases}$$

• Consequences:

- Negated formulas have no computational contents
- On the fragment formed by all negated formulas, BHK semantics degenerates to a 2-valued model \rightsquigarrow Tarski semantics
- $\bullet\,$ BHK semantics not suited to be used with $\neg\neg\text{-translation}$

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
00000000000	00000000	000	000000
How to cope with	classical logic?		

Skeep BHK semantics, but compose it with Friedman's translation

$$\llbracket A \rrbracket^* := \llbracket A^{\neg \neg_R} \rrbracket$$

- Translation $A \mapsto A^{\neg \neg_R}$ parameterized by a return formula R, uses relative negation $\neg_R A := A \Rightarrow R$ instead of negation
- Useful for witness extraction for Σ_1^0/Π_2^0 -formulas (Friedman's trick)
- Alters the computational meaning of proofs / typing rules

e Hard-wire Friedman's translation in the semantics

→ get a new semantics: Krivine's semantics

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
000000000000	00000000	000	000000
Realizability vs.	Boolean/Heytin	g-valued models	

• In Boolean/Heyting-valued models, conjunction is interpreted as meet/intersection...

... so that universal quantification amounts to an infinitary intersection

• But in proof theory, universal quantification is very different from an infinitary conjunction:

$$\frac{\vdash A(x)}{\vdash \forall x \ A(x)} \qquad \frac{\vdash A(0) \ \vdash A(1) \ \cdots \ \vdash A(41)}{\vdash A(0) \land A(1) \land \cdots \land A(41)}$$

- In intuitionistic/classical realizability
 - Conjunction is interpreted as a Cartesian product
 - Universal quantification (over predicates or sets) is interpreted as an infinitary intersection (≠ infinitary conjunction)

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
000000000000	00000000	000	000000
The missing link			

	$\wedge=\forall=\cap$	$\wedge = \times, \forall = \cap$
Int. logic	Heyting-valued models	Int. realizability
Class. logic	Boolean-valued models (Cohen forcing)	Class. realizability

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
00000000000	00000000	000	000000
A cardinals' h	eresy in classical i	realizability (tease	r)

- Recall that in ZFC (= ZF + AC), cardinals are well-ordered (Since they are represented by ordinals, thanks to Zermelo's Lemma)
- In Realizability algebras II: new models of ZF + DC (2012), Krivine presents a classical realizability model of ZF + DC(the model of threads) in which we can find:
- (1) An infinite set $S \subseteq \mathbb{R}$ which is not equipotent with $S \times S$
- (2) Two infinite sets $S_1, S_2 \subseteq \mathbb{R}$ such that there is no surjection in either direction (and thus no injection in either direction)
- (3) An infinite sequence (S_q)_{q∈Q} of infinite subsets of IR indexed by Q whose cardinals are strictly increasing (dense ordering!)

If ZF is consistent, then so is ZF + DC + (1) + (2) + (3)

• In Part 3, we shall rephrase Krivine's result in 2nd-order logic

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
0000000000	00000000	000	000000
Plan			

2 Second-order logic

3 Adding axioms

4 The λ_c -calculus

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
00000000000	00000000	000	000000
Plan			

Introduction

2 Second-order logic

3 Adding axioms

4 The λ_c -calculus

Introduction 00000000000	Second-order logic	Adding axioms	The λ_c -calculus 000000
The language of	(minimal) see	cond-order logic	

- Second-order logic deals with two kinds of objects:
 - 1st-order objects = individuals (i.e. basic objects of the theory)
 - 2nd-order objects = *k*-ary relations over individuals

First-order terms and formulas

First-order terms	e,e'	$::= x \mid f(e_1,\ldots,e_k)$	
Formulas	А, В	$ \begin{array}{ccc} ::= & X(e_1,\ldots,e_k) & & A \Rightarrow B \\ & & \forall x A & & \forall X A \end{array} $	

- Two kinds of variables
 - 1st-order vars: *x*, *y*, *z*, ...
 - 2nd-order vars: X, Y, Z, ... of all arities $k \ge 0$
- Two kinds of substitution:
 - 1st-order subst.: $e\{x:=e_0\}, A\{x:=e_0\}$ (defined as usual)
 - 2nd-order subst.: $A\{X := P_0\}, P\{X := P_0\}$ (postponed)

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
0000000000	00000000	000	000000
First-order terms			

• Defined from a first-order signature Σ (as usual):

First-order terms
$$e, e' ::= x | f(e_1, \dots, e_k)$$

• f ranges over k-ary function symbols in Σ

- In what follows we assume that:
 - Each k-ary function symbol f is interpreted in IN by a function

 $f^{\mathbb{N}}$: $\mathbb{N}^k \to \mathbb{N}$

- The signature Σ contains at least a function symbol for every primitive recursive function (0, s, +, -, ×, /, mod, ↑, ...), each of them being interpreted the standard way
- Denotation (in IN) of a closed first-order term e written $[\![e]\!]$

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
00000000000	00000000	000	000000
Formulas			

• Formulas of minimal second-order logic

Formulas
$$A, B ::= X(e_1, \dots, e_k) | A \Rightarrow B$$

 $| \forall x A | \forall X A$

only based on implication and 1st/2nd-order universal quantification

• Other connectives/quantifiers are defined (second-order encodings)

		(absurdity) (negation)
	$Z ((A \Rightarrow B \Rightarrow Z) \Rightarrow Z)$ $Z ((A \Rightarrow Z) \Rightarrow (B \Rightarrow Z) \Rightarrow Z)$	(conjunction) (disjunction)
• •	$Z (\forall x (A(x) \Rightarrow Z) \Rightarrow Z) Z (\forall X (A(X) \Rightarrow Z) \Rightarrow Z)$	(1st-order ∃) (2nd-order ∃)
$= e_2 \equiv \forall 2$	$Z\left(Z(e_1)\Rightarrow Z(e_2) ight)$	(Leibniz equality)

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
0000000000	00000000	000	000000
Predicates			

• Concrete relations are represented using predicates (syntactic sugar)

Predicates
$$P, Q ::= \hat{x}_1 \cdots \hat{x}_k A_0$$
 (of arity k)

Definition (Predicate application and 2nd-order substitution)

• $P(e_1, \ldots, e_k)$ is the formula defined by

$$P(e_1,...,e_k) \equiv A_0\{x_1 := e_1,...,x_k := e_k\}$$

where $P \equiv \hat{x}_1 \cdots \hat{x}_k A_0$, and where e_1, \ldots, e_k are k first-order terms

Ond-order substitution A{X := P} (where X and P are of the same arity k) consists to replace in the formula A every atomic sub-formula of the form

 $X(e_1,\ldots,e_k)$ by the formula $P(e_1,\ldots,e_k)$

• Note: Every *k*-ary 2nd-order variable *X* can be seen as a predicate:

$$X \equiv \hat{x}_1 \cdots \hat{x}_k X(x_1, \ldots, x_k)$$

Unary predicates a	ns sets		
0000000000	000000000	000	000000
Introduction	Second-order logic	Adding axioms	The λ_c -calculus

• Unary predicates represent sets of individuals Syntactic sugar: $\{x : A\} \equiv \hat{x}A, e \in P \equiv P(e)$

Example: The set IN of Dedekind numerals

 $\mathbb{N} \equiv \{x : \forall Z (0 \in Z \Rightarrow \forall y (y \in Z \Rightarrow s(y) \in Z) \Rightarrow x \in Z\}$

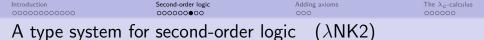
Relativized quantifications:

$$\begin{aligned} (\forall x \in P) A(x) &\equiv \forall x (x \in P \Rightarrow A(x)) \\ (\exists x \in P) A(x) &\equiv \forall Z (\forall x (x \in P \Rightarrow A(x) \Rightarrow Z) \Rightarrow Z) \\ &\Leftrightarrow \exists x (x \in P \land A(x)) \end{aligned}$$

Inclusion and extensional equality:

• Set constructors:
$$P \cup Q \equiv \{x : x \in P \lor x \in Q\}$$
 (etc.)

 $P \subset Q = \forall x (x \in P \Rightarrow x \in Q)$



• Represent the computational contents of classical proofs using Curry-style proof terms, with call/cc for classical logic:

$$t, u ::= x \mid \lambda x \cdot t \mid tu \mid c$$

• Typing judgement:

$$\underbrace{\mathbf{x_1}: A_1, \dots, \mathbf{x_n}: A_n}_{\text{typing context } \Gamma} \vdash t: B$$

Typing rules

$$\overline{\Gamma \vdash x : A} \xrightarrow{(x:A) \in \Gamma} \overline{\Gamma \vdash c} : ((A \Rightarrow B) \Rightarrow A) \Rightarrow A$$

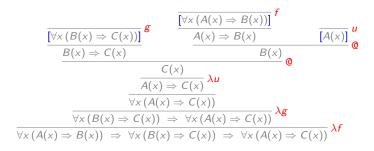
$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \Rightarrow B} \xrightarrow{\Gamma \vdash t : A \Rightarrow B} \overline{\Gamma \vdash t : A}$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall x A} \xrightarrow{x \notin FV(\Gamma)} \frac{\Gamma \vdash t : \forall x A}{\Gamma \vdash t : A\{x := e\}}$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall X A} \xrightarrow{x \notin FV(\Gamma)} \frac{\Gamma \vdash t : \forall X A}{\Gamma \vdash t : A\{X := P\}}$$

Introduction			Second-order logic			Adding axioms	The λ_c -calculus
00000	0000000		00	0000000		000	000000
_					~		

From the derivation to the proof term



 $\lambda f \cdot \lambda g \cdot \lambda u \cdot g(f u)$

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
00000000000	00000000	000	000000
Typing examples			

• Intuitionistic principles:

$$\begin{array}{rcl} \text{pair} &\equiv& \lambda xyz . z \, x \, y & : & \forall X \, \forall Y \, (X \Rightarrow Y \Rightarrow X \land Y) \\ \text{fst} &\equiv& \lambda z . z \, (\lambda xy . x) & : & \forall X \, \forall Y \, (X \land Y \Rightarrow X) \\ \text{snd} &\equiv& \lambda z . z \, (\lambda xy . y) & : & \forall X \, \forall Y \, (X \land Y \Rightarrow Y) \\ \text{refl} &\equiv& \lambda z . z & : & \forall x \, (x = x) \\ \text{trans} &\equiv& \lambda xyz . y \, (x \, z) & : & \forall x \, \forall y \, \forall z \, (x = y \Rightarrow y = z \Rightarrow x = z) \end{array}$$

• Excluded middle, double negation elimination:

$$\begin{array}{rcl} \mathbf{left} &\equiv& \lambda x u v \cdot u \, x &:& \forall X \, \forall Y \, (X \Rightarrow X \lor Y) \\ \mathbf{right} &\equiv& \lambda y u v \cdot v \, y &:& \forall X \, \forall Y \, (Y \Rightarrow X \lor Y) \\ \mathbf{EM} &\equiv& \mathbf{c} \left(\lambda k \cdot \mathbf{right} \left(\lambda x \cdot k \, (\mathbf{left} \, x)\right)\right) &:& \forall X \, (X \lor \neg X) \\ \mathbf{DNE} &\equiv& \lambda z \cdot \mathbf{c} \left(\lambda k \cdot z \, k\right) &:& \forall X \, (\neg \neg X \Rightarrow X) \end{array}$$

• De Morgan laws:

$$\begin{array}{rcl} \lambda zy \, . \, z \, (\lambda x \, . \, yx) & : & \exists x \, A(x) \, \Rightarrow \, \neg \forall x \, \neg A(x) \\ \lambda zy \, . \, \mathfrak{c} \, (\lambda k \, . \, z \, (\lambda x \, . \, k \, (y \, x))) & : & \neg \forall x \, \neg A(x) \, \Rightarrow \, \exists x \, A(x) \end{array}$$

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
00000000000	00000000	000	000000
Plan			

1 Introduction

2 Second-order logic

3 Adding axioms

4 The λ_c -calculus

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
00000000000	00000000	000	000000
Adding axioms			

• Defining equations of all primitive recursive functions:

$$\begin{aligned} \forall x (x + 0 = x) & \forall x \forall y (x + s(y) = s(x + y)) \\ \forall x (x \times 0 = 0) & \forall x \forall y (x \times s(y) = x \times y + x) \end{aligned}$$
 (etc.)

• Peano 3rd and 4th axioms:

$$\begin{array}{ll} (\mathsf{P3}) & \forall x \, \forall y \, (s(x) = s(y) \Rightarrow x = y) \\ (\mathsf{P4}) & \forall x \, \neg (s(x) = 0) \end{array}$$

Definition of S	(in this tutorial)		
SOL		System NK2	
		Defining equations (of prim. rec.	functions)
	+	Peano axioms (P3) and (P4)	J

• Remark: No induction axiom!

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
0000000000	00000000	000	000000
Induction			

• Problem: Induction axiom is not realizable!

Ind
$$\equiv \forall x (x \in \mathbb{N})$$

 $\Rightarrow \forall Z [0 \in Z \Rightarrow \forall y (y \in Z \Rightarrow s(y) \in Z) \Rightarrow \forall x (x \in Z)]$

• Solution: Relativize all 1st-order quantifications to IN:

Non-relativized		Relativized	1
$\forall x A(x)$	\rightsquigarrow	$(\forall x \in \mathbb{N}) A(x)$ $\forall x (x \in \mathbb{N} \Rightarrow A(x))$	
$\exists x A(x) \\ \forall Z (\forall x (A(x) \Rightarrow Z) \Rightarrow Z)$	$\sim \rightarrow$	$(\exists x \in \mathbb{N}) A(x) \\ \forall Z (\forall x (x \in \mathbb{N} \Rightarrow A(x) \Rightarrow Z) \Rightarrow Z)$	

Theorem

If $PA2 \vdash A$, then $PA2 - Ind \vdash A^{\mathbb{N}}$

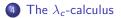
 $(A^{\mathbb{N}} = A \text{ relativized to } \mathbb{N})$

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
00000000000	00000000	000	00000
Plan			

Introduction

2 Second-order logic

3 Adding axioms



Introduction 00000000000	Second-order logic	Adding axioms	The λ_c -calculus 000000
Terms, stacks and	processes		

- Syntax of the language parameterized by
 - A countable set K = {x;...} of instructions, containing at least the instruction x (call/cc)
 - A countable set Π_0 of stack constants (or stack bottoms)

Terms, stacks and processes										
Terms	t, u	::=	x		λx.t		tu	κ	k_{π}	$(\kappa \in \mathcal{K})$
Stacks	π,π'	::=	α		$t\cdot\pi$				$(\alpha \in \Gamma$	I_0, t closed)
Processes	p,q	::=	t *	π						(t closed)

- A λ -calculus with two kinds of constants:
 - Instructions $\kappa \in \mathcal{K}$, including \mathbf{c}
 - Continuation constants k_{π} , one for every stack π (generated by α)

• Notation: Λ , Π , $\Lambda \star \Pi$ (sets of closed terms / stacks / processes)

Introduction 00000000000	Second-order logic	Adding axioms	The λ_c -calculus 000000
Proof-like terms			

• **Proof-like term** \equiv Term containing no continuation constant

Proof-like terms $t, u ::= x | \lambda x \cdot t | tu | \kappa \quad (\kappa \in \mathcal{K})$

- Idea: All realizers coming from actual proofs are of this form, continuation constants k_{π} are treated as paraproofs
- Notation: PL \equiv set of closed proof-like terms
- Natural numbers encoded as proof-like terms by:

Krivine numerals $\overline{n} \equiv \overline{s}^n \overline{0} \in PL$ $(n \in \mathbb{N})$ writing $\overline{0} \equiv \lambda xy \cdot x$ and $\overline{s} \equiv \lambda nxy \cdot y (n \times y)$

• Note: Krivine numerals \neq Church numerals, but β -equivalent

Introduction 00000000000	Second-order logic	Adding axioms	The λ_c -calculus 000 \bullet 00
The Krivine Al	bstract Machine	(KAM)	(1/2)

 We assume that the set Λ ★ Π comes with a preorder p ≻ p' of evaluation satisfying the following rules:

Krivine Abstract Machine (KAM)						
Push	tu $\star \pi$	\succ	$t \star u \cdot \pi$			
Grab	$\lambda x.t \star u \cdot \pi$	\succ	$t\{x := u\} \star \pi$			
Save	$\mathbf{c} \star \mathbf{u} \cdot \pi$	\succ	$u \star k_{\pi} \cdot \pi$			
Restore	$k_{\pi} \star u \cdot \pi'$	\succ	$u \star \pi$			
(+ reflexivity & t	ransitivity)					

- Evaluation not defined but axiomatized. The preorder p ≻ p' is another parameter of the calculus, just like the sets K and Π₀
- Extensible machinery: can add extra instructions and rules (We shall see examples later)

Introduction	Second-order logic	Adding axioms	The λ_c -calculus
0000000000	00000000	000	000000
The Krivine Abstr	act Machine (KAI	(N)	(2/2)

• Rules **Push** and **Grab** implement weak head β -reduction:

Push Grab		$tu \star \pi$ $\lambda x . t \star u \cdot \pi$		$t\{x :=$	$\begin{array}{l}t \star u \cdot \pi\\ \vdots u\} \star \pi\end{array}$	
	• Example:	(λxy.t)	υν * π		$\lambda xy \cdot t \star u \cdot v \cdot \pi$ $t\{x := u\}\{y := v\} \star \pi$	

• Rules Save and Restore implement backtracking:

Save	$\mathbf{c} \star \mathbf{u} \cdot \boldsymbol{\pi}$	\succ	$u \star k_{\pi} \cdot \pi$
Restore	$k_{\pi} \star u \cdot \pi'$	\succ	$u \star \pi$

• Instruction ϖ creates continuation constants $k_\pi.$ Most often used in the pattern

$$\mathbf{cc} (\lambda k \cdot t) \star \pi \quad \succ \quad \cdots \quad \succ \quad t\{k := \mathsf{k}_{\pi}\} \star \pi$$

 $\bullet\,$ Continuation constant k_{\pi} restores the saved context $\pi\,$

Introduction 00000000000	Second-order logic	Adding axioms	The λ_c -calculus 000000
–			

Example of extra instructions

• The instruction quote

quote
$$\star t \cdot u \cdot \pi \succ u \star \overline{\lceil t \rceil} \cdot \pi$$

where $t \mapsto \lceil t \rceil$ is a fixed bijection from Λ to IN

• Useful to realize the Axiom of Dependent Choices (DC) [Krivine 03]

1

• The instruction eq

$$\mathsf{eq} \star t_1 \cdot t_2 \cdot u \cdot v \cdot \pi \quad \succ \quad \begin{cases} u \star \pi & \text{if } t_1 \equiv t_2 \\ v \star \pi & \text{if } t_1 \not\equiv t_2 \end{cases}$$

- Tests syntactic equality $t_1 \equiv t_2$
- Can be implemented using quote
- The instruction \pitchfork ('fork') $\pitchfork \star u \cdot v \cdot \pi \succ \begin{cases} u \star \pi \\ v \star \pi \end{cases}$
 - Non-deterministic choice operator
 - Useful for pedagogy bad for realizability

(collapses to forcing)