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HOL: Syntax & typing

Types τ, σ ::= ι | o | τ → σ

Object-terms M,N,A,B ::= x | λxτ .M | M N
| A⇒ B | ∀xτ . A
| 0 | S | recτ

Typing contexts Σ ::= x1 : τ1, . . . , xn : τn (x1 6≡ xi if i 6= j)

Alternative notations: ι ≡ Nat, o ≡ ? ≡ Prop

Typing rules

Σ ` x : τ
(x:τ)∈Σ

Σ, x : τ ` M : σ

Σ ` λxτ .M : τ → σ
Σ ` M : τ → σ Σ ` N : τ

Σ ` MN : σ

Σ ` A : o Σ ` B : o
Σ ` A⇒ B : o

Σ, x : τ ` A : o

Σ ` ∀xτ . A : o

Σ ` 0 : ι Σ ` S : ι→ ι Σ ` recτ : τ → (ι→ τ → τ)→ ι→ τ
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HOL: Reduction

One step reduction is the congruence � defined from the rules

(λxτ .M)N � M [x := N ]

recτ M0M1 0 � M0

recτ M0M1 (SN) � M1N (recτ M0M1N)

As usual, we write

�∗ the reflexive-transitive closure of � (grand reduction)
∼= the reflexive-symmetric-transitive closure of � (conversion)

Church-Rosser:

M1
∼= M2 iff M1 �∗ M ′ and M2 �∗ M ′ for some M ′

Subject reduction:

If Σ ` M : τ and M �∗ M ′, then Σ ` M ′ : τ

+ decidability of type checking/inference (won’t be used here)

+ strong normalization (won’t be used here)
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HOL: Deduction

Logical contexts: Γ := A1, . . . , An

Deduction rules

Σ ` Ai : o (1≤i≤n)

〈Σ〉 A1, . . . , An ` Ai
〈Σ〉 Γ ` A Σ ` A′ : o

〈Σ〉 Γ ` A′
A∼=A′

〈Σ〉 Γ, A ` B
〈Σ〉 Γ ` A⇒ B

〈Σ〉 Γ ` A⇒ B 〈Σ〉 Γ ` A
〈Σ〉 Γ ` B

〈Σ, x : τ〉 Γ ` A
〈Σ〉 Γ ` ∀xτ . A

〈Σ〉 Γ ` ∀xτ . A Σ ` N : τ

〈Σ〉 Γ ` A[x := N ]

Equivalently, derivations can be presented as proof-terms:

Proof-terms t, u ::= ξ (Axiom)

| λξA . t | t u (⇒-intro, -elim)

| λxτ . t | tN (∀τ -intro, -elim)

= λHOL = system Fω + primitive numerals
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Second-order encodings in HOL

Propositions (: o) are only based on “⇒” and “∀” (for all types).
Other constructions are defined using second-order encodings:

⊥ ≡ ∀zo. z
¬A : ≡ A⇒ ⊥

(A ∧B) :≡ ∀zo. (A⇒ B ⇒ z)⇒ z

(A ∨B) :≡ ∀zo. (A⇒ z)⇒ (B ⇒ z)⇒ z

A⇔ B :≡ (A⇒ B) ∧ (B ⇒ A)

∃xτ . A(x) :≡ ∀zo. (∀xτ . A(x)⇒ z)⇒ z

x1 =τ x2 :≡ ∀zτ→o. z x1 ⇒ z x2

N(x) :≡ ∀zι→o. z 0⇒ (∀yι. z y ⇒ z (S y))⇒ z x
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HOL+: Syntax & typing

Types τ, σ ::= α | ι | o | τ → σ

Object-terms M,N,A,B ::= x | λxτ .M | M N
| A⇒ B | ∀xτ . A | ∀α.A
| 0 | S | recτ

Typing contexts Σ ::= x1 : τ1, . . . , xn : τn (x1 6≡ xi if i 6= j)

Alternative notations: ι ≡ Nat, o ≡ ? ≡ Prop

Typing rules

Σ ` x : τ
(x:τ)∈Σ

Σ, x : τ ` M : σ

Σ ` λxτ .M : τ → σ
Σ ` M : τ → σ Σ ` N : τ

Σ ` MN : σ

Σ ` A : o Σ ` B : o
Σ ` A⇒ B : o

Σ, x : τ ` A : o

Σ ` ∀xτ . A : o
Σ ` A : o

Σ ` ∀α.A : o
α/∈TV (Σ)

Σ ` 0 : ι Σ ` S : ι→ ι Σ ` recτ : τ → (ι→ τ → τ)→ ι→ τ



HOL and HOL+ Z and Zsk From HOL+ to IZsk From IZ to HOL+ Going further

HOL+: Reduction

One step reduction is the congruence � defined from the rules

(λxτ .M)N � M [x := N ]

recτ M0M1 0 � M0

recτ M0M1 (SN) � M1N (recτ M0M1N)

As usual, we write

�∗ the reflexive-transitive closure of � (grand reduction)
∼= the reflexive-symmetric-transitive closure of � (conversion)

Church-Rosser + Subject reduction: unchanged
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HOL+: Deduction (1/2)

Logical contexts: Γ := A1, . . . , An

Deduction rules

Σ ` Ai : o (1≤i≤n)

〈Σ〉 A1, . . . , An ` Ai
〈Σ〉 Γ ` A Σ ` A′ : o

〈Σ〉 Γ ` A′
A∼=A′

〈Σ〉 Γ, A ` B
〈Σ〉 Γ ` A⇒ B

〈Σ〉 Γ ` A⇒ B 〈Σ〉 Γ ` A
〈Σ〉 Γ ` B

〈Σ, x : τ〉 Γ ` A
〈Σ〉 Γ ` ∀xτ . A

〈Σ〉 Γ ` ∀xτ . A Σ ` N : τ

〈Σ〉 Γ ` A[x := N ]

〈Σ〉 Γ ` A
〈Σ〉 Γ ` ∀α.A

α/∈TV (Σ,Γ)
〈Σ〉 Γ ` ∀α.A
〈Σ〉 Γ ` A[α := τ ]
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HOL+: Deduction (2/2)

Equivalently, derivations can be presented as proof-terms:

Proof-terms t, u ::= ξ (Axiom)

| λξA . t | t u (⇒-intro, -elim)

| λxτ . t | tN (∀τ -intro, -elim)

| λα . t | t τ (∀α-intro, -elim)

= λHOL+ = system V + primitive numerals

Recall: System V is the PTS defined by:

S := {?, �, 4}
A := {(? : �), (� : 4)}
R := {(?, ?, ?), (�, ?, ?), (4, ?, ?), (�,�,�)}
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Second-order encodings in HOL+

Propositions (: o) are only based on “⇒” and “∀” (for all types).
Other constructions are defined using second-order encodings:

⊥ :≡ ∀zo. z
¬A :≡ A⇒ ⊥

(A ∧B) :≡ ∀zo. (A⇒ B ⇒ z)⇒ z

(A ∨B) :≡ ∀zo. (A⇒ z)⇒ (B ⇒ z)⇒ z

A⇔ B :≡ (A⇒ B) ∧ (B ⇒ A)

∃xτ . A(x) :≡ ∀zo. (∀xτ . A(x)⇒ z)⇒ z

∃α.A(α) :≡ ∀zo. (∀α. A(α)⇒ z)⇒ z

x1 =τ x2 :≡ ∀zτ→o. z x1 ⇒ z x2

N(x) :≡ ∀zι→o. z 0⇒ (∀yι. z y ⇒ z (S y))⇒ z x

Aim: Prove that HOL+ is equiconsistent with Zermelo’s set theory
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Zermelo’s set theory (classical & intuitionistic)

Formulas φ, ψ ::= x = y | x ∈ y | ⊥ | φ⇒ ψ
| φ ∧ ψ | φ ∨ ψ | ∀xφ | ∃xφ

Axioms:

∀a ∀b [∀x (x ∈ a⇔ x ∈ b) ⇒ a = b]

∀~z ∀a ∃b ∀x [x ∈ b ⇔ x ∈ a ∧ φ(x, ~z)]

∀a ∀b ∃c ∀x [x ∈ c ⇔ x = a ∨ x = b]

∀a ∃b ∀x [x ∈ b ⇔ ∃y (y ∈ a ∧ x ∈ y)]

∀a ∃b ∀x [x ∈ b ⇔ x ⊆ a]

∃a [∃x∈ a ∀y (y /∈ x) ∧
∀x∈ a ∃y ∈ a ∀z (z ∈ y ⇔ z ∈ x ∨ z = x)]

(Ext)

(Compr)

(Pair)

(Union)

(Power)

(Inf)

Notations: Z / IZ = classical/intuitionistic Zermelo set theory
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Skolemized Zermelo’s set theory (Zsk/IZsk)

Terms

Formulas

t, u ::= x | {x ∈ t : φ}
| {t, u} |

⋃
t | P(t) | ω

φ, ψ ::= t = u | t ∈ u | ⊥ | φ⇒ ψ
| φ ∧ ψ | φ ∨ ψ | ∀xφ | ∃xφ

Axioms:

∀a ∀b [∀x (x ∈ a⇔ x ∈ b) ⇒ a = b]

∀~z ∀a ∀x [x ∈ {y ∈ a : φ(y, ~z)} ⇔ x ∈ a ∧ φ(x, ~z)]

∀a ∀b ∀x [x ∈ {a, b} ⇔ x = a ∨ x = b]

∀a ∀x [x ∈
⋃
a ⇔ ∃y (y ∈ a ∧ x ∈ y)]

∀a ∀x [x ∈ P(a) ⇔ x ⊆ a]

∀x [x ∈ ω ⇔ nat(x)]

(Ext)

(Comprsk)

(Pairsk)

(Unionsk)

(Powersk)

(Infsk)

Notations: Zsk / IZsk
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Notations in Zsk/IZsk

In the above axioms, we use the shorthands:

∅ := {x ∈ ω : ⊥}
{x} := {x, x}
s(x) := x ∪ {x}

x ⊆ y :≡ ∀z (z ∈ x⇒ z ∈ y)
nat(x) :≡ ∀a

(
∅ ∈ a ∧ ∀y (y ∈ a⇒ s(y) ∈ a) ⇒ x ∈ a

)
But we can also introduce many other set-theoretic notations:

(x, y) := {{x}, {x, y}}

A ∪B :=
⋃
{A,B}

A ∩B := {x ∈ A : x ∈ B}
A×B := {z ∈ P(P(A ∪B)) : ∃x∈A ∃y ∈B z = (x, y)}

BA := {f ∈ P(A×B) : f function from A to B}

f(x) :=
⋃{

y ∈
⋃⋃

f : (x, y) ∈ f
}
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Deskolemization (from Zsk to Z) (1/2)

To each term t of Zsk (with free variables ~x) we associate a
formula z ∈◦ t of Z (with free variables ~x, z), letting:

z ∈◦ x :≡ z ∈ x
z ∈◦ ω :≡ nat(z)
z ∈◦ {t1; t2} :≡ (z = t1)◦ ∨ (z = t2)◦

z ∈◦ P(t) :≡ ∀x (x ∈ z ⇒ x ∈◦ t)
z ∈◦

⋃
t :≡ ∃y (y ∈◦ t ∧ z ∈ y)

z ∈◦ {x ∈ t : φ} :≡ z ∈◦ t ∧ φ◦{x := z}

To each formula φ of Zsk (with free variables ~x) we associate a
formula φ◦ of Z (with the same free variables), letting:

(t = u)◦ :≡ ∀z (z ∈◦ t⇔ z ∈◦ u)
(t ∈ u)◦ :≡ ∃z ((z = t)◦ ∧ z ∈◦ u)

⊥◦ :≡ ⊥
(φ⇒ ψ)◦ :≡ φ◦ ⇒ ψ◦

(φ ∧ ψ)◦ :≡ φ◦ ∧ ψ◦
(φ ∨ ψ)◦ :≡ φ◦ ∨ ψ◦
(∀x φ)◦ :≡ ∀x φ◦
(∃x φ)◦ :≡ ∃x φ◦
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Deskolemization (from Zsk to Z) (2/2)

Proposition

1 If (I)Z ` φ, then (I)Zsk ` φ ((I)Zsk is an extension of (I)Z)

2 IZsk ` φ◦ ⇔ φ (for each formula of Zsk)

3 If (I)Zsk ` φ, then (I)Z ` φ◦ (retraction)

Theorem [M. 2005]

(I)Zsk is a conservative extension of (I)Z
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A weak form of replacement in Zsk (1/2)

We want to show that the set {t(x) : x ∈ u} is definable in IZsk.

For that we define a binder B(t(x), x ∈ u) by induction on t(x):

B(x, x ∈ u) = u
B(y, x ∈ u) = P(y) (si y 6≡ x)
B(ω, x ∈ u) = P(ω)
B({t1; t2}, x ∈ u) = P

(
B(t1, x ∈ u) ∪ B(t2, x ∈ u)

)
B(P(t), x ∈ u) = P(P(

⋃
B(t, x ∈ u)))

B(
⋃
t, x ∈ u) = P(

⋃⋃
B(t, x ∈ u))

B({y ∈ t : φ}, x ∈ u) = P(
⋃

B(t, x ∈ u))

Proposition

IZsk ` ∀x [x ∈ u ⇒ t(x) ∈ B(t(x), x ∈ u)]
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A weak form of replacement in Zsk (2/2)

Given terms t(x) and u, we now let

{t(x) : x ∈ u} := {y ∈ B(t(x), x ∈ u) : ∃x (x ∈ u ∧ y = t(x))}

Proposition

IZsk ` ∀y [y ∈ {t(x) : x ∈ u} ⇔ ∃x (x ∈ u ∧ y = t(x))]

From the above construction, we can define the following
set-theoretic binders:⋃

x∈A
B(x) :=

⋃
{B(x) : x ∈ A}∏

x∈A
B(x) :=

{
f ∈

(⋃
x∈A

B(x)
)A

: ∀x∈A f(x) ∈ B(x)

}
λx∈A . t(x) := {(x, t(x)) : x ∈ A}
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Translation from HOL+ to IZsk

Each type τ of HOL+ is translated into a term τ † of Zsk with the
same type variables (now seen as set-theoretic variables):

o† := P({•})
ι† := ω

α† := α

(τ → σ)† :=
(
σ†
)(τ†)

Each object-term M of HOL+ is translated into a term M† of Zsk

with the same term variables (now seen as set-theoretic variables):

x† := x

(λxτ .M(x))† := λx∈ τ † .M(x)†

(M N)† := M†(N†)

0† := ∅
S† := λn ∈ ω . s(n)

rec†τ := . . .

(A⇒ B)† =
{
∈ {•} : • ∈ A† ⇒ • ∈ B†

}
(∀xτ . A(x))† =

{
∈ {•} : ∀x∈ τ †. • ∈ A(x)†

}
(∀α.A(α))† =

{
∈ {•} : ∀α. • ∈ A(α)†

}
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Soundness of the translation

Proposition (Correctness of the translations τ 7→ τ † and M 7→M†)

1 If x1 : τ1, . . . , xn : τn ` M : τ (in HOL+),

then: IZsk ` x1 ∈ τ †1 ∧ · · · ∧ xn ∈ τ †n ⇒M† ∈ τ †

2 If x1 : τ1, . . . , xn : τn ` M : τ and M �∗ M ′ (in HOL+),

then: IZsk ` x1 ∈ τ †1 ∧ · · · ∧ xn ∈ τ †n ⇒M† = M ′
†

3 If 〈x1 : τ1, . . . , xn : τn〉 A1, . . . , Ak ` B (in HOL+),

then: IZsk ` x1 ∈ τ †1 ∧ · · · ∧ xn ∈ τ †n ∧
• ∈ A†1 ∧ · · · ∧ • ∈ A

†
k ⇒ • ∈ B†

Theorem (Relative consistency of HOL+ w.r.t. IZsk)

If HOL+ ` ⊥, then IZsk ` ⊥ (i.e. HOL+ ≤ IZsk)
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Sets as pointed graphs [M. 2001]

In HOL+, sets can be represented as pointed graphs,
that is: as triples (α,A, a) where:

1 α is a type (the type of vertices)

2 A : α→ α→ o is a binary relation on α (the arc relation)

3 a : α is a distinguished point (the root of the p. graph)

Examples:

3 = {∅, {∅}, {∅, {∅}}}2 = {∅, {∅}} x = {{x}}

Note: Pointed graphs allow the representation of cyclic sets,
or more generally: non-well-founded sets
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Equality as bisimilarity

A given set can be represented by many pointed graphs

Extensional collapse is achieved via the relation of bisimilarity

(α,A, a) ≈ (β,B, b) :≡
∃R :α→ β → o.

(1) (∀x, x′ :α. ∀y :β. Ax′ x ∧Rxy → ∃y′ :β. Rx′ y′ ∧B y′ y) ∧
(2) (∀y, y′ :β. ∀x :α. B y′ y ∧Rxy → ∃x′ :α. Rx′ y′ ∧Ax′ x) ∧
(3) Ra b

x

x′

y

y′

(α,A, a) (β,B, b)

Condition (1) Condition (2)

(α,A, a) (β,B, b)

x

x′

y

y′

Condition (3)

(α,A, a) (β,B, b)

a b
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Example of bisimulations

∅ {∅}

{∅, {∅}}
x = {x}
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Membership as shifted bisimilarity

Extensional membership (∈) is interpreted as shifted bisimilarity

(α,A, a) ∈ (β,B, b) :≡
∃b′ :β. B b′ b ∧ (α,A, a) ≈ (β,B, b′)

2 3∈
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Compatibility with bisimilarity

In what follows, we write:

∀(α,A, a). · · · :≡ ∀α. ∀A :α→ α→ o. ∀a :α. · · ·
∃(α,A, a). · · · :≡ ∃α. ∃A :α→ α→ o. ∃a :α. · · ·

Exercise: Prove that ∈ is compatible with ≈
∀(α,A, a). ∀(β,B, b). ∀(α′, A′, a′).

(α,A, a) ∈ (β,B, b)⇒ (α,A, a) ≈ (α′, A′, a′)⇒ (α′, A′, a′) ∈ (β,B, b)

∀(α,A, a). ∀(β,B, b). ∀(β′, B′, b′).
(α,A, a) ∈ (β,B, b)⇒ (β,B, b) ≈ (β′, B′, b′)⇒ (α,A, a) ∈ (β′, B′, b′)

Exercise: Prove the axiom of extensionality

∀(α,A, a). ∀(β,B, b).(
∀(γ, C, c). (γ, C, c) ∈ (α,A, a)⇔ (γ, C, c) ∈ (β,B, b)

)
⇒ (α,A, a) ≈ (β,B, b)

Exercise: Prove the other Zermelo axioms in HOL+
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Example: the pairing axiom (1/2)

Given pointed graphs (α,A, a) and (β,B, b), we consider the pointed
graph (γ,C, c) defined by:

in1 in2

c

(α,A, a)
(β,B, b)

(γ,C, c)
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Example: the pairing axiom (2/2)

Given pointed graphs (α,A, a) and (β,B, b), we consider the pointed
graph (γ,C, c) defined by:

γ :≡ (α→ o)→ (β → o)→ o

in1 : α→ γ :≡ λxα . λhα→o1 . λhβ→o2 . h1 x (injective)

in2 : β → γ :≡ λyβ . λhα→o1 . λhβ→o2 . h2 y (injective)

c : γ :≡ λhα→o1 . λhβ→o2 .⊥ ( 6= in1 x, in2 y)

C : γ → γ → o
:≡ λz′, z : γ .

(∃x′, x :α. z′ = in1(x′) ∧ z = in1(x) ∧Ax′ x) ∨
(∃y′, y :β. z′ = in2(y′) ∧ z = in2(y) ∧B y′ y) ∨
(z′ = in1(a) ∧ z = c) ∨
(z′ = in2(b) ∧ z = c)

Proposition

HOL+ ` ∀(δ,D, d). (δ,D, d) ∈ (γ,C, c) ⇔
(δ,D, d) ≈ (α,A, a) ∨ (δ,D, d) ≈ (β,B, b)
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The Antifoundation axiom (AFA) [Aczel ’88]

The sets-as-pointed-graphs representation is incompatible with the
Foundation axiom, but it satisfies the Antifoundation axiom (AFA)

(Going back to set theory) Given a digraph G = (V,A), we call a
reification of G any family of sets (xi)i∈V such that

xi =
{
xj : (j, i) ∈ A

}
for all i ∈ V

Using Replacement, it is easy to see that each well-founded digraph has a
unique reification. On the other hand, the Foundation axiom implies that
non well-founded digraphs have no reification

This naturally motivates the:

Antifoundation axiom (AFA)

Every digraph has a unique reification

Using this axiom, we can prove (for instance) that there exists a
unique set x such that x = {x}
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Translating IZ into HOL+

The sets-as-pointed-graphs representation allows us to translate Z
into HOL+ as follows:

Each variable x (of Z) is translated in to 3 variables (of HOL+):

a type variable x̄
a term variable x̃ : x̄→ x̄→ o
a term variable ẋ : x̄

Each formula φ (of Z) with free variables ~x is translated into a

proposition φ∗ (of HOL+) with free variables ~̄x, ~̃x, ~̇x:

(x = y)∗ :≡ (x̄, x̃, ẋ) ≈ (ȳ, ỹ, ẏ)
(x ∈ y)∗ :≡ (x̄, x̃, ẋ) ∈ (ȳ, ỹ, ẏ)

(⊥)∗ :≡ ⊥
(φ⇒ ψ)∗ :≡ φ∗ ⇒ ψ∗ (etc.)

(∀xφ)∗ :≡ ∀x̄. ∀x̃ : x̄→ x̄→ o. ∀ẋ : x̄. φ∗

(∃xφ)∗ :≡ ∃x̄. ∃x̃ : x̄→ x̄→ o. ∃ẋ : x̄. φ∗
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Soundness of the translation

If φ is a formula of IZ with free variables x1, . . . , xn, then φ∗ is a term of
type o in the context x̃i : x̄i → x̄i → o, ẋi : x̄i (1 ≤ i ≤ n)

Proposition (Soundness)

If IZ ` φ, then HOL+ ` φ∗

Since ⊥∗ ≡ ⊥, we get that:

Theorem (Relative consistency of IZ w.r.t. HOL+)

If IZ ` ⊥, then HOL+ ` ⊥ (i.e. IZsk ≤ HOL+)

Corollary (Equiconsistency)

The theories Z, IZ, Zsk, IZsk are equiconsistent with HOL+
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Going further

Actually, we can prove that:

Proposition (Soundness)

If IZ + TC + AFA ` φ, then HOL+ ` φ∗

where:

TC = Transitive Closure Axiom (“every set has a transitive closure”)

AFA = Antifoundation Axiom (“every digraph has a unique reification”)

Ind = Set induction scheme (“the relation ∈ is well-founded”)

(classically equivalent to the foundation axiom (FA), but incompatible with AFA)

From this, it follows that:

Theorem [M. 2009]

The theories IZ, IZ + TC + Ind, IZ + TC + AFA and HOL+

are equiconsistent

Moreover, these theories prove the very same arithmetic formulas
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The proof diagram

IZ + TC + AFA HOL+ IZsk IZ

IZ + TC + AFA

φ 7→ φ∗ A 7→ A† deskolemization

∩

reification (AFA)

From this, it follows that:

1 HOL+ is a conservative extension of IZ + TC + AFA (via φ 7→ φ∗)

2 IZ, IZ + TC + AFA and HOL+ are equiconsistent

3 IZ, IZ + TC + AFA and HOL+ prove the same arithmetic formulas

The case of IZ + TC + Ind is treated separately
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What about classical systems?

Using Friedman’s A-translation (in set theory), we have:

ZF ≈ IZFC [Friedman ’73]

With the same method, we also get:

Z ≈ IZ

Z + TC + FA ≈ IZ + TC + Ind

Z + TC + AFA ≈ IZ + TC + AFA

Therefore:

Theorem [M. 2005, 2009]

The following theories are equiconsistent:

Z Z + TC + FA Z + TC + AFA

≈ ≈ ≈

IZ ≈ IZ + TC + Ind ≈ IZ + TC + AFA ≈ HOL+ ≈ λZ
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What about replacement?

A long quest for cut elimination:

PA ≈ HA  System T [Gödel ’58, Tait ’67]

PA2 ≈ HA2  System F [Girard ’69]

PAω ≈ HAω  System Fω [Girard ’72]

Z ≈ IZ ≈ HOL+  λHOL+
[M. 2009]

ZF ≈ IZFC ≈ HOL+ +D  λ(HOL+ +D) [M. 2009]

where D is the domination scheme:

(∀x : τ .monβ .R(x, β)) ⇒
(∀x : τ . P (x)⇒ ∃β .R(x, β)) ⇒ ∃β . ∀x : τ . P (x)⇒ R(x, β)

where monβ .A(β) ≡ ∀β, β′ . ∀f : (β → β′) . inj(β, β′, f)⇒ A(β)⇒ A(β′)

λ(HOL+ +D) =
Curry-style λHOL+

+ proof term λξ1ξ2ψ .ψ (λρ . ξ2 ρ (ξ1 I)) : D (keeps SN)
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