The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 000000000 0000000 0000000

Classical realizability and forcing
Part 2: Classical realizability interpretation

Alexandre Miquel

Loy
/p/
4

)y 1O

c

-
>
)
g
=
S
S P)
= INGENIERIA

UNIVERSIDAD
DE LA REPUBLICA
URUGUAY

<>
o

Logic Colloquium (LC'14)
Vienna Summer of Logic — July 18th, 2014 — Vienna

@ The \.-calculus

e Realizability interpretation

© Adequacy

@ Realizability algebras

@ The \.-calculus

© Realizability interpretation

9 Adequacy

@ Realizability algebras

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
080000 000000000 0000000 0000000

Terms, stacks and processes

@ Syntax of the language parameterized by

o A countable set K = {«; ...} of instructions,
containing at least the instruction a« (call/cc)

o A countable set Mg of stack constants (or stack bottoms)

Terms, stacks and processes

Terms tbu = x | M.t | tu | & | ke (k € K)
Stacks mr = a | tew (a € Mo, t closed)
Processes p,q = txm (t closed)

@ A MA-calculus with two kinds of constants:

e Instructions k € K, including &
o Continuation constants k,, one for every stack 7 (generated by)

@ Notation: A, T, AxIl (sets of closed terms / stacks / processes)

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
00@000 000000000 0000000 0000000

Proof-like terms

@ Proof-like term = Term containing no continuation constant

Proof-like terms t,bu = x | M.t | tu | kK (r€K) |

o ldea: All realizers coming from actual proofs are of this form,
continuation constants k. are treated as paraproofs

o Notation: PL = set of closed proof-like terms

@ Natural numbers encoded as proof-like terms by:

Krivine numerals n = 350 € PL (neN)

writing 0= Axy.x and 5= Anxy.y(nxy)

o Note: Krivine numerals # Church numerals, but S-equivalent

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000e00 000000000 0000000 0000000

The Krivine Abstract Machine (KAM) (1/2)

@ We assume that the set A x 1 comes with a preorder p = p’ of
evaluation satisfying the following rules:

Krivine Abstract Machine (KAM)

Push tu *x T — t x u-m
Grab Ax.t * u-m = t{xi=u} x 7w
Save @ K« u-mT > u * ky-m
Restore ky * u-m = u * m

(+ reflexivity & transitivity)

@ Evaluation not defined but axiomatized. The preorder p = p’ is
another parameter of the calculus, just like the sets IC and Iy

@ Extensible machinery: can add extra instructions and rules
(We shall see examples later)

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000080 000000000 0000000 0000000

The Krivine Abstract Machine (KAM) (2/2)

@ Rules Push and Grab implement weak head (-reduction:

Push tuxm - txu-m
Grab M. .txu-m = t{x=u}lxm
o Example: (Mxy.t)uvxm = Axy.txu-v-mw

= t{x=ul{y:=v}*m

@ Rules Save and Restore implement backtracking:

Save CxU-T = Uxkp-T
Restore ke xu-m = uxm

o Instruction ac most often used in the pattern

c(Ak.t)xm = a@x(Ak.t) 7
= (Ak.t)xky-m
= t{k:=kg}*m

The Ac-calculus Realizability interpretation Adequacy
00000e 000000000 0000000

Example of extra instructions

@ The instruction quote
quotext-u-m > u*m-ﬂ
where t — [t] is a fixed bijection from A to IN
o Useful to realize the Axiom of Dependent Choices (DC)

@ The instruction eq
uxm ift1 =t
eqxty-th-u-v-m > .
vxm ifty £t
o Tests syntactic equality t; =
o Can be implemented using quote

@ The instruction M (‘fork’)
uxTm
hxu-v-m >
VX

o Non-deterministic choice operator

Realizability algebras
0000000

[Krivine 03]

o Useful for pedagogy — bad for realizability (collapses to forcing)

© The A\ .-calculus
0 Realizability interpretation

9 Adequacy

@ Realizability algebras

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 0@0000000 0000000 0000000

Classical realizability: principles

o Intuitions:
o term = “proof’ / stack = “counter-proof”
e process = “contradiction” (slogan: never trust a classical realizer!)

Classical realizability model parameterized by a pole
= set of processes closed under anti-evaluation

@ Each formula A is interpreted as two sets:

o A set of stacks ||A|| (falsity value)
o A set of terms |A| (truth value)

Falsity value ||A|| defined by induction on A (negative interpretation)

Truth value |A| defined by orthogonality:

A = JAIY = {teA :vVrel|A| txmel}

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 00@000000 0000000 0000000

Architecture of the realizability model

@ The realizability model .#; is defined from:

o The full standard model .# of PA2: the ground model
(but we could take any model .# of PA2 as well)

o An instance (/C, Mo, >) of the Ac-calculus
o A saturated set of processes 1L C Ax[1 (the pole)

@ Architecture:
o First-order terms/variables interpreted as natural numbers n € IN
o Formulas interpreted as falsity values S € (M)

o k-ary second-order variables (and k-ary predicates) interpreted as
falsity functions F : IN® — 3(IT).

Formulas with parameters AB == - | F(ey,...,e&) J

Add a predicate constant F for every falsity function F : INK — P(M)

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 000@00000 0000000 0000000

Interpreting closed formulas with parameters

Let A be a closed formula (with parameters)

e Falsity value ||A| defined by induction on A:

F([el],---,[en])

Al-IBI = {t-m : te|Al, =<]Bl}

||'i:(ela EERE) en)H

A= B

Ivx Al = | IIA{x := n}|
nelN
XAl = U IAX = FY
F:IN"—3(IT)

@ Truth value |A| defined by orthogonality:

Al = A1 = {teA : Vre|A] txrecu} |

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 0000e0000 0000000 0000000

The realizability relation

Falsity value ||A|| and truth value |A| depend on the pole 1L
~» write them (sometimes) ||A|| L and |A| L to recall the dependency

Realizability relations

tFA = telAw (Realizability w.r.t. 1)
tIFA = VI te|AwL (Universal realizability)

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 000008000 0000000 0000000

From computation to realizability (1/2)
Fundamental idea: The computational behavior of a term determines
the formula(s) it realizes:
Example 1: A closed term t is identity-like if:

txu-m = u*xm forallue A, T el

Proposition
If t is identity-like, then ¢ lIF VX (X = X)

Proof: Exercise! (Remark: converse implication holds — exercise!)

o Examples of identity-like terms:

o Ax.x, (Ax.x)(Ax.x), etc
o M. (Ak.x), Ix.c(Mk.kx), Ix.c(Mk.kxw), etc.
e Ax.quotex An.unquote n (Az. z)

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 000000800 0000000 0000000

From computation to realizability (2/2)

Example 2: Control operators:

cxt-m = txky-mw
kyxt-m = txm

o “Typing” ky: kext-m = txmw

If 7el||A], then kyIFA= B (B any)

Proof: Exercise
o “Typing" «: c*xt-m = txkp-w

Proposition (Realizing Peirce's law)

clF (A=B)=A)=A

Proof: Exercise

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 000000080 0000000 0000000

Anatomy of the model (1/2)

o Denotation of universal quantification:

Falsity value: Ivx Al = |J IIA{x := n}| (by definition)
neIN

Truth value: Vx Al = ﬂ |A{x := n}| (by orthogonality)
nelN

(and similarly for 2nd-order universal quantification)

o Denotation of implication:
Al - [|BI| (by definition)

Falsity value: IA= B
Truth value: |[A= B| C |Al — |B] (by orthogonality)
writing |A| — |[B| = {te€ A : YuelA| tuec|B|} (realizability arrow)

The Ac-calculus

Realizability interpretation
000000

Adequacy Realizability algebras
000000008

0000000 0000000

Anatomy of the model (2/2)

o Degenerate case: | =g

o Classical realizability mimics the Tarski interpretation:

Degenerated interpretation

In the case where I = 0, for every closed formula A:

Al = AN if=A
o fa A

@ Non degenerate cases: I # &

e Every truth value |A| is inhabited:

If toxmo € A, then knoto €|A| forall A (paraproof)

o We shall only consider realizers that are proof-like terms (€ PL)

© The A\ .-calculus

© Realizability interpretation

© Adequacy

@ Realizability algebras

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 000000000 000000 0000000

Adequacy (1/2)

Aim: Prove the theorem of adequacy

t: A (in the sense of ANK2) implies tI- A (in the sense of realizability))

@ Closing typing judgments X1 AL Xp t AR DA

o We close logical objects (1st-order terms, formulas, predicates) using
semantic objects (natural numbers, falsity values, falsity functions)

o We close proof-terms using realizers

Definition (Valuations)

@ A valuation is a function p such that

e p(x)eN for each 1st-order variable x
o p(X) : INK — g3() for each 2nd-order variable X of arity k

@ Closure of A with p written A[p] (formula with parameters)

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 000000000 00@0000 0000000

Adequacy (2/2)

Definition (Adequate judgment, adequate rule)

Given a fixed pole I :
Q Ajudgment xy:Ai,...,xp:A,F t: A isadequate if for every
valuation p and for all uy IF Aqfp], ..., un IF As[p] we have:
t{x1 = u1,..., X%, := up} I Alp]

@ A typing rule is adequate if it preserves the property of adequacy
(from the premises to the conclusion of the rule)

© All typing rules of ANK2 are adequate
@ All derivable judgments of ANK2 are adequate

Corollary: If Ft:A (Aclosed formula), then tlFA J

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 000000000 000e000 0000000

Realizing equalities

o Equality between individuals defined by
e1=e = VZ(Z(a)= Z()) (Leibniz equality)

Denotation of Leibniz equality

Given two closed first-order terms e;, e (and a pole 1)
e =e| = 1] = {t-7m : (tx7) € L} if [e] = [e2]
IT=1Il =A-0 if [es] # [e2]

writing 1=VZ(Z=2) and T=¢

@ Intuitions:

o A realizer of a true equality (in the model) behaves as the identity
function Az .z

o A realizer of a false equality (in the model) behaves as a point of
backtrack (breakpoint)

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 000000000 0000e00 0000000

Realizing axioms

Corollary 1 (Realizing true equations)
If A = VX (a(X) = ex(X)) (truth in the ground model)

then I = Xz.z IF VX (e(X) = e(X)) (universal realizability)

Corollary 2

All defining equations of primitive recursive function symbols
(+, — %, /, mod, 1, etc.) are universally realized by | = A\z.z

\

Corollary 3 (Realizing Peano axioms 3 and 4)

I IF VxVy(s(x) =s(y) = x=y)
Az.zl IIF V¥x—(s(x)=0)

\

Theorem: If SOLF A, then 6l A for some 6§ € PL

D

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 000000000 000000 0000000

Realizing true Horn formulas

Definition (Horn formulas)

@ A (positive/negative) literal is a formula L of the form
L= ¢ =6 or L =e#e
@ A (positive/negative) Horn formula is a closed formula H of the form

H = VX[Li= = L,= L] (p>0)
where Ly, ..., L, are positive; L, positive or negative
Theorem (Realizing true Horn formulas) [M. 2014]

If # E H, then:

|l = X\z.z I H (if H positive)
Azy - Zpt1-21 (¢ o (Zp+1 |) soc) = H (if H negative)

v

@ Peano axioms 3 and 4 are particular cases of Horn formulas

@ Quantifications not relativized to IN ~» H holds for all individuals

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 000000000 000000e 0000000

Realizing the axiom of dependent choices

Dependent choice, ‘quote’ and the clock [Krivine 03]

@ The instruction quote

quotext-u-m = ux|[t]-w ([t] = code of t)

@ Used to realize the Non Extensional Axiom of Choice:
Ax.quote x x |-
VX [(VneIN)A(X,ea(X,n)) = VY A(X,Y)] (NEACQ)

(with a suitable interpretation of 3rd-order symbol €4)

@ In 2nd-order logic, NEAC does not imply full AC, but is sufficient to
realize the axiom of dependent choices:

VYX3Y R(X,Y) =
VX 3U[U(0) = Xo A (YneIN)R(U(n), U(s(n)))] (DC)

© The A\ .-calculus

© Realizability interpretation

9 Adequacy

@ Realizability algebras

The Ac-calculus Realizability interpretation Adequacy Realizability algebras

000000 000000000 0000000 0@00000

Extensions

@ Realizability model initially designed for classical 2nd-order logic, but
this construction extends to:

o Higher-order arithmetic

o The Calculus of constructions with universes (Coq proof assistant)
o Zermelo-Fraenkel set theory (ZF)

@ Need to work in an intensional presentation of ZF: ZF.

@ Intensional membership ¢ vs. extensional €/= [Friedman]

o Each of these extensions supports Dependent Choices (DC)

@ Based on Krivine's A.-calculus... (possibly enriched with extra instructions)
but can be generalized to classical realizability algebras [Krivine 10]

The Ac-calculus
000000

Realizability interpretation
000000000

Adequacy
0000000

Realizability algebras
0080000

Cohen forcing versus classical realizability

Cohen forcing Classical realizability
[A] € B(C) |Al € B(Ac)
plFA tiFA
pFA=B qFA | tFA=B ultA
pqg IFB tu IFB

~— ~~
g.l.b. application
pFA_ qFB thA_ ul-B
pqglFANB (t,u)lFANB
AANB=ANB AANB#ANB

@ Slogan: Classical realizability

= Non commutative forcing

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 000000000 0000000 000@000

Combining Cohen forcing with classical realizability

e Forcing in classical realizability [Krivine 09]
o Introduce realizability algebras, generalizing the A.-calculus
o Discover the program transformation underlying forcing
o Extend iterated forcing to classical realizability

o Show how to force the existence of a well-ordering over IR
(while keeping evaluation deterministic)

o Computational analysis of forcing [Miquel 11]
e Focus on the underlying program transformation (no generic filter)

o Hard-wire the program transformation into the abstract machine

Underlying methodology

Translation of Classical program New abstract machine
formulas & proofs transformation (no transformation)

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 000000000 0000000 0000800

Realizability algebras

A realizability algebra &7 is given by:

@ 3sets A («/-terms), N («/-stacks), AT (<7-processes),
@ 3 functions ():AxMN—-MN, (x):AxO—=Ax0, (k):0—=A

@ A compilation function (t,o) — t[o] that takes

e an open proof term t
e a A-substitution o closing t (in A)

and returns an &/-term t[o] € A

@ A set of .@7-processes I C A x I such that:

o(x) 7 el implies x[o] * = el

tlo,x :=a] x 7 el implies (MAx.t)[o] xa-7m € 1L
tlo] x u[o] - 7w € 1L implies (tw)[o]xm €L
axkr - m €L implies «lo]l xa-w € 1L

axm el implies ke xa- -7’ € I

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 000000000 0000000 0000080

Examples (1/2)

@ From an implementation of A.:

Standard realizability algebra

o A=A N=T, AxO=AxI
o kr, t-m, txm defined as themselves
o Compilation function (t,c) — t[o] defined by substitution

o Il = any saturated set of processes

We can do the same for all classical A-calculi:

o Parigot’s Ap-calculus
o Curien-Herbelin's Au-calculus (CBN or CBV)

o Barbanera-Berardi's symmetric A-calculus (rh comes for free)

The Ac-calculus Realizability interpretation Adequacy Realizability algebras
000000 000000000 0000000 000000e

Examples (2/2)

e From a forcing poset (C, <) defined as an upwards closed subset of
a meet semi-lattice (£, <): CCL, C# & upwards closed

e A=N=AxN=L
o kp=m, t-m=txm=tr (productin L)
e Compilation function (t,c) — t[o]:

thl = J[o

XEFV(t)

1L =2zc\C

Corresponding realizability model equivalent to the forcing model
defined from the poset (C, <)

	The c-calculus
	Realizability interpretation
	Adequacy
	Realizability algebras

