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Introducción

El interés del teorema de eliminación de cortes (en NJ) viene de la

Proposición 1 (Derivaciones sin cortes de ` A en NJ)

Toda derivación sin cortes de un secuente de la forma ` A (sin hipótesis)
se acaba con una regla de introducción

De esta propiedad se deducen la consistencia, la propiedad de la
disyunción y la propiedad de la existencia para el sistema NJ

Sin embargo, la Prop. 1 no se extiende a los secuentes cualesquiera
(i.e. con hipótesis). Por lo tanto, no se puede utilizarla para analizar las
derivaciones de teoremas en las teorías axiomáticas:

T ` A sii Γ ` A para algún Γ ⊆ Ax(T )

¿Cómo extender la eliminación de cortes a las teorías axiomáticas?
⇒ Caso de la Aritmética de Heyting: sistemas HA y HA

∼=
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El lenguaje de la Aritmética

Vocabulario:

Símbolos de función: 0 («cero»)
s(_) («sucesor»)
_ + _ («suma»)
_×_ («producto»)

Símbolo de predicado: _ = _ («igualdad»)

Términos y fórmulas de la aritmética

Términos t, u ::= x | 0 | s(t) | t + u | t × u

Fórmulas A,B,C ::= t = u | > | ⊥
| A ∧ B | A ∨ B | A⇒ B
| ∀x A | ∃x A

con las abreviaturas ¬A :≡ A⇒ ⊥, A⇔ B :≡ (A⇒ B) ∧ (B ⇒ A),
1 :≡ s(0), 2 :≡ s(1), 3 :≡ s(2), etc.



Introducción HA∼= : sintaxis deducción... ... y eliminación de cortes Concl.

Los axiomas de Peano

Axiomas de cálculo:
(1) ∀x (x + 0 = x)

(2) ∀x ∀y (x + s(y) = s(x + y))

(3) ∀x (x × 0 = 0)

(4) ∀x ∀y (x × s(y) = (x × y) + x)

Inyectividad & no confusión:
(5) ∀x ∀y (s(x) = s(y)⇒ x = y)

(6) ∀x (s(x) 6= 0) (donde x 6= y :≡ ¬(x = y))

Esquema de inducción:
(7) ∀~z [A(~z , 0) ∧ ∀x (A(~z , x)⇒ A(~z , s(x))) ⇒ ∀x A(~z , x)]

para cada fórmula A(~z , x) con variables libres {~z , x}
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Las aritméticas de Peano (PA) y de Heyting (HA)

Se llaman:

Aritmética de Peano (PA) o aritmética clásica (de 1er orden)
a la teoría clásica cuyos axiomas son los axiomas de Peano

Aritmética de Heyting (HA) o aritmética intuicionista (de 1er orden)
a la teoría intuicionista cuyos axiomas son los axiomas de Peano

Es decir:

PA ` A sii Γ `NK A para algún Γ ⊆ Ax(PA)

HA ` A sii Γ `NJ A para algún Γ ⊆ Ax(PA)
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Expresividad de la aritmética de Heyting (1/4)

La Aritmética de Heyting es una teoría muy expresiva que permite
demostrar las propiedades algebraicas básicas de las operaciones
elementales en N: asociatividad, conmutatividad, elementos neutros,
distributividad, reglas de simplificación, etc. Además, tenemos que:

HA ` ∀x ∀y (x = y ∨ x 6= y)

También se pueden derivar las propiedades básicas del orden amplio
(reflexividad, transitividad, antisimetría, totalidad) así como las del
orden estricto mediante las abreviaturas:

x ≤ y :≡ ∃z (x + z = y) x < y :≡ s(x) ≤ y

Cabe destacar que el principio de inducción fuerte es derivable en HA

HA ` ∀x (∀y (y < x ⇒ A(y))⇒ A(x)) ⇒ ∀x A(x)

mientras el principio del buen orden sólo es clásicamente derivable:

PA ` ∃x A(x) ⇒ ∃x (A(x) ∧ ∀y (A(y)⇒ x ≤ y))
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Expresividad de la aritmética de Heyting (2/4)

Se pueden demostrar las propiedades de divisibilidad y de la
aritmética modular (división euclidiana, teorema de Bézout,
teorema chino del resto, etc.) así como las propiedades de los
números primos mediante las abreviaturas:

(z , z ′) = x ÷ y :≡ z ′ < y ∧ x = zy + z ′

y |x :≡ ∃z (x = zy)

Prim(x) :≡ x ≥ 2 ∧ ∀y (y |x ⇒ y = 1 ∨ y = x)

En particular, el teorema de Euclides

«Existen infinitos números primos»

se puede expresar y derivar en HA:

HA ` ∀x ∃y (y > x ∧ Prim(y))
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Expresividad de la aritmética de Heyting (3/4)

Aunque los términos de HA/PA sólo puedan expresar polinomios
t, u ::= x | 0 | s(t) | t + u | t × u

las fórmulas de HA/PA permiten expresar mucho más funciones

Por ejemplo, se puede definir la operación de potencia mediante una
fórmula P(x , y , z) “≈ xy = z” (¡muy larga!) tal que:

HA ` ∀x ∀z (P(x , 0, z)⇔ z = 1)

HA ` ∀x ∀y ∀z (P(x , y , z) ⇒ ∀z ′ (P(x , s(y), z ′)⇔ z ′ = zx))

Ejercicio (difícil): Construir tal fórmula

De modo similar, se pueden representar (fuertemente1) todas las
funciones recursivas primitivas

Por codificaciones adecuadas, se pueden representar en HA/PA
todas las estructuras de datos hereditariamente finitas: tuplas,
listas finitas, conjuntos/árboles/grafos finitos, etc.

1Es decir: con la teoría ecuacional correspondiente, como en ejemplo anterior
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Expresividad de la aritmética de Heyting (4/4)

Usando la fórmula P(x , y , z) (“xy = z”), se define la relación:

y ∈ x :≡ ∃z ∃x ′ ∃x ′′ (P(2, y , z) ∧ x ′′ < z ∧ x = 2x ′z + z + x ′′)

“el dígito de índice y en la representación binaria de x es 1”

Intuición: Se puede ver cada entero natural como el conjunto de las posiciones
de los dígitos 1 en su representación en base 2. En particular:

0 = ∅, 1 = {0} = {∅}, 2 = {1} = {{∅}}, 3 = {0, 1} = {∅, {∅}}, etc.

Con la igualdad x = y usual de la aritmética, la fórmula y ∈ x
permite traducir todas las fórmulas del lenguaje de la teoría de
conjuntos adentro del lenguaje de la aritmética

Ejercicio: Verificar que vía esta traducción
los axiomas de ZF salvo el infinito,
la negación del axioma del infinito,
el axioma de elección, y
el axioma de fundación

son todos derivables en HA

HA = teoría intuicionista de los
conjuntos hereditariamente finitos
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¿Cómo adaptar la eliminación de cortes a HA?

Problema: Debido a la presencia de axiomas, una derivación de
HA ` A no se acaba necesariamente con una regla de introducción

Solución: ¡Integrar los axiomas al sistema de deducción!

Punto de vista filosófico del logicismo
(Gottlob Frege, Bertrand Russell, Alfred North Whitehead, Rudolf Carnap)

(1) Los conceptos matemáticos se pueden derivar de conceptos lógicos a
través de definiciones explícitas

(2) Los teoremas de las matemáticas se pueden derivar de axiomas
lógicos a través de deducciones puramente lógicas

Un punto de vista fructífero:
Principia Mathematica [Russell & Whitehead, 1910–1913]
Eliminación de cortes en HA/PA [Gentzen 1936, Prawitz 1965]
Eliminación de cortes en HA2/PA2 [Girard 1969]
Teorías de tipos [Martin-Löf 1974]
Cálculo de construcciones, Sistema Coq [Coquand 1985, Paulin 1989]
Deducción módulo [Dowek, 2000]
Sistemas de tipos para IZ, IZFC [Miquel, 2001–2009]
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Los axiomas de Peano (recordatorio)

Axiomas de cálculo:
(1) ∀x (x + 0 = x)

(2) ∀x ∀y (x + s(y) = s(x + y))

(3) ∀x (x × 0 = 0)

(4) ∀x ∀y (x × s(y) = (x × y) + x)

Inyectividad & no confusión:
(5) ∀x ∀y (s(x) = s(y)⇒ x = y)

(6) ∀x (s(x) 6= 0) (donde x 6= y :≡ ¬(x = y))

Esquema de inducción:
(7) ∀~z [A(~z , 0) ∧ ∀x (A(~z , x)⇒ A(~z , s(x))) ⇒ ∀x A(~z , x)]

para cada fórmula A(~z , x) con variables libres {~z , x}

... ¿Cómo integrar estos axiomas en el sistema de deducción?
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Integración de los axiomas (1)–(4) (1/3)

Los axiomas de cálculo

(1) ∀x (x + 0 = x)

(2) ∀x ∀y (x + s(y) = s(x + y))

(3) ∀x (x × 0 = 0)

(4) ∀x ∀y (x × s(y) = (x × y) + x)

se pueden remplazar por dos congruencias2

t ∼= t ′ (“los términos t y t′ son computacionalmente equivalentes”)

A ∼= A′ (“las fórmulas A y A′ son computacionalmente equivalentes”)

generadas por las reglas:

t + 0 ∼= t t × 0 ∼= 0
t + s(u) ∼= s(t + u) t × s(u) ∼= (t × u) + t

Esto permite luego razonar a menos de la congruencia A ∼= A′

2Es decir: relaciones de equivalencia compatibles con todos los símbolos lógicos:
símbolos de funciones en los términos,
símbolos de predicado, conectivas y cuantificadores en las fórmulas
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Integración de los axiomas (1)–(4) (2/3)

Las congruencias t ∼= t ′ y A ∼= A′ generadas por las reglas

t + 0 ∼= t t × 0 ∼= 0
t + s(u) ∼= s(t + u) t × s(u) ∼= (t × u) + t

tienen un sistema de representantes canónico: las formas normales

La forma normal de un término (de una fórmula) se calcula aplicando
las reglas anteriores de la izquierda a la derecha mientras se pueda

Se demuestra que dos términos (fórmulas) son computacionalmente
equivalentes si y sólo si tienen la misma forma normal:

t ∼= t ′ sii ↓t ≡ ↓t ′

A ∼= A′ sii ↓A ≡ ↓A′

donde ↓t (resp. ↓A) nota la forma normal de t (resp. de A)

Por lo tanto, las congruencias t ∼= t ′ y A ∼= A′ son decidibles
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Integración de los axiomas (1)–(4) (3/3)

Se adaptan las reglas de NJ para razonar “a menos de ∼=”:

(Axioma) Γ ` A′
si A′∼=A∈Γ

(=-in) Γ ` t = t ′
si t∼=t′ (etc.)

Aparece una nueva regla admisible de conversión:

(Conv)
Γ ` A

Γ ` A′
si A∼=A′

Estos cambios permiten derivar los axiomas de cálculo, por ejemplo:

(1) ` x + 0 = x
(=-in)

` ∀x (x + 0 = x)
(∀-in) (etc.)

Más generalmente, este cambio de punto de vista permite agrupar
múltiples pasos de cálculo en un única inferencia, por ejemplo:

p(6× 7) ` p(5× 8 + 2)
(ax)
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Integración del axioma (5)

Para integrar en el sistema de deducción el axioma

(5) ∀x ∀y (s(x) = s(y)⇒ x = y)

basta con introducir un nuevo símbolo de función (unario)

Términos t, u ::= · · · | pred(t) («predecedor»)

con las equivalencias computacionales:

pred(0) ∼= 0 pred(s(t)) ∼= t

Intuición: «pred» es una inversa por la izquierda de «s»

Luego se deduce que el sucesor es inyectivo:

s(x) = s(y) ` s(x) = s(y)
(ax)

s(x) = s(y) ` pred(s(x)) = pred(s(x))
(=-in)

s(x) = s(y) ` pred(s(x)) = pred(s(y))
(=-el)

s(x) = s(y) ` x = y
(Conv)

` s(x) = s(y)⇒ x = y
(⇒-in)

` ∀x ∀y (s(x) = s(y)⇒ x = y)
(∀-in×2)
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Integración del axioma (6)

Para integrar en el sistema de deducción el axioma

(6) ∀x (s(x) 6= 0)

basta con introducir un nuevo símbolo de predicado (unario)

Fórmulas A,B ::= · · · | null(t) («nulidad»)

con las equivalencias computacionales:

null(0) ∼= > null(s(t)) ∼= ⊥

Luego se deduce que el sucesor nunca alcanza 0:

s(x) = 0 ` s(x) = 0
(ax)

s(x) = 0 ` s(x) = s(x)
(=-in)

s(x) = 0 ` 0 = s(x)
(=-el)

s(x) = 0 ` >
(>-in)

s(x) = 0 ` null(0)
(Conv)

s(x) = 0 ` null(s(x))
(=-el)

s(x) = 0 ` ⊥
(Conv)

` s(x) 6= 0
(⇒-in)

` ∀x (s(x) 6= 0)
(∀-in)
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Integración del esquema de inducción (7)

Para resumir: Se integran los axiomas (1)–(6) en el sistema de
deducción, introduciendo una relación de equivalencia computacional
A ∼= A′ y razonando a menos de dicha equivalencia

Intuición: Los axiomas (1)–(6) hablán más de computación que de deducción

Sin sorpresa, este método no se extiende al esquema de inducción

(7) ∀~z [A(~z , 0) ∧ ∀x (A(~z , x)⇒ A(~z , s(x))) ⇒ ∀x A(~z , x)]

para cada fórmula A(~z, x) con variables libres {~z, x}

que hay que remplazar por la nueva regla de deducción:

(Nat-el)
Γ ` A[x := 0] Γ,A ` A[x := s(x)]

Γ ` A′
si

 x /∈FV (Γ)

A′∼=A[x :=t]

Intuición: Esq. de inducción = regla de eliminación de los enteros naturales,
opuesta a los constructores de enteros naturales 0 y s(_) (via el término t)

Se escribe HA
∼= («Aritmética computacional») al sistema obtenido
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Sintaxis de HA
∼=

Se trata de definir el sistema HA
∼= («Aritmética computacional»),

cuya sintaxis es la siguiente:

Términos y fórmulas de HA
∼=

Términos t, u ::= x | 0 | s(t) | pred(t)
| t + u | t × u

Fórmulas A,B,C ::= t = u | null(t) | > | ⊥
| A ∧ B | A ∨ B | A⇒ B
| ∀x A | ∃x A

con las abreviaturas ¬A :≡ A⇒ ⊥, A⇔ B :≡ (A⇒ B) ∧ (B ⇒ A),
1 :≡ s(0), 2 :≡ s(1), 3 :≡ s(2), etc.

Los términos y las fórmulas de HA
∼= están equipados con congruencias

t ∼= t ′ (sobre los términos) y A ∼= A′ (sobre las fórmulas)

que vamos a definir más adelante
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Términos: reducción y equivalencia (1/6)

Definición (Reducción en un paso)

Se equipan los términos de HA
∼= con una relación binaria t � t ′ de

reducción en un paso, definida inductivamente por las 12 reglas:

pred(0) � 0 pred(s(t)) � t

t + 0 � t t + s(u) � s(t + u)

t × 0 � 0 t × s(u) � (t × u) + t

 (casos de base)

t � t′

s(t) � s(t′)

t � t′

pred(t) � pred(t′)

t1 � t′1

t1 + t2 � t′1 + t2

t2 � t′2

t1 + t2 � t1 + t′2

t1 � t′1

t1 × t2 � t′1 × t2

t2 � t′2

t1 × t2 � t1 × t′2


(pasos inductivos)
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Términos: reducción y equivalencia (2/6)

Lema (Variables libres)

Si t � t ′, entonces FV (t ′) ⊆ FV (t)

Demostración. Por inducción sobre la derivación de t � t′

Obs.: Variables libres pueden desaparecer durante la reducción, por ej.: z × 0 � 0

Lema (Sustitutividad)

Si t � t ′, entonces t[x := u] � t ′[x := u]

Demostración. Por inducción sobre la derivación de t � t′
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Términos: reducción y equivalencia (3/6)

Definición (Reducción en múltiples pasos)

Se define inductivamente la relación t �� t ′ de reducción en múltiples
pasos por las dos reglas:

t �� t
t �� t ′ t ′ � t ′′

t �� t ′′

Obs.: La relación t �� t′ es la clausura reflexiva-transitiva de la relación
t � t′, es decir: la mínima relación reflexiva y transitiva (el mínimo preorden)
que contiene la relación t � t′. De modo equivalente:

t �� t′ sii existen n ∈ N, t0, . . . , tn tales que:
t ≡ t0 � t1 � · · · � tn−1 � tn ≡ t′
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Términos: reducción y equivalencia (4/6)

Proposición (Clausura contextual + Sustitutividad)
0 Si t �� t ′, entonces FV (t ′) ⊆ FV (t)

1 Si t �� t ′, entonces

{
s(t) �� s(t ′)

pred(t) �� pred(t ′)

2 Si t1 �� t ′1 y t2 �� t ′2, entonces

{
t1 + t2 �� t ′1 + t ′2
t1 × t2 �� t ′1 × t ′2

3 Si t �� t ′ y u �� u′, entonces t[x := u] �� t ′[x := u′]

Demostración. Por inducción sobre las correspondientes derivaciones
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Términos: reducción y equivalencia (5/6)

Definición (Equivalencia computacional)

Se define inductivamente la relación t ∼= t ′ de equivalencia
computacional entre términos por las tres reglas:

t ∼= t
t ∼= t ′ t ′ � t ′′

t ∼= t ′′
t ∼= t ′ t ′′ � t ′

t ∼= t ′′

Obs.: La relación t ∼= t′ es la clausura reflexiva-simétrica-transitiva de la
relación t � t′, es decir: la mínima relación de equivalencia que contiene la
relación t � t′. De modo equivalente:

t ∼= t′ sii existen n ∈ N, t0, . . . , tn tales que:
t ≡ t0 ≺� t1 ≺� · · · ≺� tn−1 ≺� tn ≡ t′

escribiendo ti ≺� ti+1 cuando ti � ti+1 o ti+1 � ti
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Términos: reducción y equivalencia (6/6)

Proposición (Clausura contextual + Sustitutividad)

1 Si t ∼= t ′, entonces

{
s(t) ∼= s(t ′)

pred(t) ∼= pred(t ′)

2 Si t1 ∼= t ′1 y t2 ∼= t ′2, entonces

{
t1 + t2 ∼= t ′1 + t ′2
t1 × t2 ∼= t ′1 × t ′2

3 Si t ∼= t ′ y u ∼= u′, entonces t[x := u] ∼= t ′[x := u′]

Demostración. Por inducción sobre las correspondientes derivaciones



Introducción HA∼= : sintaxis deducción... ... y eliminación de cortes Concl.

Términos: formas normales (1/2)

Definición (Formas normales)

Dados términos t y t ′, se dice que:
t ′ es en forma normal cuando t ′ 6� (i.e. t ′ no se reduce)
t ′ es una forma normal de t cuando t �� t ′ y t ′ 6�

Problema: Dado un término t:
1 ¿Tiene t una forma normal?
2 Cuando existe, ¿es única?
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Términos: formas normales (2/2)

Lema (Normalización fuerte)

La relación t � t ′ es fuertemente normalizante, en el sentido de que
no existe ninguna reducción infinita:

6 ∃(t0 � t1 � t2 � · · · � ti � ti+1 � · · · )

Demostración. A cada término t se asocia un peso w(t) ∈ N∗ definido por:

w(x) := 1 w(0) := 1

w(s(t)) := w(t) + 1 w(pred(t)) := w(t) + 1

w(t + u) := w(t) + 2w(u) w(t × u) := 3w(t)w(u)

Luego se demuestra que la condición t � t′ implica que w(t) > w(t′)
(por inducción sobre la derivación de t � t′)

Corolario (Existencia de las formas normales)

Todo término t tiene una forma normal
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Términos: confluencia (1/3)

Proposición (Confluencia local)

La relación t � t ′ es localmente confluente. Es decir:

Para todos términos t, t ′1, t
′
2 tales que:

t � t ′1 y t � t ′2,
existe un término t ′′ tal que

t ′1 �� t ′′ y t ′2 �� t ′′

t
1
��

1
��

t ′1

∗ �� ��

t ′2

∗����
t ′′

Demostración. Por inducción sobre las derivaciónes de t � t′1 y t � t′2.

Ejercicio: Escribir la demostración completa
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Términos: confluencia (2/3)

Ejemplos de confluencia local:

(x + 0) + s(y)

�� ��
x + s(y)

��

s((x + 0) + y)

��
s(x + y)

(x + 0)× 0

�� ��
x × 0

��

0

0

(x + 0)× s(y)

�� ��
x × s(y)

��

((x + 0)× y) + (x + 0)

��
(x × y) + (x + 0)

��
(x × y) + x
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Términos: confluencia (3/3)

Teorema (Confluencia)

La relación t � t ′ es confluente. Es decir:

Para todos términos t, t ′1, t
′
2 tales que:

t �� t ′1 y t �� t ′2,
existe un término t ′′ tal que

t ′1 �� t ′′ y t ′2 �� t ′′

t
∗
����

∗
�� ��

t ′1

∗ �� ��

t ′2

∗����
t ′′

Demostración. Sigue del lema de Newman, que dice que toda relación fuertemente
normalizante y localmente confluente es confluente.

Corolario (Existencia y unicidad de la formas normal)

Todo término t tiene una única forma normal. Notación: ↓t
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Términos: propiedad de Church-Rosser

Teorema (Propiedad de Church-Rosser)

La relación t � t ′ cumple la propiedad de Church-Rosser. Es decir:

t1 ∼= t2 si y sólo si t1 �� t ′ y t2 �� t ′ para algún t ′

t1
∼

�� ��

t2

����
t ′

Demostración. (⇒) Por inducción sobre la derivación de t1 ∼= t2, usando la
propiedad de confluencia. (⇐) Obvio, por def. de �� y ∼=.

Corolario (Criterio de equivalencia)

Dos términos son equivalentes si y sólo si tienen la misma forma normal:

t1 ∼= t2 sii ↓t1 ≡ ↓t2

En particular, la relación t1 ∼= t2 es decidible



Introducción HA∼= : sintaxis deducción... ... y eliminación de cortes Concl.

Intermezzo: estructura de las formas normales (1/2)

Se consideran las dos formas de términos neut (“neutros”)
y norm (“normales”) definidas por las gramáticas:

neut ::= x | pred(neut)
| norm + neut | norm× neut

norm ::= neut | 0 | s(norm)

Observaciones:

Los neut son los norm que no son ni 0 ni de la forma s(_)

Todos los neut son abiertos (i.e. tienen variable libre)

Los norm cerrados son exactamente los enteros de Peano:
t ≡ s(· · · s︸ ︷︷ ︸

n

(0) · · · )
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Intermezzo: estructura de las formas normales (2/2)

neut ::= x | pred(neut)
| norm + neut | norm× neut

norm ::= neut | 0 | s(norm)

Proposición (Caracterización de las formas normales)
1 Los términos en forma normal son los términos de la forma norm

Y por lo tanto:

2 Los términos cerrados en forma normal son los enteros de Peano

3 La forma normal de un término cerrado t es el valor de t en el
modelo estándar: ↓t ≡ JtKN

4 Dos términos cerrados t1 y t2 son computacionalmente equivalentes
si y sólo si corresponden al mismo entero de Peano:

t1 ∼= t2 sii ↓t1 ≡ ↓t2 sii Jt1KN = Jt2KN



Introducción HA∼= : sintaxis deducción... ... y eliminación de cortes Concl.

Fórmulas: reducción y equivalencia (1/3)

Definición (Reducción en un paso)

Se equipan las fórmulas de HA
∼= con una relación binaria A � A′ de

reducción en un paso, definida inductivamente por las 13 reglas:

null(0) � > null(s(t)) � ⊥
t � t′

null(t) � null(t′)

t � t′

t = u � t′ = u

u � u′

t = u � t = u′

A � A′

A⇒ B � A′ ⇒ B

B � B ′

A⇒ B � A⇒ B ′

A � A′

A ∧ B � A′ ∧ B

B � B ′

A ∧ B � A ∧ B ′

A � A′

A ∨ B � A′ ∨ B

B � B ′

A ∨ B � A ∨ B ′

A � A′

∀x A � ∀x A′
A � A′

∃x A � ∃x A′
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Fórmulas: reducción y equivalencia (2/3)

De modo análogo, se definen:

La relación A �� A′ de reducción en múltiples pasos, como la
clausura reflexiva-transitiva de la relación A � A′

La relación A ∼= A′ de equivalencia computacional, como la
clausura reflexiva-simétrica-transitiva de la relación A � A′

Estas tres relaciones cumplen las mismas propiedades que las relaciones
análogas sobre los términos:

Sustitutividad y clausura contextual (para �� y ∼=)
Normalización fuerte
Confluencia local y confluencia
Existencia y unicidad de las formas normales. Notación: ↓A
Propiedad de Church-Rosser y criterio de equivalencia

Ejercicio: Enunciar y demostrar estas propiedades
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Fórmulas: reducción y equivalencia (3/3)

La relación A1 ∼= A2 de equivalencia computacional es decidible:

A1 ∼= A2 sii ↓A1 ≡ ↓A2

Observación: La relación de equivalencia computacional no permite
identificar un ⇒ con un ∧, un ∨ o un ∀:
Lema
Para toda fórmula C :

C ∼= A⇒ B sii C ≡ A′ ⇒ B ′, con A′ ∼= A y B ′ ∼= B
C ∼= A ∧ B sii C ≡ A′ ∧ B ′, con A′ ∼= A y B ′ ∼= B
C ∼= A ∨ B sii C ≡ A′ ∨ B ′, con A′ ∼= A y B ′ ∼= B
C ∼= ∀x A sii C ≡ ∀x A′, con A′ ∼= A
C ∼= ∃x A sii C ≡ ∃x A′, con A′ ∼= A
C ∼= t = u sii C ≡ t ′ = u′, con t ′ ∼= t y u′ ∼= u

Sin embargo: > ∼= null(0) y ⊥ ∼= null(s(t)) (pero > 6∼= ⊥)
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Plan

1 Introducción

2 Aritmética computacional (HA
∼=): sintaxis

3 Aritmética computacional (HA
∼=): deducción

4 Aritmética computacional (HA
∼=): eliminación de cortes

5 Conclusión
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Reglas de deducción del sistema HA
∼= (1/2)

Como siempre, usamos secuentes de la forma Γ ` A

Reglas del cálculo proposicional intuicionista:

(Axioma) Γ ` A′
si A′∼=A∈Γ

(⇒)
Γ,A ` B

Γ ` A⇒ B
Γ ` A⇒ B Γ ` A

Γ ` B

(∧)
Γ ` A Γ ` B

Γ ` A ∧ B
Γ ` A ∧ B

Γ ` A
Γ ` A ∧ B

Γ ` B

(∨)
Γ ` A

Γ ` A ∨ B
Γ ` B

Γ ` A ∨ B
Γ ` A ∨ B Γ,A ` C Γ,B ` C

Γ ` C

(>) Γ ` C
si C∼=> (sin regla de eliminación)

(⊥) (sin regla de introducción)
Γ ` C
Γ ` A

si C∼=⊥
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Reglas de deducción del sistema HA
∼= (2/2)

Reglas de introducción y de eliminación de los cuantificadores:

(∀)
Γ ` A

Γ ` ∀x A
si x /∈FV (Γ)

Γ ` ∀x A
Γ ` A′

si A′∼=A[x :=t]

(∃)
Γ ` A[x := t]

Γ ` ∃x A
Γ ` ∃x A Γ,A ` B

Γ ` B
si x /∈FV (Γ,B)

Reglas de introducción y de eliminación de la igualdad:

(=) Γ ` t = t ′
si t∼=t′ Γ ` t = u Γ ` A[x := t]

Γ ` A′
si A′∼=A[x :=u]

Regla de eliminación de los enteros naturales (= inducción):

(Nat-el)
Γ ` A[x := 0] Γ,A ` A[x := s(x)]

Γ ` A′
si

 x /∈FV (Γ)

A′∼=A[x :=t]
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Propiedades (1/3)

Dadas listas de fórmulas Γ ≡ A1, . . . ,An y Γ′ ≡ A′1, . . .A
′
m

se escribe Γ ∼= Γ′ cuando n = m y Ai
∼= A′i para todo i ∈ [1..n]

Proposición (Conversión)

La siguiente regla de inferencia es admisible en el sistema HA
∼=:

Γ ` A

Γ′ ` A′
si

Γ∼=Γ′

A∼=A′

Demostración. Se trata de demostrar que si un secuente Γ ` A tiene derivación d ,
entonces para todos Γ′ ∼= Γ y A′ ∼= A, el secuente Γ′ ` A′ tiene (otra) derivación d ′.

Formalmente, la derivación d ′ : (Γ′ ` A′) se construye por recurrencia sobre la
derivación d : (Γ ` A), remplazando (en d) cada secuente de la forma Γ,∆ ` C
por un secuente de la forma Γ′,∆′ ` C ′, con ∆′ ∼= ∆ y C ′ ∼= C .

Obs. Las derivaciones d y d ′ tienen los mismos pasos de deducción (y en el mismo
orden); sólo cambian los secuentes subyacentes
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Propiedades (2/3)

Recordatorio: Se escribe Γ ⊆ Γ′ cuando cada hipótesis que ocurre en Γ
también ocurre en Γ′ (sin tener en cuenta ni el orden ni el número de ocurrencias)

Proposición (Debilitamiento generalizado)

La siguiente regla de inferencia es admisible en el sistema HA
∼=:

Γ ` A

Γ′ ` A
si Γ⊆Γ′

Demostración. Por inducción sobre la derivación de Γ ` A.

Corolario (Reglas de permutación, debilitamiento y contracción)

La siguientes reglas son admisibles en el sistema HA∼= :

Γ ` A

σ(Γ) ` A

Γ ` A

Γ,B ` A

Γ,B,B ` A

Γ,B ` A

donde σ es cualquier permutación de Γ
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Propiedades (3/3)

Proposición (Sustitutividad)

La siguiente regla de inferencia es admisible en el sistema NJ:

Γ ` A

Γ[x := u] ` A[x := u]

Demostración. Por recurrencia sobre la derivación d del secuente Γ ` A se construye
una derivación d [x := u] del secuente Γ[x := u] ` A[x := u], remplazando (en d) cada
secuente de la forma Γ,∆ ` C por el secuente Γ[x := u],∆[x := u] ` C [x := u].

Obs. Como anteriormente, las derivaciones d y d [x := u] tienen los mismos pasos de
deducción (y en el mismo orden); sólo cambian los secuentes subyacentes
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Derivación de los axiomas de Peano en HA
∼= (1/4)

Axioma: ∀x (x + 0 = 0)

Γ ` x + 0 = 0
(=-in)

Γ ` ∀x (x + 0 = 0)
(∀-in)

Axioma: ∀x ∀y (x + s(y) = s(x + y))

Γ ` x + s(y) = s(x + y)
(=-in)

Γ ` ∀x (x + s(y) = s(x + y))
(∀-in)

Γ ` ∀x ∀x (x + s(y) = s(x + y))
(∀-in)

Axiomas de ×: Análogo
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Derivación de los axiomas de Peano en HA
∼= (2/4)

Inyectividad del sucesor:

s(x) = s(y) ` s(x) = s(y)
(ax)

s(x) = s(y) ` pred(s(x)) = pred(s(x))
(=-in)

s(x) = s(y) ` x = y
(∗)

` s(x) = s(y)⇒ x = y
(⇒-in)

` ∀y (s(x) = s(y)⇒ x = y)
(∀-in)

` ∀x ∀y (s(x) = s(y)⇒ x = y)
(∀-in)

(∗) Regla (=-el) con la fórmula A(z) :≡ pred(s(x)) = pred(z)
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Derivación de los axiomas de Peano en HA
∼= (3/4)

No-sobreyectividad del sucesor:

.... d

s(x) = 0 ` 0 = s(x) s(x) = 0 ` null(0)
(>-in)

s(x) = 0 ` ⊥
(∗)

` s(x) 6= 0
(⇒-in)

` ∀x (s(x) 6= 0)
(∀-in)

con d =

{
s(x) = 0 ` s(x) = 0

(=-in)
s(x) = 0 ` s(x) = s(x)

(ax)

s(x) = 0 ` 0 = s(x)
(∗∗)

(∗) Regla (=-el) con la fórmula A(z) :≡ null(z)

(∗∗) Regla (=-el) con la fórmula A(z) :≡ z = s(x)
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Derivación de los axiomas de Peano en HA
∼= (4/4)

Esquema de inducción:

C ` C
(ax)

C ` A(~z, 0)
(∧-el1)

C ,A(~z, x) ` C
(ax)

C ,A(~z, x) ` ∀x (A(~z, x)⇒ A(~z, s(x)))
(∧-el2)

C ,A(~z, x) ` A(~z, x)⇒ A(~z, s(x))
(∀-el)

C ,A(~z, x) ` A(~z, x)
(ax)

C ,A(~z, x) ` A(~z, s(x))

C ` A(~z, x)
(Nat-el)

C ` ∀x A(~z, x)
(∀-in)

` C ⇒ ∀x A(~z, x)
(⇒-in)

` ∀~z [A(~z, 0) ∧ ∀x (A(~z, x)⇒ A(~z, s(x)))︸ ︷︷ ︸
C

⇒ ∀x A(~z, x)]
(∀intro×n)
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Extensión conservativa (1/2)

Es claro que:
El lenguaje de HA está incluido en el lenguaje de HA

∼=

Los axiomas de HA son derivables en HA
∼= (sin hipótesis)

Las reglas de NJ son casos particulares de las reglas de HA
∼=

Por lo tanto:
Proposición (Extensión HA ⊆ HA

∼=)

Si HA ` A, entonces `HA∼= A (sin hipótesis)

Además:
Proposición (Extensión conservativa)

HA
∼= es una extensión conservativa de HA, en el sentido de que para

toda fórmula cerrada A del lenguaje de HA, tenemos que:

HA ` A si y sólo si `HA∼= A (sin hipótesis)
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Extensión conservativa (2/2)

Arquitectura de la prueba de conservatividad:

Se observa que cualquier formula A ∈ LHA∼= se puede traducir
en una fórmula A∗ ∈ LHA (i.e. sin los símbolos pred y null) con
las mismas variables libres y “el mismo significado”

(La definición de la traducción A 7→ A∗ es muy técnica.)

Luego se verifica que:

(1) Para toda fórmula A de HA: HA ` A∗ ⇔ A

(Por recurrencia sobre la fórmula A)

(2) Para todas fórmula A1 ∼= A2 de HA∼= : HA ` A∗1 ⇔ A∗2
(Por inducción sobre la derivación de A1 ∼= A2)

(3) Si un secuente Γ ` A es derivable en HA∼= , entonces existe una lista
∆ ⊂ Ax(HA) tal que el secuente Γ∗,∆ ` A∗ sea derivable en NJ
(Por inducción sobre la derivación de Γ ` A en HA∼= , usando (2))

(4) Se concluye, observando que si `HA∼= A (con A ∈ LHA),
entonces HA ` A∗ (por (3)), y luego HA ` A (por (1)).



Introducción HA∼= : sintaxis deducción... ... y eliminación de cortes Concl.

Plan

1 Introducción

2 Aritmética computacional (HA
∼=): sintaxis

3 Aritmética computacional (HA
∼=): deducción

4 Aritmética computacional (HA
∼=): eliminación de cortes

5 Conclusión
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La noción de corte (1/?)

En el sistema HA
∼=, un corte describe la interacción entre:

una regla de introducción y una regla de eliminación
(de la misma construcción lógica, como en el sistema NJ)

un constructor (0 o s) y la regla de inducción
(inducción = regla de eliminación de los enteros naturales)

Así, tenemos:

8 cortes lógicos —los de NJ—, más

2 cortes de inducción
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Reducción de los cortes lógicos (1/5)

Cortes de ∧:
.... d1

Γ ` A

.... d2

Γ ` B
Γ ` A ∧ B

(∧-in)

Γ ` A
(∧-el1)

 

.... d1

Γ ` A

.... d1

Γ ` A

.... d2

Γ ` B
Γ ` A ∧ B

(∧-in)

Γ ` B
(∧-el2)

 

.... d2

Γ ` B
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Sustitución de un axioma

Se observa que una derivación del secuente Γ,A ` B sólo
contiene secuentes de la forma Γ,A, Γ′ ` B ′ (Γ′ y B′ cualesquiera)

Dadas derivaciones

.... d

Γ,A ` B y

.... d ′

Γ ` A , se escribe
.... d′

Γ ` A.... d [ax(A):=d′]

Γ ` B

a la derivación del secuente Γ ` B obtenida a partir de d :
eliminando la hipótesis A de todos los secuentes apareciendo en d

remplazando cada invocación del axioma A (en un secuente de la
forma Γ,A, Γ′ ` A′, con A′ ∼= A) por la derivación d ′ (debilitada
y convertida al secuente Γ, Γ′ ` A′)

Obs.: La derivación “sustituida” d [ax(A) := d ′] contiene una copia de la
derivacíon d ′ para cada invocación del axioma A en la derivación d
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Reducción de los cortes lógicos (2/5)

Corte de ⇒:

.... d

Γ,A ` B

Γ ` A⇒ B
(⇒-in)

.... d ′

Γ ` A
Γ ` B

(⇒-el)
 

.... d′

Γ ` A.... d [ax(A):=d′]

Γ ` B
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Reducción de los cortes lógicos (3/5)

Cortes de ∨:
.... d

Γ ` A
Γ ` A ∨ B

(∨-in1)

.... d ′1
Γ,A ` C

.... d ′2
Γ,B ` C

Γ ` C
(∨-el)

 

.... d

Γ ` A.... d′1[ax(A):=d ]

Γ ` C

.... d

Γ ` B
Γ ` A ∨ B

(∨-in2)

.... d ′1
Γ,A ` C

.... d ′2
Γ,B ` C

Γ ` C
(∨-el)

 

.... d

Γ ` B.... d′2[ax(B):=d ]

Γ ` C

Corte de >/⊥: ninguno
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Reducción de los cortes lógicos (4/5)

Corte de ∀: (con x /∈ FV (Γ) y A′ ∼= A[x := t])

.... d

Γ ` A
Γ ` ∀x A

(∀-in)

Γ ` A′
(∀-el)

 

.... d [x :=t]

Γ ` A[x := t]

Γ ` A′
(Conv)

Corte de ∃: (con x /∈ FV (Γ,B))

.... d

Γ ` A[x := t]

Γ ` ∃x A
(∃-in)

.... d ′

Γ,A ` B

Γ ` B
(∃-el)

 

.... d

Γ ` A[x := t].... d′[x :=t][ax(A[x :=t]):=d ]

Γ ` B
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Reducción de los cortes lógicos (5/5)

Corte de =: (con t ∼= t ′ y A′ ∼= A[x := t ′])

Γ ` t = t ′
(=-in)

.... d ′

Γ ` A[x := t]

Γ ` A′
(=-el)

 

.... d ′

Γ ` A[x := t]

Γ ` A′
(Conv)



Introducción HA∼= : sintaxis deducción... ... y eliminación de cortes Concl.

Reducción de los cortes de inducción (1/4)

Intuición 1: El principio de inducción sólo sirve para demostrar una
propiedad P(x) hasta un término abierto, por ejemplo y + 3:

.... d0

P(0)

.... ds(x)

P(x)⇒ P(x + 1)

P(y + 3)

Cuando se trata de alcanzar un entero concreto, por ejemplo 4, siempre
se puede “desenrollar” la inducción del modo siguiente:

.... d0

P(0)

.... ds (0)

P(0)⇒ P(1)

P(1)

.... ds (1)

P(1)⇒ P(2)

P(2)

.... ds (2)

P(2)⇒ P(3)

P(3)

.... ds (3)

P(3)⇒ P(4)

P(4)
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Reducción de los cortes de inducción (2/4)

Intuición 2: En la Aritmética, los enteros naturales son:

Introducidos por los símbolos 0 y s(x) (“constructores”)

t ::= 0 | s(t ′) | · · ·

Eliminados por el principio de inducción:

Γ ` A[x := 0] Γ,A ` A[x := s(x)]

Γ ` A′ (∼= A[x := t])
(Nat-el) (si x /∈ FV (Γ))

Por lo tanto... La regla de inducción forma un corte cada vez que está
usada con un término t de la forma t ∼= 0 o t ∼= s(t ′)

(Cuando t no es de ninguna de las dos formas anteriores, no hay corte)
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Reducción de los cortes de inducción (3/4)

Cortes de inducción: (con x /∈ FV (Γ) y A′ ∼= A[x := t])

Corte cuando t ∼= 0:

.... d0

Γ ` A[x := 0]

.... ds

Γ,A ` A[x := s(x)]

Γ ` A′ (∼= A[x := 0])
(Nat-el)

 

.... d0

Γ ` A[x := 0]

Γ ` A′
(Conv)

Corte cuando t ∼= s(t ′):

.... d0

Γ ` A[x := 0]

.... ds

Γ,A ` A[x := s(x)]

Γ ` A′ (∼= A[x := s(t′)])
(Nat-el)

 

.... d0

Γ ` A[x := 0]

.... ds

Γ,A ` A[x := s(x)]

Γ ` A[x := t′]
(Nat-el)

.... ds [x :=t′][Ax(A[x :=t′]):=...]

Γ ` A[x := s(t′)]

Γ ` A′
(Conv)
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Reducción de los cortes de inducción (4/4)

Ejemplo de reducción en el caso cerrado:

.... d0

Γ ` P(0)

.... ds(x)

Γ,P(x) ` P(s(x))

Γ ` P(4)
(Nat-el) ×5

 

.... d0

Γ ` P(0).... ds (0)[Ax(P(0)):=d0]

Γ ` P(1).... ds (1)[Ax(P(1)):=··· ]

Γ ` P(2).... ds (2)[Ax(P(2)):=··· ]

Γ ` P(3).... ds (3)[Ax(P(3)):=··· ]

Γ ` P(4)
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Eliminación de cortes en el sistema HA
∼=

Teorema (Eliminación de cortes en HA
∼=)

El sistema formado por las 10 reglas de reducción anteriores es
fuertemente normalizante, en el sentido de que no existe ninguna
sucesión infinita de reducciones (entre derivaciones de un mismo secuente):

6 ∃(d0  d1  d2  · · ·  di  di+1  · · · )

Por lo tanto, toda sucesión de reducciones es finita

Demostración: Postpuesta

Corolario (Derivaciones sin cortes en HA
∼=)

Todo secuente derivable en HA
∼= tiene una derivación sin cortes (en HA

∼=)



Introducción HA∼= : sintaxis deducción... ... y eliminación de cortes Concl.

Variables libres de una derivación (1/4)

Definición (Variables libres de una derivación, 1/3)

Dada una derivación d ≡


.... d1

Γ1 ` A1 · · ·

.... dn

Γn ` An

Γ ` A
(R)

se define el conjunto FV (d) de las variables libres de d por inducción sobre d ,
distinguiendo los casos en función de la última regla (R):

Regla sin premisa (axioma, >-intro, =-intro): FV (d) := FV (Γ) ∪ FV (A)

Otra regla del cálculo proposicional (⇒-intro, ⇒-elim, ∧-intro, ∧-elim1,2,
∨-intro1,2, ∨-elim, ⊥-elim): FV (d) := FV (d1) ∪ · · · ∪ FV (dn)

Regla =-elim: FV (d) := FV (d1) ∪ FV (d2) ∪ FV (A)

d ≡


.... d1

Γ ` t = u

.... d1

Γ ` B[x := t]

Γ ` A
(=-el)

(con A ∼= B[x := u])

(...)
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Variables libres de una derivación (2/4)

Definición (Variables libres de una derivación, 2/3)

Regla ∀-intro: FV (d) := FV (d1) \ {x}

d ≡


.... d1

Γ ` B
Γ ` ∀x B

(∀-in)
(con x /∈ FV (Γ))

Regla ∀-elim: FV (d) := FV (d1) ∪ FV (A) ∪ FV (t)

d ≡


.... d1

Γ ` ∀x B
Γ ` A

(∀-el)
(con A ∼= B[x := t])

Regla ∃-intro: FV (d) := FV (d1) ∪ FV (t)

d ≡


.... d1

Γ ` B[x := t]

Γ ` ∃x B
(∀-in)

(...)
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Variables libres de una derivación (3/4)

Definición (Variables libres de una derivación, 3/3)

Regla ∃-elim: FV (d) := FV (d1) ∪ (FV (d2) \ {x})

d ≡


.... d1

Γ ` ∃x B

.... d2

Γ,B ` A

Γ ` A
(∃-el)

(con x /∈ FV (Γ,A))

Regla de inducción: FV (d) := FV (d1) ∪ (FV (d2) \ {x}) ∪ FV (A) ∪ FV (t)

d ≡


.... d1

Γ ` B[x := 0]

.... d2

Γ,B ` B[x := s(x)]

Γ ` A
(Nat-el)

(
con x /∈ FV (Γ)
y A ∼= B[x := t]

)
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Variables libres de una derivación (4/4)

Lema
Para toda derivación d de un secuente Γ ` A:

(1) FV (Γ) ∪ FV (A) ⊆ FV (d)

(2) Si d  d ′ (reducción de corte), entonces FV (d ′) ⊆ FV (d)

(3) Para toda variable x ∈ FV (d) y para todo término u:

FV (d [x := u]) = (FV (d) \ {x}) ∪ FV (u)

Recordatorio: d [x := u] es una derivación de Γ[x := u] ` A[x := u]

La conclusión de una derivación cerrada es un secuente cerrado,
pero un secuente cerrado puede tener un derivación abierta

Siempre se puede cerrar una derivación d de un secuente Γ ` A ya
cerrado, sustituyendo a cada variable x ∈ FV (d) cualquier término
cerrado (por ejemplo 0). Esto no afecta la conclusión Γ ` A
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Propiedades de las derivaciones sin cortes (1/7)

A partir de ahora, sólo se consideran derivaciones cerradas

Proposición (Forma de una derivación cerrada y sin cortes de ` A)

En HA
∼=, toda derivación cerrada y sin cortes de un secuente de la forma

` A (i.e. con antecedente vacío)

se acaba con una regla de introducción

Obs.: La hipótesis “derivación cerrada” implica que la fórmula A está cerrada
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Propiedades de las derivaciones sin cortes (2/7)

Demostración.

Por inducción sobre la estructura de la derivación d : (` A) (cerrada y sin cortes),
distinguiendo los casos en función de la última regla aplicada:

Regla axioma. Caso imposible, pues el antecedente es vacío.

Regla de eliminación lógica, por ejemplo: ⇒-elim (i.e. modus ponens).
En este caso, la derivación d : (` A) es de la forma

d ≡


.... d1

` B ⇒ A

.... d2

` B
` A

Se observa que la subderivación d1 del secuente ` B ⇒ A también es cerrada y
sin cortes. Por hipótesis de inducción, d1 se acaba con una regla de introducción.
Entonces d es un corte, lo que demuestra que este caso es imposible.

De modo análogo, si d se acaba con otra regla de eliminación lógica, se observa
que la subderivación d1 de su premisa principal (también cerrada y sin cortes) se
acaba por una regla de introducción (por hipótesis de inducción), lo que implica
que d es un corte y demuestra que el correspondiente caso es imposible. (...)
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Propiedades de las derivaciones sin cortes (3/7)

Demostración (continuación).

Regla de inducción. En este caso, la derivación d : (` A) es de la forma

d ≡


.... d1

` B[x := 0]

.... d2

B ` B[x := s(x)]

` A

(con A ∼= B[x := t])

Como la derivación d está cerrada, el término t también está cerrado (por def.
de FV (d)). Por lo tanto, tenemos que t ∼= 0 o t ∼= s(t′) para algún t′.
Esto implica que d es un corte, y demuestra que este caso también es imposible.

Regla de introducción. Es el único caso posible.
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Propiedades de las derivaciones sin cortes (4/7)

Combinada con el teorema de eliminación de cortes, la proposición
anterior implica la consistencia del sistema HA

∼=:

Corolario 1 (Consistencia)

El secuente ` ⊥ no es derivable en el sistema HA
∼=

Demostración.

Si el secuente ` ⊥ fuera derivable en HA∼= , tendría una derivación cerrada y sin cortes.
Tal derivación acabaría con una regla de intro: imposible pues tal regla no existe.
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Propiedades de las derivaciones sin cortes (5/7)

Corolario 2 (Propiedad de la disyunción)

Si un secuente cerrado de la forma ` A ∨ B es derivable en el sistema
HA
∼=, entonces al menos uno de ` A o ` B es derivable

Demostración.

Si el secuente cerrado ` A ∨ B es derivable en HA∼= , entonces tiene una derivación
cerrada y sin cortes, que se acaba con una regla de introducción. Tal derivación tiene
dos formas posibles:

O bien de la forma

.... d

` A
` A ∨ B

(∨-in1)
, que contiene una derivación de ` A.

O bien de la forma

.... d

` B
` A ∨ B

(∨-in2)
, que contiene una derivación de ` B.



Introducción HA∼= : sintaxis deducción... ... y eliminación de cortes Concl.

Propiedades de las derivaciones sin cortes (6/7)

Corolario 3 (Propiedad de la existencia en HA
∼=)

Si un secuente cerrado de la forma ` ∃x A(x) es derivable en HA
∼=,

entonces el secuente ` A(n) es derivable para algún entero de Peano n

Demostración.

Si el secuente cerrado ` ∃x A(x) es derivable en HA∼= , entonces tiene una derivación
cerrada y sin cortes, que se acaba con una regla de introducción. Por lo tanto, tal
derivación es de la forma .... d

` A(t)

` ∃x A(x)
(∃-in)

donde t es un término cerrado. Escribiendo n := ↓t, se deduce una derivación:
.... d

` A(t)

` A(n)
(Conv)



Introducción HA∼= : sintaxis deducción... ... y eliminación de cortes Concl.

Propiedades de las derivaciones sin cortes (7/7)

Corolario 4 (Igualdades derivables en HA
∼=)

Un secuente cerrado de la forma ` t = u es derivable en el sistema HA
∼=

si y sólo si t ∼= u (i.e. t y u son computacionalmente equivalentes)

Demostración.

Supongamos que el secuente cerrado ` t = u es derivable en HA∼= . Entonces tiene
una derivación cerrada y sin cortes, que se acaba con una regla de introducción. Por lo
tanto, tal derivación es de la forma

` t = u
(=-in)

,

con t ∼= u. El recíproco es obvio.
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Extracción de programas

Teorema (Extracción de funciones recursivas)

Si el siguiente secuente cerrado es derivable en HA
∼=

` ∀x1 · · · ∀xk ∃y A(x1, . . . , xk , y)

entonces existe una función recursiva total f : Nk → N tal que

` A(n1, . . . , nk , f (n1, . . . , nk))

es derivable en HA
∼= para todo (n1, . . . , nk) ∈ Nk

Demostración.

Dada una derivación cerrada d de ` ∀x1 · · · ∀xk ∃y A(x1, . . . , xk , y)), se construye la
función recursiva f : Nk → N del modo siguiente:

f (n1, . . . , nk ) :=
1. Formar la derivación d〈n1, . . . , nk 〉 de ` ∃y A(n1, . . . , nk , y))
2. Eliminar los cortes de d〈n1, . . . , nk 〉, y extraer el testigo t
3. Devolver el entero n := ↓t
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Ejemplo

Consideremos una derivación cerrada d del teorema:

HA∼= ` ∀x ∃y (x = 2y ∨ x = 2y + 1)

A cada n ∈ N se asocia la derivación cerrada

d〈n〉 :≡


.... d

` ∀x ∃y (x = 2y ∨ x = 2y + 1)

` ∃y (n = 2y ∨ n = 2y + 1)
(∀-el)

Eliminando los cortes en la derivación anterior, se obtiene una
derivación d ′n sin cortes que sólo tiene dos formas posibles:

` n = 2p
(=-in)

` n = 2p ∨ n = 2p + 1
(∨-in1)

` ∃y (n = 2y ∨ n = 2y + 1)
(∃-in)

o
` n = 2p + 1

(=-in)

` n = 2p ∨ n = 2p + 1
(∨-in2)

` ∃y (n = 2y ∨ n = 2y + 1)
(∃-in)

En ambos casos, la derivación d ′n contiene el entero p := bn/2c
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Plan

1 Introducción

2 Aritmética computacional (HA
∼=): sintaxis

3 Aritmética computacional (HA
∼=): deducción

4 Aritmética computacional (HA
∼=): eliminación de cortes

5 Conclusión
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Conclusión

El teorema de eliminación de cortes en el sistema HA
∼= implica que:

Teorema

El sistema HA
∼= es constructivo, en el sentido de que es consistente y

cumple las propiedades de la disyunción y de la existencia

Y como HA
∼= es una extensión conservativa de HA, se deduce que:

Teorema

La Aritmética de Heyting (HA) es constructiva (mismo sentido)

Se observa que la consistencia de HA se deduce de la propiedad de
eliminación de cortes por medios puramente aritméticos

Por lo tanto, el teorema de eliminación de cortes no se puede
demostrar en HA/PA (por el segundo teorema de incompletitud)

Ahora necesitamos más herramientas para demostrar los teoremas de
eliminación de cortes: los cálculos lambda (puro y tipados)
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