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dans I'analyse et la théorie des types (Sistema F)

P. Martin-Lof: A theory of types (Sistema «Type : Type»)
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coupures de I'arithmétique d'ordre supérieur (Sistema Fw)

P. Martin-L6f: An Intuitionistic Theory of Types: Predicative Part
(Teoria de tipos intensional)

T. Coquand & G. Huet: Constructions: A Higher Order Proof
System for Mechanizing Mathematics (Calculo de construcciones)

C. Paulin: Le calcul des constructions inductives (CIC, Coq)
Z. Luo: The Extended Calculus of Constructions (ECC)

S. Berardi, H. Barendregt: Pure Type Systems

Norm.
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Sistemas de tipos puros

@ Un marco general para definir maltiples sistemas de tipos basados en
el producto dependiente (sin tipos inductivos)

e Factoriza la mayoria de las propiedades sintacticas de esos sistemas
(subject reduction por ejemplo, pero no la normalizacién)

Definicién (Sistema de tipos puros) [Berardi & Barendregt 1990]

Un sistema de tipos puros (PTS) esta definido por:
@ Un conjunto de suertes & (tipos de los tipos)
@ Un conjunto de axiomas AC S x S (tipado de las suertes)
@ Un conjunto de reglas R €S xS XS (y de los productos dependientes)

o Cada PTS define:

o Un conjunto de términos (parametrizado por S)

e Un sistema de tipos (parametrizado por S, Ay R)
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Definicion (Términos y tipos)

M, N,A,B = | A A. M | MN (calculo X a la Church)
| S | IIz:A.B (suerte + producto dependiente)
@ Ninguna distincién sintactica entre los términos y los tipos

Un tipo es un término T : s, donde s € S:
término : tipo : suerte
@ IIz:A.B escrito A— B cuandox ¢ FV(I)

e Reduccién: B-reduccion (confluente)

o Contextos: I' = z1:A44,...,2,: A, (listas ordenadas)

Sistema de tipado basado en dos juicios:

o F I' context «El contexto I' esta bien formado»

o I'FM:A «En el contexto T, el término M tiene tipo A»
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Reglas de tipado

@ Reglas del juicio F T' context

F @ context

Otros PTS CC + El delo bool
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(buena formacién de contexto)

I'-A:s

P — TS dom(T"
T,z : A context wdom(E)

@ Reglas del juicio T'HF M : A

F I' context (:A)eT
F'x:T
= I' context
———— — si (s71:s8 A
'k s;: 590 SRS

' A:s;

(tipado)

T'FTlz:A.B:s T''z:A+-M:B
I'EXe:A. M :1lz:A.B

I'EM:Ilz:A.B I'EN:A
' MN : Bz := N]

I'z:AF B: so

si (s1,52,83)ER

I'FIlx:A.B : s3

I'M

: A A :s

TFM:A A
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Ejemplos
o El sistema «Type : Type»: [Martin-Lof 1971]
S = {Type}
A = {(Type:Type)}
R = {(Type, Type, Type)}
e El marco légico de la teoria de tipos: (version polimérfica)
S = {Set, Type}
A = {(Set: Type)}
R = {(Set,Set,Set), (Set, Type, Type),
(Type, Set, Type), (Type, Type, Type)}
o Los sistemas del cubo: (véase mas adelante)
S = {*, |:|} (notacién alt.: % = Prop, O = Type)
A = {:D}
R S {xx), (0,0), (0%*), (0,000}

Norm.
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Propiedades sintacticas

(oo}

delo bool

(1/4)

Recordatorio: I"CI' = IYesun prefijodeT

Lema (Buena formacién)

@Si I'kM:A entonces F I' context
@ Si F T context, entonces F I' context paratodoIVC T

Lema (Variables libres)

Q@S Fuax:A,...,z,: A, context, entonces
o FV(A;) C{z1,...,xi—1} para todo i € [1..n]
Q@S z1:A,...,z,: A, - M:A, entonces

o FV(A;) C{x1,...,xi—1} para todo i € [1..n]
o FV(M) C{z1,...,zn} y FV(A) C{z1,...,zn}

Norm.
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Propiedades sintacticas (2/4)

Recordatorio: Dados contextos I', I, se escribe I' C TV cuando
(z: A) €T implica (z : A) € T’ para toda declaracién (z : A)

Lema (Debilitamiento)

Si THFM:A, T CI” y FTI'context, entoncesIVF M : A

Lema (Sustitutividad)

QSi FT z: AT context y T'E N : A,
entonces  T',TV[z := N] context

QS INz:ATYFM:B y T'EN:A,
entonces @' TV[z := N| + Mz := N]: B[z := N|
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Propiedades sintacticas (3/4)

Lema de inversién

L A) €
A

e A
S/

Q
R

oel'+z:C = HA{

el'kFs:C =

IIZ w_

olr'-X:AM:C =
(con z ¢ dom(T"))

e:A-M:B

(
C’
I'EIlxz:A.B:s
ds, B
C=Ilz:A.B

I'-M:IIz:A.B
eI'FMN:C = dABKTHFN:A
C = Bz := N]

F"A:Sl
I'z:AFB:s
(81782,53)672
CES:g

eI'FIlx:A.B:C = ds1,82,83
(con z ¢ dom(T"))
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Propiedades sintacticas (4/4)

Proposicién (Tipo de los tipos)

Si "M : A, entonces:
@ obien T'H A:s paraalguna suerte s

@ o bien A=3s esuna suerte maxima (top sort)

Suerte maxima (top sort) = suerte s tal que (s,s’) ¢ A para todo s’ € S

Proposicién (Subject reduction)

Si TEFM:A y M= M, entonces I'M':A

jCuidado!

@ Ningan resultado de normalizacién (fuerte o débil) en general

Algunos sistemas normalizan, otros no

@ Ningun resultado de consistencia légica en general

Se necesita definir una suerte de las proposiciones ~» PTS légicos
[Coquand & Herbelin 1994]
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Sistemas de tipos puros funcionales

Definicién (PTS funcional)

Un PTS (S, A, R) es funcional si para todos s1, s2, 85, s3, 55 € S:
Q (s1,82) €A, (s1,85) €A = s3=235)
@ (s1,82,83) €ER, (s1,82,85) ER = s3=s54

En los PTS funcionales:

Proposicién (Unicidad del tipo)
TFM:A THEM:A = A=A

Proposicion (Refuerzo)

Q@ FT,z: AT context, ¢ FV(I'), = F T',T’ context
O@Ilz:AT'FM:B, ¢ FV(I',M,B) = I,I'FM:B

Intuicién: Se pueden eliminar las declaraciones de las variables no utilizadas
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Verificacion e inferencia de tipo

Dado un PTS P, se consideran los siguientes tres problemas:

© Verificacién de contexto:
Dado I, determinar si el juicio F I" context es derivable o no

@ Verificacion de tipo:
Dados I', M, A, determinar si el juicio I' = M : A es derivable o no

© Inferencia de tipo:
Dados I y M, determinar si existe A talque TH M : A
(y devolver tal tipo A cuando existe)

Teorema

Sea P un PTS funcional en el cual:
@ los conjuntos A y R definen funciones (parciales) recursivas, y
@ todos los tipos bien formados (en P) tienen una forma normal.

Entonces en el sistema P, los tres problemas anteriores son decidibles

Obs.: No se necesita que todos los términos bien tipados en P sean normalizantes,
sélo se necesita que los tipos (bien formados) sean normalizantes
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Morfismos de PTS (1/2)

Definicion (Morfismo de PTS)
Dados sistemas de tipos puros P = (S, A,R) y P' = (S, A, R),
un morfismo de P a P’ es una funcién ¢ : S — S’ tal que:

Q (s1,52) €A = (&(s1),¢(s2)) € A/

Q (s1,82,53) ER = (¢(s1), d(s2), 9(s3)) € R’

(para todos s1, s2,s3 € S)

Dado un morfismo de P a P’, la funcién ¢ : S — S’ subyacente se
extiende sintacticamente a los términos, a los contextos, a los juicios
y a las reducciones de P, de tal modo que:

Q@ Si kT context (en P), entonces + @(T') context (en P’)
@S I'HFM:A (enP), entonces ¢I')F ¢(M): ¢p(A) (en P')
©@ Si M > M (enP), entonces ¢(M) = ¢(M') (en P')
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Morfismos de PTS (2/2)

e Un morfismo ¢ : P — P’ transforma cada sucesién (in)finita de
reducciones en P en una sucesién (in)finita de reducciones en P’.

Por lo tanto:
Dado un morfismo de P a P':
© Si P no es normalizante, entonces P’ tampoco es normalizante

© Si P’ es normalizante, entonces P también es normalizante

o Intuitivamente, los morfismos van de los PTS «méas normalizantes»
a los PTS «menos normalizantes>»

e En particular, se observa que para todo sistema P, existe un (anico)
morfismo de P al sistema «Type : Type» (¢(s) := Type, s €S)
Es decir: «Type : Type» es el objeto terminal de la categoria de los PTS

@ Por lo tanto, «Type : Type» es el PTS «menos normalizante»

Girard dedujo la no normalizacién del sistema «Type : Type» (Martin-Lof 1971)
de la no normalizacién del sistema U (Girard 1972)
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El cubo de Barendregt

8 sistemas (funcionales) formados a partir de:

e S = { * O } (notacién alt.: x = Prop = Set, 0O = Type)
oA = {(x:0)}
e R C {

(R, %), (O,%)7, (%,0)7, (D,D)?}

(Convencién: (s1,s2) € R significa (s1,s2,s2) € R)

Aw —— Alw
A2 ———— M2 (O, %)

Aw — | — Alw (0, 0)
A= = Al (%, %) —— (x,0)
Las flechas representan las inclusiones entre los 8 sistemas

Los 8 sistemas son fuertemente normalizantes y légicamente consistentes



Intro Sistemas de tipos puros Sistemas del cubo Otros PTS CC + i El delo bool Norm.
(oo} 0000000000000 000000000000 000000000000 OO0O00O0O000000000 000000000000 0000000 OO0000

Estratificacion de los términos

En cada uno de los 8 sistemas del cubo, se pueden dividir los términos
(bien tipados) en 4 niveles distintos:

@ Los géneros (kinds) K,L,... O
@ Los constructores o, ,... + K O
(de tipos/proposiciones)
@ Las proposiciones AB,... : x : 0O
@ Las pruebas tu,... : A 1 %
Constructores :  Géneros : [
(¢%,...) (K,L,...)
U U
Pruebas : Proposiciones : *
(t,u,...) (4,B,...)

~ Presentacion estratificada de la sintaxis
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A— = Calculo lambda simplemente tipado

Aw — Mlw

{*, O} A /T

S
A2 — 12

A {x:0)} T A\ T o
R = {(x%)} s a2

A— —— A1

Sintaxis estratificada de A\—:

Géneros K, L == % :0O)
Proposiciones AB = « (:x:0)
| A—B (%, %)
Pruebas tu = (: A:x)
| Xz:A.u | tu (%, %)

El Gnico género es %, entonces los Gnicos constructores son las proposiciones
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= Sistema F [Girard 1971]
Aw — Aw
S {*, O} 2 /1
A = {(* . D)} A2 ‘>‘ AII2
R = {(*a *)7 (D7 *)} T Aw T—) Allw
A A

(3, %) = polimorfismo s AT

Sintaxis estratificada de \2:

Géneros K,L ==« (: 0O)
Proposiciones AB = « (:%:0)
| A—B (5, %)
| Va:x.A (3, %)
Pruebas taw  w= @ (:A:%)
| Xz:A.u | tu (5, %)
| da:x.u | tA (0,%)

El Gnico género es *, entonces los (inicos constructores son las proposiciones
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Aw = Sistema Fw [Girard 1972]
_ Aw — Allw
S = {x 0O} 7 g
A = {x:0) X2 - AIT2
R = {(), (0%, O,0)) T Aw} s
A a

0,0) = truct de ti
(0,0) = constructores de tipos A I

Sintaxis estratificada de \w:

Géneros K L == x :0)
| K—>1L (O0,0)
Constructores ¢, 9, A, B = « (: K:0)
| A—B (%, %)
| Va:K.A (O, %)
| Xa:K.¢ | 99 0,0)
Pruebas W = & (: A:x)
| Xz:A.u | tu (%, %)
| Ma:K.u | to¢ (O, %)
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MI = Logical framework monomérfico [Martin-Lof 1975]
_ Aw — Alw
S = {x, 0O} 7 ;
A = {(>:0)} A2 T> AIT2
R = {(x4). (x0)} T MT» ATl
A A

O) =ti d dient
(x,0) ipos dependientes Ay AT

Sintaxis estratificada de \II:

Géneros K,L == =« (: 0O)
| Mz:A.K (x,0)
Constructores 0,0, A,B = « (:K:0O)
| Mz:A.B (%, %)
| Xx:A.¢ | ot (x,0)
Pruebas tbu = x (: A:x)
| Xz:A.uw | tu (%, %)

v

Obs.: Logical framework polimérfico = A1 + reglas (O,0), (O, *, ) (¢ Cubo)
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Mlw = Calculo de construcciones (CC)  [Coquand & Huet 1985]

Aw — Alw

S {x, O} AN /T

A = {x:0)) T | T
Aw — | > ANlw
R = {(xx*), (O0,%), (x,0), (0,0} A A

A— —— Al

A2 —— A2

Sintaxis estratificada de AIlw:

Géneros K,L == % (:0)
| Mz:A.K (*,0)
| Ha:K.L (@, 0)
Constructores o, v, A,B = « (: K:0)
| Mz:A.B (*, %)
| Va:K.A (O, %)
| Xz:A.¢ | ot (*,0)
| Aa:K.¢ | o9 (O,0)
Pruebas tu = (: A:x)
| Xz:A.u | tu (%, %)
| Aa:K.u | to (O, %)
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Borrado de las dependencias (1/4)

Existe una funcién de borrado de las dependencias M + |M| que
va de los 4 sistemas de la faz derecha (i.e. con tipos dependientes)
a los 4 sistemas de la faz izquierda (i.e. sin tipos dependientes)

Aw — Aw
7 /F P T ML —» A=
A2 — > AII2 A2 — A2
\ M — |M]| :
T Aw T» AMlw Mo —
A A Mlw — dw

A— —— Al

Proposicién (Correccion)

Dado un sistema P € {AIl, A2, Allw, Alw} (faz derecha)
y escribiendo |P| al correspondiente sistema en la faz izquierda:

@ Si T context (en P), entonces  |I'| context  (en |P])
@Si I'M:A (enP), entonces ||+ [M]|:|A] (en |P])
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Borrado de las dependencias (2/4)

Definicion de la funcién M — |M]| [Paulin-Mohring 1989]
Géneros %] = * -0
Mz:A.K| = |K]| (*,0)
Ha:K.L| = |K|—|L] (0,0)
Constructores la] = « (:K:0)
Iz:A.B| = |A|— |B| (%, %)
Va:K.A = Va:|K|.|A| (O, %)
Mz:A. .o = |9 (%, 0)
lot] = |9l (. 0)
Ma:K.¢| = a:|K|.|d| (0,0)
A= @, 0)
Pruebas lz| = =z (:A:x)
Az:A.ul = Az:|Al.|ul (%, %)
tul = ¢ [yl (x,%)
Ma:K.ul = da:|K|.|u (O, %)
L e (@, %)
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Borrado de las dependencias (3/4)

La funcién M — |M| es una retraccién del cubo de Barendregt en su
faz izquierda (en la cual |M| = M).

Por lo tanto, dado P € {AII, AI12, Alw, Allw} (faz derecha)
y escribiendo |P| al correspondiente sistema en la faz izquierda:

Proposicion (Extensién conservativa) [Paulin-Mohring 1989]

El sistema P es una extension conservativa de |P]

Demostracién. En efecto,si ' M : A (conT,A€|P|ly M € P),
entonces I' |[M|: A (con |M|€|P|), pues [T|=T y |A|=A. DJ

Corolario (Equiconsistencia)

Los sistemas |P| y P son equiconsistentes

Obs.: Un sistema P del cubo es consistente cuando no existe ningain término de
prueba ¢t tal que: a:xFt:a (av: % = «proposicién cualquiera»)
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Borrado de las dependencias (4/4)
@ La funcién de borrado induce las siguientes retracciones:
AMI— ~ A= = célculo lambda simplemente tipado
= célculo proposicional minimo
A2 ~ A2 = sistema F
= calculo proposicional de 29° orden
Mlw (CC) ~~ I = sistema Fw

= célculo proposicional de alto orden

@ Usando una retraccién modificada que preserva todas las redexes,
también se puede demostrar que:

Teorema (Equinormalizacién) [Geuvers & Nederpelt 1991]

Para cada sistema P de la faz derecha del cubo, tenemos que:

P fuertemente normalizante

si y sélo si |P| fuertemente normalizante
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Los sistemas U y U™ (1/4)

o El sistema U esta definido por: [Girard 1972]
e S ={x 0O A} (notacién alt.: A = Kind)
o A = {(x:D), @:0)}

o R = { (*7*)7 (Dv*)v (D7D)7 (AaD)7 (A:*) }
(Como siempre: (s1,s2) € R significa (s1,s2,82) € R)
o Sistema U~ := sistema U — regla (A, *)

@ Intuicién: Sistema U~ = sistema Fw + polimorfismo
impredicativo al nivel de los géneros (= impredicatividad?)

F F’

R = {(*a*)7 (Da*)a (Dvlj)a (AD)a (A*)}

Fuw
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Los sistemas U y U™ (2/4)

Como en los sistemas del cubo, se pueden dividir los términos de los
sistemas U y U~ en 4 niveles distintos:

@ Los géneros (kinds) K, L,... O VAN
@ Los constructores o, ... K g
(de tipos/proposiciones)
@ Las proposiciones AB,... : x% O
@ Las pruebas tu,... A *
Constructores Géneros S I AN
(qs’/l/J’"') (K7L7"')
U U
Pruebas : Proposiciones : *
(t,u,...) (4,B,...)

Obs.: La nueva suerte maxima A\ sélo sirve para enriquecer el nivel de los géneros
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Los sistemas U y U™ (3/4)

Sintaxis estratificada de los sistemas U y U~

Géneros K, L == «x (:0O)
| :O:4)
| K—1L (40,0)
| Vk:O.K (A,0)
Constructores ¢, 9, A, B 1= « (K :0O)
| A—B (%, %)
| Va:K.A (O, %)
| Vk:O.A (A, %)
| da:K.¢ | o¢ (40,0)
| Xe:0.¢ | oK (A,0O)
Pruebas tbu == x (: A:x)
| Xz:A.u | tu (5, %)
| Ma:K.u | to¢ (O, %)
| M:0.u | tK (A, %)

Recordatorio: U~ = U — regla (A, %)
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Los sistemas U y U™ (4/4)

@ En el sistema U, se observa que:
o Los géneros no contienen redexes

o Los constructores (y proposiciones) son fuertemente normalizantes
(por una traduccién obvia en el sistema F', que preserva las redexes)

e Por lo tanto, todos los tipos son fuertemente normalizantes

= Verificacién e inferencia de tipo decidibles

@ Sin embargo, existen pruebas cerradas t : Va: x .«

= Sistema inconsistente y no normalizante (sslo al nivel de las pruebas)

@ Algunas pruebas de inconsistencia:
e Girard 1972: Paradoja de Burali-Forti en el sistema U
(por codificacién de un tipo universal de «todos los ordinales»)
o Coquand 1986: Paradoja de Reynolds en el sistema U~
o Hurkens 1995: Inconsistencia muy compacta en el sistema U™

o Miquel 2001: Paradoja de Russell en el sistema U™
(por codificacién de la teoria de conjuntos de Cantor-Frege)
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El sistema APRED
o El sistema APRED esta definido por: [Berardi 1988]
oS = {«, ", 4, O, 0P}
o A = {(":0"), +*":0°}
o R = { (*",+"), (x",%"), (=",0°%), (",*",x"), (x",+",%")}
Tipos o7 % o O7 (= variables)
Tipos de funciones Tp 5 = 1720 | T—=Tp
Funciones F : Tp : % o= f | Xx:7.t
| Xze:7.F | Ft
Términos tu : o ox = z | Ft
Tipos de predicados Tp . 0OP = «F | T Tp
Predicados AB,PQ : Tp :10° &= a | A=B | Va:7.A
| Xz:7.P | Pt
Pruebas pg : AP = & | X:A.p | pg
| Az:7.p | pt

= Calculo de predicados (l6gica minima de 1°" orden)
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El cubo légico

El sistema APRED pertenece al cubo l6gico: [Berardi 1988]
Ow ~) APROPw — > APREDw
02 ~) APROP2 L APRED2

APROPw — | > APREDw

/7 /7

A= ~) APROP ——— APRED
APROP = Calculo proposicional minimo de 1°" orden
APRED = Calculo de predicados minimo de 1°" orden
APROP2 = Calculo proposicional minimo de 29° orden

APRED2 = Calculo de predicados minimo de 29° orden
APROPw = Calculo proposicional minimo de alto orden
APREDw = Calculo de predicados minimo de alto orden

+ funcién de borrado (M +— |M]) : APREDx — APROPx
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El calculo de construcciones con universos (CC¥)

@ El calculo de construcciones con universos (CC*) esta definido por:
[Coquand & Paulin-Mohring ~ 1990]
oS = {xpu{d; : i>1} (not. alt.: x = Prop, 0; = Type;))
o A = {(* : Dl)}U{(Dl : Di+1) ) Z 1}
o R = {(*x%*x)} U {(s**) : i>1} U
{(*7Dia‘:‘i) : 7‘2 1} U {(Diy‘:‘jammax(i,j)) : Z7]Z 1}

= CC + jerarquia predicativa de universos a la Martin-L&f
= PTS subyacente del calculo de construcciones inductivas (Coq)

@ Sistema fuertemente normalizante (prueba en ZF)

@ Fuerza tedrica con respecto a la teoria de conjuntos de Zermelo (Z):
o CC?® (= CC con 3 universos) > Z [Miquel 2001]
o CC¥ > Z+US* (= Z con w Z-universos) [idem]
o Conjetura: CCY =~ Z4+U<Y [M. 20217]
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Norm.
El sistema Fw con universos (Fw?)

e El sistema Fw con universos (Fw?) esta definido por:

[M. 2001]
oS = {xju{d; :i>1}

(not. alt.: x = Prop, 0; = Type;))
o A = {(* : Dl)}U{(DZ : \:‘¢+1) 1> 1}
o R = {(*¥,%*x)} U {(ds,%,*) : 1 >1} U

1005, Umaxig) + 4,5 21}

Fw + jerarquia predicativa de universos a la Martin-L6f
CC¥ sin tipos dependientes de pruebas (reglas (x,0;,0;), ¢ > 1)
Presentacién estratificada en dos niveles:

o Nivel «predicativo», formado por los términos objetos M : T : [,
(que incluyen las proposiciones A : x : i, sin depender de las pruebas)

o Nivel «impredicativo», formado por los términos de prueba ¢: A : %

Resultados de fuerza tedrica analogos:

e Fw.3 (= Fw con 3 universos) > Z

o Fu? > 74U (= Z con w Z-universos)

o Conjetura: CC¥ ~ Fuw? ~ Z4+U®
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o El sistema \Z esta definido por: [M. 2005]

o S = {x, 01, Oy, Os}
o A {(* : |:|1), (|:|1 : \:‘2), (\:‘2 : Dg) }

e R {(x, %, %)} U {(0s,%,%x) : 1€ {1,2,3}} U
{04, 85, Omaxgi,j) © 4,7 € {1,2}}

e \Z C Fw3 c Fuw? c CC¥

o Presentacién estratificada en dos niveles similar a la del sistema Fw?

(Términos-objetos (predicativos) + términos de prueba (impredicativos))

Teorema

[M. 2005]
El sistema A\Z es equiconsistente a la teoria de Zermelo: \Z ~ (1)Z

@ Mas precisamente: existe una traduccion de |Z en \Z a través de la cual

AZ es una extensién conservativa de IZ+TC+ AFA (~ 1Z ~ Z)

(TC = axioma de la clausura transitiva; AFA = axioma de antifundacién)
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El sistema V' (1/2)

o El sistema V esta definido por: [M. 2009]
e S ={x 0O A}
e A ={(x:0), (O:2)} (notacién alt. A = Oy = Kind)
o R = { (%), (O%), (00, (A,*) }
Fuw
o Sistema V' = Sistema U — regla (A, 0)

= Sistema F,, + regla (A, %)
= Ldgica de orden superior + V sobre todos los érdenes

Teorema [M. 2009]

V. ~ (I)Z - Infinito ~ HA/PA
V+Nat ~ (I)Z

donde Nat (: [J) = género primitivo de los enteros naturales

+ Versién clasica con traducciones negativas (a la Gdel-Gentzen, a la Friedman)
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El sistema V

Sintaxis estratificada del sistema V + Nat

(2/2)

Géneros K, L == % :0O)
| & O:4)
| Nat 0:4)
| K—L (0,0)

Constructores ¢, 9, A, B 1= « (:K:0O)
| o | s reck
| A—B (%, %)
| Va:K.A (O, %)
| Vk:O.A (A, %)
| Xa:K.¢ o, (O,0)

Pruebas tu = (:A:%)
| XAz:A.u tu (%, %)
| da:K.u to (4, %)
| As:0.u tK (A, %)

Regla (O,%): Va:K.A ~ cuantificacién acotada (Vz € y)d(x)

Regla (A, %): Vk:[O.A ~ cuantificacién no acotada

¥z §()
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Calculo de construcciones: presentacién en forma de PTS

o Suertes:
Prop = suerte impredicativa (proposiciones)
Type = universo predicativo (tipos de datos)
e Axioma:
Prop : Type
o Reglas:

Prop, Prop, Prop (implicacién, tipo flecha)
Type, Prop, Prop (polimorfismo impredicativo)
Prop, Type, Type (tipos dependientes de pruebas)
Type, Type, Type (constructores de tipos)

Recordatorio: En la teoria de tipos de Martin-L&f, la suerte «Prop» se llama «Set»,
y la regla (Type, Prop, Prop) esta remplazada por la regla (Type, Set, Type).
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Calculo de construcciones: sintaxis y estratificacion

Definicion (Términos)

M,N,A/B := x | M:A.M | MN
| Prop | Type | Iz:A.B

I'ET: s Fx:THU: sy
TEIIx:T.U : so

Tipado del producto dependiente:

Recordatorio: En MLTT, la suerte en la conclusién seria max(s1, s2)

Estratificacion en 4 niveles:
© Géneros = términos T : Type

© Constructores de tipos

términos M : T : Type

@ Tipos (proposiciones) términos A : Prop (C nivel 2)

@ Términos de prueba = términos M : A : Prop
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Calculo de construcciones: ejemplos de términos

© Géneros (7' : Type)

e Prop — Prop : Type

o ITA:Prop.A— A — Prop : Type
© Constructores de tipos (M : T : Type)

e = MA:Prop.A— 1L : Prop— Prop
e M,B:Prop.AANB : Prop — Prop — Prop
o M:Prop.Az,y:A.(x=ay) : IIA:Prop.A— A — Prop

© Tipos proposicionales (A : Prop)
o ITA:Prop.A— A : Prop

o Il = IIX:Prop.X : Prop
e ANB = TX:Prop.(A—-B—X)—X : Prop (a,B:Pwop)
ex=ay = HZ:(A—Prop).Zx—Zy : Prop (a:rwp, z,u:4)

@ Términos de prueba (M : A : Prop)

o M :Prop.Ax:A.x : ITA:Prop. A— A
e M:Prop. Az:A.\Z:(A — Prop).A\z:Zzx.z
ITA:Prop.Ilx: A.x =4 x
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Historia (1/6)

@ Inicialmente, el calculo de construcciones fue disefiado como un
marco légico polimérfico similar al marco légico de Martin-Lof,
pero con una suerte Set/Prop impredicativa:

(Type, Set, Type)  ~»  (Type, Prop, Prop)
@ En la primera versién del sistema, la suerte Prop era a la vez:

» La suerte de los tipos y de las estructuras de datos

(usando las codificaciones del sistema F')
Nat : Prop := IIZ:Prop.Z - (Z —>2Z)— Z

» La suerte de las proposiciones y de las pruebas
(usando las codificaciones del sistema NJ2)

Eq : IA:Prop.A— A — Prop :=
AA:Prop. \e,y: A.IIZ: A—Prop. Zx — Z y

refl : IIA:Prop.llz:A.EqAzz =
AA:Prop. Ax: A.NZ:A—Prop. Az: Zx .z
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Historia (2/6)

@ Ejemplo de formalizacién en CC: [Paulin-Mohring 1989]
1L : Prop := IIX:Prop.X
(7) : Prop—Prop = AMA:Prop.A— L

(x) : Prop — Prop — Prop :=
AA,B:Prop. IX :Prop.(A—-B = X) > X

pair : IIA,B:Prop.A—- B —- Ax B =
AMA,B:Prop. Az:A. Ay: B.AX :Prop. A\f: A»B—X.fzy

fst : IIA,B:Prop.AX B —> A =
AA,B:Prop. Ap:Ax B.pA(Az:A.A_:B.x)

snd : IIA,B:Prop.Ax B —~ B =
AA,B:Prop. Ap: Ax B.pB(A_:A.)\y:B.y)

Eq : ITA:Prop.A— A — Prop :=
AA:Prop. Az, y: A.1IZ: A—Prop. Zx — Z y

refl : ITA:Prop.llz: A.EqAxx =
AA:Prop. Ax: A.NZ:A—Prop. Az: Zx .z
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Historia (3/6)

e Ejemplo de formalizacién en CC (continuacién):

Nat : Prop := IIX:Prop.X - (X - X)—> X
0 : Nat := AX:Prop.Az: X . A\f: X—>X.zx
S : Nat — Nat :=
An:Nat . AX :Prop . Az: X Af: X=X .f(nXzf)

NAT : Nat — Prop :=
An:Nat.IIZ :Nat — Prop.
Z0— (Ilx:Nat.Zx — Z(Sz)) > Zn
NAT_O : NATO :=
AZ :Nat—Prop.Az: Z0.\f:(Ilz:Nat. Zx — Z (Sx)) .z
NAT_S : IIn:Nat.NATn — NAT (Sn) =
An:Nat .\ :NATn.AZ :Nat—Prop.
A2:Z0.Af:(Ilx:Nat. Zx — Z(Sz)). fn(hZzf)
NAT_ind : IIP:Nat — Prop.
PO — (Ilz:Nat .NATz — Px — P (Sz)) —
IIz:Nat .NATz — Pz
:= (ejercicio)
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Historia (4/6)

@ Con el fin de disefiar un mecanismo de extraccién de programas
(hacia Fw o Caml), las versiones siguientes de Coq (afios 1990)
distinguian dos suertes impredicativas:

o una suerte Set de los tipos de datos, con un contenido
computacional relevante (i.e. preservado durante la extraccién)

e una suerte Prop de las proposiciones, con un contenido
computacional irrelevante (i.e. borrado durante la extraccién)

@ En paralelo, se extendié el sistema con una jerarquia de universos
predicativos Type; (i > 1) a la Martin-L6f:

Suertes: Prop, Set, Type,
Axiomas: (Prop : Type;), (Set: Type;), (Type;: Type; ;)
Reglas: (Prop, Prop, Prop), (Set, Set, Set),
(Set, Prop, Prop), (Prop, Set, Set),
(Type,;, Prop, Prop),  (Type;, Set, Set),
(Prop, Type;, Type;),  (Set, Type;, Type;),
( YPE;, Type]7 Typemax(z ])) (27.7 > 1)
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Historia (5/6)

@ Sin embargo, los tipos de datos (en Set) codificados en el estilo del
sistema F' tenian multiples defectos:
© Los correspondientes principios de induccién no eran derivables
(correccién: introducir predicados de relativizacién, por ej. NAT)
@ Lostipos Ax B y A+ B tenian demasiados elementos
(correccién: idem)

© La proposicién Sz # 0 no era derivable
(correccién: afiadir un axioma, sin contenido computacional)

@ Para corregir estos defectos, Coquand y Paulin-Mohring remplazaron
las definiciones impredicativas (estilo sistema F') por un mecanismo
primitivo de definiciones inductivas (estilo Martin-L&f):

= Calculo de construcciones inductivas (CIC)

Inductive nat : Set :=
| 0 : nat
| S : nat — nat
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(6/6)
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Historia

e En 2002, Chicli descubrié que la suerte Set (impredicativa y con
contenido computacional relevante(!)) era incompatible con la ley

del tercer excluido y el axioma de eleccién:
[Chicli 2002]

Teorema
CIC+EM+ACHKE L, donde:

o CIC = Calculo de construcciones inductivas

e EM = VA:Prop.AVvV-A

(con Set impredicativa)

o AC = VA, B:Set.VR: A — B — Set.
(Vz:A.Jy:B.Rzy) - 3f: A»B.Vz: A. Rz (fx)

@ Para mantener la compatibilidad del sistema Coq con la matematica
clasica, se eliminé la suerte Set impredicativa
= Predicative Inductive Calculus of Constructions (pCIC)

En pCIC, se mantiene «Set» como abreviatura para «Typey>»

(DAl contrario de Prop, en la cual siempre se puede suponer que todas las pruebas

son iguales (proof irrelevance): VA:Prop.Vz,y:A. z =4y
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El calculo de construcciones con universos (CC¥)

CC¥ = PTS subyacente del Calculo de construcciones inductivas (pCIC)

o Suertes:
Prop = suerte impredicativa (proposiciones)
Type; (i >1) = désimo universo predicativo (tipos de datos)
e Axiomas: Prop : Type;
Type; @ Typejyy
o Reglas:
Prop, Prop, Prop (implicacién, tipo flecha)
Type;, Prop, Prop (polimorfismo impredicativo)
Prop, Type;, Type; (tipos dependientes de pruebas)
Type;, Typej, Typemax(i7j) (producto dependiente predicativo)

En la implementacién (Coq), se mantiene una suerte Set := Type, (predicativa)
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Extension con una relacion de cumulatividad (CC%)

@ Se introduce una relacién de cumulatividad A < B sobre los tipos:

———— ——— (i<))

Prop < Type, Type; =< Type;
A=A A=<B B=XC B X C
A=A AXC [z:A.B X Ilz: A.C

Formalmente, la relacién de cumulatividad A < B (que contiene la relacién de
conversién A = A’) esta definida sobre los términos no tipados

@ Se remplaza la regla de conversién por una regla de subtipado:

I'EM: A FI—B:S(AjB)
I'-M:B

o CC% cumple la subject reduction y la normalizacién fuerte

Ademés la relacién A < B es decidible sobre los tipos A, B bien formados

@ Se pierde la unicidad del tipo, pero siempre existe un tipo principal

(= un minimo tipo con respecto a <)
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Extension con X-tipos  (Extended Calculus of Constructions)

ECC = CC + universos + cumulatividad + >-tipos [Luo 1990]

Definicién (Sintaxis y reduccién de ECC)
M,N,A/B = -+ | Sz:A.B | (M,N)c | m(M) | m(M)

Reduccion: B + m((M,N)c) = M + m((M,N)c) = N

I'= A: Type,; Ilx:AF B: Type,
' Xz:A.B: Type,

'k Xz:A.B: Type, Tr-M: A ' N : Bz:= M]
'~ (M,N)sz:ap:Xz:A.B

I'EM:Yx:A.B I'-M:Yx:A.B
FFm(M): A T me(M) : Blx :=m(M)]

@ Obs.: La cumulatividad Prop < Type; permite formar el tipo
{r:A| Pz} = Sz:A. Pz con A:Type;, P:A — Prop
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El calculo de construcciones inductivas (pCIC) (1/2)

El calculo de construcciones inductivas (pCIC) es CC% extendido con:

@ Un mecanismo de definicién de familias inductivas:
Inductive [ (5 A) : Oz:T.s =
| Cc1 - Hyl T1 IaN1

| @ ¢ ng’n:fn. I@N,

(posiblemente mutuas) donde:

e d: A son los parametros de I
T

T : T son los argumentos de T

]
: Iy T..1aN, (1 <i<mn) son los constructores de I

@ C;

+ condiciones sobre s y las suertes de f T;
+ condiciones de positividad sobre los tipos T
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El calculo de construcciones inductivas (pCIC) (2/2)

@ Un mecanismo de pattern-matching:

match M (as z)° (return 7))’ with
| C1 fl = Ml(fl)

| en @ = M,y(Z,)
end

© Un mecanismo de definicién de funciones recursivas:

Fixpoint f (Z: A) {struct z;} : B := M(f,?) J

(+ condiciones de decrecimiento estructural)

Q + definicién simple («Definitiony)
+ declaracién de axioma («Axiom»)
+ definicién de familias coinductivas (Coinductive)
+ definicién de funciones correcursivas  (Cofixpoint)
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Los términos (cerrados y en forma normal) de CC constan de:

@ funciones Ar:A.M
@ tipos funcionales Mx:A.B
@ suertes (tipos de tipos) Prop, Type
Teoria de tipos Teoria de conjuntos
funcién (\) funcién (—)
tipo conjunto
tipo funcional conjunto de funciones
suerte (tipo de tipos) conjunto de conjuntos
M:A [M] € [A]
relacién de tipado relacién de pertenencia
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Esquema general de la interpretacién

Funcién de interpretacion [_] : Term x Valy — M (parcial)
[z], = p(2)
[Az:A.M], = (ve[A],~ [M]pcv)
Mz:A.B] = ][] [Blpzco
vel[A],
[Propl,, [Type], := a definir

e Term = conjunto de los términos (no tipados)
e X = conjunto de las variables
@ M = espacio de las denotaciones (a definir)
e Valp,y, = X =M = espacio de las valuaciones en M

fin
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Propiedades de clausura de las suertes

@ Formacién de un tipo en Prop:

FA:s z:AF B: Prop b .
F1Ilz:A.B : Prop (s € {Prop, ype})J

@ Formacién de un tipo en Type:

F A : Prop »
= Prop : Type F A: Type

(s € {Prop, Type})
FA:s z:AF B: Type

F1lz: A.B : Type

(%) Regla de cumulatividad Prop C Type, opcional

Dificultad: Circularidad inducida por la impredicatividad de Prop
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Modelaciéon de la impredicatividad

FA:s z:AF B: Prop
F1IIz: A.B : Prop s € {Prop, Type} }

@ Traduccién conjuntista: Hallar un predicado Prop(_) tal que:

Para toda familia de conjuntos (B,),ca queremos que:

((Vz € A) Prop(B;)) = Pmp(H Bz>
T€EA

. independientemente del tamafio del conjunto A

@ Problema: ;Cémo definir el predicado Prop(X)?

X tiene 0 ou 1 elemento

e Una solucién sencilla:  Prop(X) =

= Semantica de la proof-irrelevance
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Semantica de la proof-irrelevance

@ Pruebas interpretadas por un anico objeto: prf (a definir)
@ Proposiciéon = conjunto vacio (“falso”) o unitario (“verdadero”)
e [Prop] := {@,{prf}} = P({prf}) (clasicamente)

Lema (Interpretacion conjuntista de la impredicatividad)

Si A es un conjunto cualquiera y si (B,)zca es una familia tal
que B, € {@, {prf}} para todo x € A, entonces:

I15 -

{@ si B, = @ paraalgin z € A
z€A

{(xeA — prf)} si B, = {prf} para todo z € A

e Problema: (zc4 — prf) # prf  (en general)

@ No se puede definir [Prop] como la clase (propia) formada por el conjunto
vacio y todos los conjuntos unitarios

= Necesidad de identificar todas las funciones (zca > prf) con prf
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Funciones: codificacién estandar (en teoria de conjuntos)

o Pares:

(z,y) = {{z},{z,9}}

@ Funciones:

ffuncion = Ve(cef = FxIyc=(x,y)) A
Ve Vy Vy' ((z,y) € fA(zy) e f=y=1)
dom(f) = A{z|3y (z,y) € f}
(xep = Ey) = {(z,y) |z € DAy=E;}

fl@) = Uy | (=y) e f}
@ Producto dependiente:

HB”” = {f | ffuncién/\dom(f):A/\(VmEA)f(x)EBQC}

z€A
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Funciones: codificacién alternativa

@ Funciones:

ffuncion = Ve(cef = FxIzec=(x,2))
supp(f) = {#]3z (5,2) € [} (soporte)
(xep— E;) = {(z,2)|z€DANz€E,}

fle) = {2z | (z,2) € f}
@ Producto dependiente:

HBI = {f | f funcién A supp(f) C A AVzeA f(x)eBI}

r€A

Tomando prf := @:

© Para todo conjunto A tenemos que: (zea = prf) = prf

© Si B, € {@,{prf}} para todo x € A, entonces H B. € {@,{prf}}
TEA
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Interpretacion de la suerte Type

F A : Prop FA:s z:AF B: Type
F Prop : Type = A: Type F1Ilz: A.B : Type J

Interpretacién de los tipos por conjuntos finitos:
° [[Type]] = HF (: Vw) (conj. de los conjuntos hereditariamente finitos)

e [Prop] := {@,{prf}} € HF (y [Prop] C HF)

@ HF esta cerrado por los productos H B,
T€A

Modelo booleano:
M = HFU({HF}
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Interpretacién de los términos

Definicion de la funcion (M, p) — [M], : Term x Valpq — M

[z], = p(=z)
[Prop], := {@,{prf}}
[Type], = HF
Me:A.M], = (vel[A],— [M]pecyv)
[Mz:A.B] = [ [Blowew
velA],

Extension a los contextos: conjunto [I'] de las valuaciones adaptadas

[T] == {peValp | V(x:A)eT p(z)e[A],}

Proposicién (Invariante de correccién)

Si TFM:A y pel[I'], entonces [M], € [A],
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Un invariante de correccién problematico

El modelo no depende de las reglas de tipado...

... pero la dificultad de la prueba del invariante de correccién
si depende fuertemente de la formulacién de las reglas

@ Presentacion con regla de conversién no tipada (estilo PTS)

o CC puro, sin cumulatividad Prop C Type:
El invariante se demuestra usando una presentacién estratificada

e CC con cumulatividad Prop C Type:
Ya no se sabe demostrar el invariante [Miquel-Werner 2003]
@ Presentacion con juicio de igualdad (a la Martin-L6f)

o El invariante de correccién se demuestra sin dificultad

o iQué hay de la equivalencia con la primera presentacién?

Solucién: Probar la equivalencia de ambas presentaciones
@ Caso particular de los PTS funcionales: Adams 2006
o Caso general de los PTS (sin cumulatividad): Siles 2010
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Lectura en las tripas del modelo

Principio: El calculo de las denotaciones en el modelo permite
demostrar resultados negativos sobre la sintaxis

(Resultado negativo = Algo no es demostrable, derivable, etc.)

En particuliar, para todo tipo cerrado A : Prop:

[A] = 2 = A no es demostrable en CC
= —A es consistente relativamente a CC
(se puede afiadir ~A como axioma a CC)

[A] = {prf} = —A no es demostrable en CC
= A es consistente relativamente a CC

(se puede afiadir A como axioma a CC)

Ejemplo: [L] = MX:Prop.X] = [J] X = @
Xe{o,{prf}}
= 1 no es demostrable = CC es consistente
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Denotaciones de algunos términos cerrados

[MA,B:Prop.A— B] = tabla de verdad de la implicacién
[MA,B:Prop.AANB] = tabla de verdad de la conjuncién
[MA,B:Prop. AV B] = tabla de verdad de la disyuncién
[TIA:Prop.(AV -A)] = {prf} (consistencia del tercero excluido)

Escribiendo nat := IIX:Prop. X — (X — X) — X, tenemos que:

[nat] = {prf}
[0=nat 1] = {prf} (pues 0 =1 = prf en el modelo)

De modo analogo se justifica la consistencia relativa de...
o Extensionalidad proposicional (A& B) = (A=pwpB)
o Extensionalidad funcional (Ve f(x)=9g(x)) = f=yg

@ Proof-irrelevance, axioma de eleccién, axioma K de Streicher, etc.
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Modelo booleano: el balance

@ Modelo minimo (numerable: mismo tamafio que la sintaxis)
@ Prueba barata de la consistencia de CC (+ muchos axiomas)

@ Desaparicion del calculo en el modelo =
desaparicion de los problemas de normalizacion

También demuestra las limitaciones de CC (en su version de base)
o Indiscernibilidad (sintactica) de las pruebas

@ Ningun tipo infinito (en el modelo todos los tipos son finitos)

Sugiere algunas extensiones de la sintaxis:
e Jerarquia de universos Type; (por encima de Type)

@ Tipos inductivos primitivos (estructuras de datos)
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La jerarquia de los universos predicativos

F A: Type,;
F Prop : Type; F Type; : Type; = A: Type;
= A Type, : A B : Type,
ype; T YPe€; (i>1)

FIlz: A.B : Type,;

Jerarquia de universos modelada por une familia (14;);>1 tal que:
o U € Uit
o U; CUiy
@ U; cerrado por los productos [, 4 B.

Se mantienen [Prop] := {@,{prf}} y [Type;] := HF = U4

Pero para modelar Type; (i > 2) se utilizan ZF-universos encajados
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/F-universos

Definicion (ZF-universo)

Un ZF-universo es un conjunto U tal que:

@ U es transitivo (ie. X el = X CU)

Q@ NeUd

Q@ XeclU = PX)elU

Q V(Yy)zex XeU, YoeU = UyexYo €U

@ Cada ZF-universo U esta cerrado por producto dependiente:

Si AcU y B, €U paratodox € A, alors [[,.4B.€U. J

(Y mas generalmente por todas las construcciones de ZF)

o Se interpreta la jerarquia Type; (i > 2) por una familia de
ZF-universos encajados: U eUselUyels € ---

Para Type;, basta con tomar [Type;] = HF
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ZF-universos y cardinales inaccesibles

o Cada ZF-universo es un modelo de ZF, cuya existencia no puede ser
demostrada en ZF = necesidad de suponer su existencia

@ Los ZF-universos estan vinculados con los cardinales inaccesibles:

Definicién (Cardinal inaccesible)

Un cardinal inaccesible es un cardinal u tal que:
Q N <p
Qr<p = 2°<ypu

Q A<y, Ka<p (paratodoa <) = Supka < p
a<

Lema (Equivalencia entre ZF-universos y cardinales inaccesibles)

@ Si U es un ZF-universo, entonces su cardinal es inaccesible

@ Si p es un cardinal inaccesible, entonces V), es un ZF-universo

Recordatorio: (V4 )acon = jerarquia cumulativa de la teoria de conjuntos

A\

o Axioma: Existen infinitos cardinales inaccesibles
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Interpretacion de los términos de CC%

Definicién de la funcion (M, p) — [M], : Term x Valy — M

[z], = »(z)

[Prop], = {@,{prf}}
HF si i=1
[Typeil, = {u si Q> 2 (m=Uu)
[[/\JJAM]]/; = (U E [[A]]p'—> [[Mﬂp;w—v) <
[[H.’E tA. Bﬂ = H [[B]]p;zev

vel[A],

Proposicién (Invariante de correccién en CC%)

Si THFM:A y pel[l'], entonces [M], € [A],

@ Mismas dificultades que en CC

@ Ningun tipo infinito en Type; (en CC% sin tipos inductivos)
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. Se necesitan los cardinales inaccesibles?

@ La hipdtesis de inaccesibilidad: una hipétesis simple y estandar en
teoria de conjuntos / teoria de modelos

@ Ingrediente de la teoria de conjuntos de Tarski-Grothendieck:

Axioma de Grothendieck:

Para todo conjunto X, existe un ZF-universo U ¢ X

(Permite construir categorias de categorias de categorias...)

Pregunta: jExiste un modelo en ZF? (sin cardinales inaccesibles)

o Para CC% (sin tipos inductivos): Si [Melliés-Werner 1997]

... pero la construction del modelo es mucho mas dificil
o Conjetura: CC% ~ Z+ZU™ [M. 20217]

@ Para CIC (Coq): 7
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Normalizacion fuerte de CC¥: las lineas generales

@ Construccién de un modelo de normalizacién conjuntista de CC%,

muy similar al modelo booleano
@ Dos diferencias esenciales:

© La denotacién de cada tipo encapsula informacion de reducibilidad
para mantener el invariante de normalizacién

En particular:
@ la denotacién de Prop contiene todos los candidatos de reducibilidad
o la suerte Type; esta interpretada por el primer ZF-universo U

© Todos los tipos (en el modelo) estan habitados

Para interpretar todos los contextos, inclusive inconsistentes

Se utiliza aqui una variante de la prueba presentada en [Altenkirch 1993]
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e CR = conjunto de los candidatos de reducibilidad (a definir)

o Cada tipo esta interpretado por un CR-conjunto:

Definicién (CR-conjunto)

Un CR-conjunto es un par X = (|X|, IFx) formado por:
© Un conjunto no vacio | X| (el soporte de X)

© Una relacién binaria IFx C A x |X]| (la realizabilidad local de X)
tal que {M € A|MIFx z} € CR para todo z € | X|

Intuicién: la relacion M IFx x se lee: «M realiza x (en X)» 'y significa:
«M es un término adecuado para representar la denotacién x en el CR-set X »

@ A cada conjunto S # @ se asocia el CR-conjunto trivial
triv(S) = (S5, SN x 5)

= CR-conjunto que asocia el candidato SN a cada elemento z € S
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N lizacion fi 2/4
ormalizacion tuerte

Definicién (Producto dependiente de una familia de CR-conjuntos)
Dados
@ un CR-conjunto X, y

@ una familia de CR-conjuntos Y = (Y,),¢|x| (indizada por |X|)
se define el CR-conjunto II(X, Y) por:

nx, v)| = I ml
z€|X|

o M |FH(X7y) f <~
(VNeA)(Vze|X|)(NIkx ¢ = MN by, f(z))
paratodos M e A y fe er\Xl Vo

Por construccién, II(X,Y) es un CR-conjunto
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Normalizacién fuerte (3/4)

e Dado un conjunto C de conjuntos no vacios, se escribe C(€R) al
conjunto de los CR-conjuntos cuyos soportes recorren C:

C{CR) .= {X CR-conjunto | |X| € C}

Definicion de la funcién (M, p) — [M], : Term x Valpq — M

[z], = p(z)
[Prop], = triv({{e}}(R)

[Type;l, = triv((Us \ {2})R)
[Az:A.M], = (vel[A]l,l = [M]pzev)
[Mz:A.B] = I([A],, ([Blpwev)ovelia,l)

Extension a los contextos: conjunto [I'] de las valuaciones adaptadas:

[T] == {peValrp | V(z:A)eT p(z) € |[Al,l} J
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Normalizacién fuerte (4/4)

Proposicién (Invariantes de correccién)
oSi A=<A 'y [A], [A], definidos, entonces [A], C [A'],
eSi I'M: A, entonces para toda valuacion p € [I:
[M],, [A], definidos y [M], € |[A],]

Invariante de normalizacién

Si T'H M : A, entonces para toda valuacion p € [I'] vy para toda
sustitucion o tal que o (x;) IFpa,), p(%i) (para todos (z; : A;) € T):

M{o] lFpap, [M],

Corolario (Normalizacién fuerte)

Todos los términos bien tipados de CC% son fuertemente normalizantes
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