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Introduccién

o El interés del teorema de eliminacion de cortes (en NJ) viene de la

Proposicién 1 (Derivaciones sin cortes de = A en NJ)

Toda derivacién sin cortes de un secuente de la forma F A (sin hipétesis)
se acaba con una regla de introduccién

@ De esta propiedad se deducen la consistencia, la propiedad de la
disyuncion y la propiedad de la existencia para el sistema NJ

@ Sin embargo, la Prop. 1 no se extiende a los secuentes cualesquiera
(i.e. con hipétesis). Por lo tanto, no se puede utilizarla para analizar las
derivaciones de teoremas en las teorias axiomaticas:

TEA sii M- A paraalgin ' C Ax(Z)

@ ;Como extender la eliminacién de cortes a las teorias axiomaticas?

= Caso de la Aritmética de Heyting: sistemas HA y HA™
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El lenguaje de la Aritmética

Vocabulario:
Simbolos de funcién: 0 («cero»)
s( ) («sucesor»)
4+ («sumay)
X («producto>)
Simbolo de predicado: = («igualdad»)

Términos tbu n= x | 0 | s(t) | t+u | txu

Férmulas A B, C

= t=u | T | L
| AAB | AVB | A=B
| VxA | IxA

con las abreviaturas —A A=1, A& B = (A= B)A(B=A),

s(0), 2 := s(1), 3 := s(2), etc
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Los axiomas de Peano

Axiomas de calculo:

(1) ¥x(x+0=x)

(2) VxVy (x + s(y) = s(x +y))
(3) Vx(x x0=0)

(4) VxVy (x x s(y) = (x x y) + x)

Inyectividad & no confusién:
(5) VxVy(s(x) =s(y) = x=y)
(6) Vx(s(x) #0) (donde x £y = —(x=1y))

Esquema de induccién:
(7) VZ [A(Z,0) AVx (A(Z, x) = A(Z,s5(x))) = VxA(Z, x)]

para cada féormula A(Z, x) con variables libres {Z, x}



Introduccién HA=: sintaxis deduccién... ... y eliminacién de cortes
0000@0000000000000 0000000000000 000000 000000000000 0000000000000 0O000000000000

Las aritméticas de Peano (PA) y de Heyting (HA)

Se llaman:

@ Aritmética de Peano (PA) o aritmética clasica (de ler orden)
a la teoria clasica cuyos axiomas son los axiomas de Peano

o Aritmética de Heyting (HA) o aritmética intuicionista (de ler orden)
a la teoria intuicionista cuyos axiomas son los axiomas de Peano

Es decir:
PA F A sii nk A para algan T C Ax(PA)
HA - A sii Mny A paraalgin T C Ax(PA)

Concl.
[e]e]
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Expresividad de la aritmética de Heyting (1/4)

@ La Aritmética de Heyting es una teoria muy expresiva que permite
demostrar las propiedades algebraicas basicas de las operaciones
elementales en IN: asociatividad, conmutatividad, elementos neutros,
distributividad, reglas de simplificacién, etc. Ademas, tenemos que:

HA F VxVy(x=yVx#y)

@ También se pueden derivar las propiedades basicas del orden amplio
(reflexividad, transitividad, antisimetria, totalidad) asi como las del
orden estricto mediante las abreviaturas:

x<y = 3Jz(x+z=y) x<y =s(x)<y
@ Cabe destacar que el principio de induccién fuerte es derivable en HA
HA F Vx(Vy (y < x = A(y)) = A(x)) = VxA(x)
mientras el principio del buen orden sélo es clasicamente derivable:

PA F 3xA(x) = 3x(A(X)AVy (Aly) = x <))
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Expresividad de la aritmética de Heyting (2/4)

@ Se pueden demostrar las propiedades de divisibilidad y de la
aritmética modular (divisién euclidiana, teorema de Bézout,
teorema chino del resto, etc.) asi como las propiedades de los
nimeros primos mediante las abreviaturas:

(z,Z)=x+y = Z<y N x=zy+Z7
ylx = Fz(x=2zy)
Prim(x) = x>2 A Vy(ylx=y=1Vy=x)

@ En particular, el teorema de Euclides
«Existen infinitos niimeros primos»
se puede expresar y derivar en HA:

HA + V¥x3y(y > x A Prim(y))
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Expresividad de la aritmética de Heyting (3/4)

@ Aunque los términos de HA/PA sélo puedan expresar polinomios
tbu = x | 0 | s(t) | t+u | txu

las formulas de HA/PA permiten expresar mucho mas funciones

@ Por ejemplo, se puede definir la operacién de potencia mediante una
formula P(x,y,z) “= x¥ =Z" (jmuy larga!) tal que:

HA F VxVz(P(x,0,z) & z=1)
HA F VxVyVz(P(x,y,z) = VZ/(P(x,s(y),z') & z’ = zx))

Ejercicio (dificil): Construir tal férmula

@ De modo similar, se pueden representar (fuertemente!) todas las
funciones recursivas primitivas

@ Por codificaciones adecuadas, se pueden representar en HA/PA
todas las estructuras de datos hereditariamente finitas: tuplas,
listas finitas, conjuntos/arboles/grafos finitos, etc.

1Es decir: con la teoria ecuacional correspondiente, como en ejemplo anterior
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Expresividad de la aritmética de Heyting

@ Usando la férmula P(x,y,z) ("x¥ = Z"), se define la relacién:

yex = AzIX' I (P2, y,z2) Ax" <zAx=2x"z+z+ x")

“el digito de indice y en la representacién binaria de x es 1"

Intuicién: Se puede ver cada entero natural como el conjunto de las posiciones
de los digitos 1 en su representacién en base 2. En particular:

0=2, 1={0}={@}, 2={1}={{@}}, 3={0,1}= {2, {2}} et

Con la igualdad x = y usual de la aritmética, la férmula y € x
permite traducir todas las férmulas del lenguaje de la teoria de
conjuntos adentro del lenguaje de la aritmética

Ejercicio: Verificar que via esta traduccién
o los axiomas de ZF salvo el infinito,
o la negacién del axioma del infinito,
o el axioma de eleccién, y

o el axioma de fundacién HA = teoria intuicionista de los
conjuntos hereditariamente finitos

son todos derivables en HA

Concl.
[e]e]

(4/4)
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. Cémo adaptar la eliminacién de cortes a HA?

@ Problema: Debido a la presencia de axiomas, una derivacién de
HA F A no se acaba necesariamente con una regla de introduccién

@ Solucién: jiIntegrar los axiomas al sistema de deduccién!

@ Punto de vista filoséfico del logicismo
(Gottlob Frege, Bertrand Russell, Alfred North Whitehead, Rudolf Carnap)
(1) Los conceptos matematicos se pueden derivar de conceptos l6gicos a
través de definiciones explicitas
(2) Los teoremas de las matematicas se pueden derivar de axiomas
l6gicos a través de deducciones puramente l6gicas

@ Un punto de vista fructifero:

e Principia Mathematica [Russell & Whitehead, 1910-1913]
e Eliminacién de cortes en HA/PA [Gentzen 1936, Prawitz 1965]
o Eliminacion de cortes en HA2/PA2 [Girard 1969]
o Teorias de tipos [Martin-L&f 1974]
o Calculo de construcciones, Sistema Coq [Coquand 1985, Paulin 1989]
o Deducciéon médulo [Dowek, 2000]
o Sistemas de tipos para I1Z, IZF¢ [Miquel, 2001-2009]
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Los axiomas de Peano (recordatorio)

Axiomas de calculo:

(1) ¥x(x+0=x)

(2) VxVy (x + s(y) = s(x +y))
(3) Vx(x x0=0)

(4) VxVy (x x s(y) = (x x y) + x)

Inyectividad & no confusién:
(5) VxVy(s(x) =s(y) = x=y)
(6) Vx(s(x) #0) (donde x £y = —(x=y))

Esquema de induccién:
(7) VZ [A(Z,0) AVx (A(Z, x) = A(Z,5(x))) = VxA(Z, x)]

para cada féormula A(Z, x) con variables libres {Z, x}

. iCémo integrar estos axiomas en el sistema de deduccién?
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Integracion de los axiomas (1)—(4) (1/3)

Los axiomas de calculo
(1) Vx(x+0=x) (3) Vx(x x0=0)
(2) xVy(x+s(y) =s(x+y)) (4) VxVy(xxs(y) =(xxy)+x)

se pueden remplazar por dos congruencias?

t=t (“los términos t y t’ son computacionalmente equivalentes”)

A= A" (“as férmulas Ay A’ son computacionalmente equivalentes”)

generadas por las reglas:

1%
Il

t+0 t tx0 0
t+s(u) =2 s(t+uw) txs(u) =2 (txu)+t

Esto permite luego razonar a menos de la congruencia A = A’

2Es decir: relaciones de equivalencia compatibles con todos los simbolos légicos:
@ simbolos de funciones en los términos,
@ simbolos de predicado, conectivas y cuantificadores en las férmulas



Introduccién HA=: sintaxis deduccién... ... y eliminacién de cortes Concl.
000000000000 e00000 0000000000000 000000 000000000000 0000000000000 0O000000000000 [e]e]

Integracion de los axiomas (1)—(4) (2/3)

o Las congruencias t =t y A= A’ generadas por las reglas

1%
[l

t+0 t tx0 0
t+s(u) =2 s(t+uw) txs(u) =2 (txu)+t

tienen un sistema de representantes candnico: las formas normales

@ La forma normal de un término (de una férmula) se calcula aplicando
las reglas anteriores de la izquierda a la derecha mientras se pueda

@ Se demuestra que dos términos (férmulas) son computacionalmente
equivalentes si y sélo si tienen la misma forma normal:

t t/ sii it = [t
A=A sii A= A

14

donde [t (resp. |A) nota la forma normal de t (resp. de A)

@ Por lo tanto, las congruencias t=~t' y A=~ A’ son decidibles
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Integracion de los axiomas (1)—(4) (3/3)
@ Se adaptan las reglas de NJ para razonar “a menos de &
(Axioma) TEA 25T i) TRi=p¢ ° (etc-)J

@ Aparece una nueva regla admisible de conversion:

rEA }

(Conv) T- A si A~A’

@ Estos cambios permiten derivar los axiomas de calculo, por ejemplo:

(=-in)

(1) Fx+0=x (V-in) (etc.)

FVx(x+0=x)

@ Mas generalmente, este cambio de punto de vista permite agrupar
maltiples pasos de calculo en un anica inferencia, por ejemplo:

(ax)

p(6 x7)F p(5x8+2)
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Integracion del axioma (5)

@ Para integrar en el sistema de deduccién el axioma
(5) VxVy (s(x) =s(y) = x=y)

basta con introducir un nuevo simbolo de funcién (unario)

Términos t,bu = .-+ | pred(t) (<<predecedor>>)J

con las equivalencias computacionales:

pred(0) = 0 pred(s(t)) & t J

Intuicién: «pred» es una inversa por la izquierda de «s»

@ Luego se deduce que el sucesor es inyectivo:

(a%) (=-in)

() = 50) " () = =0) " 56 = =) P pred(s(x)) = pred(s())
s(x) = s(y) - pred(s(x)) = pred(s(y)) o)
s =s)Fx=y
Fs(x)=s(y)=x=y (Viinx2)

F VxVy (s(x) = s(y) = x = y)
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@ Para integrar en el sistema de deduccién el axioma

(6) Vx (s(x) #0)

basta con introducir un nuevo simbolo de predicado (unario)
Formulas A B

i= oo | null(t)

con las equivalencias computacionales:

null(0) = T

(<<nu|idad>>)J

null(s(t)) = L

@ Luego se deduce que el sucesor nunca alcanza 0:

) =0rs0)=0 ") ) =0F s(x) = s(x) (i"”l) s9=orT "
s(x) =0+ 0=s(x) e s(x) = 0 null(0) Ejnl\)l)

(T-in)

s(x) = 0+ null(s(x))
(Conv)
s(x)=0F L )
sy Zo O
(V-in)
F Vx (s(x) #0)
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Integracion del esquema de induccién (7)

e Para resumir: Se integran los axiomas (1)—(6) en el sistema de
deduccidn, introduciendo una relacién de equivalencia computacional
A= A’ yrazonando a menos de dicha equivalencia

Intuicién: Los axiomas (1)—(6) hablan mas de computacién que de deduccién
@ Sin sorpresa, este método no se extiende al esquema de induccién

(7) VZ [A(Z,0) A Vx (A(Z, x) = A(Z,5(x))) = VxA(Z,x)]

para cada férmula A(Z, x) con variables libres {Z, x}
que hay que remplazar por la nueva regla de deduccién:

(Nat-el) FFAbx:=0 M AFAx:= s(x)] . { x¢ FV(T) J

T A A Alx:=t]

Intuicién: Esq. de induccién = regla de eliminacién de los enteros naturales,

opuesta a los constructores de enteros naturales 0 y s(_) (via el término t)

o Se escribe HA™ («Aritmética computacional») al sistema obtenido
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Sintaxis de HA=

Introduccién
000000000000 000000

Se trata de definir el sistema HA™
cuya sintaxis es la siguiente:

Términos y formulas de HA™

deduccién...
000000000000

... y eliminacién de cortes
0000000000000 0O000000000000

(«Aritmética computacionaly),

Concl.
[e]e]

Términos t,bu == x | 0 | s(t) | pred(t)
| t+u | txu
Férmulas AB,C == t=u | nul(t) | T | L
| AANB | AVB | A=B
| VxA | 3IxA
con las abreviaturas —-A = A= 1, A& B = (A= B)A(B=A),
1 := s(0), 2 := s(1), 3 := s(2), etc

Los términos y las férmulas de HA™ estan equipados con congruencias

t =t (sobre los términos)

que vamos a definir mas adelante

y A=A

(sobre las férmulas)
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Términos: reduccién y equivalencia (1/6)

Definiciéon (Reduccién en un paso)

Se equipan los términos de HA™ con una relacién binaria t = ¢/ de
reduccién en un paso, definida inductivamente por las 12 reglas:

pred(0) = 0 pred(s(t)) > t

t+0 > t t+s(u) = s(t+u) (casos de base)

tx0 >0 txs(u) = (txu)+t

t>t t>t
s(t) > s(t') pred(t) > pred(t’)
ty >~ t] to = th

(pasos inductivos)

i+t = i+t ti+t = t1+t

ty - t] -t
ti Xt > t] Xt Xt = t1 Xt
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Términos: reduccién y equivalencia (2/6)

Lema (Variables libres)

Si t>t', entonces FV(t') C FV(t)

Demostracién. Por induccién sobre la derivacién de t > t’ D)

Obs.: Variables libres pueden desaparecer durante la reduccién, porej.: zx0 = 0

Lema (Sustitutividad)

Si t>t', entonces t[x := u] = t'[x := u]

Demostracién. Por induccién sobre la derivacién de t > t’ DJ
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Términos: reduccién y equivalencia (3/6)

Definicion (Reduccién en maltiples pasos)

Se define inductivamente la relacién ¢ » t’ de reduccién en maltiples
pasos por las dos reglas:
tx>t -t
t>t tst’

Obs.: La relacién t > t' es la clausura reflexiva-transitiva de la relacién
t = t', es decir: la minima relacién reflexiva y transitiva (el minimo preorden)
que contiene la relacién ¢ >~ t’. De modo equivalente:

t»>t' sii existen nc€ N, to,...,t, tales que:
t=tor-ti > > th1 -ty =t
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Términos: reduccién y equivalencia (4/6)

Proposicién (Clausura contextual + Sustitutividad)
@ Si t»t’, entonces FV/(t') C FV(t)

s(t) » s(t)

Si t»>t/, ent
0 5t entonces {pred(t) > pred(t’)

ty+t > t]+th

QSi t1 >t tr > t), entonces
1Y 2 ty Xty > t X th

Q@ Si t»>t y uxu, entonces t[x:=u] » t'[x:=1]

Demostraciéon. Por induccién sobre las correspondientes derivaciones DJ




Introduccién HA=: sintaxis deduccién... ... y eliminacién de cortes Concl.
000000000000 000000 000000@000000000000 000000000000 0000000000000 0O000000000000 [e]e]

Términos: reduccién y equivalencia (5/6)

Definicién (Equivalencia computacional)

Se define inductivamente la relacién t = t’ de equivalencia

computacional entre términos por las tres reglas:

t=t t -t t=t t -t
t=t" t=t"

Il

Obs.: Larelacion t = t' es la clausura reflexiva-simétrica-transitiva de la
relacién t = t’, es decir: la minima relacién de equivalencia que contiene la
relacién t = t'. De modo equivalente:

t>t" sii existen n€ N, to,...,t, tales que:
t=to<-t <= <= tho1 <=ty =t

escribiendo t; <> tiy1 cuando t = tiy1 O tip1 >t
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Términos: reduccién y equivalencia (6/6)

Proposicién (Clausura contextual + Sustitutividad)

s(t) = s(t')

Si t=t', ent
0 5 entonces pred(t) = pred(t’)

t+th =t 4t

QSi 1=t tr & t), entonces
1Y 2 Xt 2t xt

~

Q@ Si t=t' y uXu, entonces t[x:=u] ¥ t'[x:=u]

Demostraciéon. Por induccién sobre las correspondientes derivaciones D)
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Términos: formas normales (1/2)

Definiciéon (Formas normales)

Dados términos t y t’, se dice que:
e t’ es en forma normal cuando t' % (i.e. t’ no se reduce)

@ t' es una forma normal de t cuando t»t' y t' ¥

Problema: Dado un término t:
© ;Tiene t una forma normal?

© Cuando existe, jes Gnica?
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Términos: formas normales (2/2)

Lema (Normalizacién fuerte)

La relacién t = t' es fuertemente normalizante, en el sentido de que
no existe ninguna reduccién infinita:

Alto = t1 = to = -+ = t; =ty = o)
Demostracién. A cada término t se asocia un peso w(t) € IN* definido por:
wx) =1 w(0) = 1
w(s(t)) = w(t)+1 w(pred(t)) = w(t)+1
w(t+u) = w(t)+2w(u) w(t x u) = 3w(t)w(u)

Luego se demuestra que la condicién t > t' implica que w(t) > w(t’)
(por induccién sobre la derivacién de t > t’)

Corolario (Existencia de las formas normales)

Todo término t tiene una forma normal
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Términos: confluencia (1/3)

Proposicién (Confluencia local)

La relacién t > t' es localmente confluente. Es decir:

Para todos términos t, t{, t} tales que: t
1 1
t-t y t>th, / \
/ /
existe un término t” tal que el 2

thst" y th»t” **\t”»’"*

Demostracion. Por induccién sobre las derivaciénes de t > t; y t > t). DJ

Ejercicio: Escribir la demostracién completa
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Términos: confluencia (2/3)

Ejemplos de confluencia local:

(x+0)+s(y

/ \ (x +0) x s(y)

x+s s((x+0)+y)
\ /
s(x+y)

x x s(y) ((x+0) ><y)—|— (x+0)

/ \ (x><y)+(x+0)
x % 0 0 /
\ / (x xy)+x
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Términos: confluencia (3/3)

Teorema (Confluencia)

La relacién t > t’ es confluente. Es decir:

Para todos términos t, t1, t; tales que: t
* *
ts=t y t»th / \
/ /
existe un término t” tal que ty ty

thst" y t)»t’ *"‘\t”f"'*

Demostracion. Sigue del lema de Newman, que dice que toda relacién fuertemente
normalizante y localmente confluente es confluente. O

Corolario (Existencia y unicidad de la formas normal)

Todo término t tiene una anica forma normal. Notacién: |t
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Términos: propiedad de Church-Rosser

Teorema (Propiedad de Church-Rosser)

La relaciéon t = t’ cumple la propiedad de Church-Rosser. Es decir:

t1 =t si y sélo si ti >ty to»t' paraalgin t/

~

h—— b

tl

Demostracién. (=) Por induccién sobre la derivacién de t; 2 to, usando la
propiedad de confluencia. (<) Obvio, por def. de » y = DJ

Corolario (Criterio de equivalencia)

Dos términos son equivalentes si y sélo si tienen la misma forma normal:

h =t sii It =l

En particular, la relaciéon t; & t, es decidible
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Intermezzo: estructura de las formas normales (1/2)

Se consideran las dos formas de términos neut (“neutros”)
y norm (“normales”) definidas por las gramaticas:

neut = x | pred(neut)
| norm+neut | norm X neut
norm = neut | 0 | s(norm)

Observaciones:
@ Los neut son los norm que no son ni 0 ni de la forma s(_)
@ Todos los neut son abiertos (i.e. tienen variable libre)

@ Los norm cerrados son exactamente los enteros de Peano:

t = s(---s(0)---)
——
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Intermezzo: estructura de las formas normales (2/2)
neut = x | pred(neut)
| norm+ neut | norm x neut
norm = neut | 0 s(norm)

Proposicion (Caracterizacion de las formas normales)

@ Los términos en forma normal son los términos de la forma norm

Y por lo tanto:
© Los términos cerrados en forma normal son los enteros de Peano

© La forma normal de un término cerrado t es el valor de t en el
modelo estandar: |t = [¢]M

@ Dos términos cerrados t; y t> son computacionalmente equivalentes
si y sélo si corresponden al mismo entero de Peano:

h=t sii It =1k sii Htlﬂw = [[fz]]lN
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Formulas: reduccién y equivalencia (1/3)

Definicion (Reduccién en un paso)

Se equipan las férmulas de HA™ con una relacién binaria A = A’ de
reduccién en un paso, definida inductivamente por las 13 reglas:
t>t
null(0) >~ T null(s(t)) >~ L null(t) > null(t")
t>-t u=u
t=u > t'=u t=u > t=1u
A=A B> B
A=B - A=B A=B - A= B
A=A B>~ B
AAB - AAB AAB = AANB
Ax-A B> B
AVB - A VB AVB = AVB
A=A A=A
VxA = VxA IxA = IxA
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Formulas: reduccién y equivalencia (2/3)

De modo analogo, se definen:

o La relacion A A’ de reduccién en maltiples pasos, como la
clausura reflexiva-transitiva de la relaciéon A = A’

o La relacion A= A’ de equivalencia computacional, como la
clausura reflexiva-simétrica-transitiva de la relacién A = A’

Estas tres relaciones cumplen las mismas propiedades que las relaciones
analogas sobre los términos:
o Sustitutividad y clausura contextual (para » y &)
Normalizacién fuerte
Confluencia local y confluencia

Existencia y unicidad de las formas normales. Notacién: |A

Propiedad de Church-Rosser y criterio de equivalencia

Ejercicio: Enunciar y demostrar estas propiedades
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Formulas: reduccién y equivalencia

(3/3)

La relacion A; = A, de equivalencia computacional es decidible:

A1 =2 A sii 1AL = A J

Observacion: La relacion de equivalencia computacional no permite
identificar un = con un A, un V o un V:

Lema

Para toda férmula C:

A= B sii
ANB sii
AV B sii
Vx A sii
dx A sii
t=u sii

OHONONONGNG!
1011 11 1R 11 1R

C = A= B, con
C = AAB’, con
C = AVvB', con
C = VxA, con
C = IxA, con
C =t =u, con

A=Ay B =B
A=Ay B =B
A~Ay B~B
A~ A
A=A
=ty v=u

y

Sin embargo: T 2= null(0)

y L 2= null(s(t))

(pero T % 1)
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Reglas de deduccién del sistema HA™ (1/2)

@ Como siempre, usamos secuentes de la forma THA

@ Reglas del calculo proposicional intuicionista:

(sttoma) T si A'~Ael
=) rA-B [FA=B TFA
= FA= B r-B
rFA TrB [FAAB TFAAB
(A) r-AAB r-A r-B
rFA e [FAVB T,AFC T,BFC
) Frave TraAvBs rC
(T) r=¢C s C=T (sin regla de eliminacién)
(J_) (sin regla de introduccién) [[:ll: g si C=1
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Reglas de deduccién del sistema HA™ (2/2)

@ Reglas de introduccién y de eliminacién de los cuantificadores:

rEA . TEVXA
(V) m si x¢ FV(T) W si A'>A[x:=t]
e Alx:=t] M=3xA NAEB |
3 _— si x¢FV(T,B)
M-3xA r-B
@ Reglas de introduccién y de eliminacion de la igualdad:
ey N-t=u M=Alx:=t
(:) r-t=t st - A [ ] si A>A[x:=u] J

@ Regla de eliminacion de los enteros naturales (= induccién):

I+ Alx :=0] MAE Alx = s(x)] . { xgFV(T) J

(Nat'el) e A A2 A[x:=t]
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Propiedades (1/3)

Dadas listas de formulas T'= Ay,..., A, y "= A},.. A,
se escribe =T’ cuando n=my A; = Al para todo i € [1..n]

Proposicién (Conversién)
La siguiente regla de inferencia es admisible en el sistema HA™:

FTEA  frer
MEA T A

Demostracion. Se trata de demostrar que si un secuente ' = A tiene derivacién d,
entonces para todos [' =T y A’ =2 A, el secuente " = A’ tiene (otra) derivacién d’.

Formalmente, la derivacién d’ : (I'" = A’) se construye por recurrencia sobre la
derivacién d : (I = A), remplazando (en d) cada secuente de la forma LA+ C
por un secuente de la forma ", A’ C’, con A’ =2 Ay C' = C. O

<

Obs. Las derivaciones d y d’ tienen los mismos pasos de deduccién (y en el mismo
orden); sélo cambian los secuentes subyacentes
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Propiedades (2/3)

Recordatorio: Se escribe ' C " cuando cada hipétesis que ocurre en T
también ocurre en I’ (sin tener en cuenta ni el orden ni el nimero de ocurrencias)

Proposicién (Debilitamiento generalizado)

La siguiente regla de inferencia es admisible en el sistema HA™:

r'tA

= i ICr’
MFA

Demostraciéon. Por induccién sobre la derivacién de ' = A. D)

Corolario (Reglas de permutacién, debilitamiento y contraccién)

La siguientes reglas son admisibles en el sistema HA™:

r-A r-A rB,B-A
oM FA LBFA LBFA

donde o es cualquier permutacién de I’
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Propiedades (3/3)

Proposicién (Sustitutividad)
La siguiente regla de inferencia es admisible en el sistema NJ:

rHA
Mx:=u]F Alx = u]

Demostracion. Por recurrencia sobre la derivacién d del secuente I' - A se construye

una derivacién d[x := u] del secuente ['[x := u] - A[x := u], remplazando (en d) cada

secuente de la forma ', A = C por el secuente ['[x := u], A[x := u] F C[x := u]. O
v

Obs. Como anteriormente, las derivaciones d y d[x := u] tienen los mismos pasos de
deduccién (y en el mismo orden); sélo cambian los secuentes subyacentes
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Derivacién de los axiomas de Peano en HA® (1/4)

@ Axioma: Vx(x+0=0)

(=-in)

MEx+0=0 o

[ Vx(x+0=0)

e Axioma: VxVy (x+s(y) =s(x+y))

(=-in)
(V-in)
(V-in)

M=x+s(y)=s(x+y)
M Vx (x +s(y) = s(x + y))
M= VxVx (x +s(y) = s(x +y))

@ Axiomas de x: Analogo
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Derivacién de los axiomas de Peano en HA® (2/4)

@ Inyectividad del sucesor:

(%) (=-in)

s(x) = s(y) F s(x) = s(y) s(x) = s(y) I pred(s(x)) = pred(s(x)) )
s =sFx=y
Fs(x)=s(y)=x=y (v

FVy (s(x) =s(y) = x=y)
FVxVy (s(x) =s(y) = x=y)

(V-in)

(%) Regla (=-el) con la férmula A(z) := pred(s(x)) = pred(z)
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Derivacién de los axiomas de Peano en HA® (3/4)

@ No-sobreyectividad del sucesor:

d —————  (T-in)
s(x) =0+ 0=s(x) s(x)=0F null(0)
s(x)=0F L ) )
s £0

Fux(s() 20)

con d= { s(x)=0Fs(x)=0 = s(x) = 0F s(x) = s(x) @
s(x) =0+ 0=s(x)

(*) Regla (=-el) con la formula A(z) := null(z)

(**) Regla (=-el) con la férmula A(z) = z = s(x)
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Derivacién de los axiomas de Peano en HA™ (4/4)

@ Esquema de induccion:

(ax)

C,AZx)FC |
A~
C,A(Z, x) F Vx (AZ, x) = A(Z, 5(x))) (v elz)
Cre ™ AR A S AGX) | CAENFAE)
_CrC
CrAzo = * CAEX)FAEZSX)
at-e
CrAGZ %) (Nat-<h
———— (V-in)
CFVxA(Z, x) in)
FC = WAEZx)
(Vintrox n)

FVZ[A(Z,0) AVx (A(Z, x) = A(Z,5(x))) = VxA(Z,x)]

C
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Extension conservativa (1/2)

Es claro que:
o El lenguaje de HA est4 incluido en el lenguaje de HA™
e Los axiomas de HA son derivables en HA™ (sin hipétesis)

o Las reglas de NJ son casos particulares de las reglas de HA™

Por lo tanto:
Proposicion (Extension HA C HA™)

Si HAF A, entonces tpya= A (sin hipétesis)

Ademas:

Proposicién (Extension conservativa)

HA™ es una extensién conservativa de HA, en el sentido de que para
toda férmula cerrada A del lenguaje de HA, tenemos que:

HAE A si y sélo si Fua= A (sin hipétesis)
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Extension conservativa (2/2)

Arquitectura de la prueba de conservatividad:

Se observa que cualquier formula A € ZAya>~ se puede traducir
en una férmula A* € Zya (i-e. sin los simbolos pred y null) con
las mismas variables libres y “el mismo significado”

(La definicién de la traduccién A — A* es muy técnica.)

Luego se verifica que:

(1) Para toda férmula A de HA: HA F A* < A

(Por recurrencia sobre la férmula A)

(2) Para todas férmula A; =2 Ay de HA=: HA F Al & A3

(Por induccién sobre la derivacién de A; = A;)

(3) Si un secuente ' - A es derivable en HA®, entonces existe una lista
A C Ax(HA) tal que el secuente I'*, A - A* sea derivable en NJ

(Por induccién sobre la derivacién de '~ A en HA®, usando (2))

(4) Se concluye, observando que si Fya~ A (con A € Za),
entonces HA = A* (por (3)), y luego HAF A (por (1)). O
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La nocién de corte (1/7)

En el sistema HA=, un corte describe la interaccién entre:

@ una regla de introduccién y una regla de eliminacion

(de la misma construccién légica, como en el sistema NJ)

@ un constructor (0 o s) y la regla de induccion

(induccién = regla de eliminacién de los enteros naturales)

Asi, tenemos:
@ 8 cortes l6gicos —los de NJ—, mas

@ 2 cortes de induccién



Introduccién
000000000000 000000

HA™: sintaxis
0000000000000 000000

Reduccion de los cortes légicos

Cortes de A:

o
rFA TEB (i
TEAAB (g

Fr-A '
g
A TEB (i
TEAAB (o

N8B

deduccién...
000000000000  OO®00000000000000000000000 00

... y eliminacién de cortes

r
r=A

4
=B

Concl.

(1/5)
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Sustitucién de un axioma

@ Se observa que una derivacién del secuente LAF B sdlo
contiene secuentes de la forma T A"+ B’ (I y B’ cualesquiera)

o d s d
@ Dadas derivaciones F,A-l— B y T FA , se escribe

¥
r-A
dlax(A):=d’]
=B
a la derivacién del secuente ' - B obtenida a partir de d:

e eliminando la hipétesis A de todos los secuentes apareciendo en d

o remplazando cada invocacién del axioma A (en un secuente de la
forma LA T'+ A’ con A" =2 A) por la derivacién d’ (debilitada
y convertida al secuente I', T’ - A')

@ Obs.: La derivacién “sustituida” d[ax(A) := d’] contiene una copia de la
derivacion d’ para cada invocacién del axioma A en la derivacién d
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Reduccion de los cortes l6gicos (2/5)

Corte de =:

éd S
rA-B i L d’ r-A
rFA=B " [EA L dlax(A)=d]

rFB ~ TFB
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Reduccion de los cortes l6gicos (3/5)
Cortes de V:

L d , , L

7r FA (V-iny) d{ dé r l_ A
r'-AvB NNAEC I,BEC (vl L d{[ax(A):=d]

r-c YW TFEC

d _ _ D d

TEB (i L dy L ds r-8
r-AVB * T)A-C TI,BrC (e . djfax(B)=d]

e c W TEC

Corte de T/L: ninguno
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Reduccion de los cortes l6gicos (4/5)
Corte de V: (con x ¢ FV(IN) y A = A[x :=t])
3 L dxi=t]
rCA . Db
TEwuxA M- Alx:=t]
———— (V-el) == (Conv)
rEA rEA
Corte de 3: (con x ¢ FV(T,B))
d S d
HAk=q - id M- Alx = t]
r-3xA rAFB el ©d [xe=t][ax(Alx:=t]):=d]
e :

Nr-=B s r-B



HA™: sintaxis
0000000000000 000000

Introduccién
000000000000 000000

Reduccion de los cortes légicos

Corte de =:

- d
M- Alx = t]
rEA (S

Tre=v¢ "

deduccién.
000000000000

)

Concl.
[e]e]

. ... y eliminacién de cortes
0000000@000000000000000000

(5/5)

(con t=t y A Ax:=1])

d
M- Alx = t]

TEA (Conv)

~
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Reduccién de los cortes de induccién (1/4)

Intuicion 1: El principio de induccién sélo sirve para demostrar una
propiedad P(x) hasta un término abierto, por ejemplo y + 3:

© dy(x)

P(0) P(x)= F(x +1)
P(y +3)

Cuando se trata de alcanzar un entero concreto, por ejemplo 4, siempre
se puede “desenrollar” la induccién del modo siguiente:

: do : ds(0)
P(0)  P(0) = P(1) L a
P(1) P(1) = P(2) L a2 _
P(2) P(2) = P(3) L de(3)
P(3) P(3) = P(4)
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Reduccién de los cortes de induccién (2/4)

Intuiciéon 2: En la Aritmética, los enteros naturales son:
@ Introducidos por los simbolos 0 y s(x) (“constructores”)
t == 0 | s(t) |
@ Eliminados por el principio de induccién:

I Alx :=0] MAE Alx :=s(x)]

A max—g o (six ¢ FV (D)

Por lo tanto... La regla de induccién forma un corte cada vez que esta
usada con un término t de laforma t = 0 o t = s(t)

(Cuando t no es de ninguna de las dos formas anteriores, no hay corte)
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Reduccién de los cortes de induccién (3/4)

Cortes de induccioén: (con x¢ FV(I) y A 2 A[x :=t])

o Corte cuando t = 0:

do ds do
I+ Alx :=0] A Alx :=s(x)] M Alx:=0]
(Nat-el) == (Conv)
FrEA (= Ax:=0) ~ reA
o Corte cuando t = s(t'): d d
M Alx:=0] I AE A[x = s(x)] (Nateel)
at-e
M= Alx:=1t']
 do " ds D dbe=tlIAx(Abe=t])=.]
F-Ax:=0] T,AF Alx:=s(x)] M Alx:=s(t')]
(Nat-el) == (Conv)

F=A (= Ax:=s(t)) ~ re=A
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Reduccién de los cortes de induccién (4/4)

Ejemplo de reduccién en el caso cerrado:

-y
I+ P(0)
- ds(0)[Ax(P(0)):=do]
M= P(1)
L d(D)IAX(P(L)=]
e P(2)
. , L d()A(PR)= ]
L do L ds(x) M+ P(3)
r=pP0O) T,P(x)F P(s(x)) C d(3)AX(P(3))i=]
(Nat-el) 5 -
- P(4) 2T+ P4)
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Eliminaciéon de cortes en el sistema HA™

Teorema (Eliminacién de cortes en HA™)

El sistema formado por las 10 reglas de reduccién anteriores es
fuertemente normalizante, en el sentido de que no existe ninguna
sucesion infinita de reducciones (entre derivaciones de un mismo secuente):

Ady ~ di ~ do ~ -~ di wdipg v o)

Por lo tanto, toda sucesién de reducciones es finita

Demostracion: Postpuesta

Corolario (Derivaciones sin cortes en HA™)

Todo secuente derivable en HA™ tiene una derivacion sin cortes (en HA™)




Introduccién HA=: sintaxis deduccién... ... y eliminacién de cortes Concl.
000000000000 000000 0000000000000 000000 000000000000 0000000000000 e000000000000 (oo}

Variables libres de una derivacién (1/4)

Definicion (Variables libres de una derivacién, 1/3)

o " dy
Dada una derivacién d = r = Al - T £ A,
r'HA

(R)

se define el conjunto FV/(d) de las variables libres de d por induccién sobre d,
distinguiendo los casos en funcién de la dltima regla (R):

@ Regla sin premisa (axioma, T-intro, =-intro): FV/(d) := FV(I') U FV(A)

@ Otra regla del calculo proposicional (=-intro, =--elim, A-intro, A-elimy 2,
V-introy 2, V-elim, L-elim): FV(d):= FV(di)U---UFV(dn)

@ Regla =-elim: FV(d) := FV(d1) U FV(da) U FV(A)

dqv d1
d = (r-t=u [k B[x:=t] | (con A= B[x := u])
rFA =< ()
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Variables libres de una derivacién (2/4)

Definicion (Variables libres de una derivacién, 2/3)

@ Regla V-intro: FV(d) := FV(d1) \ {x}

D dy
d={rrs8
TFvxB

(i) (con x ¢ FV(I))

® Regla V-elim: FV/(d) := FV/(d1) U FV(A) U FV(t)

D dy
IYxB (con A= B[x:=t])
—— (V-el)
Fr=A

Q
Il

@ Regla J-intro:  FV/(d) := FV(d1) U FV(t)

D dy
d = STFBx:=t]

v
r-axg O
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Variables libres de una derivacién (3/4)

Definicion (Variables libres de una derivacion, 3/3)

@ Regla 3-elim: FV(d) := FV(d1) U (FV(d2) \ {x})

Ly © b
d = (rr-3ixB T,BFA . (con x & FV(T, A))
TFA G

@ Regla de induccién:  FV/(d) := FV(di) U(FV(d2) \ {x}) U FV(A)U FV(t)

_ D ;o2 con x ¢ FV(I)
d = {r+B[x:=0] T,BF Blx:=s(x)] y A~ B[x:=1]
(Nat-el) .
reA
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Variables libres de una derivacién (4/4)

Para toda derivacién d de un secuente ' - A:

(1) FV( U FV(A) C FV(d)
(2) Si d~»d (reduccién de corte), entonces FV(d’') C FV(d)

(3) Para toda variable x € FV(d) y para todo término u:
FV(d[x :=u]) = (FV(d)\ {x})U FV(u)

Recordatorio: d[x := u] es una derivacién de [[x := u] - A[x := u]

@ La conclusién de una derivacion cerrada es un secuente cerrado,
pero un secuente cerrado puede tener un derivacién abierta

@ Siempre se puede cerrar una derivaciéon d de un secuente TH A vya
cerrado, sustituyendo a cada variable x € FV(d) cualquier término
cerrado (por ejemplo 0). Esto no afecta la conclusion T+ A
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Propiedades de las derivaciones sin cortes (1/7)

A partir de ahora, sélo se consideran derivaciones cerradas

Proposicion (Forma de una derivacion cerrada y sin cortes de - A)

En HA™, toda derivacién cerrada y sin cortes de un secuente de la forma
FA (i.e. con antecedente vacio)

se acaba con una regla de introduccién

Obs.: La hipdtesis “derivacién cerrada” implica que la férmula A esta cerrada
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Propiedades de las derivaciones sin cortes (2/7)

Demostracién.

Por induccién sobre la estructura de la derivacién d : (- A) (cerrada y sin cortes),
distinguiendo los casos en funcién de la dltima regla aplicada:

@ Regla axioma. Caso imposible, pues el antecedente es vacio.

@ Regla de eliminacién légica, por ejemplo: =-elim (i.e. modus ponens).
En este caso, la derivacién d : (- A) es de la forma

C L ds
d=4Y{FrB=>A FB
FA

Se observa que la subderivacién d; del secuente - B = A también es cerrada y
sin cortes. Por hipétesis de induccién, di se acaba con una regla de introduccién.
Entonces d es un corte, lo que demuestra que este caso es imposible.

@ De modo analogo, si d se acaba con otra regla de eliminacién légica, se observa
que la subderivacién dy de su premisa principal (también cerrada y sin cortes) se
acaba por una regla de introduccién (por hipétesis de induccién), lo que implica
que d es un corte y demuestra que el correspondiente caso es imposible. (...)
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Propiedades de las derivaciones sin cortes

Demostracién (continuacién).
@ Regla de induccién. En este caso, la derivacién d : (- A) es de la forma
di da
d = F B[x := 0] B F B[x := s(x)] (con A= B[x :=t])
FA

Como la derivacién d esta cerrada, el término t también estd cerrado (por def.
de FV(d)). Por lo tanto, tenemos que t =0 o t<=s(t’) para algan t'.
Esto implica que d es un corte, y demuestra que este caso también es imposible.

@ Regla de introduccién. Es el Gnico caso posible. O

Concl.
[e]e]

(3/7)

V.
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Propiedades de las derivaciones sin cortes (4/7)

Combinada con el teorema de eliminacién de cortes, la proposicién
anterior implica la consistencia del sistema HA™:

Corolario 1 (Consistencia)

El secuente ~ | no es derivable en el sistema HA=

Demostracién.

Si el secuente I L fuera derivable en HA=, tendria una derivacién cerrada y sin cortes.
Tal derivacién acabaria con una regla de intro: imposible pues tal regla no existe. [
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Propiedades de las derivaciones sin cortes (5/7)

Corolario 2 (Propiedad de la disyuncién)

Si un secuente cerrado de la forma + AV B es derivable en el sistema
HA=, entonces al menos unode A o B es derivable

| 5\

Demostracion.

Si el secuente cerrado - AV B es derivable en HA=, entonces tiene una derivacién
cerrada y sin cortes, que se acaba con una regla de introduccién. Tal derivacién tiene
dos formas posibles:

S d
_FA i
@ O biendelaforma FAVB * , que contiene una derivacién de + A.
d
- B (V-in2)

@ O biendelaforma AV B , que contiene una derivacién de + B. [J
v
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Propiedades de las derivaciones sin cortes (6/7)

Corolario 3 (Propiedad de la existencia en HA™)

Si un secuente cerrado de la forma F 3x A(x) es derivable en HA®,
entonces el secuente  A(n) es derivable para algin entero de Peano n

Demostracién

N
| \

Si el secuente cerrado | 3x A(x) es derivable en HA=, entonces tiene una derivacién
cerrada y sin cortes, que se acaba con una regla de introduccién. Por lo tanto, tal
derivacién es de la forma L d

- A(t)
F Ix A(x)

donde t es un término cerrado. Escribiendo n:= |t, se deduce una derivacién:

(3-in)

= Q

F A(t
=== (Conv)
= A(n) O

N
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Propiedades de las derivaciones sin cortes (7/7)

Corolario 4 (Igualdades derivables en HA™)

Un secuente cerrado de la forma F t = u es derivable en el sistema HA=
siysélosi t=u (i.e. ty uson computacionalmente equivalentes)

Demostracién.

| \

Supongamos que el secuente cerrado -t = u es derivable en HA=. Entonces tiene
una derivacién cerrada y sin cortes, que se acaba con una regla de introduccién. Por lo
tanto, tal derivacién es de la forma

Ft=u (:_in),

con t = u. El reciproco es obvio. O

A\
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Extraccién de programas

Teorema (Extraccién de funciones recursivas)

Si el siguiente secuente cerrado es derivable en HA™
F Vxg o Vxe dy A(xa, oo Xk, YY)
entonces existe una funcién recursiva total f : IN — IN tal que
F A(n,...,ng, (..., ng))

es derivable en HA™ para todo (ny, ..., nx) € IN¥

Demostracién.

| \

Dada una derivacién cerrada d de + Vxq -« - Vxg Iy A(x1, ..., Xk, y)), se construye la
funcién recursiva f : INK — IN del modo siguiente:
f(ni,...,ng) =
1. Formar la derivacién d(ny,...,nx) de F 3y A(ny,...,nk,y))
2. Eliminar los cortes de d{ni,...,nk), y extraer el testigo t

3. Devolver el entero n:= |t O

N
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Ejemplo

@ Consideremos una derivacién cerrada d del teorema:

HA® I Vx3y (x =2y Vx=2y+1)

@ A cada n € IN se asocia la derivacién cerrada
L d
d(n) '= {FVx3Iy(x=2yVx=2y+1)
F3y(n=2yvn=2y+1)

(V-el)

@ Eliminando los cortes en la derivacién anterior, se obtiene una
derivacion d/ sin cortes que sélo tiene dos formas posibles:

(=in) —— (=in)

Fn=2p Fn=2p+1
(V-ing) (V-in2)
Fn=2pvn=2p+1 (3-in) o Fn=2pVn=2p+1 (3-im)
_in -in
F3y(n=2yVvn=2y+1) F3y(n=2yVn=2y+1)

@ En ambos casos, la derivacién d! contiene el entero p := |[n/2]
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Conclusién

@ El teorema de eliminacién de cortes en el sistema HA= implica que:

Teorema

El sistema HA™ es constructivo, en el sentido de que es consistente y
cumple las propiedades de la disyuncién y de la existencia

@ Y como HA™ es una extensién conservativa de HA, se deduce que:

Teorema

La Aritmética de Heyting (HA) es constructiva (mismo sentido)

@ Se observa que la consistencia de HA se deduce de la propiedad de
eliminacién de cortes por medios puramente aritméticos

@ Por lo tanto, el teorema de eliminacién de cortes no se puede
demostrar en HA/PA (por el segundo teorema de incompletitud)

@ Ahora necesitamos mas herramientas para demostrar los teoremas de
eliminacion de cortes: los calculos lambda (puro y tipados)
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