
The λc -calculus Realizability interpretation Adequacy Realizability algebras

Classical realizability and forcing
Part 2: Classical realizability interpretation

Alexandre Miquel

E
Q
U
I
P
O

. D E . L
O -
G
I
C
A

U

D
E L A

R

Logic Colloquium (LC’14)
Vienna Summer of Logic – July 18th, 2014 – Vienna



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Plan

1 The λc -calculus

2 Realizability interpretation

3 Adequacy

4 Realizability algebras



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Plan

1 The λc -calculus

2 Realizability interpretation

3 Adequacy

4 Realizability algebras



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Terms, stacks and processes

Syntax of the language parameterized by

A countable set K = {cc; . . .} of instructions,
containing at least the instruction cc (call/cc)

A countable set Π0 of stack constants (or stack bottoms)

Terms, stacks and processes

Terms

Stacks

Processes

t, u ::= x | λx . t | tu | κ | kπ

π, π′ ::= α | t · π

p, q ::= t ? π

(κ ∈ K)

(α ∈ Π0, t closed)

(t closed)

A λ-calculus with two kinds of constants:

Instructions κ ∈ K, including cc
Continuation constants kπ, one for every stack π (generated by cc)

Notation: Λ, Π, Λ ? Π (sets of closed terms / stacks / processes)



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Proof-like terms

Proof-like term ≡ Term containing no continuation constant

Proof-like terms t, u ::= x | λx . t | tu | κ (κ ∈ K)

Idea: All realizers coming from actual proofs are of this form,
continuation constants kπ are treated as paraproofs

Notation: PL ≡ set of closed proof-like terms

Natural numbers encoded as proof-like terms by:

Krivine numerals n ≡ sn 0 ∈ PL (n ∈ N)

writing 0 ≡ λxy . x and s ≡ λnxy . y (n x y)

Note: Krivine numerals 6≡ Church numerals, but β-equivalent



The λc -calculus Realizability interpretation Adequacy Realizability algebras

The Krivine Abstract Machine (KAM) (1/2)

We assume that the set Λ ? Π comes with a preorder p � p′ of
evaluation satisfying the following rules:

Krivine Abstract Machine (KAM)

Push
Grab
Save
Restore

tu ? π � t ? u · π
λx . t ? u · π � t{x := u} ? π

cc ? u · π � u ? kπ · π
kπ ? u · π′ � u ? π
· · · · · ·

(+ reflexivity & transitivity)

Evaluation not defined but axiomatized. The preorder p � p′ is
another parameter of the calculus, just like the sets K and Π0

Extensible machinery: can add extra instructions and rules
(We shall see examples later)



The λc -calculus Realizability interpretation Adequacy Realizability algebras

The Krivine Abstract Machine (KAM) (2/2)

Rules Push and Grab implement weak head β-reduction:

Push
Grab

tu ? π � t ? u · π
λx . t ? u · π � t{x := u} ? π

Example: (λxy . t) u v ? π � λxy . t ? u · v · π
� t{x := u}{y := v} ? π

Rules Save and Restore implement backtracking:

Save
Restore

cc ? u · π � u ? kπ · π
kπ ? u · π′ � u ? π

Instruction cc most often used in the pattern

cc (λk . t) ? π � cc ? (λk . t) · π
� (λk . t) ? kπ · π
� t{k := kπ} ? π



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Example of extra instructions

The instruction quote

quote ? t · u · π � u ? dte · π
where t 7→ dte is a fixed bijection from Λ to N

Useful to realize the Axiom of Dependent Choices (DC) [Krivine 03]

The instruction eq

eq ? t1 · t2 · u · v · π �

{
u ? π if t1 ≡ t2

v ? π if t1 6≡ t2

Tests syntactic equality t1 ≡ t2

Can be implemented using quote

The instruction t (‘fork’)

t ? u · v · π �

{
u ? π

v ? π

Non-deterministic choice operator
Useful for pedagogy – bad for realizability (collapses to forcing)



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Plan

1 The λc -calculus

2 Realizability interpretation

3 Adequacy

4 Realizability algebras



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Classical realizability: principles

Intuitions:

term = “proof” / stack = “counter-proof”
process = “contradiction” (slogan: never trust a classical realizer!)

Classical realizability model parameterized by a pole ⊥⊥
= set of processes closed under anti-evaluation

Each formula A is interpreted as two sets:

A set of stacks ‖A‖ (falsity value)
A set of terms |A| (truth value)

Falsity value ‖A‖ defined by induction on A (negative interpretation)

Truth value |A| defined by orthogonality:

|A| = ‖A‖⊥⊥ = {t ∈ Λ : ∀π ∈ ‖A‖ t ? π ∈ ⊥⊥}



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Architecture of the realizability model

The realizability model M⊥⊥ is defined from:

The full standard model M of PA2: the ground model
(but we could take any model M of PA2 as well)

An instance (K,Π0,�) of the λc -calculus

A saturated set of processes ⊥⊥ ⊆ Λ ? Π (the pole)

Architecture:

First-order terms/variables interpreted as natural numbers n ∈ N
Formulas interpreted as falsity values S ∈ P(Π)

k-ary second-order variables (and k-ary predicates) interpreted as
falsity functions F : Nk → P(Π).

Formulas with parameters A,B ::= · · · | Ḟ (e1, . . . , ek)

Add a predicate constant Ḟ for every falsity function F : Nk → P(Π)



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Interpreting closed formulas with parameters

Let A be a closed formula (with parameters)

Falsity value ‖A‖ defined by induction on A:

‖Ḟ (e1, . . . , en)‖ = F (Je1K, . . . , JenK)

‖A⇒ B‖ = |A| · ‖B‖ = {t · π : t ∈ |A|, π ∈ ‖B‖}

‖∀x A‖ =
⋃
n∈N

‖A{x := n}‖

‖∀X A‖ =
⋃

F :Nn→P(Π)

‖A{X := Ḟ}‖

Truth value |A| defined by orthogonality:

|A| = ‖A‖⊥⊥ = {t ∈ Λ : ∀π ∈ ‖A‖ t ? π ∈ ⊥⊥}



The λc -calculus Realizability interpretation Adequacy Realizability algebras

The realizability relation

Falsity value ‖A‖ and truth value |A| depend on the pole ⊥⊥
 write them (sometimes) ‖A‖⊥⊥ and |A|⊥⊥ to recall the dependency

Realizability relations

t  A ≡ t ∈ |A|⊥⊥
t � A ≡ ∀⊥⊥ t ∈ |A|⊥⊥

(Realizability w.r.t. ⊥⊥)

(Universal realizability)



The λc -calculus Realizability interpretation Adequacy Realizability algebras

From computation to realizability (1/2)

Fundamental idea: The computational behavior of a term determines
the formula(s) it realizes:

Example 1: A closed term t is identity-like if:

t ? u · π � u ? π for all u ∈ Λ, π ∈ Π

Proposition

If t is identity-like, then t � ∀X (X ⇒ X )

Proof: Exercise! (Remark: converse implication holds – exercise!)

Examples of identity-like terms:

λx . x , (λx . x) (λx . x), etc.
λx . cc (λk . x), λx . cc (λk . k x), λx . cc (λk . k x ω), etc.
λx . quote x λn . unquote n (λz . z)



The λc -calculus Realizability interpretation Adequacy Realizability algebras

From computation to realizability (2/2)

Example 2: Control operators:

cc ? t · π � t ? kπ · π
kπ ? t · π′ � t ? π

“Typing” kπ: kπ ? t · π′ � t ? π

Lemma

If π ∈ ‖A‖, then kπ  A⇒ B (B any)

Proof: Exercise

“Typing” cc: cc ? t · π � t ? kπ · π

Proposition (Realizing Peirce’s law)

cc � ((A⇒ B)⇒ A)⇒ A

Proof: Exercise



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Anatomy of the model (1/2)

Denotation of universal quantification:

Falsity value: ‖∀x A‖ =
⋃
n∈N

‖A{x := n}‖ (by definition)

Truth value: |∀x A| =
⋂
n∈N

|A{x := n}| (by orthogonality)

(and similarly for 2nd-order universal quantification)

Denotation of implication:

Falsity value: ‖A⇒ B‖ = |A| · ‖B‖ (by definition)

Truth value: |A⇒ B| ⊆ |A| → |B| (by orthogonality)

writing |A| → |B| = {t ∈ Λ : ∀u ∈ |A| tu ∈ |B|} (realizability arrow)



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Anatomy of the model (2/2)

Degenerate case: ⊥⊥ = ∅

Classical realizability mimics the Tarski interpretation:

Degenerated interpretation

In the case where ⊥⊥ = 0, for every closed formula A:

|A| =

{
Λ if M |= A

∅ if M 6|= A

Non degenerate cases: ⊥⊥ 6= ∅

Every truth value |A| is inhabited:

If t0 ? π0 ∈ ⊥⊥, then kπ0t0 ∈ |A| for all A (paraproof)

We shall only consider realizers that are proof-like terms (∈PL)



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Plan

1 The λc -calculus

2 Realizability interpretation

3 Adequacy

4 Realizability algebras



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Adequacy (1/2)

Aim: Prove the theorem of adequacy

t : A (in the sense of λNK2) implies t  A (in the sense of realizability)

Closing typing judgments x1 : A1, . . . , xn : An ` t : A

We close logical objects (1st-order terms, formulas, predicates) using
semantic objects (natural numbers, falsity values, falsity functions)

We close proof-terms using realizers

Definition (Valuations)

1 A valuation is a function ρ such that

ρ(x) ∈ N for each 1st-order variable x
ρ(X ) : Nk → P(Π) for each 2nd-order variable X of arity k

2 Closure of A with ρ written A[ρ] (formula with parameters)



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Adequacy (2/2)

Definition (Adequate judgment, adequate rule)

Given a fixed pole ⊥⊥:

1 A judgment x1 : A1, . . . , xn : An ` t : A is adequate if for every
valuation ρ and for all u1  A1[ρ], . . . , un  An[ρ] we have:

t{x1 := u1, . . . , xn := un}  A[ρ]

2 A typing rule is adequate if it preserves the property of adequacy
(from the premises to the conclusion of the rule)

Theorem

1 All typing rules of λNK2 are adequate

2 All derivable judgments of λNK2 are adequate

Corollary: If ` t : A (A closed formula), then t � A



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Realizing equalities

Equality between individuals defined by

e1 = e2 ≡ ∀Z (Z (e1)⇒ Z (e2)) (Leibniz equality)

Denotation of Leibniz equality

Given two closed first-order terms e1, e2 (and a pole ⊥⊥)

‖e1 = e2‖ =

{
‖1‖ = {t · π : (t ? π) ∈ ⊥⊥} if Je1K = Je2K
‖> ⇒ ⊥‖ = Λ · Π if Je1K 6= Je2K

writing 1 ≡ ∀Z (Z ⇒ Z) and > ≡ ∅̇

Intuitions:

A realizer of a true equality (in the model) behaves as the identity
function λz . z

A realizer of a false equality (in the model) behaves as a point of
backtrack (breakpoint)



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Realizing axioms

Corollary 1 (Realizing true equations)

If M |= ∀~x (e1(~x) = e2(~x)) (truth in the ground model)

then I ≡ λz . z � ∀~x (e1(~x) = e2(~x)) (universal realizability)

Corollary 2

All defining equations of primitive recursive function symbols
(+, −, ×, /, mod, ↑, etc.) are universally realized by I ≡ λz . z

Corollary 3 (Realizing Peano axioms 3 and 4)

I � ∀x ∀y (s(x) = s(y)⇒ x = y)
λz . z I � ∀x ¬(s(x) = 0)

Theorem: If SOL ` A, then θ � A for some θ ∈ PL



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Realizing true Horn formulas

Definition (Horn formulas)

1 A (positive/negative) literal is a formula L of the form

L ≡ e1 = e2 or L ≡ e1 6= e2

2 A (positive/negative) Horn formula is a closed formula H of the form

H ≡ ∀~x [L1 ⇒ · · · ⇒ Lp ⇒ Lp+1] (p ≥ 0)

where L1, . . . , Lp are positive; Lp+1 positive or negative

Theorem (Realizing true Horn formulas) [M. 2014]

If M |= H, then:
I ≡ λz . z � H

λz1 · · · zp+1 . z1 (· · · (zp+1 I) · · · ) � H
(if H positive)

(if H negative)

Peano axioms 3 and 4 are particular cases of Horn formulas

Quantifications not relativized to N  H holds for all individuals



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Realizing the axiom of dependent choices

Dependent choice, ‘quote’ and the clock [Krivine 03]

The instruction quote

quote ? t · u · π � u ? dte · π (dte = code of t)

Used to realize the Non Extensional Axiom of Choice:

λx . quote x x 
∀X [(∀n∈N)A(X , εA(X , n)) ⇒ ∀Y A(X ,Y )] (NEAC)

(with a suitable interpretation of 3rd-order symbol εA)

In 2nd-order logic, NEAC does not imply full AC, but is sufficient to
realize the axiom of dependent choices:

∀X ∃Y R(X ,Y ) ⇒
∀X0 ∃U [U(0) = X0 ∧ (∀n∈N)R(U(n),U(s(n)))] (DC)



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Plan

1 The λc -calculus

2 Realizability interpretation

3 Adequacy

4 Realizability algebras



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Extensions

Realizability model initially designed for classical 2nd-order logic, but
this construction extends to:

Higher-order arithmetic

The Calculus of constructions with universes (Coq proof assistant)

Zermelo-Fraenkel set theory (ZF)

Need to work in an intensional presentation of ZF: ZFε

Intensional membership ε vs. extensional ∈/= [Friedman]

Each of these extensions supports Dependent Choices (DC)

Based on Krivine’s λc -calculus... (possibly enriched with extra instructions)

but can be generalized to classical realizability algebras [Krivine 10]



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Cohen forcing versus classical realizability

Cohen forcing Classical realizability

JAK ∈ P(C ) |A| ∈ P(Λc)

p F A t  A

p F A⇒ B q F A

pq︸︷︷︸
g.l.b.

F B
t  A⇒ B u  A

tu︸︷︷︸
application

 B

p F A q F B

pq F A ∧ B
t  A u  B
〈t, u〉  A ∧ B

A ∧ B = A ∩ B A ∧ B 6= A ∩ B

Slogan: Classical realizability = Non commutative forcing



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Combining Cohen forcing with classical realizability

Forcing in classical realizability [Krivine 09]

Introduce realizability algebras, generalizing the λc -calculus

Discover the program transformation underlying forcing

Extend iterated forcing to classical realizability

Show how to force the existence of a well-ordering over R
(while keeping evaluation deterministic)

Computational analysis of forcing [Miquel 11]

Focus on the underlying program transformation (no generic filter)

Hard-wire the program transformation into the abstract machine

Underlying methodology

Translation of
formulas & proofs

 
Classical program

transformation
 New abstract machine

(no transformation)



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Realizability algebras

Definition

A realizability algebra A is given by:

3 sets Λ (A -terms), Π (A -stacks), Λ ?Π (A -processes),

3 functions (·) : Λ×Π→ Π, (?) : Λ×Π→ Λ ?Π, (k ) : Π→ Λ

A compilation function (t, σ) 7→ t[σ] that takes

an open proof term t
a Λ-substitution σ closing t (in Λ)

and returns an A -term t[σ] ∈ Λ

A set of A -processes ⊥⊥ ⊆ Λ ?Π such that:

σ(x) ? π ∈ ⊥⊥ implies x [σ] ? π ∈ ⊥⊥
t[σ, x := a] ? π ∈ ⊥⊥ implies (λx . t)[σ] ? a · π ∈ ⊥⊥

t[σ] ? u[σ] · π ∈ ⊥⊥ implies (tu)[σ] ? π ∈ ⊥⊥
a ? kπ · π ∈ ⊥ implies cc[σ] ? a · π ∈ ⊥⊥
a ? π ∈ ⊥ implies kπ ? a · π′ ∈ ⊥⊥



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Examples (1/2)

From an implementation of λc :

Standard realizability algebra

Λ = Λ, Π = Π, Λ ?Π = Λ ? Π

kπ, t · π, t ? π defined as themselves

Compilation function (t, σ) 7→ t[σ] defined by substitution

⊥⊥ = any saturated set of processes

We can do the same for all classical λ-calculi:

Parigot’s λµ-calculus

Curien-Herbelin’s λ̄µ-calculus (CBN or CBV)

Barbanera-Berardi’s symmetric λ-calculus (t comes for free)



The λc -calculus Realizability interpretation Adequacy Realizability algebras

Examples (2/2)

From a forcing poset (C ,≤) defined as an upwards closed subset of
a meet semi-lattice (L,≤): C ⊆ L, C 6= ∅ upwards closed

Λ = Π = Λ ?Π = L
kπ = π, t · π = t ? π = tπ (product in L)

Compilation function (t, σ) 7→ t[σ]:

t[σ] =
∏

x∈FV (t)

σ(x)

⊥⊥ = L \ C

Corresponding realizability model equivalent to the forcing model
defined from the poset (C ,≤)


	The c-calculus
	Realizability interpretation
	Adequacy
	Realizability algebras

