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Introducción

En las clases anteriores, presentamos PA (Aritmética clásica) y HA
(Aritmética intuicionista) con un lenguaje mínimo de términos:

Términos t, u ::= x | 0 | s(t) | t + u | t × u

Sin embargo, el lenguaje de fórmulas de HA/PA permite representar
mucho más funciones, como por ejemplo la función (n,m) 7→ nm, y
más generalmente: todas las funciones recursivas primitivas

Objetivo de esta parte: Definir las funciones recursivas primitivas
y ver cómo se pueden integrar en el lenguaje (y la teoría) de HA/PA
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Funciones iniciales

Se llaman funciones iniciales a las siguientes funciones:

La función nula z : N→ N, definida por

z(n) := 0

(para todo n ∈ N)

La función sucesor s : N→ N, definida por

s(n) := n + 1

(para todo n ∈ N)

Las proyecciones πk
i : Nk → N (k ≥ i ≥ 1), definidas por

πk
i (n1, . . . , nk) := ni

(para todo (n1, . . . , nk ) ∈ Nk )
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Esquemas de composición y de recursión primitiva

Esquema de composición A partir de f1, . . . , fp : Nk → N y
g : Np → N, definir la función h : Nk → N por

h(n1, . . . , nk) := g(f1(n1, . . . , nk), . . . , fp(n1, . . . , nk))

(para todo (n1, . . . , nk ) ∈ Nk )

Se nota h = g ◦ (f1, . . . , fp)

Esquema de recursión primitiva A partir de f : Nk → N y
g : Nk+2 → N, definir la función h : Nk+1 → N por:

h(0, n1, . . . , nk) := f (n1, . . . , nk)

h(n + 1, n1, . . . , nk) := g(n, h(n, n1, . . . , nk), n1, . . . , nk)

(para todos n ∈ N y (n1, . . . , nk ) ∈ Nk )

Se nota h = rec(f , g)
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Funciones recursivas primitivas (1/3)

Definición (Funciones recursivas primitivas)

El conjunto de las funciones recursivas primitivas es el mínimo conjunto
⊆
⋃

k≥1(Nk → N) que contiene todas las funciones iniciales

z , s, πk
i (k ≥ i ≥ 1)

y está cerrado por los esquemas de composición y de recursión primitiva:

(f1, . . . , fp, g) 7→ g ◦ (f1, . . . , fp), (f , g) 7→ rec(f , g)

Notación: PRk = conjunto de las funciones recursivas primitivas de aridad k

También se puede definir inductivamente la familia (PRk)k≥1 por las reglas:

z ∈ PR1 s ∈ PR1 πk
i ∈ PRk

(k≥i≥1)

f1 ∈ PRk · · · fp ∈ PRk g ∈ PRp

g ◦ (f1, . . . , fp) ∈ PRk

f ∈ PRk g ∈ PRk+2

rec(f , g) ∈ PRk+1
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Funciones recursivas primitivas (2/3)

Observaciones:

Las funciones aritméticas básicas son recursivas primitivas:

n 7→ n + 1, (n,m) 7→ n + m, (n,m) 7→ nm,
(n,m) 7→ nm, (n,m) 7→ min(n,m), (n,m) 7→ max(n,m),

(n,m) 7→ n .−m (resta truncada), (n,m) 7→ n ÷m (div. euclidiana),
(n,m) 7→ n%m (resto euclidiano), n 7→ n!, n 7→ fib(n), etc.

Si f : Nk → N es recursiva primitiva, entonces las funciones
g , h : Nk → N definidas por:

g(n, n2, . . . , nk) :=
∑
m≤n

f (m, n2, . . . , nk)

h(n, n2, . . . , nk) :=
∏
m≤n

f (m, n2, . . . , nk)

son recursivas primitivas
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Funciones recursivas primitivas (3/3)

Observaciones (continuación):

Todas las funciones recursivas primitivas son totales y computables1

En particular, el conjunto PRk es numerable (para todo k ≥ 1)

Sin embargo, existen funciones totales y computables que no son
recursivas primitivas, como por ejemplo la función de Ackermann
ack : N2 → N definida por:

ack(0, n) := n + 1
ack(m + 1, 0) := ack(m, 1)

ack(m + 1, n + 1) := ack(m, ack(m + 1, n))

Se puede demostrar que toda función total y computable
cuya complejidad está acotada (superiormente) por una función
recursiva primitiva también es recursiva primitiva

1Definiremos la noción de función computable en el curso sobre el cálculo lambda
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Representación de las funciones recursivas primitivas
En lo siguiente, se escribe n :≡ sn(0) al entero de Peano n

Teorema (Representación de las funciones recursivas primitivas)

Para toda función recursiva primitiva f : Nk → N:

(1) Existe una fórmula aritmética Af (x1, . . . , xk , y) tal que

HA ` ∀y
(
A(n1, . . . , nk , y) ⇔ y = f (n1, . . . , nk)

)
para todo (n1, . . . , nk) ∈ Nk

(2) HA ` ∀x1 · · · ∀xk ∃!y Af (x1, . . . , xk , y)

Observaciones:

(1) expresa que la función f es representable en HA por la fórmula
Af (x1, . . . , xk , y). Se puede demostrar más generalmente que todas las
funciones computables (parciales o totales) son representables en HA

(2) expresa que la totalidad de la función f se puede demostrar en HA.
Esto no se cumple para todas las funciones computables, ni siquiera para
todas las funciones computables totales
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Integración de las funciones recursivas primitivas

Como todas las funciones recursivas primitivas son representables en HA,
es natural integrarlas en el lenguaje.

Dos opciones posibles:

1 Añadir un nuevo símbolo de función para cada definición recursiva
primitiva, usando el mecanismo de extensión definicional

2 Cambiar el lenguaje de términos para integrar de modo primitivo un
mecanismo de recursión primitiva

En ambos casos, la extensión construida (de HA/PA) es conservativa
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Extensiones definicionales (recordatorio)

Definición (Extensión definicional)

Sea T una teoría clásica (resp. intuicionista) con un teorema de la forma

T ` ∀x1 · · · ∀xk ∃!y A(x1, . . . , xk , y)

Se llama extensión definicional de T (con respecto al teorema anterior)
a la teoría T ′ clásica (resp. intuicionista) obtenida añadiendo a T un
nuevo símbolo de función f de aridad k con el nuevo axioma:

∀x1 · · · ∀xk A(x1, . . . , xk , f (x1, . . . , xk)) (∈ Ax(T ′))

Teorema (Conservatividad de las extensiones definicionales)

Toda extensión definicional T ′ ⊇ T es conservativa,
en lógica clásica como en lógica intuicionista

Obs.: La demostración (constructiva) se basa en la definición de una traducción
B 7→ B∗ del lenguaje de T ′ en el lenguaje de T que elimina el nuevo símbolo de
función f , remplazando cada ocurrencia por su «definición» A(x1, . . . , xk , y)
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Opción 1: añadiendo nuevos símbolos de función (1/2)

Se define el nuevo lenguaje de HA/PA del siguiente modo:

Se considera la familia (F )k≥1 de conjuntos de símbolos de función
(uno para cada aridad k ≥ 1) definida inductivamente por las reglas:

z ∈ F1 s ∈ F1 πk
i ∈ Fk

(k≥i≥1)

f1 ∈ Fk · · · fp ∈ Fk g ∈ Fp

g ◦ (f1, . . . , fp) ∈ Fk

f ∈ Fk g ∈ Fk+2

rec(f , g) ∈ Fk+1

Obs.: Ahora, las notaciones z , s, πk
i , etc. designan símbolos

Se definen los términos del nuevo lenguaje por:

Términos t, u ::= x | 0 | f (t1, . . . , tk) (f ∈ Fk)

No cambia la gramática de las fórmulas
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Opción 1: añadiendo nuevos símbolos de función (2/2)

En este nuevo lenguaje, los axiomas de HA/PA son los siguientes:

(1) ∀x (z(x) = 0)

(2) ∀x (s(x) 6= 0)

(3) ∀x1 · · · ∀xk (πk
i (x1, . . . , xk) = xi ) (k ≥ i ≥ 1)

(4) ∀x1 · · · ∀xk
(
h(x1, . . . , xk) = g(f1(x1, . . . , xk), . . . , fp(x1, . . . , xk))

)
para cada símbolo h ∈ Fk de la forma h ≡ g ◦ (f1, . . . , fp)

(5)

{
∀x1 · · · ∀xk

(
h(0, x1, . . . , xk) = f (x1, . . . , xk)

)
∀x ∀x1 · · · ∀xk

(
h(s(x), x1, . . . , xk) = g(x , h(x , x1, . . . , xk), x1, . . . , xk)

)
para cada símbolo h ∈ Fk+1 de la forma h ≡ rec(f , g)

(6) Esquema de inducción (formulación usual)

Obs.: Como la función predecesor (recursiva primitiva) está en el lenguaje,
ya se puede derivar que el sucesor es inyectivo sin axioma específico
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Opción 2: la recursión primitiva en los términos (1/2)

En lugar de introducir nuevos símbolos de funciones, se añade un
mecanismo de recursión primitiva en el lenguaje de términos:

Términos t, u ::= x | 0 | s(t) | rec(t, u, (x , y)u′)

En la construcción rec(t, u, (x , y)u′):

t es el término sobre el cual se hace la recursión

u es el término inicial

(x , y)u′ es el término de iteración, expresado en función de
las variables x (entero anterior) e y (llamada recursiva)

Formalmente, tenemos que:

FV (rec(t, u, (x , y)u′)) = FV (t) ∪ FV (u) ∪ (FV (u′) \ {x , y})

Como en la opción anterior, las fórmulas no cambian

¡Cuidado! Debido a la presencia de la construcción rec(t, u, (x , y)u′) (símbolo
ligador) en los términos, este lenguaje ya no es un lenguaje de primer orden



Recursión primitiva Propiedades Gödel-Gentzen Friedman

Opción 2: la recursión primitiva en los términos (2/2)

En este nuevo lenguaje, los axiomas de HA/PA son los siguientes:

(1) ∀x (s(x) 6= 0)

(2)

{
∀~z
(
rec(0, u, (x , y)u′) = u

)
∀~z
(
rec(s(t), u, (x , y)u′) = u′[x := t][y := rec(t, u, (x , y)u′)]

)
para todos t, u, u′ tales que FV (t, u) ⊆ {~z}, FV (u′) ⊆ {x , y , ~z}

(3) Esquema de inducción (formulación usual)

Ejemplos: Se definen t + u, t × u, pred(t) y t! por:

t + u :≡ rec(u, t, (x , y)s(y))

t × u :≡ rec(u, 0, (x , y)(y + t))

pred(t) :≡ rec(t, 0, (x , y)x)

t! :≡ rec(t, 1, (x , y)(x × y))

Ejercicio: Verificar que estas definiciones cumplen las identidades deseadas



Recursión primitiva Propiedades Gödel-Gentzen Friedman

Observaciones

Muy frecuentemente en la literatura, se supone que el lenguaje de
HA/PA provee un símbolo de función para cada (definición de)
función recursiva primitiva (Opción 1)

 Esta presentación “con lenguaje amplio” es conservativa
con respecto a la presentación “con lenguaje mínimo”

Trabajar “con lenguaje amplio” tiene muchas ventajas. . .

En la práctica: comodidad, expresividad, etc.

En la teoría: definición de la jerarquía aritmética (véase más adelante)

También se puede definir una aritmética computacional HA
∼= “con

lenguaje amplio”: basta con integrar las ecuaciones definientes de
todas las funciones recursivas primitivas en la reducción t � t ′

La reducción (extendida) sobre los términos y las fórmulas sigue
siendo confluente y fuertemente normalizante

El teorema de eliminación de cortes se extiende naturalmente a la
aritmética computacional “con lenguaje amplio”
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Fórmulas recursivas primitivas (1/4)

A partir de ahora, se trabaja sólo en HA/PA “con lenguaje amplio”

Definición (Fórmula sin cuantificadores)

Una fórmula es sin cuantificadores cuando no contiene ningún ∀ o ∃

Más generalmente, se definen las cuantificaciones acotadas por:

(∀x ≤ t)A(x) :≡ ∀x (x ≤ t ⇒ A(x))

(∃x ≤ t)A(x) :≡ ∃x (x ≤ t ∧ A(x))
(x /∈ FV (t))

Definición (Fórmula con cuantificaciones acotadas)

Una fórmula es con cuantificaciones acotadas (c.c.a.) cuando todas las
cuantificaciones que ocurren en dicha fórmula están acotadas, es decir:

Fórmulas c.c.a. A,B ::= t = u | > | ⊥
| A⇒ B | A ∧ B | A ∨ B
| (∀x ≤ t)A | (∃x ≤ t)A (x /∈ FV (t))

Intución: Fórmula c.c.a. = fórmula “con información finita”
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Fórmulas recursivas primitivas (2/4)

Definición (Fórmulas recursivas primitivas)

Una fórmula A(x1, . . . , xk) con variables libres en {x1, . . . , xk} es
recursiva primitiva cuando existe f ∈ PRk tal que

HA ` ∀x1 · · · ∀xk
(
A(x1, . . . , xk) ⇔ f (x1, . . . , xk) = 0

)
Obs.: Como la igualdad es decidible en HA, cada fórmula A(x1, . . . , xk)
recursiva primitiva también es decidible en HA:

HA ` ∀x1 · · · ∀xk (A(x1, . . . , xk) ∨ ¬A(x1, . . . , xk))

(¡Cuidado! Hay fórmulas decidibles que no son recursivas primitivas)

Teorema (Reducción de complejidad)

En HA (con lenguaje amplio), todas las fórmulas con cuantificaciones
acotadas son recursivas primitivas (y luego decidibles)

Dicho de otro modo: Se puede remplazar cualquier fórmula A(~x) con
cuantificaciones acotadas por una fórmula atómica de la forma f (~x) = 0
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Fórmulas recursivas primitivas (3/4)

Demostración. Por inducción sobre la fórmula c.c.a. A(x1, . . . , xk ) se construye
fA ∈ PRk tal que HA ` ∀x1 · · · ∀xk (A(x1, . . . , xk ) ⇔ fA(x1, . . . , xk ) = 0),
distinguiendo los siguientes casos:

A(x1, . . . , xk ) ≡ t(x1, . . . , xk ) = u(x1, . . . , xk ). Basta con tomar

fA(x1, . . . , xk ) := (t(x1, . . . , xk ) .− u(x1, . . . , xk )) +
(u(x1, . . . , xk ) .− t(x1, . . . , xk ))

A(x1, . . . , xk ) ≡ >. Basta con tomar fA(x1, . . . , xk ) := 0

A(x1, . . . , xk ) ≡ ⊥. Basta con tomar fA(x1, . . . , xk ) := 1

A(x1, . . . , xk ) ≡ B(x1, . . . , xk ) ∧ C(x1, . . . , xk ). Basta con tomar

fA(x1, . . . , xk ) := fB(x1, . . . , xk ) + fC (x1, . . . , xk )

A(x1, . . . , xk ) ≡ B(x1, . . . , xk ) ∨ C(x1, . . . , xk ). Basta con tomar

fA(x1, . . . , xk ) := fB(x1, . . . , xk )× fC (x1, . . . , xk ) (...)
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Fórmulas recursivas primitivas (4/4)

Demostración (continuación y fin).

A(x1, . . . , xk ) ≡ B(x1, . . . , xk )⇒ C(x1, . . . , xk ). Basta con tomar

fA(x1, . . . , xk ) := (1 .− fB(x1, . . . , xk ))× fC (x1, . . . , xk )

A(x1, . . . , xk ) ≡ (∀y ≤ t(x1, . . . , xk ))B(y , x1, . . . , xk ). Basta con tomar

fA(x1, . . . , xk ) :=
∑

y≤t(x1,...,xk )

fB(y , x1, . . . , xk )

A(x1, . . . , xk ) ≡ (∃y ≤ t(x1, . . . , xk ))B(y , x1, . . . , xk ). Basta con tomar

fA(x1, . . . , xk ) :=
∏

y≤t(x1,...,xk )

fB(y , x1, . . . , xk )

Obs.: La demostración anterior muestra cómo calcular de modo efectivo el valor de
verdad de cualquier fórmula con cuantificaciones acotadas (en el modelo estándar)
mediante una función recursiva primitiva adecuada (con la convención V = 0 y F 6= 0)
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Formas prenexas (LK)

Sea L un lenguaje de primer orden cualquiera

Definición (Forma prenexa)

Una formula A ∈ L está en forma prenexa cuando es de la forma

A ≡ Qx1 · · ·Qxn A0

con Q1, . . . ,Qn ∈ {∀,∃} y donde A0 ∈ L es sin cuantificadores

Proposición (Existencia de la forma prenexa)

Toda fórmula A ∈ L es clásicamente equivalente a una fórmula en forma
prenexa:

`NK A ⇔ Qx1 · · ·Qxn A0

para algunos n ∈ N, Q1, . . . ,Qn ∈ {∀,∃} y A0 ∈ L sin cuantificadores

Demostración. Por inducción sobre A.

¡Cuidado! Este resultado sólo se cumple en lógica clásica
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La jerarquía aritmética (LK) (1/3)

Para toda fórmula aritmética A (abierta o cerrada), se observa que:
o bien A ⇔ ∃~x1 ∀~x2 ∃~x3 · · · Q~xn A0 (clase Σ0

n)
o bien A ⇔ ∀~x1 ∃~x2 ∀~x3 · · · Q~xn A0 (clase Π0

n)
donde A0 es una fórmula sin cuantificadores (o con cuantificaciones acotadas)

Definición (Clases de complejidad Σ0
n, Π0

n, ∆0
n)

Para todo n ∈ N, se definen los conjuntos de fórmulas Σ0
n y Π0

n por:

A ∈ Σ0
0 = Π0

0 sii PA ` A ⇔ A0 para alguna fórmula A0 c.c.a.

A ∈ Σ0
n+1 sii PA ` A ⇔ ∃~x B para alguna fórmula B ∈ Π0

n

A ∈ Π0
n+1 sii PA ` A ⇔ ∀~x B para alguna fórmula B ∈ Σ0

n

Además, se escribe: ∆0
n := Σ0

n ∩ Π0
n

Σ/Π/∆0
n

 Superíndice 0 = nivel de la aritmética
Subíndice n = número de “bloques” de cuantificaciones
Σ = empieza con ∃ / Π = empieza con ∀ / ∆ = Σ ∩Π
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La jerarquía aritmética (LK) (2/3)

...
...

∆0
3

Σ0
2 Π0

2

∆0
2

Σ0
1 Π0

1

∆0
1

∆0
0 = Σ0

0 = Π0
0

Inclusiones: Σ0
n,Π0

n ⊂ ∆0
n+1 ⊂ Σ0

n+1,Π0
n+1

Las clases Σ0
n, Π0

n, ∆0
n están cerradas

por ∧, ∨ y por las cuantificaciones acotadas

Además ∆0
n está cerrada por ¬

La negación ¬ intercambia Σ0
n y Π0

n

Mediante una biyección primitiva recursiva entre
Nk y N, se pueden agrupar cuantificaciones de
misma naturaleza:

Qx1 · · ·Qxk A(x1, . . . , xk )

⇔ Qx A(πk
1(x), . . . , πk

k (x))

Por lo tanto:

A(~z) ∈ Σ0
n sii

A(~z) ⇔ ∃x1 ∀x2 ∃x3 · · ·Qxn f (x1, . . . , xn, ~z) = 0

A(~z) ∈ Π0
n sii

A(~z) ⇔ ∀x1 ∃x2 ∀x3 · · ·Qxn f (x1, . . . , xn, ~z) = 0
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La jerarquía aritmética (LK) (3/3)

...
...

∆0
3

Σ0
2 Π0

2

∆0
2

Σ0
1 Π0

1

∆0
1

∆0
0 = Σ0

0 = Π0
0

A través del modelo estándar, se puede ver cada fórmula
aritmética A(~x) como un subconjunto

{~n ∈ Nk : N |= A(~n)} ⊆ Nk

Por lo tanto, también se puede ver cada clase de com-
plejidad (Σ0

n, Π0
n, ∆0

n) de la jerarquía aritmética como
una clase de complejidad de conjuntos ⊆ Nk

Π0
1 = conjuntos co-recursivamente enumerables

Σ0
1 = conjuntos recursivamente enumerables

∆0
1 = conjuntos recursivos

∆0
0 = Σ0

0 = ∆0
0 = conjuntos rec. primitivos
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La traducción negativa de Gödel-Gentzen

Sea L un lenguaje de primer orden cualquiera

Definición (Traducción A 7→ AG de Gödel-Gentzen)

A cada fórmula A ∈ L se asocia otra fórmula AG ∈ L definida por:

(p(t1, . . . , tk))G :≡ ¬¬p(t1, . . . , tk)

>G :≡ >
⊥G :≡ ⊥

(¬A)G :≡ ¬AG

(A⇒ B)G :≡ AG ⇒ BG

(A ∧ B)G :≡ AG ∧ BG

(A ∨ B)G :≡ ¬(¬AG ∧ ¬BG)
(
⇔
LJ

¬¬(AG ∨ BG)
)

(∀x A)G :≡ ∀x AG

(∃x A)G :≡ ¬∀x ¬AG
(
⇔
LJ

¬¬∃x AG
)

Intuición: ∨ clásico = doble negación del ∨ intuicionista
∃ clásico = doble negación del ∃ intuicionista
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Propiedades de la traducción A 7→ AG

Obs.: FV (AG) = FV (A)

Proposición (Propiedades de la traducción A 7→ AG)

Fijado un lenguaje de primer orden L :

(1) `NK AG ⇔ A (para todo A ∈ L )

(2) `NJ AG ⇔ ¬¬AG (para todo A ∈ L )

(3) Si Γ `NK A, entonces ΓG `NJ AG

(4) En particular: `NK A implica `NJ AG

Demostración.
(1) Por inducción sobre la fórmula A (ejercicio)
(2) Por inducción sobre la fórmula A (ejercicio)
(3) Por inducción sobre la derivación de Γ ` A en el sistema NK,

usando (2) para interpretar la regla del absurdo (ejercicio)
(4) Sigue inmediatamente de (3)
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El caso de la Aritmética

Se observa que HA ` AG para todo axioma A ∈ Ax(PA)

(1) HA ` ∀x ¬¬(x + 0 = x)

(2) HA ` ∀x ∀y ¬¬(x + s(y) = s(x + y))

(3) HA ` ∀x ¬¬(x × 0 = 0)

(4) HA ` ∀x ∀y ¬¬(x × s(y) = x × y + x)

(5) HA ` ∀x ∀y (¬¬(s(x) = s(y)) ⇒ ¬¬(x = y))

(6) HA ` ∀x ¬¬¬(s(x) = 0)

(7) HA ` ∀~z [AG(~z , 0) ∧ ∀x (AG(~z , x)⇒ AG(~z , s(x))) ⇒ ∀x AG(~z , x)]

para cada fórmula A(~z , x) con variables libres {~z , x}

Teorema

PA ` A si y sólo si HA ` AG

Corolario: PA y HA son equiconsistentes: PA ≈ HA
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Traducción de otras teorías

El mismo método permite demostrar más generalmente que:

PA2 ≈ HA2 (Aritmética de segundo orden)

PAn ≈ HAn (Aritmética de n-ésimo orden)

PAω ≈ HAω (Aritmética de alto orden)

Obs.: Este método no se aplica de modo directo a la teoría de conjuntos,
pues la traducción del axioma de extensionalidad no es derivable:

IZF 6` ∀x ∀y [∀z (¬¬(z ∈ x)⇔ ¬¬(z ∈ y)) ⇒ ¬¬(x = y)]︸ ︷︷ ︸(
∀x ∀y [∀z (z∈x⇔z∈y) ⇒ x=y ]

)G
Solución: Trabajar en teorías de conjuntos no extensionales (i.e. sin =)
equiconsistentes a (I)Z, (I)ZF. Esto permite demostrar que:

IZ ≈ Z

IZFC ≈ ZF [Friedman 1973]
(IZFC = ZF intuicionista con esquema de Colección en lugar de Remplazo)
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Variante: la traducción A 7→ AG′ (1/2)

Observación: En HA, tenemos que: x = y ⇔ ¬¬(x = y)

Esto motiva la siguiente modificación en la traducción de Gödel-Gentzen:

Definición (Traducción A 7→ AG′)

A cada fórmula A ∈ LPA se asocia la fórmula AG′ ∈ LHA definida por:

(t = u)G′ :≡ t = u (en lugar de ¬¬(t = u))

>G′ :≡ >
⊥G′ :≡ ⊥

(¬A)G′ :≡ ¬AG′

(A⇒ B)G′ :≡ AG′ ⇒ BG′

(A ∧ B)G′ :≡ AG′ ∧ BG′

(A ∨ B)G′ :≡ ¬(¬AG′ ∧ ¬BG′)
(
⇔
HA

¬¬(AG′ ∨ BG′)
)

(∀x A)G′ :≡ ∀x AG′

(∃x A)G′ :≡ ¬∀x ¬AG′ (
⇔
HA

¬¬∃x AG′)
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Variante: la traducción A 7→ AG′ (2/2)

Obs.: La única diferencia entre las traducciones AG y AG′ es:
(t = u)G :≡ ¬¬(t = u) mientras (t = u)G′ :≡ t = u

Por lo tanto:

Lema: HA ` AG′ ⇔ AG (para toda fórmula A)

Proposición (Propiedades de la traducción A 7→ AG′)

(1) PA ` AG′ ⇔ A (para todo A ∈ LPA)

(2) PA ` A si y sólo si HA ` AG′

Cuando A no contiene ni ∨ ni ∃, tenemos que AG′≡ A y por lo tanto:
Teorema
Para toda fórmula aritmética A sin ∨ ni ∃, tenemos que:

PA ` A si y sólo si HA ` A
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Interpretación computacional de las pruebas de AG

Idea: Combinar la traducción A 7→ AG (de PA a HA) con el teorema
de eliminación de cortes (en HA) para analizar las pruebas clásicas

¿Propiedad de la existencia? Una derivación cerrada y sin cortes
de (∃x A(x))G ≡ ¬∀x ¬AG(x) es de la forma:

.... ?

∀x ¬AG(x) `HA∼= ⊥
`HA ¬∀x ¬AG(x)

(¬-in)

 ¡No se puede decir nada más!

¿Propiedad de la disyunción? Problema análogo (verificarlo)

Fracaso: Se puede demostrar (por técnicas de realizabilidad) que la
fórmula AG no tiene ningún contenido computacional interesante

Necesidad de modificar la traducción  traducción de Friedman
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Plan

1 Recursión primitiva en HA y PA

2 Propiedades de HA y PA “con lenguaje amplio”

3 Traducción negativa de Gödel-Gentzen

4 R-traducción de Friedman
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La traducción de Friedman [Friedman 1978]

Sea L un lenguaje de primer orden cualquiera

Definición (Traducción A 7→ AF de Friedman)

Fijada una fórmula cualquiera R ∈ L (posiblemente abierta), se define la
traducción de Friedman A 7→ AF inducida por R por las ecuaciones:

(p(t1, . . . , tk))F :≡ p(t1, . . . , tk) ∨ R

>F :≡ >
⊥F :≡ R

(¬A)F :≡ AF ⇒ R

(A⇒ B)F :≡ AF ⇒ BF

(A ∧ B)F :≡ AF ∧ BF

(A ∨ B)F :≡ AF ∨ BF

(∀x A)F :≡ ∀x AF (si x /∈ FV (R))
(∃x A)F :≡ ∃x AF (si x /∈ FV (R))

Obs.: Antes de calcular AF, se necesita cambiar los nombres de las variables ligadas
en la fórmula A de tal modo que BV (A) ∩ FV (R) = ∅
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Propiedades de la traducción A 7→ AF

Obs.: FV (AF) ⊆ FV (A) ∪ FV (R)

Proposición (Propiedades de la traducción A 7→ AG )

Fijados un lenguaje de primer orden L y una fórmula R ∈ L :

(1) `NK AF ⇔ A ∨ R (para todo A ∈ L )

(2) `NJ R ⇒ AF (para todo A ∈ L )

(3) Si Γ `NJ A, entonces ΓF `NJ AF

(4) En particular: `NJ A implica `NJ AF

Obs.: 6`NJ A ⇒ AF (en general)

Demostración.
(1) Por inducción sobre la fórmula A (ejercicio)
(2) Por inducción sobre la fórmula A (ejercicio)
(3) Por inducción sobre la derivación de Γ ` A en el sistema NJ,

usando (2) para interpretar la regla (⊥-elim) (ex falso quod libet)
(4) Sigue inmediatamente de (3)
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El caso de la Aritmética

Se observa que HA ` AF para todo axioma A ∈ Ax(HA)

(1) HA ` ∀x (x + 0 = x ∨ R)

(2) HA ` ∀x ∀y (x + s(y) = s(x + y) ∨ R)

(3) HA ` ∀x (x × 0 = 0 ∨ R)

(4) HA ` ∀x ∀y (x × s(y) = x × y + x ∨ R)

(5) HA ` ∀x ∀y (s(x) = s(y) ∨ R ⇒ x = y ∨ R)

(6) HA ` ∀x (s(x) = 0⇒ R)

(7) HA ` ∀~z [AF(~z , 0) ∧ ∀x (AF(~z , x)⇒ AF(~z , s(x))) ⇒ ∀x AF(~z , x)]

para cada fórmula A(~z , x) con variables libres {~z , x}

En lo anterior, se supone que FV (R) ∩ {~z, x , y} = ∅

Teorema

Si HA ` A, entonces HA ` AF (¡Cuidado! 6⇐)
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Π0
2-conservatividad (1/3)

El interés de la traducción de Friedman aparece en la demostración de:

Teorema [Friedman 1978]

PA es una extensión Π0
2-conservativa de HA, es decir:

PA ` ∀~x ∃~y f (~x , ~y) = 0 sii HA ` ∀~x ∃~y f (~x , ~y) = 0

para toda función recursiva primitiva f (~x , ~y)

Esto implica más generalmente que

PA ` ∀~x ∃~y A(~x , ~y) sii HA ` ∀~x ∃~y A(~x , ~y)

para toda fórmula A(~x , ~y) con cuantificaciones acotadas
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Π0
2-conservatividad (2/3)

Demostración. Sin perdida de generalidad, se puede restringir al caso de las
fórmulas de la forma ∀x ∃y f (x , y) = 0.

Supongamos: PA ` ∀x ∃y f (x , y) = 0

Entonces: HA ` (∀x ∃y f (x , y) = 0)G
′

(corrección de A 7→ AG′ )

Es decir: HA ` ∀x ¬¬∃y f (x , y) = 0 (def. de A 7→ AG′ )

Entonces: HA ` ¬¬∃y f (x0, y) = 0 (∀-elim con x := x0)

Sea: R :≡ ∃y f (x0, y) = 0 (truco de Friedman)

Tenemos que: HA ` (¬¬∃y f (x0, y) = 0)F (corrección de A 7→ AF)

Es decir: HA ` (∃y (f (x0, y) = 0 ∨ R)⇒ R)⇒ R (def. de A 7→ AF)

Es decir: HA ` ((∃y f (x0, y) = 0) ∨ R ⇒ R)⇒ R (pues y /∈ FV (R))

Es decir: HA ` (R ∨ R ⇒ R)⇒ R (def. de R)

Por otro lado: HA ` R ∨ R ⇒ R (obvio)

Y por lo tanto: HA ` R (modus ponens)

Es decir: HA ` ∃y f (x0, y) = 0 (def. de R)

Luego: HA ` ∀x ∃y f (x , y) = 0 (∀-intro)
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Π0
2-conservatividad (3/3)

Adaptando la misma técnica a otros formalismos, Friedman (1978)
demostró que:

PA2 es una extensión Π0
2-conservativa de HA2

PAn es una extensión Π0
2-conservativa de HAn (para todo n ≥ 2)

PAω es una extensión Π0
2-conservativa de HAω

Z es una extensión Π0
2-conservativa de IZ

ZF es una extensión Π0
2-conservativa de IZFC

Observación: En teoría de conjuntos, las fórmulas Π0
2 son de la forma

(∀~x ∈ ω)(∃~y ∈ ω) f (~x , ~y) = 0

donde f (~x , ~y) es cualquier función recursiva primitiva
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Regla de Markov

El principio de Markov es el principio de doble eliminación de la negación
restringido a las fórmulas Σ0

1:

MP ¬¬∃x A(x) ⇒ ∃x A(x)

para toda fórmula A(x) sin cuantificadores (o con cuantificaciones acotadas)

Tenemos que PA ` MP, pero HA 6` MP (en general)

Sin embargo:

Teorema (Regla de Markov)

La regla de Markov
HA ` ¬¬∃x A(x)

HA ` ∃x A(x)
es admisible en HA

(en el contexto vacío) donde A(x) es cualquier fórmula con cuantificaciones acotadas

Demostración. Si HA ` ¬¬∃x A(x), entonces PA ` ∃x A(x),
y por lo tanto HA ` ∃x A(x) por Π0

2-conservatividad.
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Extracción de programas en lógica clásica

Sea una derivación

d : PA ` ∀x1 · · · ∀xk ∃y A(~x , y)

donde A(~x , y) es una fórmula con cuantificaciones acotadas

Combinando las traducciones de Gentzen-Gödel y de Friedman con
el truco de Friedman, se deduce otra derivación:

d ′ : HA ` ∀x1 · · · ∀xk ∃y A(~x , y)

Usando el teorema de eliminación de cortes en HA, se construye una
función computable f : Nk → N (total) tal que

HA ` A(n1, . . . , nk , f (n1, . . . , nk))

para todos n1, . . . , nk ∈ N

Obs.: Se puede extraer f directamente a partir de la derivación d (clásica),
usando técnicas de realizabilidad clásica [Krivine 2006, Miquel 2009]
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