Classical realizability and forcing
 Part 3: A cardinals' heresy in classical realizability

Alexandre Miquel

Logic Colloquium (LC'14)
Vienna Summer of Logic - July 19th, 2014 - Vienna
(2) Induced theory
(3) The model of threads
4) Ordering
(5) The sets ∇a
(6) Conclusion

The language of classical realizers

Terms, stacks and processes											
Terms	t, u	$::=$	x	\mid	$\lambda x . t$	\mid	$t u$	\mid	κ	\mid	k_{π}
$(\kappa \in \mathcal{K})$											
Stacks	π, π^{\prime}	$::=$	α	\mid	$t \cdot \pi$					$\left(\alpha \in \Pi_{0}, t\right.$ closed $)$	
Processes	p, q	$::=$	$t \star \pi$							$(t$ closed $)$	

Krivine Abstract Machine (KAM)

Interpreting closed formulas with parameters

Let A be a closed formula (with parameters)

- Falsity value $\|A\|$ defined by induction on A :

$$
\begin{aligned}
\left\|\dot{F}\left(e_{1}, \ldots, e_{n}\right)\right\| & =F\left(\llbracket e_{1} \rrbracket, \ldots, \llbracket e_{n} \rrbracket\right) \\
\|A \Rightarrow B\| & =|A| \cdot\|B\|=\{t \cdot \pi: t \in|A|, \quad \pi \in\|B\|\} \\
\|\forall x A\| & =\bigcup_{n \in \mathbb{N}}\|A\{x:=n\}\| \\
\|\forall X A\| & =\bigcup_{F: \mathbb{N}^{n} \rightarrow \mathfrak{P}(\square)}\|A\{X:=\dot{F}\}\|
\end{aligned}
$$

- Truth value $|A|$ defined by orthogonality:

$$
|A|=\|A\|^{\Perp}=\{t \in \Lambda: \quad \forall \pi \in\|A\| \quad t \star \pi \in \Perp\}
$$

The realizability relation

Falsity value $\|A\|$ and truth value $|A|$ depend on the pole \Perp
\leadsto write them (sometimes) $\|A\| \Perp$ and $|A|_{\Perp}$ to recall the dependency

Realizability relations

$$
\begin{aligned}
t \Vdash A & \equiv t \in|A|_{\Perp} \\
t \| \vdash A & \equiv \forall \Perp t \in|A|_{\Perp}
\end{aligned}
$$

(Realizability w.r.t. \Perp)
(Universal realizability)

Theorem (Adequacy)

If A is a theorem of classical 2 nd-order logic, then:

More connectives

- Add binary intersection types

Formulas $\quad A, B \quad:=\cdots \quad|\quad A \cap B| \quad \top$

letting		$\\|A \cap B\\|$	$=\\|A\\| \cup\\|B\\|$	and
so that		$\\|\top\\|$	$=\varnothing$	
		$\|A \cap B\|$	$=\|A\| \cap\|B\|$	and

- Intersection type is a strong form of conjunction:

$$
\lambda x z . z x x \| \vdash A \cap B \Rightarrow A \wedge B
$$

But converse implication not realized in general

- Add equational implication:

Formulas:

$$
A, B \quad::=\quad \cdots \quad \mid \quad e_{1}=e_{2} \mapsto A
$$

Letting

$$
\left\|e_{1}=e_{2} \mapsto A\right\|= \begin{cases}\|A\| & \text { if } \llbracket e_{1} \rrbracket=\llbracket e_{2} \rrbracket \\ \varnothing & \text { if } \llbracket e_{1} \rrbracket \neq \llbracket e_{2} \rrbracket\end{cases}
$$

Proposition (equivalence of $e_{1}=e_{2} \mapsto A$ and $e_{1}=e_{2} \Rightarrow A$)

$$
\begin{array}{rll}
\lambda x y \cdot y x & \| \vdash & \left(e_{1}=e_{2} \mapsto A\right) \Rightarrow\left(e_{1}=e_{2} \Rightarrow A\right) \\
\lambda x \cdot x \mathbf{I} & \| \vdash & \left(e_{1}=e_{2} \Rightarrow A\right) \Rightarrow\left(e_{1}=e_{2} \mapsto A\right)
\end{array}
$$

- Example: $\quad e_{1} \neq e_{2} \equiv\left(e_{1}=e_{2} \mapsto \perp\right)$
- Denotation of $e_{1} \neq e_{2}$ much simpler than $\neg\left(e_{1}=e_{2}\right)$
- But $e_{1} \neq e_{2}$ equivalent to $\neg\left(e_{1}=e_{2}\right) \quad$ (in the sense of realizability)

Plan

(1) Recall
(2) Induced theory
(3) The model of threads
4) Ordering
(5) The sets ∇a
(6) Conclusion
(2) Induced theory
(3) The model of threads
4) Ordering
(5) The sets ∇a
(6) Conclusion

The theory induced by the realizability model \mathscr{M}_{\Perp}

- Recall that:
- When $\Perp=\varnothing: \quad \mathscr{M}_{\Perp}$ collapses to $\mathscr{M} \quad$ (Tarski model)
- When $\Perp \neq \varnothing$: every truth value $|A|$ is inhabited
\rightsquigarrow Restrict to proof-like terms (treat k_{π} as paraproof)

Definition (Theory induced by \mathscr{M}_{\Perp})

(1) A is realized in $\mathscr{M}_{\Perp} \equiv|A| \cap \mathrm{PL} \neq \varnothing$
(notation: $\mathscr{M}_{\Perp} \Vdash A$)
(2) Formulas A that are realized in \mathscr{M}_{\Perp} form the theory induced by \mathscr{M}_{\Perp}

Properties of the induced theory

(1) The theory induced by \mathscr{M}_{\Perp} is closed under logical consequence in the sense of classical 2nd-order logic
(2) Peano axioms 3 and 4 are realized in \mathscr{M}_{\Perp} (not induction)
(3) More generally: Horn formulas that are true in \mathscr{M} are realized in \mathscr{M}_{\Perp}
(4) If $\mathscr{M} \vDash \mathrm{AC}$ and quote $\in \mathcal{K}$, then $\mathscr{M}_{\Perp} \Vdash \mathrm{DC}$

The problem of consistency

- Is the theory (induced by) \mathscr{M}_{\Perp} consistent?

$$
\begin{aligned}
\mathscr{M}_{\Perp} \Vdash \perp & \Leftrightarrow|\perp| \cap \mathrm{PL}=\varnothing \\
& \Leftrightarrow \forall \theta \in \mathrm{PL} \quad \theta \Vdash \perp \\
& \Leftrightarrow \forall \theta \in \mathrm{PL} \quad \exists \pi \in \Pi \quad \theta \star \pi \notin \Perp
\end{aligned}
$$

Definition (coherent pole)

\Perp coherent $\equiv \forall \theta \in \mathrm{PL} \exists \pi \in \Pi \quad \theta \star \pi \notin \Perp$

- By definition: \mathscr{M}_{\Perp} consistent (as a theory) iff \Perp coherent
- Examples of coherent poles:
- The empty pole $\Perp=\varnothing$
(but in this case: $\mathscr{M} \varnothing$ collapses to \mathscr{M})
- The pole of threads: cf later

The problem of induction

- In 2nd-order logic, the set of natural numbers is defined by

$$
x \in \mathbb{N} \equiv \forall Z[Z(0) \Rightarrow \forall y(Z(y) \Rightarrow Z(y+1)) \Rightarrow Z(x)]
$$

Induction axiom is the formula: $\quad \forall x(x \in \mathbb{N})$

- Problem: this axiom is in general not realized (by a proof-like term) Moreover, there are coherent poles \Perp such that:
so that:

$$
\begin{array}{lll}
\mathscr{M}_{\Perp} & \Vdash & \neg \forall x(x \in \mathbb{N}) \\
\mathscr{M}_{\Perp} & \Vdash & \exists x(x \notin \mathbb{N})
\end{array}
$$

- Need to establish a strong distinction between
- individuals (all 1st-order objects), and
- natural numbers (individuals x such that $x \in \mathbb{N}$)
- Problem is traditionally put under the carpet, by relativizing all 1st-order quantifications to $\mathbb{I N}$. But what happens if we don't?

Existence of unnamed elements

- In Tarski/Boolean-valued/forcing models, all elements are named:

$$
\text { If } \mathscr{M} \models \exists x A(x) \text {, then } \mathscr{M} \models A(v) \text { for some } v \in \mathscr{M}
$$

- Not the case anymore in classical realizability models \mathscr{M}_{\Perp} ! In some models, one can find formulas $A(x)$ such that
$\begin{array}{llll} & \mathscr{M}_{\Perp} & \Vdash \exists x A(x) \\ \text { whereas } & \mathscr{M}_{\Perp} & \Vdash \neg A(n) \text { for all } n \in \mathbb{N}\end{array}$
- Due to uniform interpretation of \forall
- Typical example: $A(x) \equiv x \notin \mathbb{N}$
- Existence of unnamed elements
- The theory induced by \mathscr{M}_{\Perp} lacks the witness property
- Recover some fundamental incompleteness of classical theories

Realizing true Horn formulas (again)

Definition (Horn formulas)

(1) A (positive/negative) literal is a formula L of the form

$$
L \equiv e_{1}=e_{2} \quad \text { or } \quad L \equiv e_{1} \neq e_{2}
$$

(2) A Horn formula is a closed formula H of the form

$$
H \equiv \forall \vec{x}\left[L_{1} \Rightarrow \cdots \Rightarrow L_{p} \Rightarrow L_{p+1}\right]
$$

where L_{1}, \ldots, L_{p} are positive; L_{p+1} positive or negative

Theorem (Realizing true Horn formulas)

If $\mathscr{M} \models H$, then $\mathscr{M} \Perp \Vdash H$

- Beware! The meaning of H is not the same in \mathscr{M} and \mathscr{M}_{\Perp}
- In \mathscr{M}, quantifications range over natural numbers
- In \mathscr{M}_{\Perp}, quantifications range over all individuals
- Theorem does not extend to arbitrary clauses
(2) Induced theory
(3) The model of threads

4 Ordering
(5) The sets ∇a
(6) Conclusion

The model of threads $\mathscr{M}_{\text {thd }}$

- From now on, we assume that:
- There are only two instructions \propto and quote $\quad(\mathcal{K}=\{\propto$, quote $\})$
- The set Π_{0} of stack constants is denumerable
- Evaluation rules are:

Push
Grab
Save
Restore
Quote

$t u \star \pi$	\succ	$t \star u \cdot \pi$
$\lambda x \cdot t \star u \cdot \pi$	\succ	$t\{x:=u\} \star \pi$
$\propto \star u \cdot \pi$	\succ	$u \star \mathrm{k}_{\pi} \cdot \pi$
$\mathrm{k}_{\pi} \star u \cdot \pi^{\prime}$	\succ	$u \star \pi$
quote $\star t \cdot u \cdot \pi$	\succ	$u \star \overline{\lceil t\rceil} \cdot \pi$

Properties of evaluation
(1) Evaluation is deterministic:

If $p \succ_{1} p_{1}^{\prime}$ and $p \succ_{1} p_{2}^{\prime}$, then $p_{1}^{\prime} \equiv p_{2}^{\prime}$
(2) Stack constants cannot be generated during evaluation:

Let $\alpha \in \Pi_{0}$. If $p \succ p^{\prime}$ and α occurs in p^{\prime}, then α occurs in p

The model of threads $\mathscr{M}_{\text {thd }}$

- The thread of a proof-like term $\theta \in \mathrm{PL}$
- Consider a bijection $\theta \mapsto \alpha_{\theta}$ from PL to Π_{0}
- Let: $\operatorname{thd}(\theta)=\left\{p \in \Lambda \star \Pi: \theta \star \alpha_{\theta} \succ p\right\}$
- Remark: if $\theta \not \equiv \theta^{\prime}$, then $\boldsymbol{t h d}(\theta) \cap \boldsymbol{t h d}\left(\theta^{\prime}\right)=\varnothing$
- The pole of threads:
- Idea: to build a coherent pole, exclude all $\theta \star \alpha_{\theta}$
- Let $\Perp_{\text {thd }}=\left(\bigcup_{\theta \in \mathrm{PL}} \operatorname{thd}(\theta)\right)^{c}$

Proposition: The pole $\Perp_{\text {thd }}$ is coherent and nonempty

- The model of threads: $\mathscr{M}_{\text {thd }}=\mathscr{M}_{\Perp_{\text {thd }}}$

Proposition (Characterizing the realizers of \perp)
(For all $t \in \Lambda$) $\quad t \Vdash \perp$ iff t never appears in head position in a thread

Negating the type of the parallel 'or'

- Write: $\quad \mathrm{B}_{1} \equiv \perp \Rightarrow \top \Rightarrow \perp$
(realized by $\lambda x y . x$)
$\mathrm{B}_{2} \equiv \mathrm{~T} \Rightarrow \perp \Rightarrow \perp$
(realized by $\lambda x y . y$)
- Intuition: Formula $\mathrm{B}_{1} \cap \mathrm{~B}_{2}$ is the type of the parallel 'or'

Proposition

For all $\pi \in \Pi$ and $u, u^{\prime} \in \Lambda$ distinct: $\quad \omega u k_{\pi} \Vdash \perp$ or $\omega u^{\prime} k_{\pi} \Vdash \perp$ (writing $\omega \equiv(\lambda x \cdot x x)(\lambda x \cdot x x)$)

Proof by contradiction, using the fact that in a sequential calculus, a process can enter an infinite loop at most once.

Corollary

$\theta_{1} \equiv \lambda x \cdot \propto(\lambda k \cdot x(\omega \overline{0} k)(\omega \overline{1} k)) \Vdash \neg\left(\mathrm{B}_{1} \cap \mathrm{~B}_{2}\right)$
(Internalizes the fact that in a sequential world, there is no parallel 'or')

- Shows that in $\mathscr{M}_{\text {thd }}: \quad A \wedge B \nRightarrow A \cap B$

Negating the type of the parallel 'or' (variant)

- Write:

$$
\begin{aligned}
& \mathrm{B}_{1} \equiv \perp \Rightarrow \mathrm{~T} \Rightarrow \perp \\
& \mathrm{~B}_{2} \equiv \mathrm{~T} \Rightarrow \perp \Rightarrow \perp \\
& \mathrm{~B}_{3} \equiv \perp \Rightarrow \perp \Rightarrow \perp
\end{aligned}
$$

(realized by $\lambda x y . x$)
(realized by $\lambda x y . y$)
(realized by both)

Proposition

For all $\pi \in \Pi u \in \Lambda$ and $v, v^{\prime}, v^{\prime \prime} \in \Lambda$ pairwise distinct:

$$
\mathrm{k}_{\pi} u v \Vdash \perp \quad \text { or } \quad \mathrm{k}_{\pi} u v^{\prime} \Vdash \perp \quad \text { or } \quad \mathrm{k}_{\pi} u v^{\prime \prime} \Vdash \perp
$$

Proof by contradiction, using a similar argument as before.

Corollary

$$
\begin{aligned}
\theta_{2} & \equiv \lambda x y \cdot \propto(\lambda k \cdot y(k x \overline{0})(y(k \times \overline{1})(k \times \overline{2}))) \\
& \Vdash \neg\left(\perp \Rightarrow \mathrm{B}_{3} \Rightarrow \perp\right) \cap\left(\mathrm{T} \Rightarrow\left(\mathrm{~B}_{1} \cap \mathrm{~B}_{2} \Rightarrow \perp\right)\right.
\end{aligned}
$$

(2) Induced theory
(3) The model of threads

4 Ordering
(5) The sets ∇a
(6) Conclusion

Ordering over individuals

- Let $x \leq y \equiv x-y=0$

Proposition (Ordering)

In $\mathscr{M}_{\text {thd }}: x \leq y$ is an ordering over the set of all individuals, with smallest element 0 , and no maximal element:

$$
\begin{array}{lllll}
\mathscr{M}_{\text {thd }} & \Vdash & \forall x(0 \leq x) & \mathscr{M}_{\text {thd }} & \Vdash \\
\mathscr{M}_{\text {thd }} & \forall & \forall x(x \leq x) & \mathscr{M}_{\text {thd }} & \Vdash \\
\mathscr{M}_{\text {thd }} & \forall & \forall x \forall y(x \leq s(x)) \\
\mathscr{M}_{\text {thd }} & \Vdash & \forall x \forall y \forall z(x \leq y \Rightarrow y \leq x \Rightarrow x=y) & & \\
& & &
\end{array}
$$

Proof: Horn formulas, that are all true in the ground model \mathscr{M}

- Extends the usual ordering on $\mathbb{I N}$ (in the ground model \mathscr{M}) to the set of all individuals (in the theory induced by $\mathscr{M}_{\text {thd }}$)
- Are all properties of \leq (in \mathbb{N}) still valid for individuals in $\mathscr{M}_{\text {thd }}$?

Entering THE TWILGHT ZONE

- Formula expressing the totality of ordering is not a Horn formula:

$$
\begin{array}{ll}
& \forall x \forall y(x \leq y \vee y \leq x) \\
{[\Leftrightarrow} & \forall x \forall y(x \not \leq y \Rightarrow y \not \leq x \Rightarrow \perp)]
\end{array}
$$

(writing $x \not \subset y \equiv(x-y=0 \mapsto \perp$), equivalent to $\neg(x \leq y)$)

Proposition (Non-totality of ordering)

In $\mathscr{M}_{\text {thd }}:$ ordering $x \leq y$ is non total (over the set of individuals)

$$
\theta_{1} \Vdash \neg \forall x \forall y(x \not \leq y \Rightarrow y \not \leq x \Rightarrow \perp)
$$

where $\left.\theta_{1} \equiv \lambda x \cdot \propto(\lambda k \cdot x(\omega \overline{0} k)(\omega \overline{1} k))\right)$
Proof: formula has the same semantics as $\neg\left(B_{1} \cap B_{2}\right)$

- On the other hand, ordering is total on \mathbb{N} :

$$
\mathscr{M}_{\text {thd }} \Vdash(\forall x, y \in \mathbb{N})(x \leq y \vee y \leq x)
$$

Corollary: $\mathscr{M}_{\text {thd }} \Vdash \exists x(x \notin \mathbb{N})$

Lattice structure

- Consider the binary function symbols λ and \curlyvee interpreted in \mathscr{M} by

$$
n \curlywedge^{\mathscr{M}} m=\min (n, m) \quad \text { and } \quad n \curlyvee^{\mathscr{M}} m=\max (n, m)
$$

Proposition (Lattice structure)

In $\mathscr{M}_{\text {thd }}$: The set of individuals is an unbounded distributive lattice:

- Any two individuals x and y have a meet $x \curlywedge y$:
$\forall x \forall y(x \curlywedge y \leq x), \quad \forall x \forall y(x \curlywedge y \leq y), \quad \forall x \forall y \forall z(z \leq x \Rightarrow z \leq y \Rightarrow z \leq x \curlywedge y)$
- Any two individuals x and y have a join $x \curlyvee y$:
$\forall x \forall y(x \leq x \curlyvee y), \quad \forall x \forall y(y \leq x \curlyvee y), \quad \forall x \forall y \forall z(x \leq z \Rightarrow y \leq z \Rightarrow x \curlyvee y \leq z)$
- The two operations $x \curlywedge y$ and $x \curlyvee y$ distribute w.r.t. each other

Proof: Horn formulas, that are all true in the ground model \mathscr{M}

- Beware: In general, $x \curlywedge y$ does not represent the min:

$$
\mathscr{M}_{\Perp} \quad \Vdash \quad \forall x \forall y[(x \curlywedge y)=x \vee(x \curlywedge y)=y]
$$

(Reason: not a Horn formula)

More on the non totality of ordering

- Relation " z_{1} and z_{2} are between x and y " expressed by

$$
\mathbf{b}\left(x, y, z_{1}, z_{2}\right) \equiv\left(x-z_{1}\right)+\left(z_{1}-y\right)+\left(x-z_{2}\right)+\left(z_{2}-y\right)=0
$$

Proposition (Ordering is densely non total)

In $\mathscr{M}_{\text {thd }}: B e t w e e n$ distinct individuals $x \neq y$ such that $x \leq y$, one can find two individuals z_{1}, z_{2} that cannot be compared:
$\theta_{2} \Vdash \forall x \forall y\left[x \neq y \Rightarrow \forall z_{1} \forall z_{2}\left(z_{1} \not \leq z_{2} \Rightarrow z_{2} \not \leq z_{1} \Rightarrow \overline{\mathbf{b}}\left(x, y, z_{1}, z_{2}\right)\right) \Rightarrow x \not \leq y\right]$,
where $\theta_{2} \equiv \lambda x y \cdot \propto(\lambda k \cdot y(k \times \overline{0})(y(k \times \overline{1})(k \times \overline{2})))$
Proof: Formula has the same semantics as $\left(\perp \Rightarrow B_{3} \Rightarrow \perp\right) \cap\left(T \Rightarrow\left(B_{1} \cap B_{2}\right) \Rightarrow \perp\right)$

Proposition

In $\mathscr{M}_{\text {thd }}$: For every individual $x \neq 0$, there is an individual y that cannot be compared with x :

$$
\theta_{2} \Vdash \forall x(x \neq 0 \Rightarrow \neg \forall y(x \not \leq y \Rightarrow y \not \leq x \Rightarrow \perp))
$$

Proof: Formula is a super-type of $\left(\perp \Rightarrow B_{3} \Rightarrow \perp\right) \cap\left(T \Rightarrow\left(B_{1} \cap B_{2}\right) \Rightarrow \perp\right)$

Non-Horn clauses

Proposition (Non-Horn clauses)

Consider a clause

$$
C(\vec{x}) \equiv \bigvee_{i=1}^{p} P_{i}(\vec{x}) \vee \bigvee_{i=1}^{n} N_{i}(\vec{x})
$$

such that:
(1) P_{1}, \ldots, P_{p} positive $(p \geq 2), N_{1}, \ldots, N_{n}$ negative literals
(2) $C(\vec{x})$ is universally true in $\mathscr{M}: \quad \mathscr{M} \models \forall \vec{x} C(\vec{x})$
(3) For all $i \in\{1 . . p\}: \quad \mathscr{M} \not \vDash \forall \vec{x}\left(C(\vec{x}) \Leftrightarrow P_{i}(\vec{x}) \vee \bigvee_{i=1}^{n} N_{i}(\vec{x})\right)$

Then:

$$
\mathscr{M}_{\text {thd }} \Vdash \exists \vec{x} \neg C(\vec{x})
$$

Initial elements

- Initial element \equiv individual x such that $x \nsupseteq 1$

Proposition

$$
\begin{aligned}
\text { In } \mathscr{M}_{\text {thd }}: \quad x \nsupseteq 1 & \Leftrightarrow x \neq(x-1)+1 \\
& \Leftrightarrow \forall y(s(y) \neq x)
\end{aligned}
$$

Proof: The three formulas have the same denotation

Proposition

In $\mathscr{M}_{\text {thd }}$: Every individual is decomposed in a unique way as the sum of an initial element and a natural number:

$$
\forall x(\exists!y \nsupseteq 1)(\exists!n \in \mathbb{N})(x=y+n)
$$

Proof: Existence: By well-founded induction on the relation $x=s(y)$ (well-founded induction principle realized by \mathbf{Y}). Uniqueness: follows from totality of ordering on \mathbb{N}

- Decomposition is not algebraic! Initial elements are not closed under + .
(2) Induced theory
(3) The model of threads

4 Ordering
(5) The sets ∇a
(6) Conclusion

The sets ∇a

- Write $x \ll y \equiv x+1 \leq y$

$$
\nabla a \equiv\{x: x \ll a\}
$$

(x is way below y) (written Ja by Krivine)

- Intuition: In \mathscr{M}, we have $\nabla n=\{0 . . n-1\} \quad$ (for all $n \in \mathbb{N}$) but in the theory $\mathscr{M}_{\text {thd }}$, these sets are much larger!

Proposition

In $\mathscr{M}_{\text {thd }}$: For every individual $a>1$, the set $\quad \nabla a=\{x: x \ll a\}$ is Dedekind-infinite

Proof: Follows from density of \leq using DC

Proposition $(\nabla(a b) \approx \nabla a \times \nabla b)$

In $\mathscr{M}_{\text {thd }}:$ for all individuals $a, b: \quad \nabla(a b)$ is equipotent with $\nabla a \times \nabla b$
Proof: Consider the (prim. rec.) bijection from $\{0 . . a b-1\}$ to $\{0 . . a-1\} \times\{0 . . b-1\}$ in the ground model \mathscr{M}. This extends to a bijection from $\nabla(a b)$ to $\nabla a \times \nabla b$ in $\mathscr{M}_{\text {thd }}$, since the property of being a bijection is expressed using Horn formulas

Cardinality of the sets ∇a

- The sets ∇a are infinite (for $a>1$)...
... but they keep some properties of finite sets
(Recall that in the ground model $\mathscr{M}: \nabla n=\{0, \ldots, n-1\}$)

Theorem

In $\mathscr{M}_{\text {thd }}$: For all individuals a, b such that $a \ll b$, there is no surjection from ∇a onto ∇b :

$$
\begin{aligned}
\theta \text { \& } \forall a \forall b \forall Z & {[a \ll b \mapsto} \\
& \forall x \forall y \forall y^{\prime}\left(Z(x, y) \Rightarrow Z\left(x, y^{\prime}\right) \Rightarrow y \neq y^{\prime} \Rightarrow \perp\right) \Rightarrow \\
& \forall y(y \ll b \mapsto \neg \forall x(x \ll a \mapsto \neg Z(x, y))) \Rightarrow \perp]
\end{aligned}
$$

where $\theta \equiv \lambda x_{1} x_{2} \cdot \propto\left(\lambda k \cdot x_{2}\left(\lambda z \cdot x_{1} z z(\omega z k)\right)\right)$
Proof: By contradiction, the problem reduces to the pigeonhole principle from
$\{0, \ldots, b-1\}$ to $\{0, \ldots, a-1\}$ for some $a, b \in \mathbb{N}$ such that $a<b$.

Entering deeper THE TWILGHT ZONE

- In particular: Since $2 \ll 4$ (in $\mathscr{M}_{\text {thd }}$), there is no surjection from the (infinite) set $\nabla 2$ onto $\nabla 4 \ldots \approx \nabla 2 \times \nabla 2$

Proposition

In $\mathscr{M}_{\text {thd }}$: There is an infinite set of individuals (i.e. $\nabla 2$) which is not in bijection with its Cartesian square

Corollary

In $\mathscr{M}_{\text {thd }}$:
(1) The set $\nabla 2$ is not well-orderable
(as well as the set of all individuals)
(c) The set $\nabla 2$ is not countable

- Actually: $\nabla 2$ can be embedded into the real line

The set $\nabla 2=\{x: x \leq 1\}$ as a Boolean algebra

Proposition (Boolean algebra $\nabla 2$)

In $\mathscr{M}_{\text {thd }}$: The operation $x \mapsto 1-x$ is a negation in the lattice $\nabla 2$:

$$
\begin{array}{lll}
\mathscr{M}_{\text {thd }} & \Vdash & (\forall x \in \nabla 2)((1-x) \in \nabla 2) \\
\mathscr{M}_{\text {thd }} & \Vdash & (\forall x \in \nabla 2)((1-(1-x))=x) \\
\mathscr{M}_{\text {thd }} & \Vdash & (\forall x, y \in \nabla 2)(x \leq y \Rightarrow 1-y \leq 1-x) \\
\mathscr{M}_{\text {thd }} & \Vdash & (\forall x, y \in \nabla 2)(1-(x \curlywedge y)=(1-x) \curlyvee(1-y)) \\
\mathscr{M}_{\text {thd }} & \Vdash & (\forall x, y \in \nabla 2)(1-(x \curlyvee y)=(1-x) \curlywedge(1-y)) \\
\mathscr{M}_{\text {thd }} & \Vdash & (\forall x \in \nabla 2)(x \curlywedge(1-x)=0) \\
\mathscr{M}_{\text {thd }} & \Vdash & (\forall x \in \nabla 2)(x \curlyvee(1-x)=1)
\end{array}
$$

Hence $\nabla 2$ is a Boolean algebra
Note: $\ln \nabla 2$, the 3 operations $x 人 y$ (meet), $x \times y$ (ordinary multiplication) and $x \times_{2} y$ (multiplication modulo 2) coincide

- In particular
- The Boolean algebra $\nabla 2$ is not countable
- The Boolean algebra $\nabla 2$ is atomless
(since $\not \approx \nabla 2 \times \nabla 2$)
(due to density)

Embedding $\nabla 2$ into the real line

- Add a unary function symbol δ interpreted in \mathscr{M} by

$$
\delta(n)= \begin{cases}0 & \text { if }\lfloor n\rfloor \Vdash \perp \\ 1 & \text { if }\lfloor n\rfloor \Vdash \perp\end{cases}
$$

- The image of $\mathbb{I N}$ by δ is a countable dense subset of $\nabla 2$:

Proposition (Density of $\delta(\mathbb{N})$ in $\nabla 2$)
(1) $\mathscr{M}_{\text {thd }} \Vdash(\forall n \in \mathbb{N})(\delta(n) \in \nabla 2)$
(2) $\mathscr{M}_{\text {thd }} \Vdash(\forall x \in \nabla 2)(x \neq 0 \Rightarrow(\exists n \in \mathbb{N})(\delta(n) \neq 0 \wedge \delta(n) \leq x))$
(1): Obvious (Horn). (2): Relies on quote

Corollary (Embedding $\nabla 2$ into \mathbb{R})

Write: $\Phi(x)=\{n \in \mathbb{N}: \delta(n) \leq x\}$
(1) $\mathscr{M}_{\text {thd }} \Vdash(\forall x \in \nabla 2)(\Phi(x) \subseteq \mathbb{N})$
(i.e. $\Phi(x) \in \mathbb{R}$)
(2) $\mathscr{M}_{\text {thd }} \Vdash(\forall x, y \in \nabla 2)(\Phi(x)=\Phi(y) \Rightarrow x=y)$
(i.e. Φ is into)

$\nabla 2$ as a Boolean algebra of cardinals

- Pushing further these techniques, Krivine proved the following:

Theorem

In $\mathscr{M}_{\text {thd }}$: for all $a, b \in \nabla 2$, the following are equivalent:
(1) $a \leq b$
(2) There is an injection $F: \downarrow\{a\} \hookrightarrow \downarrow\{b\}$
(3) There is a surjection $F^{\prime}: \downarrow\{b\} \rightarrow \downarrow\{a\}$
writing $\downarrow\{a\}=\{x: x \leq a\} \quad$ (prime ideal of a)

- Intuition: $\nabla 2$ is a (nontrivial) Boolean algebra of cardinals!
- Moreover, all these phenomena can be exported to the real line \mathbb{R} via the embedding $\Phi: \nabla 2 \hookrightarrow \mathbb{R}$
(6) Conclusion

Conclusion

- Using the method of threads, we constructed a particular realizability model of 2nd-order logic in which:
- There are (infinitely) many more individuals than natural numbers
- There is a sequence $(\nabla n)_{n \in \mathbb{N}}$ of sets of individuals such that
(1) $\nabla(n p) \approx \nabla n \times \nabla p \quad$ (for all $n, p \in \mathbb{N}$)
(2) There is no surjection from ∇n onto $\nabla(n+1) \quad$ (for all $n \in \mathbb{N}$)
(3) $\nabla 0=\varnothing, \quad \nabla 1=\{0\}$ and ∇n is infinite (for all $n \geq 2$)
- The set $\nabla 2$ is a non-countable atomless Boolean algebra of cardinals: $\quad a \leq b(\in \nabla 2) \Leftrightarrow \downarrow\{a\} \hookrightarrow \downarrow\{b\}$
- There are embeddings $\Phi_{n}: \nabla n \hookrightarrow \mathbb{R} \quad$ (for all $n \in \mathbb{N}$)
- The same results can be formulated in ZF
[Krivine 12]
- All phenomena that deal with individuals are intensional (they are observed with intensional membership only)
- But via the embeddings $\Phi_{n}: \nabla n \hookrightarrow \mathbb{R}$, they become extensional (they can be observed in the usual $=/ \epsilon$ language of ZF)

Classical realizability models of ZF

- What we currently know:

- Classical realizability generalizes the method of Cohen forcing
- Generalization is strict, since classical realizability model construction can be used to break AC (impossible with forcing alone)
- Equivalent to forcing when: $\mathscr{M}_{\Perp} \Vdash \nabla 2=\{0 ; 1\}$
- The ground model \mathscr{M} does not appear trivially as a submodel of \mathscr{M}_{\Perp} (unlike forcing), but it induces a Boolean-valued model $\nabla \mathscr{M}$ over the Boolean algebra $\nabla 2$ (within the theory \mathscr{M}_{\Perp}), which is elementarily equivalent to the Tarski model \mathscr{M}
- The Boolean algebra $\nabla 2$ has a canonical ultrafilter [Krivine 14]
- Therefore (by quotient + Mostowski collapse), \mathscr{M} and $\mathscr{M} \Perp$ have the same constructible sets: Schoenfield's absoluteness theorem applies
- What we don't know: How to use it!
(Generic filter?)

