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Introducción

Alonzo Church (1903–1995)

1936: An Unsolvable Problem of Elementary
Number Theory

1936: A Note on the Entscheidungsproblem
1941: The Calculi of Lambda Conversions

El problema de la decisión („Entscheidungsproblem“)

En 1936, Church definió un problema de «aritmética elemental»...
... que no se puede resolver por «medios algorítmicos»

Medios algorítmicos = calculable por un término lambda

Problema sin solución algorítmica = problema de la parada

El Entscheidungsproblem fue resuelto de modo independiente
en 1936 por Alan Turing (1912–1954)

Medios algorítmicos = calculable por una máquina de Turing
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Historia breve del cálculo lambda

Objetivo inicial: Definir un marco unificador similar a la teoría de
conjuntos, donde los objetos primitivos son las funciones

1924: La lógica combinatoria, por Moses Schönfinkel (1889–1942)

1932: Church introduce un cálculo de funciones puras, con un
sistema lógico en el estilo de Frege e Hilbert

1935: Kleene y Rosser (estudiantes de Church) demuestran que el
sistema lógico definido por Church es inconsistente

1936: Church resuelve el problema de la decisión,
usando la parte puramente computacional de su cálculo

1936: Turing resuelve el mismo problema, con sus máquinas
⇒ Church lo invita en Princeton para dirigir su tesis de doctorado

1940: Church introduce el cálculo lambda simplemente tipado
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¿Qué se necesita para trabajar con funciones?

Variables (x , y , z , etc.) y operaciones básicas (+, ×, etc.) para
formar expresiones, como por ejemplo: 3x + 1

Un mecanismo para construir una función, abstrayendo una
expresión con respecto a una variable. Notación:

λx . 3x + 1 = (x 7→ 3x + 1)

Un mecanismo para aplicar una función:

(λx . 3x + 1)(4)

Un mecanismo para evaluar una función: la β-reducción

(λx . 3x + 1)(4) →β 3(4) + 1 → 12 + 1 → 13

β-reducción = sustitución del argumento formal (variable)
por el argumento real (expresión cualquiera)

Ideas de Church: (1) Todo objeto matemático es una función
(2) Toda computación es una sucesión de β-reducciones
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El origen del λ del cálculo lambda

(a1, . . . , âi , . . . , an) la tupla (a1, . . . , an) sin ai

x̂ . 3x + 1 ≥ 0 = {x : 3x + 1 ≥ 0} (Russell-Whitehead)

∧x . 3x + 1, λx . 3x + 1 = (x 7→ 3x + 1) (Church)

La “biblia” del cálculo lambda:
H. Barendregt. The Lambda Calculus: Its Syntax and Semantics.
Studies in Logic and the Foundations of Mathematics. North Holland, 1984
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Sintaxis del cálculo lambda

Definición (Términos lambda)

Términos lambda M,N ::= x | λx .M | MN

Se escribe Λ al conjunto de todos los términos lambda

Abreviaturas:

λx1x2 · · · xn .M :≡ λx1 . λx2 . · · ·λxn .M

MN1N2 · · ·Nn :≡ (· · · ((MN1)N2) · · · )Mn

Variables libres FV(M) y variables ligadas BV(M):

FV(x) = {x}
FV(λx .M) = FV(M) \ {x}

FV(MN) = FV(M) ∪ FV(N)

BV(x) = ∅
BV(λx .M) = BV(M) ∪ {x}

BV(MN) = BV(M) ∪ BV(N)
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Sustitución y α-equivalencia

Ahora se trata de definir:
la relación de α-equivalencia M1 ≡α M2

la operación de sustitución M[x := N] (a menos de α-equivalencia)

con los cambios de nombres necesarios para evitar capturas:

(λx . x y)[y := x ] 6≡ λx . x x
≡α λz . z x
≡α λy . y x

Para ello:

1 Se define una primera operación parcial de sustitución M〈x := N〉
sin cambios de nombres de variables

2 Se define (a partir de la operación anterior) la relación M1 ≡α M2,
y se demuestra que M〈x := N〉 es compatible con M1 ≡α M2

3 Se define la operación (total) de sustitución M[x := N] a partir de
la relación M〈x := N〉, razonando sobre las clases de α-equivalencia
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Sustitución sin cambios de variables ligadas (1/2)

Definición (Sustitución «ingenua», sin cambios de variables ligadas)

Se define la operación parcial M〈x := N〉 por las siguientes cláusulas:
x〈x := N〉 :≡ N

y〈x := N〉 :≡ y (suponiendo que y 6≡ x)

(λx .M)〈x := N〉 :≡ λx .M

(λy .M)〈x := N〉 :≡ λy .M〈x := N〉 si x /∈ FV(M) o y /∈ FV(N)

(λy .M)〈x := N〉 no está definido si x ∈ FV(M) e y ∈ FV(N)

(M1M2)〈x := N〉 :≡ (M1〈x := N〉)(M2〈x := N〉)

Ejemplos:
(λy . y x)〈x := z z〉 ≡ λy . y (z z)

(λz . z x)〈x := z z〉 no está definido
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Sustitución sin cambios de variables ligadas (2/2)

Lema (Condiciones suficientes de definición)

(1) Si x /∈ FV(M), entonces M〈x := N〉 ≡ M (siempre definido)

(2) Si BV(M) ∩ FV(N) = ∅, entonces M〈x := N〉 está definido

Demostración. (1) y (2) se demuestran por inducción sobre M (Ejercicio).

Lema de sustitución

Para todos M, N, P, x 6≡ y tales que x /∈ FV(P), tenemos que:

M〈x := N〉〈y := P〉 ≡ M〈y := P〉〈x := N〈y := P〉〉

bajo la hipótesis que ambos lados estén definidos

Demostración. Por inducción sobre el término M (Ejercicio).
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α-equivalencia

Definición (α-equivalencia)

Se define inductivamente la relación de α-equivalencia M1 ≡α M2 por
las siguientes reglas:

x ≡α x

M1 ≡α M2 N1 ≡α N2

M1N1 ≡α M2N2

M1〈x1 := z〉 ≡α M2〈x2 := z〉
λx1 .M1 ≡α λx2 .M2

(z fresca)

(z fresca = z 6≡ x1, z 6≡ x2 y z /∈ FV(M1) ∪ BV(M1) ∪ FV(M2) ∪ BV(M2))

Proposición (Propiedades de la α-equivalencia)
1 La α-equivalencia es una congruencia (= equivalencia compatible con λ y @)

2 Si M ≡α M ′, N ≡α N ′ y si M〈x := N〉 y M ′〈x := N ′〉 están
definidos, entonces M〈x := N〉 ≡α M ′〈x := N ′〉

Demostración. Ejercicio



Introducción Sintaxis β-Reducción η-Reducción De Bruijn Computabilidad

Sustitución con cambios de variables ligadas (1/2)

Definición (Sustitución)

Se define la operación (total) de sustitución M[x := N] a menos de
α-equivalencia por:

M[x := N] :≡α M ′〈x := N〉

tomando cualquier M ′ ≡α M tal que M ′〈x := N〉 esté definido

Proposición (Compatibilidad)

Si M ≡α M ′ y N ≡α N ′, entonces M[x := N] ≡α M ′[x := N ′]

Lema de sustitución

Para todos M, N, P, x 6≡ y tales que x /∈ FV(P), tenemos que:

M[x := N][y := P] ≡α M[y := P][x := N[y := P]]
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Sustitución con cambios de variables ligadas (2/2)

En las diapositivas anteriores, definimos la operación de sustitución
M[x := N] a menos de α-equivalencia

Dicha operación también se puede definir directamente [Church 1941]
sobre los términos lambda del modo siguiente:

x [x := N] :≡ N

y [x := N] :≡ y (suponiendo que y 6≡ x)

(λx .M)[x := N] :≡ λx .M

(λy .M)[x := N] :≡ λy .M[x := N] si x /∈ FV(M) o y /∈ FV(N)

(λy .M)[x := N] :≡ λz .M[y := z][x := N]
si x ∈ FV(M) e y ∈ FV(N), tomando z fresca

(M1M2)[x := N] :≡ (M1[x := N])(M2[x := N])

Obs.: Se necesita verificar que la definición está bien fundada (5ta cláusula)

Esta definición es adecuada para una implementación
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Contextos con un agujero (1/2)

Los contextos (con un agujero) están definidos por la gramática:

Contextos C ::= [] | λx .C | CM | MC

Intuición: Contexto con un agujero =
término con una única ocurrencia de la construcción [] (el «agujero»)

Dados un contexto C y un término M, se escribe C [M] al término
obtenido remplazando en C la única ocurrencia de [] por M.

Se trata de un remplazo sintáctico, sin cambio de variable:

Si C ≡ [], entonces C [M] :≡ M
Si C ≡ λx .C0, entonces C [M] :≡ λx .C0[M]
Si C ≡ C0M0, entonces C [M] :≡ C0[M]M0
Si C ≡ M0C0, entonces C [M] :≡ M0C0[M]
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Contextos con un agujero (2/2)

Obs.: Al contrario de la operación de sustitución, la operación
M 7→ C [M] puede capturar variables libres de M, por ejemplo:

Si C ≡ λx . x [], entonces C [I] ≡ λx . x I
C [y ] ≡ λx . x y
C [x ] ≡ λx . x x

En particular, la α-conversión no tiene sentido sobre los contextos.
Sin embargo, tenemos que:

Si M ≡α M ′, entonces C [M] ≡α C [M ′]

Los contextos también se componen entre sí mediante la operación
C ◦ C ′ :≡ C [C ′], de tal modo que (C ◦ C ′)[M] :≡ C [C ′[M]]

Dicho de otro modo: El conjunto de los contextos con un agujero es
un monoide (no conmutativo) con elemento neutro [], que actúa (por la
izquierda) sobre el conjunto Λ mediante la operación (C ,M) 7→ C [M]
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Relaciones compatibles y clausura contextual (1/2)

Se dice que una relación binaria R ⊆ Λ× Λ es:

compatible cuando MRM ′ implica C [M]RC [M ′]
(para todo contexto C con un agujero)

sustitutiva cuando MRM ′ implica M[x := N]RM ′[x := N]
(para toda variable x y todo término N)

Definición (Clausura contextual)

Dada una relación binaria R ⊆ Λ× Λ, se llama clausura contextual de
la relación R a la relación →R definida por las 4 reglas:

MRM ′

M →R M ′
(CBase)

M →R M ′

λx .M →R λx .M ′
(CLam)

M1 →R M ′1

M1M2 →R M ′1M2
(CApp1)

M2 →R M ′2

M1M2 →R M1M
′
2

(CApp2)

Obs.: →R es la mínima relación compatible que contiene R
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Relaciones compatibles y clausura contextual (2/2)

Proposición (Propiedades de la clausura contextual)

Dadas relaciones binarias R,S ⊆ Λ× Λ:

(1) →R es la mínima relación compatible que contiene R

(2) Si R es sustitutiva, entonces →R es también es sustitutiva

(3) Si MRM ′ implica FV(M ′) ⊆ FV(M) (para todos M,M′)
entonces M →R M ′ implica FV(M ′) ⊆ FV(M) (para todos M,M′)

(Misma propiedad con = en lugar de ⊆)

(4) Tenemos que: →(R∪S) = →R ∪→S
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Relaciones inducidas

Dada una relación → ⊆ Λ× Λ, se definen las relaciones:

0→ := {(x , x) : x ∈ A} identidad
i+1→ :=

i→◦→ reducción en i + 1 pasos
+→ :=

⋃
i>0

i→ clausura transitiva
∗→ :=

+→∪ 0→ clausura reflexiva-transitiva
=→ := →∪ 0→ clausura reflexiva

↔ := →∪ (→)−1 clausura simétrica
∼= := (↔)∗ clausura reflexiva-simétrica-transitiva

Obs.: Se nota que si → es compatible (resp. sustitutiva), entonces
todas las relaciones inducidas son compatibles (resp. sustitutivas)



Introducción Sintaxis β-Reducción η-Reducción De Bruijn Computabilidad

Definición de la β-reducción

Definición (β-reducción)

(1) La noción de β-reducción β ⊆ Λ× Λ está definida por la regla:

(λx .M)N β M[x := N]

(2) La relación →β de β-reducción en un paso está definida como la
clausura contextual de la relación β

Propiedades básicas de la β-reducción

(1) La relación β es sustitutiva, y por lo tanto:
(2) La relación →β es compatible y sustitutiva

Además:
(3) Si M →β M ′, entonces FV(M ′) ⊆ FV(M)

Obs.: Variables libres pueden desaparecer durante la β-reducción, por ejemplo:
(λx . (λy . y)) z →β λy . y
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Ejemplos

Sea consideran los términos:

I :≡ λx . x , K :≡ λxy . x , B :≡ λxyz . x (y z), ∆ :≡ λx . x x

Para todos términos M, N, P, tenemos que:

IM ≡ (λx . x)M →β M

KM N ≡ (λx . λy . x)M N →β (λy .M)N →β M

BM N P ≡ (λx . λy . λz . x (y z))M N P
→β (λy . λz .M (y z))N P
→β (λz .M (N z))P →β M (N P)

∆M ≡ (λx . x x)M →β MM

Y en particular:

∆ ∆ →β ∆ ∆
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Normalización

Definiciones

Dados términos M, M ′, se dice que:
M ′ es en forma (β-)normal cuando M ′ 6→β

M ′ es una forma (β-)normal de M cuando M
∗→β M ′ 6→β

M es normalizante cuando tiene forma normal
M es fuertemente normalizante cuando no existe ninguna sucesión
infinita de β-reducciones: M →β M1 →β M2 →β M3 →β · · ·

Ejemplos:

Los términos I, K, B, ∆ son en forma normal

El término ∆ I →β I I →β I es fuertemente normalizante

El término ∆ ∆ →β ∆ ∆ no tiene forma normal

El término K I (∆ ∆)
2→β I es normalizante, pero no es

fuertemente normalizante, pues K I (∆ ∆) →β K I (∆ ∆)
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Formas normales

Se consideran las dos formas de términos neu (“neutros”)
y nor (“normales”) definidas por las gramáticas:

neu ::= x | neu nor

nor ::= neu | λx .nor

Dicho de otro modo, los “normales” están dados por la gramática:

nor ::= λx1 · · · xn . y nor1 · · ·nork (n, k ≥ 0)

Proposición (Caracterización de las formas normales)

Un término M es en forma β-normal si y sólo si es de la forma nor

Demostración: Ejercicio.
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Confluencia local de la β-reducción

Se puede demostrar sin dificultad que:

Proposición (Confluencia local)

La β-reducción es localmente confluente:

Si M →β M ′1 y M →β M ′2,
entonces existe M ′′ tal que
M ′1

∗→β M ′′ y M ′2
∗→β M ′′

M

�� ��
M ′1

∗ ��

M ′2

∗��
M ′′

Problema: No se puede deducir fácilmente la propiedad de confluencia
(En efecto, no se puede usar el lema de Newman, ya que →β no es normalizante)

Solución: Razonar sobre una relación auxiliar: la reducción paralela
[Martin-Löf 1971]
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Reducción paralela (1/7)

Definición (β-reducción paralela)

La relación ⇒ de β-reducción paralela está definida inductivamente por
las siguientes reglas:

M ⇒ M
(PRefl)

M ⇒ M ′ N ⇒ N ′

(λx .M)N ⇒ M ′[x := N ′]
(PBeta)

M ⇒ M ′

λx .M ⇒ λx .M ′
(PLam)

M ⇒ M ′ N ⇒ N ′

MN ⇒ M ′N ′
(PApp)

Observaciones:

La relación ⇒ es compatible (obvio por (PRefl), (PLam) y (PApp))

Tenemos que: (→β) ⊂ (⇒) ⊂ (
∗→β) (Demostración: ejercicio)

Lema (Sustitución paralela)

Si M ⇒ M ′ y N ⇒ N ′, entonces M[x := N]⇒ M ′[x := N ′]
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Reducción paralela (2/7)

Demostración del lema de sustitución paralela. Por inducción sobre la derivación
de M ⇒ M′, distinguiendo los casos en función de la última regla aplicada:

(PRefl). Tenemos que M ≡ M′.
Se demuestra por inducción sobre M que M[x := N]⇒ M[x := N′],
distinguiendo los tres casos posibles (variable, abstracción, aplicación).

(PBeta). Tenemos que M ≡ (λy .M1)M2 y M′ ≡ M′1[y := M′2], con M1 ⇒ M′1
y M2 ⇒ M′2. S.p.d.g, se puede suponer que y /∈ FV(M2M′2NN

′).
Por HI, sabemos que M1[x := N]⇒ M′1[x := N′] y M2[x := N]⇒ M′2[x := N′].
Por (PBeta), se deduce que M[x := N] ≡ (λy .M1[x := N])(M2[x := N])
⇒ M′1[x := N′][y := M′2[x := N′]] ≡ (M′1[y := M′2])[x := N′] ≡ M′[x := N′].

(PLam). Tenemos que M ≡ λy .M1 y M′ ≡ λy .M′1, con M1 ⇒ M′1.
S.p.d.g, se puede suponer que y /∈ FV(NN′).
Por HI, sabemos que M1[x := N]⇒ M′1[x := N′]. Por (PLam), se deduce que
M[x := N] ≡ λy .M1[x := N]⇒ λy .M′1[x := N′] ≡ M′[x := N′].

(PApp). Tenemos que M ≡ M1M2 y M′ ≡ M′1M
′
2, con M1 ⇒ M′1 y M2 ⇒ M′2.

Por HI, sabemos que M1[x := N]⇒ M′1[x := N′] y M2[x := N]⇒ M′2[x := N′].
Por (PApp), se deduce que M[x := N] ≡ M1[x := N]M2[x := N]
⇒ M′1[x := N′]M′2[x := N′] ≡ M′[x := N′].
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Reducción paralela (3/7)

Proposición (Propiedad del diamante)

La reducción paralela cumple la
propiedad del diamante:

Si M ⇒ M ′1 y M ⇒ M ′2,
entonces existe M ′′ tal que
M ′1 ⇒ M ′′ y M ′2 ⇒ M ′′

M

{� �#
M ′1

�#

M ′2

{�
M ′′

Corolario (Confluencia de la reducción paralela)

La reducción paralela es confluente:

Si M ⇒∗ M ′1 y M ⇒∗ M ′2,
entonces existe M ′′ tal que
M ′1 ⇒∗ M ′′ y M ′2 ⇒∗ M ′′

M
∗
{�

∗
�#

M ′1

∗ �#

M ′2

∗{�
M ′′

Demostración. Sigue del resultado demostrado en el Práctico 2, Ejercicio 3 (1).
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Reducción paralela (4/7)

Demostración de la propiedad del diamante. Por inducción sobre las derivaciones
de M ⇒ M′1 y M ⇒ M′2, distinguiendo los casos en función de los pares de reglas
que acaban éstas. Se observa que los casos posibles son los siguientes:

M ⇒ M′1

M ⇒ M′2

(PRefl) (PBeta) (PLam) (PApp)
(PRefl) X X X X
(PBeta) X X X
(PLam) X X
(PApp) X X X

(PRefl)/_. En este caso, tenemos que M′1 ≡ M; basta con tomar M′′ :≡ M′2.

_/(PRefl). En este caso, tenemos que M′2 ≡ M; basta con tomar M′′ :≡ M′1.

M

�#
M

�#

M′2

M′2

M

{�
M′1 M

{�
M′1 (...)
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Reducción paralela (5/7)

Demostración de la propiedad del diamante (continuación).

(PBeta)/(PBeta). En este caso, sabemos que

M ≡ (λx .N)P
M′1 ≡ N′1[x := P′1], con N ⇒ N′1 y P ⇒ P′1
M′2 ≡ N′2[x := P′2], con N ⇒ N′2 y P ⇒ P′2

Por HI, sabemos que

existe N′′ tal que N′1 ⇒ N′′ y N′2 ⇒ N′′

existe P′′ tal que P′1 ⇒ P′′ y P′2 ⇒ P′′

Tomando M′′ :≡ N′′[x := P′′], se observa que

M′1 ≡ N′1[x := P′1]⇒ N′′[x := P′′] ≡ M′′

M′2 ≡ N′2[x := P′2]⇒ N′′[x := P′′] ≡ M′′

aplicando 2 veces el lema de sustitución paralela. (...)

(λx .N)P

{� �#
N′1[x := P′1]

�#

N′2[x := P′2]

{�
N′′[x := P′′]
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Reducción paralela (6/7)

Demostración de la propiedad del diamante (continuación).

(PLam)/(PLam). En este caso, sabemos que

M ≡ λx .N
M′1 ≡ λx .N′1, con N ⇒ N′1
M′2 ≡ λx .N′2, con N ⇒ N′2

Por HI, sabemos que

existe N′′ tal que N′1 ⇒ N′′ y N′2 ⇒ N′′

Basta con tomar M′′ :≡ λx .N′′.

λx .N

{� �#
λx .N′1

�#

λx .N′2

{�
λx .N′′

(PApp)/(PApp). En este caso, sabemos que

M ≡ NP
M′1 ≡ N′1P

′
1, con N ⇒ N′1 y P ⇒ P′1

M′2 ≡ N′2P
′
2, con N ⇒ N′2 y P ⇒ P′2

Por HI, sabemos que

existe N′′ tal que N′1 ⇒ N′′ y N′2 ⇒ N′′

existe P′′ tal que P′1 ⇒ P′′ y P′2 ⇒ P′′

Basta con tomar M′′ :≡ N′′P′′. (...)

NP

{� �#
N′1P

′
1

�#

N′2P
′
2

{�
N′′P′′
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Reducción paralela (7/7)

Demostración de la propiedad del diamante (fin).

(PBeta)/(PApp). En este caso, sabemos que

M ≡ (λx .N)P
M′1 ≡ N′1[x := P′1], con N ⇒ N′1 y P ⇒ P′1
M′2 ≡ R′2P

′
2, con λx .N ⇒ R′2 y P ⇒ P′2

Además, analizando las derivaciones posibles de λx .N ⇒ R′2,
se deduce que R′2 ≡ λx .N′2, con N ⇒ N′2.

Por HI, sabemos que

existe N′′ tal que N′1 ⇒ N′′ y N′2 ⇒ N′′

existe P′′ tal que P′1 ⇒ P′′ y P′2 ⇒ P′′

Tomando M′′ :≡ N′′[x := P′′], se concluye que

M′1 ≡ N′1[x := P′1]⇒ N′′[x := P′′] ≡ M′′

por el lema de sustitución paralela
M′2 ≡ (λx .N′2)P′2 ⇒ N′′[x := P′′] ≡ M′′ por (PBeta)

(λx .N)P

{� �#
N′1[x := P′1]

�#

(λx .N′2)P′2

{�
N′′[x := P′′]

(PApp)/(PBeta). Caso simétrico del caso anterior.
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Confluencia de la β-reducción (1/2)

Vimos que la reducción paralela ⇒ es confluente

Por otro lado, sabemos que (→β) ⊂ (⇒) ⊂ (
∗→β).

Esto implica que: (
∗→β) ⊂ (

∗⇒) ⊂ (
∗→β)

∗
= (

∗→β)

Por lo tanto, tenemos que (
∗→β) = (

∗⇒), y luego:

Teorema (Confluencia de la β-reducción)

La β-reducción es confluente:

Si M
∗→β M ′1 y M

∗→β M ′2,
entonces existe M ′′ tal que
M ′1

∗→β M ′′ y M ′2
∗→β M ′′

M
∗
��

∗
��

M ′1

∗ ��

M ′2

∗��
M ′′
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Confluencia de la β-reducción (2/2)

Corolario (Church-Rosser)

La β-reducción es Church-Rosser:

Si M1 ∼=β M2
entonces existe M ′ tal que
M1

∗→β M ′ y M2
∗→β M ′

M1
∼ //

∗ ��

M2

∗��
M ′

Corolario (formas normales)

(1) La forma normal de un término, cuando existe, es única
(2) Dos formas normales son β-convertibles si y sólo si son iguales

Obs.: (2) = consistencia computacional del cálculo lambda:
la β-conversión nunca identifica dos formas normales distintas

x 6∼=β y , I 6∼=β K, K 6∼=β ∆ (etc.)
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El problema de la extensionalidad (1/2)

Dos términos M,M ′ son extensionalmente equivalentes cuando

(1) M N ∼=β M ′ N (para todo N)

Pregunta: ¿Son tales términos β-convertibles?

Por sustitutividad, la condición (1) es equivalente a

(1’) M x ∼=β M ′ x (x variable fresca)

Contraejemplo: Tenemos que

mientras
(λz . y z) x →β y x

λz . y z 6∼=β y

¿Cómo extender la relación de β-conversión de tal modo que
dos términos extensionalmente equivalentes sean convertibles?
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El problema de la extensionalidad (2/2)

Sea ∼= ⊆ Λ× Λ una relación de equivalencia compatible y
sustitutiva que contiene la β-conversión. Se dice que la relación
∼= es extensional cuando cumple la regla

M x ∼= M ′ x
M ∼= M ′

(x fresca)

Proposición

Las dos condiciones son equivalentes:
(1) ∼= es extensional
(2) ∼= es tal que λx .M x ∼= M para todos M, x con x /∈ FV(M)

Demostración. (1)⇒ (2) Dados M, x , z tales que x , z /∈ FV(M), se observa que
(λx .M x) z →β M z, entonces (λx .M x) z ∼= M z, y luego λx .M x ∼= M por (1).

(2)⇒ (1) Supongamos que M x ∼= M′ x , con x /∈ FV(M) y x /∈ FV(M′). Entonces
λx .M x ∼= λx .M′ x por compatibilidad, y luego M ∼= M′ por (2).

Motiva la nueva regla: λx .M x →η M (x /∈ FV(M))



Introducción Sintaxis β-Reducción η-Reducción De Bruijn Computabilidad

Definición de la η-reducción

Definición (η-reducción)

(1) La noción de η-reducción η ⊆ Λ× Λ está definida por la regla:

λx .M x η M
si x /∈FV(M)

(2) La relación →η de η-reducción en un paso está definida como la
clausura contextual de la relación η

Propiedades básicas de la η-reducción

(1) La relación η es sustitutiva, y por lo tanto:
(2) La relación →η es compatible y sustitutiva

Además:
(3) Si M →η M ′, entonces FV(M ′) = FV(M)

Obs.: Variables libres nunca desaparecen (ni aparecen) durante la η-reducción
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Propiedades de la η-reducción

Proposición (Normalización fuerte)

(1) Para todos M →η M ′, tenemos que |M| > |M ′|
Y por lo tanto:
(2) La relación →η es fuertemente normalizante

Proposición (Propiedad del diamante)

La relación =→η cumple la
propiedad del diamante:

Si M
=→η M ′1 y M

=→η M ′2,
entonces existe M ′′ tal que
M ′1

=→η M ′′ y M ′2
=→η M ′′

M
=
��

=
��

M ′1

= ��

M ′2

=��
M ′′

Demostración. Ejercicio.
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Confluencia de la η-reducción

Teorema (Confluencia de la η-reducción)

La η-reducción es confluente:

Si M
∗→η M ′1 y M

∗→η M ′2,
entonces existe M ′′ tal que
M ′1

∗→η M ′′ y M ′2
∗→ ηM ′′

M
∗
��

∗
��

M ′1

∗ ��

M ′2

∗��
M ′′

Demostración. Sigue del resultado demostrado en el Práctico 2, Ejercicio 3 (2).

Corolario (Church-Rosser + unicidad de las formas η-normales)

(1) La forma η-normal de cualquier término es única
(2) La η-reducción es Church-Rosser
(3) Dos términos son η-convertibles sii tienen misma forma η-normal
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Conmutation β/η

Proposición (Conmutación β/η)

La relación →η conmuta con →β :

Si M
∗→β M ′1 y M

∗→η M ′2,
entonces existe M ′′ tal que
M ′1

∗→β M ′′ y M ′2
∗→η M ′′

M

β

∗
�� η

∗
��

M ′1

∗
η

��

M ′2
β

∗��
M ′′

Demostración. En primer lugar, se demuestra (Ejercicio) que las relaciones →β

y →η tienen la siguiente propiedad de conmutación fuerte:

Si M
∗→β M′1 y M

∗→η M′2,
entonces existe M′′ tal que
M′1

∗→β M′′ y M′2
∗→η M′′

M

β�� η ��
M′1

∗
η

��

M′2
β

=��
M′′

Demostración: ejercicio.

Luego se concluye usando el resultado demostrado en el Práctico 2, Ejercicio 4 (3).
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Confluencia de la βη-reducción

Se define la βη-reducción por →βη := →(β∪η) = →β ∪→η

Teorema (Confluencia de la βη-reducción)

La βη-reducción es confluente:

Si M
∗→βη M ′1 y M

∗→βη M ′2,
entonces existe M ′′ tal que
M ′1

∗→βη M ′′ y M ′2
∗→ βηM ′′

M
∗
��

∗
��

M ′1

∗ ��

M ′2

∗��
M ′′

Demostración. Sigue del resultado demostrado en el Práctico 2, Ejercicio 4 (2).

Corolario (Church-Rosser + unicidad de las formas βη-normales)

(1) La βη-reducción es Church-Rosser
(2) La forma βη-normal de un término, cuando existe, es única
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Postergación de la regla η

Proposición (Postergación de la regla η)

Si M ∗→βη M ′′, entonces existe M ′

tal que M
∗→β M ′ y M ′

∗→η M ′′

M

β

∗
��

βη

∗ // M ′′

M ′

η

∗

??

Demostración. Sigue de los siguientes diagramas (ejercicio):

M′1

�#
M

η

??

�#

M′′

M′2

η

∗

??

M′1

�#
M

η

∗ ??

�#

M′′

M′2

η

∗

??

M′1

β

∗
��

M
η

∗ ??

β

∗ ��

M′′

M′2

η

∗

??

(donde ⇒ indica la β-reducción paralela, y observando que ∗⇒ =
∗→β)
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¿Cómo evitar los problemas de α-conversión?

Idea: Remplazar cada variable ligada por un entero natural i ≥ 1
(índice de De Bruijn) que indica la posición del correspondiente λ:

1 = último λ, 2 = penúltimo λ, etc.

Ejemplos: λx . x  λ.1
λy . y  λ.1

λx . λy . x  λ.λ.2
λx . λy . y  λ.λ.1

λx . λy . λz . x z (y z)  λ.λ.λ.3 1 (2 1)

λx . x (λy . y x)  λ.1 (λ.1 2)

Obs.: Siguiendo [Barendregt 1984], usamos aquí índices n ≥ 1. Sin embargo en
muchas implementaciones concretas, se usan índices n ≥ 0
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Términos con índices de De Bruijn (1/2)

Definición (Términos lambda con índices de De Bruijn)

Términos con índices M,N ::= i | λ.M | MN (i ≥ 1)

El conjunto FI(M) de los índices libres de un término M con índices
de De Bruijn está definido por:

FI(i) := {i}

FI(λ.M) := (FI(M) \ {1})− 1
:= {i ≥ 1 : i + 1 ∈ FI(M)}

FI(MN) := FI(M) ∪ FI(N)

Intuición: Cada índice libre i ∈ FV(M) representa la i-ésima variable xi
de algún “contexto de variables” {x1, . . . , xn}
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Términos con índices de De Bruijn (2/2)

Definición (Traducción M 7→ (M)DBx1,...,xn)

Cada término lambda M con variables libres x1, . . . , xn se traduce en un
término (M)DBx1,...,xn con índices de De Bruijn libres 1..n definido por:

(xi )
DB
x1,...,xn :≡ i

(λy .M)DBx1,...,xn :≡ λ.(M)DBy ,x1,...,xn

(MN)DBx1,...,xn :≡ (M)DBx1,...,xn(N)DBx1,...,xn

Proposición (Criterio de α-equivalencia)

Para todos M,M ′ ∈ Λ tales que FV(MM ′) ⊆ {x1, . . . , xn}, tenemos que:

M ≡α M ′ sii (M)DBx1,...,xn ≡ (M ′)DBx1,...,xn

Demostración. Ejercicio.
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Lifting y sustitución (1/3)

Definición (Lifting)

Se define la operación de lifting ↑pkM (k , p ≥ 1) por:

↑pk i :≡

{
i si i < k

i + p − 1 si i ≥ k

↑pk(λ.M) :≡ λ.↑pk+1M

↑pk(MN) :≡ ↑pkM ↑
p
kN

Obs.: Tenemos que ↑1kM ≡ M (k ≥ 1)

Lema

Para todo M ∈ Λ tal que FV(M) ⊆ {x1, . . . , xn}, tenemos que:

(M)DBx1,...,xk−1,y1,...,yp−1,xk ,...,xn ≡ ↑
p
k(M)DBx1,...,xn

Demostración. Ejercicio.



Introducción Sintaxis β-Reducción η-Reducción De Bruijn Computabilidad

Lifting y sustitución (2/3)

Definición (Sustitución con índices de De Bruijn)

Se define la operación de sustitución M[p := P] (p ≥ 1) por:

i [p := P] :≡


i si i < p

↑p1P si i = p

i − 1 si i > p

(λ.M)[p := P] :≡ λ.M[p + 1 := P]

(MN)[p := P] :≡ M[p := P]N[p := P]

Lema

Para todos M,P ∈ Λ tales que FV(M) ⊆ {x1, . . . , xp, y1, . . . , yn} y
FV(P) ⊆ {y1, . . . , yn}, tenemos que:

(M[xp := P])DBx1,...,xp−1,y1,...,yn ≡ (M)DBx1,...,xp,y1,...,yn [p := (P)DBy1,...,yn ]

Demostración. Ejercicio.
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Lifting y sustitución (3/3)

Proposición (Propiedades del lifting y de la sustitución)

Para todos términos M,N,P con índices de De Bruijn,
y para todos n, p, j , k ≥ 1:

(1) ↑1kM ≡ M

(2) ↑pj (↑nkM) ≡ ↑p+n−1
k M (si k ≤ j < k + n)

(3) ↑pj (↑nkM) ≡ ↑nk+p−1(↑pj M) (si j ≤ k)

(4) (↑n+1
k M)[p := N] ≡ ↑nkM (si k ≤ p ≤ k + n − 1)

(5) ↑nk(M[p := N]) ≡ (↑nkM)[p + n − 1 := N] (si k ≤ p)

(6) ↑nk+p−1(M[p := N]) ≡ (↑nk+pM)[p + n := ↑nkN]

(7) (M[p := N])[p + n − 1 := P] ≡ M[p + n := P][p := N[n := P]]

Obs.: (7) es el lema de sustitución para los términos con índices de De Bruijn

Demostración. Ejercicio.
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Cómo utilizar los términos con índices de De Bruijn

Con las notaciones anteriores, se define la β-reducción por:

(λ.M)N →β M[1 := N]

+ clausura contextual

En una implementación concreta:

Se pueden usar índices i ≥ 0

Se pueden usar nombres para las variables libres, reservando los
índices para las variables ligadas (convención de Coquand)

Cada λ (o símbolo ligador) puede ser acompañado con una
sugerencia de nombre de variable x (para desplegar el término)

Términos M,N ::= x | i | λx .M | MN
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Computabilidad

¿Cómo programar en el cálculo lambda?
Booleanos
Pares y n-uplas
Enteros naturales
Puntos fijos (i.e. recursión no acotada)

Expresividad del cálculo lambda
¿Cuáles son las funciones definibles en el cálculo lambda?

Problema de la decisión („Entscheidungsproblem“)



Introducción Sintaxis β-Reducción η-Reducción De Bruijn Computabilidad

Representación de los booleanos

Se definen
true :≡ λxy . x

false :≡ λxy . y

if :≡ λbxy . b x y

Tenemos que:

if true N N ′
∗→β N

if false N N ′
∗→β N ′

A partir de las construcciones anteriores, se pueden definir las
operaciones booleanas usuales:

not :≡ λx . if x false true

and :≡ λxy . if x y false

or :≡ λxy . if x true y
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Representación de los pares

Se definen:

〈M1,M2〉 :≡ λz . z M1M2 (z fresca)

pair :≡ λxyz . z x y

fst :≡ λz . z (λxy . x)
snd :≡ λz . z (λxy . y)

Tenemos que:

pairM1M2
∗→β 〈M1,M2〉

fst 〈M1,M2〉
∗→β M1

snd 〈M1,M2〉
∗→β M2
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Representación de las n-uplas

Más generalmente (n ≥ 0) se definen:

〈M1, . . . ,Mn〉 :≡ λz . z M1 · · ·Mn (z fresca)

uplan :≡ λx1 · · · xnz . z x1 · · · xn
projni :≡ λz . z (λx1 · · · xn . xi ) (1 ≤ i ≤ n)

Tenemos que:

uplan M1 · · ·Mn
∗→β 〈M1, . . . ,Mn〉

projni 〈M1, . . . ,Mn〉
∗→β Mi
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Representación de los enteros naturales (1/2)

Se definen los enteros de Church por:

n :≡ λf . λx . f (· · · (f︸ ︷︷ ︸
n

x) · · · )

≡ λf . f ◦ · · · ◦ f︸ ︷︷ ︸
n

(n ∈ N)

Intuición: Entero de Church n
= operador que permite iterar n veces una función:

n F M
∗→β F (· · · (F︸ ︷︷ ︸

n

M) · · · )

= recursión acotada
= bucle «for»
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Representación de los enteros naturales (2/2)

Se definen:

succ :≡ λnfx . f (n f x)

null :≡ λn . n (λx . false) true

plus :≡ λnmfx . n f (m f x)

mult :≡ λnm . n (plusm) 0
pow :≡ λpn . n (mult p) 1

pred :≡ λn . fst (n (λz . z (λxy . 〈y , succ y〉)) 〈0, 0〉)
minus :≡ λnm .m pred n

Tenemos que: succ n ∗→β n + 1

null n ∗→β

{
true si n = 0
false si n ≥ 1

plus nm ∗→β n + m (etc.)
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Puntos fijos (1/5)

El combinador de punto fijo de Church es el término:

Y :≡ λf . (λx . f (x x)) (λx . f (x x))

Proposición (Combinador de punto fijo)

Para todo término M, tenemos que: YM ∼=β M (YM)

Demostración. Tenemos que

YM ≡
(
λf . (λx . f (x x)) (λx . f (x x))

)
M

→β (λx .M (x x)) (λx .M (x x))
→β M

(
(λx .M (x x)) (λx .M (x x))

)
β← M (YM)

Corolario (Existencia de puntos fijos)

Todo término M tiene un punto fijo FM , tal que M FM
∼=β FM

Demostración. Basta con tomar FM :≡ YM.
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Puntos fijos (2/5)

La existencia de puntos fijos explica por qué el cálculo lambda es
inconsistente como sistema lógico (al menos de modo ingenuo)

En efecto, en tal sistema se podría formar la fórmula

φ :≡ Y (¬) ∼=β ¬φ

Se observa que YM nunca es fuertemente normalizante:

YM →β (λx .M (x x)) (λx .M (x x))
→β M

(
(λx .M (x x)) (λx .M (x x))

)
→β M

(
M
(
(λx .M (x x)) (λx .M (x x))

))
...
→β M (M (M (M (M (M (M · · · ))))))

En particular: Y I 3→β ∆ ∆ →β ∆ ∆ →β · · · (∆ :≡ λx . xx)

Pero a veces, YM tiene forma normal, por ejemplo:

Y (K I) ∼=β K I
(
Y (K I)

) ∗→β I
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Puntos fijos (3/5)

Puntos fijos son muy útiles en programación, por ejemplo:

fact :≡ YM, con
M :≡ λfx . if (null x) 1 (mult x (f (pred x)))

Tenemos que fact ∼=β M fact, y por lo tanto:

fact 0 ∼=β M fact 0
∼=β if (null 0) 1 (mult 0 (fact (pred 0))) ∼=β 1

fact (n + 1) ∼=β M fact (n + 1)
∼=β if (null (n + 1)) 1 (mult (n + 1) (fact (pred (n + 1))))
∼=β mult (n + 1) (fact n)

Proposición

Para todo n ∈ N: fact n
∗→β n!

Intuición: puntos fijos = recursión no acotada
= bucle «while»
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Puntos fijos (4/5)

Observación: El combinador de punto fijo de Church tiene un
pequeño defecto sintáctico:

pero

YM ∼=β M (YM),

6 ∗→β M (YM)

Se puede corregir usando el combinador de punto fijo de Turing:

T :≡ (λyf . f (y y f ))(λyf . f (y y f ))

Proposición (Combinador de punto fijo)

Para todo término M, tenemos que: TM
∗→β M (TM)

Demostración. Ejercicio
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Puntos fijos (5/5)

Otro ejemplo de combinador de punto fijo:

U :≡ λabc . . . xyz . z (e s e c o m b i n a d o r e s u n a e s t u p i d e z)

V :≡ U · · · U︸ ︷︷ ︸
26

Ejercicio: Verificar que VM
∗→β M (VM) (para todo M)
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λ-definibilidad

Notaciones: Dado k ≥ 1, se escriben:

Nk ⇀ N = conjunto de la funciones parciales de Nk a N
Nk → N = conjunto de la funciones totales de Nk a N

Tenemos que (Nk → N) ⊆ (Nk ⇀ N)

Definición (Funciones λ-definibles)

Se dice que una función parcial f : Nk ⇀ N es λ-definible cuando existe
un término lambda M tal que para todos n1, . . . , nk ∈ N:{

M n1 · · · nk
∗→β f (n1, . . . , nk) si (n1, . . . , nk) ∈ dom(f )

M n1 . . . nk diverge si (n1, . . . , nk) /∈ dom(f )

En este caso, se dice que M es una λ-definición de f

Pregunta: ¿Cuáles son las funciones λ-definibles?
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Funciones iniciales (recordatorio)

Se llaman funciones iniciales a las siguientes funciones:

La función nula z : N→ N, definida por

z(n) := 0

(para todo n ∈ N)

La función sucesor s : N→ N, definida por

s(n) := n + 1

(para todo n ∈ N)

Las proyecciones πk
i : Nk → N (k ≥ i ≥ 1), definidas por

πk
i (n1, . . . , nk) := ni

(para todo (n1, . . . , nk ) ∈ Nk )
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Esquemas de composición y de recursión primitiva

Esquema de composición A partir de f1, . . . , fp : Nk ⇀ N y
g : Np ⇀ N, definir la función h : Nk ⇀ N por

h(n1, . . . , nk) := g(f1(n1, . . . , nk), . . . , fp(n1, . . . , nk))

(para todo (n1, . . . , nk ) ∈ Nk donde el lado derecho está definido)

Se nota h = g ◦ (f1, . . . , fp)

Esquema de recursión primitiva A partir de f : Nk ⇀ N y
g : Nk+2 ⇀ N, definir la función h : Nk+1 ⇀ N por:

h(0, n1, . . . , nk) := f (n1, . . . , nk)

h(n + 1, n1, . . . , nk) := g(n, h(n, n1, . . . , nk), n1, . . . , nk)

(para todos n ∈ N y (n1, . . . , nk ) ∈ Nk donde el lado derecho está definido)

Se nota h = rec(f , g)
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Esquema de minimización

Esquema de minimización A partir de f : Nk+1 ⇀ N, definir
la función h : Nk ⇀ N por

h(n1, . . . , nk) := µn . f (n, n1, . . . , nk) > 0
= el único n ∈ N (cuando existe) tal que

(∀m < n) f (m, n1, . . . , nk) > 0 y
f (n, n1, . . . , nk) = 0

(para todo (n1, . . . , nk ) ∈ Nk donde el lado derecho está definido)

Se nota h = µ(f )

Obs.: El valor h(n1, . . . , nk) no está definido cuando:
o bien existe n ∈ N tal que f (m, n1, . . . , nk) > 0 para todo m < n
mientras f (n, n1, . . . , nk) no está definido
o bien f (m, n1, . . . , nk) > 0 para todo m ∈ N

En particular: h = µ(f ) puede ser parcial aunque f sea total
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Funciones recursivas generales (1/2)

Definición (Funciones recursivas)

El conjunto de las funciones recursivas es el mínimo conjunto
⊆

⋃
k≥1(Nk ⇀ N) que contiene todas las funciones iniciales

z , s, πk
i (k ≥ i ≥ 1)

y está cerrado por composición, recursión primitiva y minimización:

(f1, . . . , fp, g) 7→ g ◦ (f1, . . . , fp) (f , g) 7→ rec(f , g) f 7→ µ(f )

Intuiciones:

Esquema de recursión primitiva = recursión acotada
= bucle «for» (Pascal)

Esquema de minimización = recursión no acotada
= bucle «while» (Pascal, C, etc.)
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Funciones recursivas generales (2/2)

Observaciones:

Las funciones recursivas generales (que pueden ser parciales)
contienen todas las funciones recursivas primitivas (todas totales)

Existen funciones recursivas totales que no son recursivas primitivas,
por ejemplo la función de Ackermann

Funciones parciales sólo pueden ser construidas por minimización
(= único esquema que puede introducir la parcialidad)

Dada f : Nk ⇀ N recursiva, la condición (n1, . . . , nk) /∈ dom(f )
expresa que el cálculo de f (n1, . . . , nk) no termina (= diverge)

Asimetría fundamental de la computación (y de la lógica):
terminación # no terminación

(computación finita) (computación infinita)

Para saber que una función recursiva es total, en general
se necesita una prueba... ¿pero en cuál sistema formal?
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Todos los caminos conducen a ����Roma la computabilidad

Teorema [Church-Turing-Kleene]

Para toda función parcial f : Nk ⇀ N, las siguientes condiciones son
equivalentes:

1 f es recursiva
2 f es λ-definible
3 f es computable por máquina de Turing

 f es computable

Y de modo equivalente: f es programable en Fortran, Pascal, C,
C++, Lisp, Java, Python, Ruby, OCaml, Haskell, etc.1

Tesis de Church-Turing

Toda función que puede ser “calculada por un algoritmo” (noción intuitiva)
es una función computable (noción formal)

1Con memoria y tiempo ilimitados
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Otro teorema del punto fijo

Ahora se supone dada una codificación efectiva2 M 7→ pMq de los
términos lambda por los enteros naturales: pMq ∈ N

Teorema (Punto fijo a través de la codificación)

Para todo término M, existe un término FM tal que M pFMq ∼=β FM

Demostración. Como la codificación es efectiva, existen términos A y N tales que:

A pMq pNq ∼=β pM Nq (para todos M,N ∈ Λ)

N n ∼=β pλfx . f (· · · (f︸ ︷︷ ︸
n

x) · · · )q ≡ pnq (para todo n ∈ N)

Sea FM :≡ WM pWMq, con WM :≡ λx .M (A x (N x)). Se observa que:

FM ≡ WM pWMq

∼=β M (A pWMq (N pWMq))

∼=β M pWM pWMqq ≡ M pFMq

2Es decir: todas las operaciones sintácticas sobre los términos (abstracción,
aplicación, sustitución, etc.) son calculables a través de la codificación M 7→ pMq



Introducción Sintaxis β-Reducción η-Reducción De Bruijn Computabilidad

El problema de la parada

Teorema (Problema de la parada)

No existe ningún término lambda H que decida si un término tiene forma
normal o no, es decir tal que

H pMq
∗→β

{
true si M tiene forma normal
false si no

para todo término M

Demostración. Supongamos que H existe. Se define G :≡ λx . if (H x) (∆ ∆) I
y se considera un punto fijo F ∼=β G pFq ∼=β if (H pFq) (∆ ∆) I.

Si F tiene forma normal, entonces F ∼=β if true (∆ ∆) I ∼=β ∆ ∆.
Entonces F no tiene forma normal: contradicción.

Si F no tiene forma normal, entonces F ∼=β if false (∆ ∆) I ∼=β I.
Entonces F tiene forma normal: contradicción.

Ambos casos son absurdos, y por lo tanto, el término H no existe.
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El problema de la decisión („Entscheidungsproblem“)

Problema de la decisión [Hilbert & Ackermann, 1928]

¿Existe un “método efectivo” que permita decidir si una fórmula φ de la
lógica de primer orden es universalmente válida (|= φ) o no?

Antes de todo, se necesita definir lo que es un “método efectivo”

En su artículo de 1936, Church:

1 Introduce el cálculo lambda, con la tesis que éste constituye una
modelación adecuada de la noción intuitiva de “método efectivo”

2 Muestra que el problema de la parada es indecidible

3 Muestra cómo asociar (de modo efectivo) a cada término lambda M
una fórmula φM (en un lenguaje de primer orden adecuado) tal que

M tiene forma normal sii |= φM

4 El punto anterior constituye una reducción del problema de la parada
al problema de la decisión, lo que implica que éste es indecidible.
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