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Una disyuncién sin alternativa

Teorema

Al menos uno de los dos nimeros e + 7 y em es trascendente

Demostracion.

Por el absurdo: Supongamos que S=e+7m y P = em son algebraicos.
Entonces e, 7 son soluciones del polinomio con coeficientes algebraicos

X?_-SX+P=0.

Luego e y 7 son algebraicos. Contradiccién.

@ La prueba no dice quien de e+ 7 y/o de erm es trascendente

(La trascendencia de e+ 7 y de em todavia estd conjeturada.)

e Caracter no constructivo viene del razonamiento por el absurdo
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Una existencia sin testigo

Teorema
Existen dos niimeros irracionales a y b tales a® es racional.

Demostracion.

O bien \/Q\/E € Q, o bien \/5\/27 ¢ Q, por el tercer excluido. Dos casos:
e Si \/iﬁEQ, tomara=b=+2¢ Q.
. V2 V2

Siv2" ¢ @ tomara=+v2""¢Qy b=+2¢ Q, pues:

Y

)\/5

A

La prueba no dice quien de (v2,v/2) o (\/ﬁﬁ, \@) es solucién

Caracter no constructivo de la prueba viene del tercer excluido

También hay pruebas constructivas (con a=+2 y b =2 log,3)
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La primera prueba no constructiva

o El tercer excluido y el razonamiento por el absurdo eran conocidos
desde la Edad Antigua (Aristételes). Sin embargo, nunca fueron
usados de modo esencial antes del fin del siglo 19. Por ejemplo:

Teorema
Existen nimeros trascendentes

Demostracién constructiva, por Liouville 1844

oo

El namero a= E

n=1

o7 = 0,110001000000- - - es trascendente.

| \

Demostracién no constructiva, por Cantor 1874

Como Z[X] es numerable, el conjunto A\ de los nimeros algebraicos también es
numerable. Pero el conjunto IR ~ B(IN) no lo es. Entonces el conjunto IR\ A
de los nimeros trascendentes no es vacio, ni siquiera es numerable.

A\
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El intuicionismo de Brouwer

Luitzen Egbertus Jan Brouwer (1881-1966)

1908: De onbetrouwbaarheid der logische principes
(La desconfiabilidad de los principios de la l6gica)

@ Rechazo de principios no constructivos, tales como:
o La ley del tercer excluido (A V —A)
e El razonamiento por el absurdo (deducir A de la absurdidad de —A)

o El axioma de eleccién, en sus formas mas fuertes (Zorn, Zermelo)

@ Principios del intuicionismo:

o Filosofia del sujeto creativo

o Cada objeto matematico es una construccién de la mente.
Las pruebas también son construcciones (métodos, reglas...)

o Rechazo del formalismo de Hilbert (l6gica sin reglas)

Brouwer también hizo contribuciones fundamentales en topologia clasica...
... para estar aceptado en el mundo académico matematico
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La I6gica intuicionista (LJ)

Aunque Brouwer era fuertemente opuesto al formalismo,
las reglas de la légica intuicionista (LJ) fueron formali-
zadas por su estudiante Arend Heyting (1898-1980)

1930: The formal rules of intuitionistic logic

1956: Intuitionism. An introduction

Intuitivamente:

o Las férmulas AA B y VxA(x) mantienen su sentido usual, pero
las formulas AV B y 3xA(x) adquieren un sentido mas fuerte:

e Una prueba de AV B tiene que contener una prueba de A o de B
o Una prueba de 3x A(x) tiene que contener un testigo x

@ La implicacion A = B también adquiere un sentido algoritmico
y la negacién —A (definida como A = L) ya no es involutiva

Técnicamente: LJ C LK (LK = légica clasica)
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Légica intuicionista: lo que se mantiene / lo que se pierde

@ Se mantienen las implicaciones...

A = —-A (Doble negacion)

(A= B) = (-B=-A) (Contrarreciproco)
(FAvB) = (A=DB) (Implicacién material)
-A & oA (Triple negacion)

pero las implicaciones reciprocas se pierden (salvo la tltima)

o Leyes de De Morgan:

-(AVB) & -AA-B -(AAB) < -AvV-B
-(3x A(x)) & ¥x -A(x) —(Vx A(x)) < 3x -A(x)

o jCuidado! No hay que confundir las reglas:

A | Introduccién de la -AF L Razonamiento
_ negacion, aceptada, y por el absurdo,
- -A cf prueba de v/2 ¢ Q A rechazado
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Légica intuicionista: lo que se mantiene / lo que se pierde

En algebra:
@ Se mantiene el algebra elemental y abstracta
o La teoria del orden se mantiene (casi completamente)

@ Lo mismo con la combinatoria

En topologia:

o La topologia tiene que ser completamente reformulada:
topologia sin puntos, espacios formales

En analisis:
@ IR todavia existe, pero jya no es Gnico! (Depende de la construccién)
@ Funciones sobre conjuntos compactos ya no alcanzan su maximo

@ Se puede reformular la teoria de la medida et de la integracién de
Lebesgue, pero con la construccién adecuada de R [Coquand’02]
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Tercer excluido y decidibilidad

@ Los intuicionistas no rechazan los enunciados de la forma AV —A.
Estos sélo tienen que ser demostrados... constructivamente

o LJ F (Vx,yeN)(x=yVx#y) (igualdad decidible en IN, Z, Q)
o LJ I/ (Vx,yeER)(x=yVx#Yy) (igualdad indecidible en IR, C)

e Mas generalmente, la formula (VX € S) (A(X) V -A(X))

significa: “La relacién A es decidible en S”

@ Dicha nocién de “decidibilidad” se puede relacionar formalmente
con la nocién usual (i.e. computacional) de decidibilidad mediante
el teorema de eliminacion de cortes o la teoria de la realizabilidad

e Variante: Tricotomia
o LJ F (Vx,yeN)(x<yVx=yVx>y)
o LJ I/ (Vx,y€ER)(x<yVx=yVx>y) npero:
o LJ F (V,yeR)(x#y=x<yVx>y)
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La jungla de las teorias intuicionistas

@ Al nivel mas elemental, el intuicionismo esta bien definido:
o LJ: Légica intuicionista (de predicados)
o HA: Aritmética de Heyting (= aritmética intuicionista)
e + algunas extensiones estandar de HA (principio de Markov)

@ Pero cuando se consideran teorias mas sofisticadas, lo que es una
teoria intuicionista es menos claro. Hay dos tendencias:

e Teorias predicativas: (“escuela sueca)
o Analisis constructivo de Bishop
o Teorias de tipos de Martin-L&f (MLTT)
e Teoria constructiva de conjuntos de Aczel (CZF)

o Teorias impredicativas: (“escuela francesa”)
o El sistema F de Girard
o El calculo de construcciones de Coquand-Huet
o El asistente de pruebas Coq
o Zermelo-Fraenkel intuicionista (1ZFg, IZF¢)  [Myhill-Friedman 1973]
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Las contribuciones de Brouwer en la matematica clasica

Brouwer también hizo algunas contribuciones fundamentales en topologia
clasica, en particular en la teoria de las variedades topolégicas:

Teorema (Punto fijo)

Toda funcién continua f : D" — D" tiene punto fijo (D" = bola unidad de IR")

Teorema (Invarianza del dominio)

Sea U C IR" un conjunto abierto, con una funcién f : U — IR" continua.
Si f es inyectiva, entonces f(U) esta abierto y la funcién f esta abierta.

Corolario (Invarianza topolégica de la dimensién)

Sean U C R" y V C IR™ conjuntos abiertos no vacios
Si Uy V son homeomorfos, entonces n = m.

... pero estos resultados usan razonamientos clasicos de modo esencial,
y nunca fueron considerados como validos por Brouwer
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i Qué es una teoria constructiva? (1/2)

@ Ningun criterio formal para decir si una teoria .7 es constructiva,
pero una mezcla de criterios sintacticos, semanticos y filoséficos
@ Sin embargo, .7 tiene que cumplir al menos 4 criterios:

(1) & tiene que ser recursiva. Es decir: los conjuntos de derivaciones y
de teoremas de 7 tienen que ser recursivamente enumerables

Obs.: Ya es el caso de las teorias clasicas estandar: PA, ZF, ZFC, etc.
(2) 7 tiene que ser consistente: 7/ L
(3) 7 tiene que cumplir la propiedad de la disyuncién:
Si FAVB, entonces S FA o JFB J

(donde Ay B son férmulas cerradas)

(4) 7 tiene que cumplir la propiedad de la existencia numérica:

Si 7 F (3xe€IN) A(x), entonces 7+ A(n) para algin n € IN J

(donde A(x) sélo depende de x)
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i Qué es una teoria constructiva? (2/2)

o El la mayoria de las casos, también se requiere que:
(5)  tiene que cumplir la propiedad de la existencia (o del testigo):

Si 7 F 3x A(x), entonces 7 - A(t) para algiin término t )

(donde A(x) sélo depende de x)

Obs.: Este criterio tiene que ser adaptado cuando el lenguaje de . no tiene términos
cerrados, por ejemplo: la teoria de conjuntos

Teorema (No constructividad de las teorias clasicas)

Si una teoria clasica es recursiva, consistente y contiene Q, entonces no
cumple ni la propiedad de la disyuncién ni la de la existencia numérica

Obs.: Q = Aritmética de Robinson = fragmento de PA en que el esquema de induccién
ha sido remplazado por el axioma (mucho mas débil) Vx (x = 0V Ty (x = s(y)))

Demostracion. Por el primer teorema de incompletitud de Gédel, 7 es incompleta y
existe una férmula cerrada G tal que 7 I/ Gy 7 I/ ~G. Se concluye observando que:

THGV-G y TF@ExeN)((x=1AG)V (x=0AG))
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i Por qué LJ no garantiza el caracter constructivo?  (1/3)

@ El constructivismo es un criterio semantico (y filoséfico), que no se
puede garantizar sélo por el uso de la légica intuicionista (LJ)

@ De hecho, axiomatizaciones burdas en LJ pueden implicar el tercer
excluido, y luego inducir teorias no constructivas. Algunos ejemplos:

e En la aritmética intuicionista (HA):

o El axioma del buen orden
(VSCIN)[3x(x€S) = (IxeS)(VyeS)x <y]

implica el tercer excluido; no es constructivo. En HA, el principio de
induccién (que es constructivo) no implica el buen orden



Introduccién El intuicionismo Teorias constructivas

0000 00000000 0000e00
i Por qué LJ no garantiza el caracter constructivo?  (2/3)
e En analisis constructivo: [Bishop 1967]

o El axioma de tricotomia
(Vx,yeER)(x<yVx=yVx>y)
no es constructivo. Tiene que ser remplazado por el axioma
(Vx5 yeER)(x Ay =x<yVx>y)

que es clasicamente equivalente

o El axioma de completitud

Todo subconjunto no vacio y superiormente
acotado en IR tiene supremo en IR

implica el tercer excluido. El axioma de completitud tiene que ser
restringido a los subconjuntos S C IR que cumplen la propiedad:

(Va< beR) (Wx€S)(x< b) V (IxeS)(x > a))

(los conjuntos “order located above” en inglés)
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i Por qué LJ no garantiza el caracter constructivo?  (3/3)

o En teoria de conjuntos intuicionista:

o La formulacién estandar del axioma de fundacién
Vx(x # @ = (Fyex)(y Nx # 2))

implica la ley del tercer excluido. Dicho axioma tiene que ser
remplazado por el esquema de induccién conjuntista

Vx((Vy ex)A(y) = A(x)) = VxA(x)
que es clasicamente equivalente al axioma de fundacién

e El axioma de eleccién conjuntista (Zorn, Zermelo, etc.) también
implica la ley del tercer excluido [Diaconescu 1975]

@ Siempre se demuestra que una teoria intuicionista es constructiva
usando técnicas de eliminacién de cortes o de realizabilidad
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Algunas teorias constructivas

Teorias predicativas:
@ Aritmética de Heyting (HA)
@ Teoria(s) de tipos de Martin-L&f (MLTT)

@ Zermelo-Fraenkel constructivo (CZF)

Teorias impredicativas:

@ Aritmética intuicionista de segundo orden (HA2)
Aritmética intuicionista de n-ésimo orden (HAn, con n > 2)
Aritmética intuicionista de alto orden (HAw)

Zermelo intuicionista (1Z)
Calculo de construcciones inductivas (Coq)

Zermelo-Fraenkel intuicionista con remplazo (IZFg)

Zermelo-Fraenkel intuicionista con coleccion (1ZF¢)
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