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HOL: Syntax & typing
Types 0 = L | o | T—=o0o
Object-terms M,N, A = z | A7 | MN
| A= B | Vx A
| 0 | S | rec,
Typing contexts X = Ty T, Ty T (z1 2 x; if i # j)
v
Alternative notations: ¢ = Nat, o = x = Prop

Typing rules
Yx:THEM:o

XEFM:7—w0 YXEN:T

(z:T)ED

D=z YXEXT M :T—> 0

YFA:0 YFB:o

>FMN : o
Yx:THA:o0

YFA=B:o

YEVZT.A:o0

YHEO0:e YXES:t—

> F rec,

T =T oT) LT
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HOL: Reduction

@ One step reduction is the congruence > defined from the rules
(MT.M)N > Mz := N]
rec, Mg M;0 > M,
rec, My M, (SN) - MlN(I‘eC.,-MoMl N)

As usual, we write

e > the reflexive-transitive closure of > (grand reduction)
o = the reflexive-symmetric-transitive closure of >~ (conversion)

@ Church-Rosser:
My = M, iff M;>=* M’ and My =* M’ for some M’

@ Subject reduction:
If XF-M:7 and M =* M', then S+ M : 7

+ decidability of type checking/inference (won't be used here)
+ strong normalization (won't be used here)
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HOL: Deduction

Logical contexts: r = A,....A,
SEFA 0 (1<i<n) E)TEA XH_A/:OAA’
(B) Ap,..., A, F A (X)TF A -
X)T,AF B ) THA=B E)THA
E)TFA=B E)T'EB
Syz:T)THA (E) T FVa™. A YXEN:7
(X)) T FVaT. A () T+ Afz := N]
Equivalently, derivations can be presented as proof-terms:
Proof-terms t,u = & (Axiom)
| MAt | tu (=-intro, -elim)
| Xz”™.t | tN (V7-intro, -elim)

= MOL = system Fw + primitive numerals
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Second-order encodings in HOL

Propositions (: 0) are only based on “=" and “V" (for all types).
Other constructions are defined using second-order encodings:

1 = vz
A = A= 1
(AANB) = Vz°. (A= B=2z2)=z
(AVB) = Vz°. (A=2)=(B=2)=z%
A< B = (A= B)A(B=A)
o7 A(z) = V0. (Vo™ Az) = 2) = 2
T1 =, 2o = VZT7% zx1 = 220
IN(z) = Vz'7° 20= (Vy'. zy = 2(Sy)) = zx

Going further
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HOL™: Syntax & typing
Types T,0 u= o | o | T—o
Object-terms M,N,A)B == z | X™.M | MN
| A=B | V2".A | Va.A
| o0 | S | rec,
Typing contexts X = Ty T, Ty T (z1 2 x; if i # j)
Alternative notations: ¢ = Nat, o = x = Prop

Typing rules

Yx:THEM:o

(@r)es YXFM:1T—w0 YEN:T
Stz YXEXT M :T—> 0 YFMN : o
YFA:0 YFB:o Zz:THA:o0 SEA0 v
YFA=B:o YEVzT.A:o0 YFVYa.A:o
YF0:e XES:i— Yhtrec, : 7> (t=>T—>T) > 1T

Going further
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HOL": Reduction

@ One step reduction is the congruence > defined from the rules
(MT.M)N > Mz := N]
rec, Mg M;0 > M,
rec, My M, (SN) = MlN(I’eCTMoMl N)

As usual, we write

o >" the reflexive-transitive closure of > (grand reduction)
o = the reflexive-symmetric-transitive closure of > (conversion)

@ Church-Rosser + Subject reduction: unchanged
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HOL": Deduction (1/2)
Logical contexts: r = A,... A,
YEA 0 (1<i<n) E)THEA El_A/:OAA’
(B) Ay,..., A, F A ()T F A B
()T, AF B (S)TFA=B ()TFA
(5)T-A= B ()T + B
(Z,z:7)THA )T FVa. A EN:T
(ST F Ve A ()T F Afz := N]
O TEHA )T FVa. A
— a¢TV(E,])
(E)TFVa.A ()T - Ao = 7]
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HOL™: Deduction

Equivalently, derivations can be presented as proof-terms:

Proof-terms t,u

(V7-intro, -elim)
(Va-intro, -elim)

p= £ (Axiom)
| XAt | tu (=-intro, -elim)
| Xz7™.t | tN
|

Aa.t | tT

Going further
00000

(2/2)

= MHOL' = system V + primitive numerals

Recall: System V is the PTS defined by:
oS = {x, 0O A}
o A = {(x:0), (O:A)}
o R = {(xx%), (O,%%), (A,*x*), (0,0,0)}
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Second-order encodings in HOL™

Propositions (: 0) are only based on “=" and “V" (for all types).
Other constructions are defined using second-order encodings:

1L = vz z
-A = A= 1
(AANB) = Vz°. (A=B=2) ==z
(AVB) = Vz°. (A=z2)=(B=>2)=>z
A< B = (A= B)A(B=A)
o7 A(z) = V0. (Vo™ A(z) = 2) = 2
Ja. Ala) = V22 (Va. Ala) = 2) = 2
Ty =, Ty = VT zx1 = 229
N(z) := Vz¢7°% 20= (Vy*. zy = 2 (Sy)) = zx

Aim: Prove that HOL™ is equiconsistent with Zermelo's set theory
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Zermelo's set theory (classical & intuitionistic)

Going further
00000

Formulas o, = z=y | ze€y | L | o=
| oAy | VY | Vao | Jz¢
Axioms:
VaVb [Vz (zr €a<=x€b) = a=DH (EXT)
VZVa FbVx [z €b & x€ad(x,?) (CoMPR)
VaVbIcVz [zr€c & z=aVe =1 (PAIR)
Va I Vz[zreb & Jy(yeanz €y (UNION)
Va3V [z e€b & xCd (POWER)
Ja [Fx€aVy (y¢x) A (InF)

VeeaycaVz (zecys zeaxVe=u1)

Notations: Z / |Z = classical/intuitionistic Zermelo set theory



HOL and HOL™ Z and 75¢ From HOL™ to 1Z5¢ From IZ to HOL™

0000000000 00@00000 [e]e]e} 00000000000

Skolemized Zermelo's set theory (Z%/1Z°%)

Going further
00000

Terms t,bu = x | {zxet:p}
| {tu} | UL | BO | w
Formulas $, = t=u | teu | L | ¢o=7
| oAy | oVvY | Voo | Tzo
Axioms:
VaVb[Vzx (t€a<sxzedb) = a=D (ExT)
VZVaVz [zre{yca:d(y,2)} & x€and(z,?) (Compr™)
Va Vb Vx [z € {a,b} & z=aVax =0 (PAIR™)
VaVz [z €Ja & Ty (y€anxey) (Un1oNk)
Va Vx [z € P(a) & x C al (POWERSk)
Vr [z €w < nat(z)] sk

Notations: Z% / I1Z°
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Notations in Z%/1Z°

In the above axioms, we use the shorthands:

g = {rew:l}
{z} = {a,2}
s(x) = zU{x}
xCy = Vz(z€x=>z€y)
nat(z) = Va (@€a A Vy(yca=s(y) €a) = z€a)

But we can also introduce many other set-theoretic notations:

(z,y) = {{z}{z,y}}

AuB = (J{A.B}

ANB = {x€A:z€ B}

AxB = {z€PPAUB)) : Ixr€cAIyeB z=(z,y)}
BA = {fePB(Ax B) : f function from A to B}

1@ = UpeUUr : @y er)

Going further
00000
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Deskolemization (from Z% to Z) (1/2)

o To each term t of Z*k (with free variables &) we associate a
formula z €° t of Z (with free variables Z, z), letting:

z E” @ = z€x

zZ€E°w = nat(z)

z €° {tl;tg} = (Z = tl)o \Y (Z = tg)o
z €° P(t) = Vz (z €z = z€°%)
z e Jt = Jy(ye®tnzey)
ze{xet : ¢} = z€°t N ¢°{x =z}

o To each formula ¢ of Z (with free variables ¥) we associate a
formula ¢° of Z (with the same free variables), letting:

(t=w)° = Vz(z€°teze®u) (pAY)° = ¢° AY°

(tew?°® = Fz((z=t)°ANze€°u) (pVh)° = ¢°VY°
1° = 1 (Vz ¢)° = Vx ¢°
(p=19)° = ¢°=>9¢° (Fz ¢)° = Jz¢°
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Deskolemization (from Z% to Z) (2/2)

Proposition
QIf (NZF¢, then (NZ¥F¢ ((NZ is an extension of (1)Z)
(2] 1Zsk - P° & b (for each formula of Z%<)
QIf (NZ*F¢, then ()ZF ¢° (retraction)
Theorem [M. 2005]

(1)Z% is a conservative extension of (1)Z
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A weak form of replacement in Z

We want to show that the set {t(x): 2 € u} is definable in 1Z°.

For that we define a binder B(t(x), = € u) by induction on t(z):

B(z, x € u) = u
By, z € u) = Ply) (Giy#z)
B(w, = € u) = P(w)
B({t1;t2}, € u) = P(B(t1, v € u) UB(t2, = € u))
BR(), « € u) PERUB(, = € u)
BUt, = € w) — PUUB, = € w)
B{yet : ¢}, xecu) = BUBE, = €u))

Going further
00000

(1/2)

Proposition

1Z* - Vz [z cu = t(z) € B(t(z), = € u)]
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A weak form of replacement in Z% (2/2)

Given terms ¢(x) and u, we now let

{tkx):zeu} = {yeB(t(x), zcu) : Iz (zcu N y=tx))}

Proposition

1Z% - Yy ye{tx) : zeu} & Tz (zcuny=t))

From the above construction, we can define the following
set-theoretic binders:

U B(z) = U{B(:v) cx € A}
{fe (U B(x))A . VzeA f(z) eB(x)}

z€EA
AreA.t(x) = {(x,t(z)):ze A}

—
>

=
i
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Translation from HOL™ to 1Z%

e Each type 7 of HOL™ is translated into a term 71 of Z*¢ with the
same type variables (now seen as set-theoretic variables):

of = P({e}) al = « J

J = w (r—= o)t = (O’T)(T]\)

o Each object-term M of HOL™ is translated into a term M of Z%
with the same term variables (now seen as set-theoretic variables):

ot = «x of = o
Az7.M(z))t = Xzert.M(z)f st == Mew.s(n)
(M N = MF(NT) I
(A= B)t = {,G{o}:OGAT:>o€BT}
(V™. A(z))t = {_€{o} : Vaerl. ec A(z)"}
(Va. A(a)t = {_€{e} : Va.ec A(a)}
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Soundness of the translation

Proposition (Correctness of the translations 7+ 77 and M — MT)

QIf z1:7,...,2p: T F M :7 (in HOLT),
then: 1Z% F QL‘1€TI/\"‘/\$TL€TJ:$MT€TT

QIf z1:7,....,2p:T EM:7 and M =* M’ (inHOL+),
then: |ZSkFxleTlT/\‘-‘/\anT;EéMT:M’T

QIf (x1:7,...,2,:7) A1,..., Ay = B (in HOL™),
then: 1Z% F ,’B1€T1T/\~-~/\$n67',l/\
ecAlA---Nec Al = ec BT

Theorem (Relative consistency of HOL™ w.r.t. 1Z°)

If HOL™ F 1, then 1Z%F L (ile. HOLT < 1Z°)
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[M. 2001]

From HOL™ to 1Z5¢

HOL and HOL™ Z and 7%
000

0000000000 00000000

Sets as pointed graphs

In HOL™, sets can be represented as pointed graphs,
that is: as triples (o, A, a) where:
Q o« isatype
Q@ A : a— «a— o isa binary relation on «
Q a : « is a distinguished point

(the type of vertices)
(the arc relation)

(the root of the p. graph)

Examples:

2={o2,{2}} 3=A{9,{2},{2,{7}}} z = {{z}}

Note: Pointed graphs allow the representation of cyclic sets,
or more generally: non-well-founded sets
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Equality as bisimilarity

From HOL™ to 1Z5¢ From IZ to HOL™
000 00000000000

@ A given set can be represented by many pointed graphs

o Extensional collapse is achieved via the relation of bisimilarity
(a7A7a)%(67B7b) :E
dR:a — 8 — o.

(1) (Vo,2" 1. Vy: 8. A2’z ARxy — Fy':B. Ra'y' ABy'y)
(2) (Vy,y :B.Vz:a. By yARzy — 32’ :a. R’y AN Az x)

(3) Rab
(o, Ay a) (a,Aya) (B, B,b) (a,Aya) (B, B,b)
s g a b
° °
a7 Yy
Condition (1) Condition (2) Condition (3)

Going further
00000

A
A
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Example of bisimulations
@ {o}
@ O QE
/ C
x={z}
{® {o}}
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Membership as shifted bisimilarity

o Extensional membership (€) is interpreted as shifted bisimilarity
(o, Aya) € (B, B,b) =
W 5. BYVbA (o, A a) = (8, B,V)
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Compatibility with bisimilarity

@ In what follows, we write:
Ve, Aya). ---
IHa,Aya). -+ = Ja.FJA:a—a—o0 Ja:a. ---

Va.VA:a - a —o0. Va:a. ---

o Exercise: Prove that € is compatible with ~

V(e, A,a). Y(8, B,b). V(a/, A, d').
(Oé A,a) € (B,B,b) = (a, A,a) = (o/, A',a") = (!, A, d’) € (B, B, b)

) €
Y(a, A, a). Y(8,B,b). Y(8',B',V).
(a,A,a) € (8,B,b) = (8,B,b) = (8/,B',V) = (a, A,a) € (8/, B, V)

o Exercise: Prove the axiom of extensionality

V(a, A,a). Y(B, B,b).
(V('y,C, o). (7,C,¢c) € (v, A,a) & (v,C,c) € (5,B,b))
= (a,A,a) = (8, B,b)

o Exercise: Prove the other Zermelo axioms in HOL™
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Example: the pairing axiom (1/2)

Given pointed graphs («, A, a) and (8, B,b), we consider the pointed
graph (v, C, ¢) defined by:

(7,C,c)
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Example: the pairing axiom (2/2)

Given pointed graphs («, A, a) and (8, B,b), we consider the pointed
graph (v, C, ¢) defined by:

@ v = (a—0)—=(B—0)—o0
@ in; : a =y = A AT T hia (injective)
@ iny : B—y = AP AR T NS T hay (injective)
@ c iy = AFTONRETO L (# iniz, inay)
e C : y—=7v—o0

= A,z

(Fr',z:a. ' =ini(@')Az=ini(z) ANAz'z) V
(Fy',y:8. 2 =ina(y') Az =ina(y) ABy'y) V
(2 =ini(a) Az =c) \Y
( !

HOL* + V(6,D,d). (6,D,d) € (y,C,c) <
6,D,d) ~ (a, A,a) vV (5,D,d) ~ (8, B,b)
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The Antifoundation axiom (AFA) [Aczel 8]

The sets-as-pointed-graphs representation is incompatible with the
Foundation axiom, but it satisfies the Antifoundation axiom (AFA)

@ (Going back to set theory) Given a digraph G = (V, A), we call a
reification of G any family of sets (z;);cv such that
z; = {z; : (j,i) € A} forallieV
@ Using Replacement, it is easy to see that each well-founded digraph has a

unique reification. On the other hand, the Foundation axiom implies that
non well-founded digraphs have no reification

This naturally motivates the:
Antifoundation axiom (AFA)

Every digraph has a unique reification

@ Using this axiom, we can prove (for instance) that there exists a
unique set z such that = {z}
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Translating 1Z into HOL™

The sets-as-pointed-graphs representation allows us to translate Z
into HOL™ as follows:

o Each variable = (of Z) is translated in to 3 variables (of HOL™):

e a type variable Z
e a term variable T :
o a term variable &

—T =0

8 Kl

e Each formula ¢ (of Z) with free variables 7 is translated into a
proposition ¢* (of HOL™T) with free variables 7, 7, i:

(=y)" = (,4,%) (7,79
(zey) = (T,%,%)€ (@59
(L = 1L
(@=v)" = ¢" =9 (etc)
Vxd)* = VZ.VZ:Z =T —o0.Vi:ZT. "
Bz¢)* = 3IZ.IT: T > T —o0. IT:T. ¢F
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Soundness of the translation

If ¢ is a formula of 1Z with free variables z1, ..., z,, then ¢* is a term of
type o in the context Z; : Z; > T; o0, T; : ; (1<i<n)

Proposition (Soundness)

If 1ZF ¢, then HOL™ k- ¢*

Since 1L* = 1, we get that:

Theorem (Relative consistency of 1Z w.r.t. HOL™)
If 1IZF 1, then HOLTF L (i.e. 12 < HOL™)

Corollary (Equiconsistency)

The theories Z, 1Z, 75, 1Z%K are equiconsistent with HOL™
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Going further

Actually, we can prove that:

Proposition (Soundness)

If 1Z+TC+AFAF ¢, then HOL™ I ¢*

where:
@ TC = Transitive Closure Axiom (“every set has a transitive closure”)
@ AFA = Antifoundation Axiom (“every digraph has a unique reification”)

@ Ind = Set induction scheme (“the relation € is well-founded”)
(classically equivalent to the foundation axiom (FA), but incompatible with AFA)

From this, it follows that:

[M. 2009]

@ The theories 1Z, 1Z+TC+1Ind, 1Z+TC+AFA and HOLT
are equiconsistent

@ Moreover, these theories prove the very same arithmetic formulas
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The proof diagram

¢ O A At

IZ+4TC+AFA ——— HOL™

N

From 1Z to HOL™ Going further
00000000000 00@00

deskolemization

Izk ———— |7
N

reification (AFA)

From this, it follows that:

@ HOLT™ is a conservative extension of 1Z + TC + AFA

IZ+TC+ AFA

(via ¢ — ¢*)

@ 1Z, IZ+TC+AFA and HOL™ are equiconsistent
© 1Z, 1IZ+TC+AFA and HOL™ prove the same arithmetic formulas

The case of 1Z+ TC+ Ind is treated separately
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What about classical systems?

Using Friedman’s A-translation (in set theory), we have:

o /F ~ IZF¢ [Friedman '73]
With the same method, we also get:

0o/ ~ IZ

e Z+TC+FA ~ IZ+TC+Ind

@ Z+TC+AFA ~ IZ+TC+ AFA

Therefore:

Theorem [M. 2005, 2009]

The following theories are equiconsistent:

Z Z+TC+FA Z+TC+ AFA
Q Q Q
IZ ~ 1Z+TC+Ind =~ 1Z4+TC+AFA ~ HOLt ~ )\Z
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What about replacement?

A long quest for cut elimination:

o PA = HA ~ System T [Godel '58, Tait '67]
o PA2 ~ HA2 ~» System F [Girard '69]
o PAw ~ HAw ~» System Fw [Girard '72]
e Z ~ IZ ~HOL™ =~ \HOL™ [M. 2009]
o ZF ~ IZF¢ ~ HOLT +D ~ A(HOL' + D) [M. 2009]

where D is the domination scheme:

(Vz:7.monp.R(z,p)) =
(Vz:7.P(z) = 36.R(x,0)) = 3B.Vx:7.P(z) = R(z, )

where monB.A(B) = VB8 .Vf:(B— F).inj(B, 8, f) = A(B) = A(B')

A(HOLt + D) =
Curry-style AHOL™
+ proof term A&y .y (Ap.&2p(&11)) + D (keeps SN)
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