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Introduccién

@ En las clases anteriores, presentamos PA (Aritmética clasica) y HA
(Aritmética intuicionista) con un lenguaje minimo de términos:

Términos tbu = x | 0 | s(t) | t+u | txu J

@ Sin embargo, el lenguaje de férmulas de HA/PA permite representar
mucho mas funciones, como por ejemplo la funcién (n,m) — n™, y
mas generalmente: todas las funciones recursivas primitivas

@ Objetivo de esta parte: Definir las funciones recursivas primitivas
y ver cémo se pueden integrar en el lenguaje (y la teoria) de HA/PA
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Funciones iniciales

Se llaman funciones iniciales a las siguientes funciones:

@ La funcién nula z : IN — IN, definida por

z(n) =0

Friedman
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(para todo n € IN)

@ La funcién sucesor s : IN — IN, definida por

s(n) == n+1

(para todo n € IN)

o Las proyecciones 7% : INK — IN (k > i >1), definidas por

i

(N1, ..., ) = n;

(para todo (ny, ..., n) € INK)
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Esquemas de composicién y de recursion primitiva

e Esquema de composicién A partirde f,...,f, : N —IN y
g : INP — IN, definir la funcion h : INK = IN por
h(ni,....nk) = g(fi(n, ..., 0nk), ..., ("1, ..., 0K)) J
(para todo (n1, ..., ng) € INK)

Senota h = go(fi,...,f)
o Esquema de recursion primitiva A partirde f : IN = IN y
g : INFt2 5 IN, definir la funcién h : INKt1 — IN por:
h(0,ny,...,nk) = f(ny,...,nk)
h(n—’_l?nl,"'ank) = g(nah(nanla'"ank)vnlv"',nk)

(para todos n € IN'y (ny,...,ng) € INK)

Se nota h = rec(f,g)
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Funciones recursivas primitivas (1/3)

Definicién (Funciones recursivas primitivas)

El conjunto de las funciones recursivas primitivas es el minimo conjunto
C Ugs1(INK = IN) que contiene todas las funciones iniciales

z, s, wh (k>i>1)

y esta cerrado por los esquemas de composicién y de recursién primitiva:

(A, fr,8) > gol(f,...,1), (f,g) — rec(f,g)

Notacion: PR, = conjunto de las funciones recursivas primitivas de aridad k

También se puede definir inductivamente la familia (PRi)«>1 por las reglas:
__ [ ——— (k=i=1)
z€ PRy s € PR, wf € PRy
fi€ePRy --- f, PRy gePR, f € PRk g € PRy
go(f,...,f) € PRk rec(f,g) € PRyt
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Funciones recursivas primitivas (2/3)
Observaciones:

@ Las funciones aritméticas basicas son recursivas primitivas:
n—n+1, (n,m)— n+ m, (n, m) — nm,
(n,m) — n™, (n, m) = min(n, m), (n, m) — max(n, m),
(n,m)— n—=m (resta truncada), (n,m)+— n<+m (div. euclidiana),

(n7 m) —n%m (resto euclidiano), n+ n!, n— fib(n), etc.

@ Si f : IN = IN es recursiva primitiva, entonces las funciones
g,h : INF = IN definidas por:

g(nyna,....ng) = Zf(m,ng,...,nk)

m<n

h(n,na, ..., ng) = H f(m,ng, ..., nk)

m<n

son recursivas primitivas
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Funciones recursivas primitivas (3/3)

Observaciones (continuacién):
e Todas las funciones recursivas primitivas son totales y computables!
e En particular, el conjunto PR, es numerable (para todo k > 1)

@ Sin embargo, existen funciones totales y computables que no son
recursivas primitivas, como por ejemplo la funcién de Ackermann
ack : IN> = IN definida por:

ack(0,n) = n+1
ack(m+1,0) := ack(m,1)
ack(m+1,n+1) := ack(m,ack(m+1,n))

@ Se puede demostrar que toda funcién total y computable
cuya complejidad estd acotada (superiormente) por una funcién
recursiva primitiva también es recursiva primitiva

1Definiremos la nocién de funcién computable en el curso sobre el calculo lambda
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Representacion de las funciones recursivas primitivas
En lo siguiente, se escribe @ := s"(0) al entero de Peano n

Teorema (Representacién de las funciones recursivas primitivas)

Para toda funcién recursiva primitiva f : INK — IN:
(1) Existe una férmula aritmética Ag(xi, ..., Xk, y) tal que
HA F vy (A(nT,-.-,nT,y) & y=m)
para todo (ny,...,n;) € INK
(2) HA F Vxqg - Vxe Ay Ae(xa, - ooy XKy YY)

Observaciones:

@ (1) expresa que la funcién f es representable en HA por la férmula
Af(x1,...,xk,y). Se puede demostrar mas generalmente que todas las
funciones computables (parciales o totales) son representables en HA

@ (2) expresa que la totalidad de la funcién f se puede demostrar en HA.
Esto no se cumple para todas las funciones computables, ni siquiera para
todas las funciones computables totales
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Integracién de las funciones recursivas primitivas

Friedman
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Como todas las funciones recursivas primitivas son representables en HA,
es natural integrarlas en el lenguaje.

Dos opciones posibles:

© Aifiadir un nuevo simbolo de funcién para cada definicién recursiva
primitiva, usando el mecanismo de extensién definicional

© Cambiar el lenguaje de términos para integrar de modo primitivo un
mecanismo de recursién primitiva

En ambos casos, la extensién construida (de HA/PA) es conservativa
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Extensiones definicionales (recordatorio)

Definicion (Extensién definicional)

Sea .7 una teoria clasica (resp. intuicionista) con un teorema de la forma
T Vxqg-xe Aly A(xa, - - Xk, Y)

Se llama extension definicional de .7 (con respecto al teorema anterior)
a la teoria 7’ clasica (resp. intuicionista) obtenida afiadiendo a .7 un
nuevo simbolo de funcién f de aridad k con el nuevo axioma:

Vxq c o Vxe A(Xay - oo X F(Xay -0 Xk)) (e AX(T))

<

Teorema (Conservatividad de las extensiones definicionales)

Toda extensién definicional .7’ D .7 es conservativa,
en légica clasica como en légica intuicionista

Obs.: La demostracién (constructiva) se basa en la definicién de una traduccién
B +— B* del lenguaje de 7' en el lenguaje de 7 que elimina el nuevo simbolo de
funcién f, remplazando cada ocurrencia por su «definiciéon» A(x1,...,xk,y)
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Opcién 1: afiadiendo nuevos simbolos de funcién (1/2)

Se define el nuevo lenguaje de HA/PA del siguiente modo:

@ Se considera la familia (.%)k>1 de conjuntos de simbolos de funcién
(uno para cada aridad k > 1) definida inductivamente por las reglas:

— (k2i>1)
2691 SEﬂl ﬂfEﬂk

fle%( fpeﬁé‘k geﬁp fefk gEﬁk+2
gol(f,...,fH) € Fx rec(f,g) € Fit1

Obs.: Abhora, las notaciones z, s, 7rf‘, etc. designan simbolos

@ Se definen los términos del nuevo lenguaje por:

Términos t,bu == x | 0 | f(t,...,t%) (fefk)J

@ No cambia la gramatica de las férmulas
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Opcién 1: afiadiendo nuevos simbolos de funcién (2/2)

En este nuevo lenguaje, los axiomas de HA/PA son los siguientes:

(1) ¥x(z(x) = 0)
(2) Vx(s(x) #0)
(3) Wxa -k (K (3, ..oy xk) = xi7) (k>i>1)
(4) Vx--Vx (h(xa, . oxi) = g(A(xa, - xk), o Folxa, oy xk))
para cada simbolo h € i de la forma h=go (fi,. .., f)

5) {Vxl - xg (h(O,xl7 cooyxk) = f(xa, ... ,xk))

Vx Vxq -« - Vxg (h(s(x),xl7 cooyxik) = g(x, h(xy X1, . ooy Xk), X1y - .,xk))

para cada simbolo h € %, de la forma h = rec(f, g)

(6) Esquema de induccién (formulacién usual)

Obs.: Como la funcién predecesor (recursiva primitiva) esta en el lenguaje,
ya se puede derivar que el sucesor es inyectivo sin axioma especifico
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Opcidn 2: la recursion primitiva en los términos (1/2)

En lugar de introducir nuevos simbolos de funciones, se afiade un
mecanismo de recursion primitiva en el lenguaje de términos:

Términos t,u == x | 0 | s(t) | zec(t, u, (x,y)u) )

e En la construccion rec(t, u, (x,y)u'):

o t es el término sobre el cual se hace la recursién
o u es el término inicial

o (x,y)u’ esel término de iteracién, expresado en funcién de
las variables x (entero anterior) e y (llamada recursiva)

Formalmente, tenemos que:
FV(rec(t, u, (x,y)u)) = FV(£)UFV(u) U(FV()\ {x.y})
@ Como en la opcién anterior, las férmulas no cambian

iCuidado! Debido a la presencia de la construccién rec(t, u, (x,y)u’) (simbolo
ligador) en los términos, este lenguaje ya no es un lenguaje de primer orden
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Opcidn 2: la recursion primitiva en los términos (2/2)

En este nuevo lenguaje, los axiomas de HA/PA son los siguientes:
(1) vx(s(x) #0)

VZ (rec(0, u, (x,y)u') = u)
VZ (rec(s(t), u, (x,y)u') = u'[x == t]ly := rec(t, u, (x,y)u')])
para todos t, u, u’ tales que FV(t,u) C {Z}, FV(v') C {x,y,Z}

(3) Esquema de induccién (formulacién usual)

Ejemplos: Se definen t+wu, tx u, pred(t) y t! por
y)

t+u = rec(u, t, (x,y)s(y))
txu = rec(u, 0, (x,y)(y +1t))
pred(t) := rec(t, 0, (x,y)x
t! = rec(t, 1, (x,¥)(x X y))

Ejercicio: Verificar que estas definiciones cumplen las identidades deseadas
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Observaciones

@ Muy frecuentemente en la literatura, se supone que el lenguaje de
HA/PA provee un simbolo de funcién para cada (definicion de)
funcién recursiva primitiva  (Opcién 1)
~~ Esta presentacion “con lenguaje amplio” es conservativa

con respecto a la presentacién “con lenguaje minimo”

@ Trabajar “con lenguaje amplio” tiene muchas ventajas. ..

o En la practica: comodidad, expresividad, etc.

o En la teoria: definicién de la jerarquia aritmética (véase mas adelante)

@ También se puede definir una aritmética computacional HA™ “con
lenguaje amplio™: basta con integrar las ecuaciones definientes de
todas las funciones recursivas primitivas en la reduccién t = t’

o La reduccién (extendida) sobre los términos y las férmulas sigue
siendo confluente y fuertemente normalizante

o El teorema de eliminacién de cortes se extiende naturalmente a la
aritmética computacional “con lenguaje amplio”
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Férmulas recursivas primitivas (1/4)

A partir de ahora, se trabaja sélo en HA/PA “con lenguaje amplio”

Definiciéon (Férmula sin cuantificadores)

Una férmula es sin cuantificadores cuando no contiene ningtin V o 3

Mas generalmente, se definen las cuantificaciones acotadas por:

(Vx <t)AKx) = Ux(x<t= AKX))

Gx < DAKX) = Ix(x < tAAKX)) (g FYV(8)

Una férmula es con cuantificaciones acotadas (c.c.a.) cuando todas las
cuantificaciones que ocurren en dicha férmula estan acotadas, es decir:

Férmulas c.c.ca. A/B = t=u | T | L
| A=B | AAB | AVB
| X

HA | (Ix<t)A (x ¢ FV(t))

v

Intucién: Férmula c.c.a. = férmula “con informacién finita”



Recursién primitiva Propiedades G&del-Gentzen Friedman
0000000000000 00 00@000000 00000000 000000000

Férmulas recursivas primitivas (2/4)

Definicion (Férmulas recursivas primitivas)

Una férmula A(x,...,xx) con variables libres en {x1,...,xx} es
recursiva primitiva cuando existe f € PRy tal que

HA F Vxg---Vxk (A(Xl,...,Xk) & f(x17...,xk):0)

Obs.: Como la igualdad es decidible en HA, cada férmula A(xy, ..., x«)
recursiva primitiva también es decidible en HA:

HA F Vxi---Vxi (A(xa, ..., xk) V DA(XL, - -5 Xk)

(jCuidado! Hay férmulas decidibles que no son recursivas primitivas)

Teorema (Reduccién de complejidad)

En HA (con lenguaje amplio), todas las férmulas con cuantificaciones
acotadas son recursivas primitivas (y luego decidibles)

Dicho de otro modo: Se puede remplazar cualquier férmula A(X) con
cuantificaciones acotadas por una férmula atémica de la forma f(X) =0
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Férmulas recursivas primitivas (3/4)
Demostracién. Por induccién sobre la férmula c.c.a. A(xy,...,xx) se construye
fa € PRy talque HA F Vxq-- Vxe (A(x1,...,xk) < fa(xt,...,xx) =0),
distinguiendo los siguientes casos:
@ A(x1,...,xx) = t(x1,...,xk) = u(x1,...,xx). Basta con tomar
fa(xi, ..o xk) = (t0xa, ..., xk) = ulx,...,xk)) +
(u(xay ooy xk) = t(x1, -y Xk))
® A(x1,...,xx) = T. Basta con tomar fa(xi,...,xx) :=0
® A(x1,...,xx) = L. Basta con tomar fa(x1,...,xx):=1
@ A(x1,...,xx) = B(x1,...,xk) A C(x1,...,xx). Basta con tomar
fa(xt, ..., xk) = fe(xa,...,xk) + fc(x1, .-, xk)
@ A(x1,...,xx) = B(x1,...,xk)V C(x1,...,xx). Basta con tomar
fa(x1,. .., xk) == fe(x1,...,xk) X fe(x,...,xk) (..)
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Férmulas recursivas primitivas

Demostracion (continuacion y fin).

@ A(x1,...,xk) = B(x1,...,xx) = C(x1,...,xk). Basta con tomar
fa(xi,. ..o xk) == (L= fe(xa,...,xk)) X fe(xa, ..., xk)
@ Alxt,...,xk) = (Vy < t(x1,...,xk))B(y,x1,...,xx). Basta con tomar

fa(xi, ..., xk) == Z fB(Ys X1, s Xk)

y<t(xa,eeesxk)

@ A(xt,...,xx) = By < t(x1,...,xk))B(y,x1,...,xx). Basta con tomar

fa(xi, ..., xk) == H fB(Ys X1, .5 Xk)
y<tlxa, %)

Friedman
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(4/4)

Obs.: La demostracién anterior muestra cémo calcular de modo efectivo el valor de

verdad de cualquier férmula con cuantificaciones acotadas (en el modelo estandar)

mediante una funcién recursiva primitiva adecuada (con la convencién V =0y F # 0)
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Formas prenexas (LK)

Sea .Z un lenguaje de primer orden cualquiera

Definicién (Forma prenexa)

Una formula A € .Z esta en forma prenexa cuando es de la forma
A= @Qx1- - Qx,A
con @1,...,Q, € {V,3} y donde Ay € Z es sin cuantificadores

N

Proposicién (Existencia de la forma prenexa)

Toda férmula A € Z es clasicamente equivalente a una férmula en forma

prenexa:
Fank A & Qxg - Qxp Ao

para algunos n € N, Q1,...,Q, € {V,3} y Ag € &£ sin cuantificadores

v

Demostracion. Por induccién sobre A. DJ

jCuidado! Este resultado sélo se cumple en légica clasica
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La jerarquia aritmética (LK) (1/3)

Para toda férmula aritmética A (abierta o cerrada), se observa que:
@ obien A & 3IX V% 3)_(’3 s 6)?,, Ao (clase Zg)
@ o bien A & V)?l 3)?2 V)_('g; s Q)_('n Ao (clase ﬂg)

donde Ag es una férmula sin cuantificadores (o con cuantificaciones acotadas)

Definicién (Clases de complejidad ¥, N9, A9)

n’

Para todo n € IN, se definen los conjuntos de férmulas ¥% y M9 por:

A € Zg = |_|8 sii PAF A< Ap paraalguna férmula A c.c.a.
A € z?:-s—l sii PA - A & JXB para alguna féormula B € M2
Aenl, si PAF A& VXB paraalguna formula B € T9

Ademas, se escribe: A% = ¥ N°

0 Superindice 0 = nivel de la aritmética
Z/I_I/A Sublndlce n = namero de “bloques” de cuantificaciones
= empieza con 3 / M = empiezaconV / A = NN
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La jerarquia aritmética (LK) (2/3)
@ Inclusiones: X2 M% c A%, c xX2.,,M2,,
: : @ Las clases X2 M2 A% estan cerradas
\ / por A, V y por las cuantificaciones acotadas
0
A3z @ Ademas A% esta cerrada por —

@ La negacién — intercambia X% y M2

\ / @ Mediante una biyeccién primitiva recursiva entre
IN“ y IN, se pueden agrupar cuantificaciones de
A misma naturaleza:
/ \ Qxt - Qxx Alxa, - -, Xk)
ne & QXA(X),..., (X))

\ / @ Por lo tanto:
AD AiZ) € 20 sii

‘ AlZ) © Ix1Vx23xz3 - Qxp f(x1,..., %, 2) =0

A(Z) € N9 sii

0_50_nmn0 _
Do =2 =Tlp A(Z) & Vx1Ix2Vxz - Qxn f(Xx1,...,Xn,2) =0
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La jerarquia aritmética (LK) (3/3)

aritmética A(X) como un subconjunto

' \ / ' A través del modelo estandar, se puede ver cada férmula
0
A3z

{AeIN“:IN = A(@)} C IN*
I_Ig Por lo tanto, también se puede ver cada clase de com-
plejidad (X9, M9, A?) de la jerarquia aritmética como
una clase de complejidad de conjuntos C IN
@ N9 = conjuntos co-recursivamente enumerables
@ Y9 = conjuntos recursivamente enumerables

AD @ A = conjuntos recursivos

‘ o A =3x8 = AJ = conjuntos rec. primitivos

AY =59 =Y
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La traduccion negativa de Godel-Gentzen

Sea .Z un lenguaje de primer orden cualquiera

Definicién (Traduccién A+~ A® de Gédel-Gentzen)

A cada férmula A € Z se asocia otra férmula A® € £ definida por:
(2SR = oplty, ...,
(p(t t))© (¢ ti)
T¢ = T
16 = 1
(-A)S = -AC
(A= B)¢ = ACG= BC
(AANB)® = ASABS
(AVB)S = —(-AC%A-BC) (ﬁ’ —-—(AC v B%))
(Vx A6 = VxAC
G = - - G - G
(IxA)"E = Vx-A (<L:J> Ix A®) |
Intuicién:  V clasico = doble negacién del V intuicionista

d clasico = doble negacién del 3 intuicionista
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Propiedades de la traduccién A — A®

Obs.: FV(A®) = FV(A)

Proposicién (Propiedades de la traduccién A~ AC)
Fijado un lenguaje de primer orden .Z:

(1) Fnk A <& A (para todo A € .£)

(2) Fny AG & ——AG (para todo A € .2)

(3) Si TFnk A, entonces €y, AC
(4)

4) En particular: Fnk A implica  Fyy A

G&del-Gentzen

Friedman
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Demostracién.
(1) Por induccién sobre la férmula A (ejercicio)
(2) Por induccién sobre la féormula A (ejercicio)

(3) Por induccién sobre la derivacién de ' A en el sistema NK,

usando (2) para interpretar la regla del absurdo (ejercicio)
(4) Sigue inmediatamente de (3)
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El caso de la Aritmética

o Se observa que HA - AS®  para todo axioma A € Ax(PA)

(1) HA F Vx—=(x+0=x)
(2) HA F VxVy—-=(x+s(y) =s(x+y))
(3) HA F V¥x—==(x x0=0)
(4) HA F VxVy—=(x xs(y) =x Xy +x)
(5) HA F VxVy (==(s(x) = s(y)) = —(x=y))
(6) HA F Vx-=—(s(x) =0)
(7) HA F VZ[AS(Z,0) AVx (AS(Z,x) = AS(Z,s(x))) = VYxA%(Z,x)]
para cada férmula A(Z,x) con variables libres {Z, x}
Teorema

PAFA siysolosi HAR AS

Corolario: PA y HA son equiconsistentes: PA =~ HA J
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Traduccién de otras teorias

G&del-Gentzen Friedman
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El mismo método permite demostrar mas generalmente que:

e PA2 ~ HA2 (Aritmética de segundo orden)
e PAn =~ HAn (Aritmética de n-ésimo orden)
o PAw =~ HAw (Aritmética de alto orden)

Obs.: Este método no se aplica de modo directo a la teoria de conjuntos,
pues la traduccién del axioma de extensionalidad no es derivable:

IZF I/ ¥xVy[Vz(-—(zex) e —(z€y)) = (x=y)]

G
(VxVy [Vz (zexezey) = x:y])

Solucién: Trabajar en teorias de conjuntos no extensionales (i.e. sin =)
equiconsistentes a (1)Z, (1)ZF. Esto permite demostrar que:
01Z ~ Z
o IZFc =~ ZF

(1ZF¢ = ZF intuicionista con esquema de Coleccién en lugar de Remplazo)

[Friedman 1973]
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Variante: la traduccion A — A® (1/2)

Observacion: En HA, tenemos que: x=y < -=(x=y)
Esto motiva la siguiente modificacién en la traduccién de Godel-Gentzen:

Definicion (Traduccién A s AS)

A cada férmula A € Zpa se asocia la férmula AS € Zya definida por:
(t=uw)’ = t=u (en lugar de ——(t = u))
T = T
19 = L
(-A)¢ = -AY
(A= B)S = A% = B¢
(AAB)YS = A% ABY
(AvB)® = —(-A% A-B%) (& ——(AS" v BS))
(VxA)¢ = Wx A%
(ExA)S = —vx-AY (& —3xAY)
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Variante: la traduccion A s A% (2/2)

Obs.: La dnica diferencia entre las traducciones A% y AS' es:

(t=u)® = ~=(t=u) mientras (t= u)G, = t=u
Por lo tanto:

Lema: HA + A% & AG (para toda férmula A)J

Proposicién (Propiedades de la traduccién A — A%)

(1) PAF A% < A (para todo A € Zpa)
(2) PAFA  siysolosi  HAR A%

Cuando A no contiene ni V ni 3, tenemos que A% = A y por lo tanto:

Teorema

Para toda férmula aritmética A sin V ni 3, tenemos que:

PAEA si y sélo si HAF A
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Interpretacién computacional de las pruebas de A®

Idea: Combinar la traduccién A~ A® (de PA a HA) con el teorema
de eliminacién de cortes (en HA) para analizar las pruebas clasicas

o jPropiedad de la existencia? Una derivacién cerrada y sin cortes
de (IxA(x))® = —Vx-AC%(x) es de la forma:

S 7
vXﬁAG(X) l_HAE 1
}_HA —\VXﬂAG(X)

(~in)

~ iNo se puede decir nada mas!

o ;jPropiedad de la disyuncion? Problema analogo (verificarlo)

Fracaso: Se puede demostrar (por técnicas de realizabilidad) que la
formula AS no tiene ningtn contenido computacional interesante

Necesidad de modificar la traduccién ~- traduccién de Friedman



@ Recursion primitiva en HA y PA
© Propiedades de HA y PA “con lenguaje amplio”
© Traduccisn negativa de Gédel-Gentzen

@ R-traduccion de Friedman
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[Friedman 1978]

Sea .Z un lenguaje de primer orden cualquiera

Definicién (Traduccién A+ AF de Friedman)

Fijada una férmula cualquiera R € £ (posiblemente abierta), se define la

traduccién de Friedman A — AF inducida por R por las ecuaciones:

(p(t1, ..., t))F
TF

p(tr, ..., tx) VR

T

R

AF = R

AF = BF

AF A BF

AF v BF

Vx AF (si x ¢ FV(R))
Ix AF (si x ¢ FV(R))

V.

Obs.: Antes de calcular AF, se necesita cambiar los nombres de las variables ligadas

en la féormula A de tal modo que BV(A)NFV(R) =&
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Propiedades de la traduccién A — AF

Obs.:

FV(AF) C FV(A)UFV(R)

Proposicién (Propiedades de la traduccién A+~ A®)

Fijados un lenguaje de primer orden .Z y una férmula R € .Z:

(1) Fnk AF = AVR (para todo A € .¥)

Friedman
008000000

(2) Fng R = AF (para todo A € %)

(3) Si Ty A, entonces IF -y, AF

(4) En particular: Fy; A implica  Fyy AF

Obs.: Ky A = AT (en general)

Demostracién.

(1) Por induccién sobre la férmula A (ejercicio)

(2) Por induccién sobre la féormula A (ejercicio)

(3) Por induccién sobre la derivacién de ' A en el sistema NJ,
usando (2) para interpretar la regla (L-elim) (ex falso quod libet)

(4) Sigue inmediatamente de (3)
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El caso de la Aritmética

o Se observa que HA - AF  para todo axioma A € Ax(HA)

) HA
) HA
) HA
4) HA
) HA
) HA
) HA

l_
l_
F
=
}7
l_

l_

Vx(x+0=x V R)

VxVy (x+s(y) =s(x+y) V R)

Vx(xx0=0 V R)

VxVy(x xs(y)=xxy+x V R)
VxVy(s(x)=s(y)VR = x=yVR)

Vx(s(x) =0= R)

VZ[AF(Z,0) A VX (AT(Z, x) = AT(Z,5(x))) = VYxAT(Z,x)]

para cada férmula A(Z,x) con variables libres {Z, x}

En lo anterior, se supone que FV(R)N{Z,x,y} = o

Teorema
Si HAF A,

entonces HA - AF (jCuidado! )
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M3-conservatividad (1/3)

El interés de la traduccién de Friedman aparece en la demostracién de:

Teorema [Friedman 1978]

PA es una extensién ﬂg—conservativa de HA, es decir:
PA F VX 3y f(x,¥) =0 sii HA + vx 3y f(X,y) =0

para toda funcién recursiva primitiva f(x,y)

Esto implica mas generalmente que
PA F VX 3y A%, ¥) si  HA F V%37 AX¥)

para toda férmula A(X, ) con cuantificaciones acotadas
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M3-conservatividad (2/3)

Demostracion. Sin perdida de generalidad, se puede restringir al caso de las
férmulas de la forma  Vx 3y f(x,y) = 0.

Supongamos: PA + Vx3yf(x,y)=0

Entonces: HA F (Vx3yf(x,y) = O)Gl (correccién de A — AG,)
Es decir: HA + Vx——3y f(x,y) =0 (def. de A — AS")
Entonces: HA + ——3y f(x0,y) =0 (V-elim con x := xp)
Sea: R = 3Jyf(xo,y)=0 (truco de Friedman)
Tenemos que: HA + (——3y f(x0,y) = 0)F (correccion de A — AF)
Es decir: HA + (3y (f(xo,¥) =0VR)=R)=R (def. de A — AF)
Es decir: HA + ((3y f(x0,y)=0)VR=R)=R (pues y ¢ FV(R))
Es decir: HA - (RVR=R)=R (def. de R)
Por otro lado: HA - RVR=R (obvio)
Y por lo tanto: HA F R (modus ponens)
Es decir: HA + 3y f(xo,y) =0 (def. de R)
Luego: HA + Vx3yf(x,y) =0 (V-intro) [
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M3-conservatividad (3/3)

Adaptando la misma técnica a otros formalismos, Friedman (1978)
demostré que:

@ PA2 es una extensién M3-conservativa de HA2

PAn es una extensién M3-conservativa de HAn  (para todo n > 2)
e PAw es una extensién M3-conservativa de HAw
@ Z es una extensién M3-conservativa de 1Z

e ZF es una extensién M3-conservativa de IZF ¢

Observaciéon: En teoria de conjuntos, las férmulas I_Ig son de la forma
(VX ew)(Fy ew)f(X,¥)=0

donde f(X, ¥) es cualquier funcién recursiva primitiva
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Regla de Markov

El principio de Markov es el principio de doble eliminacién de la negacion
restringido a las férmulas ¥9:

para toda férmula A(x) sin cuantificadores (o con cuantificaciones acotadas)

MP ——3xA(x) = IxA(x) }

e Tenemos que PA + MP, pero HA I MP (en general)

@ Sin embargo:
Teorema (Regla de Markov)
HA + —=3xA(x)

La regla de Markov es admisible en HA
HA + 3x A(x)

(en el contexto vacio) donde A(x) es cualquier férmula con cuantificaciones acotadas
V.

Demostracion. Si HA F ——3xA(x), entonces PA F 3IxA(x),
y por lo tanto  HA F 3x A(x) por M3-conservatividad. O
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Extraccién de programas en légica clasica

@ Sea una derivacién
d: PAF Vx---Vx 3y A(X,y)

donde A(X, y) es una férmula con cuantificaciones acotadas

o Combinando las traducciones de Gentzen-Gddel y de Friedman con
el truco de Friedman, se deduce otra derivacion:

d : HA F Vxp---Vx 3y AX,y)

@ Usando el teorema de eliminacion de cortes en HA, se construye una
funcién computable £ : INF — IN  (total) tal que

HA = A(ny,...,ng, (e, ..., nk))

para todos ny,...,n, € IN

@ Obs.: Se puede extraer f directamente a partir de la derivacién d (clasica),
usando técnicas de realizabilidad clasica [Krivine 2006, Miquel 2009]
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