Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
000000	000000	00000	0000000	0000000	000

Classical realizability and forcing Part 3: A cardinals' heresy in classical realizability

Alexandre Miquel

Logic Colloquium (LC'14) Vienna Summer of Logic – July 19th, 2014 – Vienna

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
000000	000000	00000	0000000	0000000	000
Plan					

1 Recall

2 Induced theory

3 The model of threads

Ordering

5 The sets ∇a

6 Conclusion

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
000000	000000	00000	0000000	0000000	000
The lang	uage of cla	ssical realizers			

Terms, stack	s and p	roces	ses						
Terms	t, u	::=	x		$\lambda x . t$	tu	κ	k_{π}	$(\kappa \in \mathcal{K})$
Stacks	π,π'	::=	α		$t\cdot\pi$			$(\alpha \in \Gamma$	I_0, t closed)
Processes	p,q	::=	t*	π					(t closed)

Push	tu	\star	π	\succ	t	*	$u\cdot\pi$
Grab	λx . t	*	$u\cdot\pi$	\succ	$t\{x := u\}$	*	π
Save	œ	*	$u\cdot\pi$	\succ	и	*	$k_\pi\cdot\pi$
Restore	k_{π}	*	$u\cdot\pi'$	\succ	и	*	π
		•••					
(+ reflexivity & transi	tivity)						

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
000000	000000	00000	0000000	0000000	000
Interpreti	ing closed	formulas with	n paramete	ers	

Let A be a closed formula (with parameters)

• Falsity value ||A|| defined by induction on A:

$$\begin{aligned} \|\dot{F}(e_1,\ldots,e_n)\| &= F(\llbracket e_1 \rrbracket,\ldots,\llbracket e_n \rrbracket) \\ \|A \Rightarrow B\| &= |A| \cdot \|B\| &= \{t \cdot \pi : t \in |A|, \ \pi \in \|B\|\} \\ \|\forall x \ A\| &= \bigcup_{n \in \mathbb{N}} \|A\{x := n\}\| \\ \|\forall X \ A\| &= \bigcup_{F : \mathbb{N}^n \to \mathfrak{P}(\Pi)} \|A\{X := \dot{F}\}\| \end{aligned}$$

• Truth value |A| defined by orthogonality:

$$|A| = ||A||^{\perp} = \{t \in \Lambda : \forall \pi \in ||A|| \quad t \star \pi \in \bot\}$$

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
000000	000000	00000	0000000	0000000	000
The reali	zability re	elation			

Falsity value ||A|| and truth value |A| depend on the pole \perp \rightarrow write them (sometimes) $||A||_{\perp}$ and $|A|_{\perp}$ to recall the dependency

Theorem (Adequacy)

If A is a theorem of classical 2nd-order logic, then:

 $\theta \Vdash A$

for some $\theta \in \mathsf{PL}$

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000	00000	0000000	0000000	000
More cor	nnectives				(1/2)

• Add binary intersection types

Formulas	A,B ::= ··· $A \cap B$ \top	
letting	$\ A \cap B\ = \ A\ \cup \ B\ $ and $\ \top\ = arnothing$	
so that	$ A \cap B = A \cap B $ and $ \top = \Lambda$	

• Intersection type is a strong form of conjunction:

 $\lambda xz.zxx \parallel A \cap B \Rightarrow A \wedge B$

But converse implication not realized in general

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000	00000	0000000	0000000	000
More con	nectives				(2/2)

• Add equational implication:

Formulas:	A,B ::= ··· $e_1 = e_2 \mapsto A$	
Letting	$\ e_1 = e_2 \mapsto A\ = \begin{cases} \ A\ & \text{if } \llbracket e_1 \rrbracket = \llbracket e_2 \rrbracket \\ \varnothing & \text{if } \llbracket e_1 \rrbracket \neq \llbracket e_2 \rrbracket \end{cases}$	

Proposition (equivalence of $e_1 = e_2 \mapsto A$ and $e_1 = e_2 \Rightarrow A$)

$$\begin{array}{ll} \lambda xy . yx & \Vdash & (e_1 = e_2 \mapsto A) \Rightarrow (e_1 = e_2 \Rightarrow A) \\ \lambda x . x \mathbf{I} & \Vdash & (e_1 = e_2 \Rightarrow A) \Rightarrow (e_1 = e_2 \mapsto A) \end{array}$$

• Example: $e_1 \neq e_2 \equiv (e_1 = e_2 \mapsto \bot)$ (disequality)

- Denotation of $e_1 \neq e_2$ much simpler than $\neg(e_1 = e_2)$
- But $e_1 \neq e_2$ equivalent to $\neg(e_1 = e_2)$ (in the sense of realizability)

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
000000	000000	00000	0000000	0000000	000
Plan					

- 2 Induced theory
- The model of threads

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	00000	00000	0000000	0000000	000
Plan					

1 Recall

2 Induced theory

3 The model of threads

Ordering

5 The sets ∇a

6 Conclusion

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	00000	00000	0000000	0000000	000
The theo	ry induced	by the realizat	oility mode	el M	

- Recall that:

 - When $\bot\!\!\!\bot \neq \varnothing$: every truth value |A| is inhabited
 - \rightsquigarrow Restrict to proof-like terms

Definition (Theory induced by \mathcal{M}_{\perp})

 $A \text{ is realized in } \mathscr{M}_{\bot} \equiv |A| \cap \mathsf{PL} \neq \varnothing$

(notation: $\mathcal{M}_{\perp} \Vdash A$)

② Formulas A that are realized in \mathscr{M}_{\perp} form the theory induced by \mathscr{M}_{\perp}

Properties of the induced theory

- **③** The theory induced by \mathcal{M}_{\perp} is closed under logical consequence in the sense of classical 2nd-order logic
- 2 Peano axioms 3 and 4 are realized in \mathcal{M}_{\perp} (not induction)
- **③** More generally: Horn formulas that are true in \mathscr{M} are realized in $\mathscr{M}_{\mathbb{L}}$
- $If \ \mathscr{M} \models \mathsf{AC} \ \mathsf{and} \ \mathsf{quote} \in \mathcal{K}, \ \mathsf{then} \ \mathscr{M}_{\mathbb{L}} \Vdash \mathsf{DC}$

⁽treat k_{π} as paraproof)

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000		00000	0000000	0000000	000
The prob	lem of cor	nsistency			

• Is the theory (induced by) \mathcal{M}_{\perp} consistent?

$$\begin{split} \mathscr{M}_{\bot} \not\Vdash \bot & \Leftrightarrow & |\bot| \cap \mathsf{PL} = \varnothing \\ & \Leftrightarrow & \forall \theta \in \mathsf{PL} \ \theta \not\Vdash \bot \\ & \Leftrightarrow & \forall \theta \in \mathsf{PL} \ \exists \pi \in \Pi \ \theta \star \pi \notin \bot \\ \end{split}$$

Definition (coherent pole)

 $\bot\!\!\!\bot \text{ coherent } \equiv \forall \theta \in \mathsf{PL} \ \exists \pi \in \mathsf{\Pi} \ \theta \star \pi \notin \bot\!\!\!\bot$

• By definition: \mathcal{M}_{\perp} consistent (as a theory) iff \perp coherent

• Examples of coherent poles:

- The empty pole $\bot = \varnothing$ (but in this case: $\mathscr{M}_{\varnothing}$ collapses to \mathscr{M})
- The pole of threads: cf later

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000	00000	0000000	0000000	000
The pro	blem of in	duction			

• In 2nd-order logic, the set of natural numbers is defined by

$$x \in \mathbb{N} \equiv \forall Z [Z(0) \Rightarrow \forall y (Z(y) \Rightarrow Z(y+1)) \Rightarrow Z(x)]$$

Induction axiom is the formula: $\forall x (x \in \mathbb{N})$

• **Problem:** this axiom is in general not realized (by a proof-like term) Moreover, there are coherent poles ⊥ such that:

$$\begin{aligned} \mathscr{M}_{\bot} & \Vdash & \neg \forall x \, (x \in \mathbb{N}) \\ \text{so that:} & \mathscr{M}_{\bot} & \Vdash & \exists x \, (x \notin \mathbb{N}) \end{aligned}$$

- Need to establish a strong distinction between
 - individuals (all 1st-order objects), and
 - natural numbers (individuals x such that $x \in IN$)
- Problem is traditionally put under the carpet, by relativizing all 1st-order quantifications to IN. But what happens if we don't?

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
000000	000000	00000	0000000	0000000	000
Existence	of unname	ed elements			

• In Tarski/Boolean-valued/forcing models, all elements are named:

If
$$\mathscr{M} \models \exists x A(x)$$
, then $\mathscr{M} \models A(v)$ for some $v \in \mathscr{M}$

 Not the case anymore in classical realizability models *M*_⊥! In some models, one can find formulas *A*(*x*) such that

eas
$$\mathcal{M}_{\perp} \Vdash \exists x A(x)$$

 $\mathcal{M}_{\perp} \Vdash \neg A(n)$ for all $n \in \mathbb{N}$

whereas

- $\bullet\,$ Due to uniform interpretation of \forall
- Typical example: $A(x) \equiv x \notin \mathbb{N}$

• Existence of unnamed elements

- $\bullet\,$ The theory induced by $\mathscr{M}_{\mathbb{L}}\,$ lacks the witness property
- Recover some fundamental incompleteness of classical theories

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000	00000	0000000	0000000	000
Realizing	true Horn f	formulas (agai	n)		

Definition (Horn formulas)

A (positive/negative) literal is a formula *L* of the form

$$L \equiv e_1 = e_2$$
 or $L \equiv e_1 \neq e_2$

A Horn formula is a closed formula H of the form

$$\mathcal{H} \equiv \forall \vec{x} [L_1 \Rightarrow \cdots \Rightarrow L_p \Rightarrow L_{p+1}] \qquad (p \ge 0)$$

where L_1, \ldots, L_p are positive; L_{p+1} positive or negative

Theorem (Realizing true Horn formulas)

If $\mathcal{M} \models H$, then $\mathcal{M}_{\perp} \Vdash H$

- **Beware!** The meaning of H is not the same in \mathcal{M} and \mathcal{M}_{\perp}
 - In *M*, quantifications range over natural numbers
 - $\bullet~$ In $\mathscr{M}_{\bot},$ quantifications range over all individuals

• Theorem does not extend to arbitrary clauses

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000	0000	000000	0000000	000
Plan					

1 Recall

2 Induced theory

The model of threads

Ordering

5 The sets ∇a

6 Conclusion

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000	0000	0000000	0000000	000
The mo	del of thre	eads \mathcal{M}_{thd}			

• From now on, we assume that:

- $\bullet\,$ There are only two instructions \underline{c} and \underline{quote}
- $\bullet~$ The set Π_0 of stack constants is denumerable

$$(\mathcal{K} = \{ \mathfrak{cc}, \mathsf{quote} \})$$

• Evaluation rules are:

Push	tu $\star \pi$	\succ	$t \star u \cdot \pi$
Grab	$\lambda x . t \star u \cdot \pi$	\succ	$t\{x := u\} \star \pi$
Save	$\mathbf{c} \star \mathbf{u} \cdot \boldsymbol{\pi}$	\succ	$u \star k_{\pi} \cdot \pi$
Restore	$k_\pi \star u\cdot\pi'$	\succ	$u \star \pi$
Quote	quote $\star t \cdot u \cdot \pi$	\succ	$u \star \overline{\lceil t \rceil} \cdot \pi$

Properties of evaluation

Evaluation is deterministic: If p ≻₁ p'₁ and p ≻₁ p'₂, then p'₁ ≡ p'₂
Stack constants cannot be generated during evaluation: Let α ∈ Π₀. If p ≻ p' and α occurs in p', then α occurs in p

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000		0000000	0000000	000
The mod	el of thread	ds \mathscr{M}_{thd}			

- The thread of a proof-like term $\theta \in \mathsf{PL}$
 - Consider a bijection $\theta \mapsto \alpha_{\theta}$ from PL to Π_0
 - Let: $\mathbf{thd}(\theta) = \{ p \in \Lambda \star \Pi : \theta \star \alpha_{\theta} \succ p \}$ (thread of θ)
 - Remark: if $\theta \not\equiv \theta'$, then $\mathbf{thd}(\theta) \cap \mathbf{thd}(\theta') = \varnothing$
- The pole of threads:
 - Idea: to build a coherent pole, exclude all $\theta \star \alpha_{\theta}$ (for $\theta \in \mathsf{PL}$)

• Let
$$\bot_{\mathsf{thd}} = \left(\bigcup_{\theta \in \mathsf{PL}} \mathsf{thd}(\theta)\right)^c$$
 (pole of threads)

Proposition: The pole \perp_{thd} is coherent and nonempty

• The model of threads: $\mathcal{M}_{thd} = \mathcal{M}_{\perp_{thd}}$

Proposition (Characterizing the realizers of \perp)

 $(\text{For all } t \in \Lambda) \qquad t \Vdash \bot \quad \text{iff} \quad t \text{ never appears in head position in a thread}$

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000	00000	0000000	0000000	000
Negating	the type of	f the parallel	'or'		

• Write:
$$B_1 \equiv \bot \Rightarrow \top \Rightarrow \bot$$

 $B_2 \equiv \top \Rightarrow \bot \Rightarrow \bot$

(realized by $\lambda xy . x$) (realized by $\lambda xy . y$)

• Intuition: Formula $B_1 \cap B_2$ is the type of the parallel 'or'

Proposition

For all $\pi \in \Pi$ and $u, u' \in \Lambda$ distinct: $\omega u k_{\pi} \Vdash \bot$ or $\omega u' k_{\pi} \Vdash \bot$ (writing $\omega \equiv (\lambda x . xx)(\lambda x . xx)$)

Proof by contradiction, using the fact that in a sequential calculus, a process can enter an infinite loop at most once.

Corollary

$$\theta_1 \equiv \lambda x . \operatorname{cc} \left(\lambda k . x \left(\omega \, \overline{0} \, k \right) \left(\omega \, \overline{1} \, k \right) \right) \ \Vdash \ \neg(\mathsf{B}_1 \cap \mathsf{B}_2)$$

(Internalizes the fact that in a sequential world, there is no parallel 'or')

• Shows that in $\mathcal{M}_{\mathsf{thd}}$: $A \land B \not\Rightarrow A \cap B$

Corollary

$$\begin{array}{rcl} \theta_2 &\equiv& \lambda xy \,.\, \mathfrak{cc} \left(\lambda k \,.\, y \left(k \, x \, \bar{0}\right) \left(y \left(k \, x \, \bar{1}\right) \left(k \, x \, \bar{2}\right)\right)\right) \\ & \Vdash & \neg(\bot \Rightarrow \mathsf{B}_3 \Rightarrow \bot) \cap \left(\top \Rightarrow \left(\mathsf{B}_1 \cap \mathsf{B}_2 \Rightarrow \bot\right)\right) \end{array}$$

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000	00000	000000	0000000	000
Plan					

1 Recall

2 Induced theory

3 The model of threads

6 Conclusion

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000	00000	000000	0000000	000
Ordering	over indi	viduals			

• Let
$$x \le y \equiv x - y = 0$$

(where x - y is truncated subtraction in IN)

Proposition (Ordering)

In \mathcal{M}_{thd} : $x \leq y$ is an ordering over the set of all individuals, with smallest element 0, and no maximal element:

 $\begin{array}{cccc} \mathcal{M}_{\mathsf{thd}} & \Vdash & \forall x \, (0 \leq x) & \mathcal{M}_{\mathsf{thd}} & \Vdash & \forall x \, (x \leq s(x)) \\ \mathcal{M}_{\mathsf{thd}} & \Vdash & \forall x \, (x \leq x) & \mathcal{M}_{\mathsf{thd}} & \Vdash & \forall x \, (s(x) \neq x) \\ \mathcal{M}_{\mathsf{thd}} & \Vdash & \forall x \, \forall y \, (x \leq y \Rightarrow y \leq x \Rightarrow x = y) \\ \mathcal{M}_{\mathsf{thd}} & \Vdash & \forall x \, \forall y \, \forall z \, (x \leq y \Rightarrow y \leq z \Rightarrow x \leq z) \end{array}$

Proof: Horn formulas, that are all true in the ground model M

- Extends the usual ordering on ℕ (in the ground model *M*) to the set of all individuals (in the theory induced by *M*_{thd})
- Are all properties of \leq (in IN) still valid for individuals in \mathcal{M}_{thd} ?

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000		00000	00●0000	0000000	000
Entering	the Twill	GHT ZONE			

• Formula expressing the totality of ordering is not a Horn formula:

$$\begin{aligned} &\forall x \,\forall y \, (x \leq y \lor y \leq x) \\ [\Leftrightarrow \quad \forall x \,\forall y \, (x \not\leq y \Rightarrow y \not\leq x \Rightarrow \bot)] \end{aligned}$$

 $(\text{writing} \quad x \not\leq y \equiv (x-y=0 \mapsto \bot), \quad \text{equivalent to } \neg (x \leq y))$

Proposition (Non-totality of ordering)

In $\mathscr{M}_{\mathsf{thd}}$: ordering $x \leq y$ is non total (over the set of individuals) $\theta_1 \Vdash \neg \forall x \forall y (x \leq y \Rightarrow y \leq x \Rightarrow \bot)$

where $\theta_1 \equiv \lambda x \cdot \mathbf{c} \left(\lambda k \cdot x \left(\omega \, \overline{0} \, k \right) \left(\omega \, \overline{1} \, k \right) \right) \right)$

Proof: formula has the same semantics as $\neg(B_1 \cap B_2)$

• On the other hand, ordering is total on IN:

$$\mathscr{M}_{\mathsf{thd}} \Vdash (\forall x, y \in \mathbb{N}) (x \le y \lor y \le x)$$

Corollary: $\mathcal{M}_{\text{thd}} \Vdash \exists x (x \notin \mathbb{N})$

('there is an individual outside IN')

Recall	Induced theory	The model of threads	Ordering	The sets ∇ <i>a</i>	Conclusion
0000000	000000	00000	000000	0000000	000
Lattice st	ructure				

 $\bullet\,$ Consider the binary function symbols $\,\star\,$ and $\,\Upsilon\,$ interpreted in $\,\mathscr{M}\,$ by

 $n \downarrow^{\mathscr{M}} m = \min(n, m)$ and $n \curlyvee^{\mathscr{M}} m = \max(n, m)$

Proposition (Lattice structure)

In *M*_{thd}: The set of individuals is an unbounded distributive lattice:

- Any two individuals x and y have a meet $x \land y$: $\forall x \forall y (x \land y \le x), \forall x \forall y (x \land y \le y), \forall x \forall y \forall z (z \le x \Rightarrow z \le y \Rightarrow z \le x \land y)$
- Any two individuals x and y have a join $x \uparrow y$: $\forall x \forall y (x \le x \uparrow y), \forall x \forall y (y \le x \uparrow y), \forall x \forall y \forall z (x \le z \Rightarrow y \le z \Rightarrow x \uparrow y \le z)$
- The two operations $x \downarrow y$ and $x \curlyvee y$ distribute w.r.t. each other

Proof: Horn formulas, that are all true in the ground model \mathcal{M}

• **Beware:** In general, $x \downarrow y$ does not represent the min:

$$\mathscr{M}_{\bot\!\!\bot} \quad \forall x \, \forall y \, [(x \land y) = x \lor (x \land y) = y]$$

(Reason: not a Horn formula)

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000	00000	0000000	0000000	000
More on -	the non tot	ality of orderin	וg		

• Relation " z_1 and z_2 are between x and y" expressed by $\mathbf{b}(x, y, z_1, z_2) \equiv (x - z_1) + (z_1 - y) + (x - z_2) + (z_2 - y) = 0$

Proposition (Ordering is densely non total)

In \mathcal{M}_{thd} : Between distinct individuals $x \neq y$ such that $x \leq y$, one can find two individuals z_1, z_2 that cannot be compared:

 $\begin{array}{l} \theta_2 \hspace{0.2cm} \Vdash \hspace{0.2cm} \forall x \hspace{0.2cm} \forall y \hspace{0.2cm} [x \neq y \Rightarrow \forall z_1 \hspace{0.2cm} \forall z_2 \hspace{0.2cm} (z_1 \not\leq z_2 \Rightarrow z_2 \not\leq z_1 \Rightarrow \overline{\mathbf{b}}(x, y, z_1, z_2)) \Rightarrow x \not\leq y] \hspace{0.2cm}, \\ \text{where} \hspace{0.2cm} \theta_2 \hspace{0.2cm} \equiv \hspace{0.2cm} \lambda xy \cdot \mathfrak{c} \left(\lambda k \cdot y \hspace{0.2cm} (k \times \overline{\mathbf{0}}) \left(y \hspace{0.2cm} (k \times \overline{\mathbf{1}}) \hspace{0.2cm} (k \times \overline{\mathbf{2}}) \right) \right) \end{array}$

Proof: Formula has the same semantics as $(\bot \Rightarrow B_3 \Rightarrow \bot) \cap (\top \Rightarrow (B_1 \cap B_2) \Rightarrow \bot)$

Proposition

In \mathcal{M}_{thd} : For every individual $x \neq 0$, there is an individual y that cannot be compared with x:

$$\theta_2 \Vdash \forall x (x \neq 0 \Rightarrow \neg \forall y (x \not\leq y \Rightarrow y \not\leq x \Rightarrow \bot))$$

Proof: Formula is a super-type of $(\bot \Rightarrow B_3 \Rightarrow \bot) \cap (\top \Rightarrow (B_1 \cap B_2) \Rightarrow \bot)$

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000	00000	0000000	0000000	000
Non-Hori	n clauses				

Proposition (Non-Horn clauses)

Consider a clause

$$C(\vec{x}) \equiv \bigvee_{i=1}^{p} P_{i}(\vec{x}) \lor \bigvee_{i=1}^{n} N_{i}(\vec{x})$$

[Geoffroy & M. 2014]

such that:

•
$$P_1, \ldots, P_p$$
 positive $(p \ge 2), N_1, \ldots, N_n$ negative literals

• $C(\vec{x})$ is universally true in \mathcal{M} : $\mathcal{M} \models \forall \vec{x} C(\vec{x})$

• For all
$$i \in \{1..p\}$$
: $\mathcal{M} \not\models \forall \vec{x} \left(C(\vec{x}) \Leftrightarrow P_i(\vec{x}) \lor \bigvee_{i=1}^n N_i(\vec{x})\right)$

Then:
$$\mathcal{M}_{\text{thd}} \Vdash \exists \vec{x} \neg C(\vec{x})$$

Recall	Induced theory	The model of threads	Ordering	The sets <i>∇a</i>	Conclusion
0000000	000000	00000	000000●	0000000	000
Initial ele	ments				

• Initial element \equiv individual x such that $x \not\geq 1$

Propositio	n			
$\ln \mathscr{M}_{thd}$:	<i>x</i> ≱ 1	$ \substack{\Leftrightarrow\\ \Leftrightarrow} $	$x \neq (x-1)+1$ $\forall y (s(y) \neq x)$	(x not the succ. of its pred.) (x not a successor)

Proof: The three formulas have the same denotation

Proposition

In \mathcal{M}_{thd} : Every individual is decomposed in a unique way as the sum of an initial element and a natural number:

$$\forall x \, (\exists ! y \geq 1) (\exists ! n \in \mathbb{N}) \, (x = y + n)$$

Proof: Existence: By well-founded induction on the relation x = s(y) (well-founded induction principle realized by **Y**). Uniqueness: follows from totality of ordering on IN

• Decomposition is not algebraic! Initial elements are not closed under +.

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000	00000	0000000	●000000	000
Plan					

1 Recall

2 Induced theory

3 The model of threads

Ordering

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000	00000	0000000	000000	000
The sets	abla a				

- Write $x \ll y \equiv x+1 \leq y$ (x is way below y) $\nabla a \equiv \{x : x \ll a\}$ (written $\exists a$ by Krivine)
- Intuition: In \mathcal{M} , we have $\nabla n = \{0..n 1\}$ (for all $n \in \mathbb{N}$) but in the theory \mathcal{M}_{thd} , these sets are much larger!

Proposition

In \mathcal{M}_{thd} : For every individual a > 1, the set $\nabla a = \{x : x \ll a\}$ is Dedekind-infinite

Proof: Follows from density of \leq using DC

Proposition $(\nabla(ab) \approx \nabla a \times \nabla b)$

In \mathcal{M}_{thd} : for all individuals a, b: $\nabla(ab)$ is equipotent with $\nabla a \times \nabla b$

Proof: Consider the (prim. rec.) bijection from $\{0..ab-1\}$ to $\{0..a-1\} \times \{0..b-1\}$ in the ground model \mathcal{M} . This extends to a bijection from $\nabla(ab)$ to $\nabla a \times \nabla b$ in \mathcal{M}_{thd} , since the property of being a bijection is expressed using Horn formulas

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000	00000	0000000	0000000	000
Cardinal	ity of the	sets $ abla a$			

- The sets ∇a are infinite (for a > 1)...
 - ... but they keep some properties of finite sets

(Recall that in the ground model \mathcal{M} : $\nabla n = \{0, ..., n-1\}$)

Theorem

In \mathcal{M}_{thd} : For all individuals a, b such that $a \ll b$, there is no surjection from ∇a onto ∇b :

$$\begin{array}{rcl} \theta & \Vdash & \forall a \,\forall b \,\forall Z \left[a \ll b \mapsto \\ & \forall x \,\forall y \,\forall y' \left(Z(x,y) \Rightarrow Z(x,y') \Rightarrow y \neq y' \Rightarrow \bot \right) \\ & \forall y \left(y \ll b \mapsto \neg \forall x \left(x \ll a \mapsto \neg Z(x,y) \right) \right) \Rightarrow \ \bot \end{array} \right]$$

where $\theta \equiv \lambda x_1 x_2 . \operatorname{cc} (\lambda k . x_2 (\lambda z . x_1 z z (\omega z k)))$

Proof: By contradiction, the problem reduces to the pigeonhole principle from $\{0, \ldots, b-1\}$ to $\{0, \ldots, a-1\}$ for some $a, b \in \mathbb{N}$ such that a < b.

• In particular: Since $2 \ll 4$ (in \mathcal{M}_{thd}), there is no surjection from the (infinite) set $\nabla 2$ onto $\nabla 4 \ldots \approx \nabla 2 \times \nabla 2$

Proposition

In \mathscr{M}_{thd} : There is an infinite set of individuals (i.e. $\nabla 2$) which is not in bijection with its Cartesian square

Corollary

In $\mathcal{M}_{\mathsf{thd}}$:

 $\textcircled{O} The set \nabla 2 is not well-orderable$

(as well as the set of all individuals)

2 The set $\nabla 2$ is not countable

(ditto)

• Actually: $\nabla 2$ can be embedded into the real line (cf later)

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000		0000000	0000 \bullet 00	000
The set V	$72 = \{x : x\}$	r < 1 as a Bo	oolean alg	ebra	

Proposition (Boolean algebra $\nabla 2$)

In \mathcal{M}_{thd} : The operation $x \mapsto 1 - x$ is a negation in the lattice $\nabla 2$:

$$\begin{array}{lll} \mathcal{M}_{\text{thd}} & \Vdash & (\forall x \in \nabla 2)((1-x) \in \nabla 2) \\ \mathcal{M}_{\text{thd}} & \Vdash & (\forall x \in \nabla 2)((1-(1-x)) = x) \\ \mathcal{M}_{\text{thd}} & \Vdash & (\forall x, y \in \nabla 2)(x \leq y \Rightarrow 1-y \leq 1-x) \\ \mathcal{M}_{\text{thd}} & \Vdash & (\forall x, y \in \nabla 2)(1-(x \land y) = (1-x) \curlyvee (1-y)) \\ \mathcal{M}_{\text{thd}} & \Vdash & (\forall x, y \in \nabla 2)(1-(x \curlyvee y) = (1-x) \land (1-y)) \\ \mathcal{M}_{\text{thd}} & \Vdash & (\forall x \in \nabla 2)(x \land (1-x) = 0) \\ \mathcal{M}_{\text{thd}} & \Vdash & (\forall x \in \nabla 2)(x \curlyvee (1-x) = 1) \end{array}$$

Hence $\nabla 2$ is a Boolean algebra

Note: In $\nabla 2$, the 3 operations $x \downarrow y$ (meet), $x \times y$ (ordinary multiplication) and $x \times_2 y$ (multiplication modulo 2) coincide

In particular

- The Boolean algebra $\nabla 2$ is not countable
- The Boolean algebra $\nabla 2$ is atomless

(since $\approx \nabla 2 \times \nabla 2$) (due to density)

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion		
0000000	000000	00000	0000000	00000 \bullet 0	000		
Embedding $\nabla 2$ into the real line							

 \bullet Add a unary function symbol δ interpreted in ${\mathscr M}$ by

$$\delta(n) = \begin{cases} 0 & \text{if } \lfloor n \rfloor \Vdash \bot \\ 1 & \text{if } \lfloor n \rfloor \not \Vdash \bot \end{cases}$$

• The image of IN by δ is a countable dense subset of $\nabla 2$:

Proposition (Density of $\delta(\mathbb{N})$ in $\nabla 2$)

(1): Obvious (Horn). (2): Relies on quote

Corollary (Embedding $\nabla 2$ into \mathbb{R})Write: $\Phi(x) = \{n \in \mathbb{N} : \delta(n) \leq x\}$ Image: $\mathscr{M}_{thd} \Vdash (\forall x \in \nabla 2) (\Phi(x) \subseteq \mathbb{N})$ Image: $\mathscr{M}_{thd} \Vdash (\forall x, y \in \nabla 2) (\Phi(x) = \Phi(y) \Rightarrow x = y)$ Image: (i.e. $\Phi(x) \in \mathbb{R}$)Image: $\mathscr{M}_{thd} \Vdash (\forall x, y \in \nabla 2) (\Phi(x) = \Phi(y) \Rightarrow x = y)$

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion			
0000000	000000	00000	0000000	000000	000			
abla 2 as a	abla 2 as a Boolean algebra of cardinals							

• Pushing further these techniques, Krivine proved the following:

- Intuition: $\nabla 2$ is a (nontrivial) Boolean algebra of cardinals!
- Moreover, all these phenomena can be exported to the real line IR via the embedding $\Phi: \nabla 2 \hookrightarrow IR$

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000	00000	0000000	0000000	000
Plan					

1 Recall

2 Induced theory

3 The model of threads

Ordering

5 The sets ∇a

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000	00000	0000000	0000000	000
Conclusio	on				

- Using the method of threads, we constructed a particular realizability model of 2nd-order logic in which:
 - There are (infinitely) many more individuals than natural numbers
 - There is a sequence $(\nabla n)_{n\in\mathbb{N}}$ of sets of individuals such that
 - ∇(np) ≈ ∇n × ∇p (for all n, p ∈ IN)
 There is no surjection from ∇n onto ∇(n + 1) (for all n ∈ IN)
 ∇0 = Ø, ∇1 = {0} and ∇n is infinite (for all n > 2)
 - The set ∇2 is a non-countable atomless Boolean algebra of cardinals: a ≤ b (∈∇2) ⇔ ↓{a} ↔ ↓{b}
 - There are embeddings $\Phi_n : \nabla n \hookrightarrow \mathbb{R}$ (for all $n \in \mathbb{N}$)
- The same results can be formulated in ZF [Krivine 12]
 - All phenomena that deal with individuals are intensional (they are observed with intensional membership only)
 - But via the embeddings $\Phi_n : \nabla n \hookrightarrow IR$, they become extensional (they can be observed in the usual =/ \in language of ZF)

Recall	Induced theory	The model of threads	Ordering	The sets ∇a	Conclusion
0000000	000000	00000	0000000	0000000	00●
Classical	realizability	models of ZF	=		

- What we currently know:
 - Classical realizability generalizes the method of Cohen forcing
 - Generalization is strict, since classical realizability model construction can be used to break AC (impossible with forcing alone)
 - Equivalent to forcing when: $\mathscr{M}_{\mathbb{L}} \Vdash \nabla 2 = \{0; 1\}$
 - The ground model *M* does not appear trivially as a submodel of *M*_⊥ (unlike forcing), but it induces a Boolean-valued model ∇*M* over the Boolean algebra ∇2 (within the theory *M*_⊥), which is elementarily equivalent to the Tarski model *M*
 - The Boolean algebra $\nabla 2$ has a canonical ultrafilter [Krivine 14]
 - Therefore (by quotient + Mostowski collapse), \mathscr{M} and \mathscr{M}_{\perp} have the same constructible sets: Schoenfield's absoluteness theorem applies
- What we don't know: How to use it! (Generic filter?)