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Introduccién a la correspondencia entre pruebas y programas:
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Introduccién

Alonzo Church (1903-1995)

1936: An Unsolvable Problem of Elementary
Number Theory

1936: A Note on the Entscheidungsproblem
1941: The Calculi of Lambda Conversions

El problema de la decision (,,Entscheidungsproblem®)
@ En 1936, Church definié un problema de «aritmética elemental»...
... que no se puede resolver por «medios algoritmicos»

o Medios algoritmicos = calculable por un término lambda

o Problema sin solucién algoritmica = problema de la parada

o El Entscheidungsproblem fue resuelto de modo independiente
en 1936 por Alan Turing (1912-1954)

e Medios algoritmicos = calculable por una maquina de Turing
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Historia breve del calculo lambda

Objetivo inicial: Definir un marco unificador similar a la teoria de
conjuntos, donde los objetos primitivos son las funciones

1924: La légica combinatoria, por Moses Schonfinkel (1889-1942)

1932:  Church introduce un calculo de funciones puras, con un
sistema l6gico en el estilo de Frege e Hilbert

1935: Kleene y Rosser (estudiantes de Church) demuestran que el
sistema |6gico definido por Church es inconsistente

1936: Church resuelve el problema de la decisién,
usando la parte puramente computacional de su calculo

1936: Turing resuelve el mismo problema, con sus maquinas

= Church lo invita en Princeton para dirigir su tesis de doctorado

1940: Church introduce el calculo lambda simplemente tipado
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¢ Qué se necesita para trabajar con funciones?

@ Variables (x, y, z, etc.) y operaciones basicas (+, X, etc.) para
formar expresiones, como por ejemplo:  3x + 1

@ Un mecanismo para construir una funcién, abstrayendo una
expresion con respecto a una variable. Notacién:

Ax.3x+1 = (x—3x+1)
@ Un mecanismo para aplicar una funcién:
(Ax.3x+1)(4)
@ Un mecanismo para evaluar una funcién: la 3-reduccién
(Ax.3x+1)(4) —p 3(4)+1 — 1241 — 13

B-reduccién = sustitucién del argumento formal (variable)
por el argumento real (expresion cualquiera)

o Ideas de Church: (1) Todo objeto matematico es una funcién
(2) Toda computacién es una sucesién de 3-reducciones
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El origen del X\ del calculo lambda

(al,...,é,-,...,a,,) la tupla (a1,...,an) sin a;
X.3x+1>0 = {x:3x+1>0} (Russell-Whitehead)
AX.3x+1, Ax.3x+1 =(x—3x+1) (Church)

La “biblia"” del calculo lambda:

H. Barendregt. The Lambda Calculus: Its Syntax and Semantics.
Studies in Logic and the Foundations of Mathematics. North Holland, 1984
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Sintaxis del calculo lambda

Definicién (Términos lambda)

Términos lambda M,N == x | Mx.M | MN

Se escribe A al conjunto de todos los términos lambda

@ Abreviaturas:
AXiXo - Xp. M = Axg.Axo. - Ax,. M
MN{N>---N, = (((MNI)N2))Mn

@ Variables libres FV(M) y variables ligadas BV(M):
FV(x) = {x} BV(x) = @
FV(Ax. M) = FUM)\ {x} BV(Ax.M) = BUM) U {x}
FMN) = FUUM) U FV(N) BV(MN) = BV(M) U BV(N)
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Sustitucién y a-equivalencia

Ahora se trata de definir:

@ la relacion de a-equivalencia My =, M,

o la operacién de sustitucion M[x := N] (a menos de a-equivalencia)
con los cambios de nombres necesarios para evitar capturas:

(M.xy)ly =x] £ AIx.xx

=, AZ.zx
=, Ay.yx
Para ello:

@ Se define una primera operacion parcial de sustitucion M(x := N)
sin cambios de nombres de variables

© Se define (a partir de la operacién anterior) la relacion My =, Mo,
y se demuestra que M(x := N) es compatible con M; =, M,

@ Se define la operacion (total) de sustitucion M[x := N] a partir de
la relacion M{x := N), razonando sobre las clases de a-equivalencia
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Sustitucién sin cambios de variables ligadas (1/2)

Definicion (Sustitucién «ingenuay, sin cambios de variables ligadas)

Se define la operacién parcial M(x := N) por las siguientes clausulas:
e x(x:=N) ;== N

° y(X = N> =y (suponiendo que y # x)
o (Ax.M)(x:=N) = .M

o (A\y.M)(x:=N) = A\y.M(x:=N) six ¢ FY(M) oy ¢ FU(N)
o (Ay.M)(x:= N) no esta definido si x € FU(M) e y € FV(N)

o (MiMs)(x :=N) = (My(x := N))(Ma(x := N))

Ejemplos:
o (\y.yx){x:=zz) = Ay.y(z2)
@ (Az.zx){x:=zz) no esta definido
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Sustitucién sin cambios de variables ligadas (2/2)

Lema (Condiciones suficientes de definicion)

(1) Si x ¢ FV(M), entonces M(x :=N)=M (siempre definido)
(2) Si BUM)N FV(N) = @, entonces M(x := N) esta definido

Demostracién. (1) y (2) se demuestran por induccién sobre M (Ejercicio). DJ

Lema de sustitucién
Para todos M, N, P, x # y tales que x ¢ FV(P), tenemos que:

M{x := N)(y :=P) = M(y := P){x:= N{y := P))

bajo la hipétesis que ambos lados estén definidos

Demostracién. Por induccién sobre el término M (Ejercicio). DJ
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a-equivalencia

Definicion (a-equivalencia)

Se define inductivamente la relacién de a-equivalencia M; =, M, por
las siguientes reglas:
M=o Mo Ny =, N
X =q X MiNy =o MoN,

Mi(xy :=2) =4 Ma(xp = 2)
)\Xl o Ml =a )\Xz o M2

(z fresca)

(zfresca = z#x1, zZx y z¢ FV(M1)U BV(M;1) U FV(M>) U BV(M>))

Proposicion (Propiedades de la a-equivalencia)

© La a-equivalencia es una congruencia (= equivalencia compatible con A y @)
Q@Si M=, M, N=, N ysi M{(x:=N) y M (x:=N’) estan
definidos, entonces M(x := N) =, M'(x:= N')

N

Demostracion. Ejercicio
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Sustitucién con cambios de variables ligadas (1/2)

Definicién (Sustitucion)

Se define la operacién (total) de sustitucion M[x := N] a menos de
a-equivalencia por:

tomando cualquier M’ =, M tal que M’{x := N) esté definido

Proposicion (Compatibilidad)

Si M=, M y N=, N, entonces M[x:=N] =, M[x:=N]

Lema de sustitucion
Para todos M, N, P, x # y tales que x ¢ FV(P), tenemos que:

M[x := N][y := P] =o Mly := P][x := N[y := P]]
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Sustitucién con cambios de variables ligadas (2/2)

o En las diapositivas anteriores, definimos la operacién de sustitucién
M][x := N] a menos de a-equivalencia

@ Dicha operacién también se puede definir directamente [Church 1941]
sobre los términos lambda del modo siguiente:

o x[x:=N] = N

o y[x =N] =y (suponiendo que y # x)
o (Ax.M)[x:=N] = .M
o (Ay.M)[x:=N] := Ay.M[x:=N] six ¢ FV(M) oy ¢& FV(N)

o (Ay.M)[x:=N] := Az.M]y :=z][x := N]
si x € F(M) e y € FV(N), tomando z fresca

o (MiMo)[x := N] := (Mi[x := N])(Mz[x := N]J)

Obs.: Se necesita verificar que la definicién esta bien fundada (5ta clausula)

o Esta definicién es adecuada para una implementacién
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Contextos con un agujero (1/2)

@ Los contextos (con un agujero) estan definidos por la gramatica:

Contextos C == | x.C | ¢M | MC J

Intuicién: Contexto con un agujero =
término con una anica ocurrencia de la construccién [] (el «agujero»)

@ Dados un contexto C y un término M, se escribe C[M] al término
obtenido remplazando en C la Gnica ocurrencia de [| por M.

Se trata de un remplazo sintactico, sin cambio de variable:

Si C=]], entonces C[M] = M
Si C=Mx.(C, entonces C[M] := Ax.G[M]
Si C=GMy, entonces C[M] = G[M]M,

Si C=MyG, entonces C[M] := MyG[M]
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Contextos con un agujero (2/2)

@ Obs.: Al contrario de la operacién de sustitucion, la operacién
M — C[M] puede capturar variables libres de M, por ejemplo:

Si C=Mx.x|[], entonces C[l] =Xx.xI
Cly] = Mx.xy
Clx] = Ax. xx

En particular, la_a-conversién no tiene sentido sobre los contextos.
Sin embargo, tenemos que:

Si M=, M, entonces C[M] =, C[M]

@ Los contextos también se componen entre si mediante la operacion
Co C’ := C[C'], detal modo que (Co C')[M] := C[C'[M]]

@ Dicho de otro modo: El conjunto de los contextos con un agujero es
un monoide (no conmutativo) con elemento neutro [], que actaa (por la
izquierda) sobre el conjunto A mediante la operacién (C, M) — C[M]
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Relaciones compatibles y clausura contextual (1/2)

@ Se dice que una relacion binaria R CA X A es:
o compatible cuando MR M’ implica C[M]R C[M’']
(para todo contexto C con un agujero)
o sustitutiva cuando MR M’ implica M[x := N]R M'[x := N]
(para toda variable x y todo término N)

Definicién (Clausura contextual)

Dada una relacién binaria R C A x A, se llama clausura contextual de
la relacién R a la relacién —x definida por las 4 reglas:

! !
M (CBase) M e M (CLam)
M -z M M. M =z Mx. M
My —r Mg My = Ms
7 (CApp1) 7 (CApp2)
MiMs —r My M: MiMs —r MiM;

@ Obs.: —x esla minima relacion compatible que contiene R
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Relaciones compatibles y clausura contextual (2/2)

Proposicién (Propiedades de la clausura contextual)

Dadas relaciones binarias R,S C A x A:

(1) —® es la minima relacién compatible que contiene R
(2) Si R es sustitutiva, entonces — es también es sustitutiva

(3) Si MRM’' implica FUUM') C FV(M) (para todos M, M")
entonces M —x M’ implica FV(M') C FUM) (para todos M, M’)
(Misma propiedad con = en lugar de C)

(4) Tenemos que: —(rus) = —rU—s
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Relaciones inducidas

Dada una relacion — C A x A, se definen las relaciones:

0 . .
= = {(x,x):x €A} identidad
i+1 i i )

= = —o— reduccion en j + 1 pasos

+ i .

= = Uso— clausura transitiva

* + 0 . o

- = =U—= clausura reflexiva-transitiva

= 0 .

- = >U-—= clausura reflexiva

< o= = U(—=)! clausura simétrica

> = (&) clausura reflexiva-simétrica-transitiva

Obs.: Se nota que si — es compatible (resp. sustitutiva), entonces
todas las relaciones inducidas son compatibles (resp. sustitutivas)
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Definicién de la S-reduccion

Definicion (S-reduccion)

(1) La nocién de S-reduccion 8 C A x A esta definida por la regla:

(Ax.M)N 5 Mx :=N|

(2) La relacién —p de [-reduccién en un paso esta definida como la
clausura contextual de la relacién g

Propiedades basicas de la 5-reduccién

(1) La relacién § es sustitutiva, y por lo tanto:
(2) La relacién — g es compatible y sustitutiva

Ademas:
(3) Si M —3 M’, entonces FV(M') C FV(M)

Obs.: Variables libres pueden desaparecer durante la -reduccién, por ejemplo:
(M.(Ay.¥))z =5 Ay.y
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Ejemplos

Sea consideran los términos:
I'=XMx.x, K:=Mxy.x, B:=Xxyz.x(yz), A:=Xx.xx

Para todos términos M, N, P, tenemos que:

IM = (Ax.x)M =3 M
KMN = (Ax. Ay . x)MN —5 (Ay. M) N =3 M

BMNP = (Ax.\y.A\z.x(yz)) MNP
—3 (Ay.Az.M(yz))NP
—5 (Az.M(Nz))P —5 M(NP)

AM = (Mx.xx)M =5 MM
Y en particular:

AN —5 AA



ntr luccié 7-Reduccién De Bruijn Computabilidad
00000 00000000 00000000e00000000000 000000000 00000000 0000000000000 000000000

Normalizacién

Definiciones

Dados términos M, M’, se dice que:

@ M’ es en forma (S-)normal cuando M’ /4
M’ es una forma (3-)normal de M cuando M 55 M’ /4

M es normalizante cuando tiene forma normal

@ M es fuertemente normalizante cuando no existe ninguna sucesién
infinita de -reducciones: M —g My =g My =g M3 —5 - - -

Ejemplos:
@ Los términos I, K, B, A son en forma normal
o El término Al —pg Il —3 | es fuertemente normalizante
e El téermino AA —3 AA no tiene forma normal
o El término KI(AA) 3>5 I es normalizante, pero no es

fuertemente normalizante, pues KI(AA) —5 KI(AA)
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Formas normales

Se consideran las dos formas de términos neu (“neutros”)
y nor (“normales”) definidas por las gramaticas:

neu = x | neunor

nor = neu | Ax.nor

Dicho de otro modo, los “normales” estan dados por la gramatica:

nor = JAxy---X,.y nory---norg (n,k >0)

Proposicion (Caracterizacion de las formas normales)

Un término M es en forma (-normal si y sélo si es de la forma nor

Demostracion: Ejercicio.
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Confluencia local de la S-reduccién

Se puede demostrar sin dificultad que:

Proposicién (Confluencia local)

La B-reduccién es localmente confluente:

M
Si M5 M y Mg M, M,/ ~
entonces existe M” tal que 1
Mi i>/3 m" y Mé i)ﬁ m" * AMIIIV *

M,

Problema: No se puede deducir facilmente la propiedad de confluencia
(En efecto, no se puede usar el lema de Newman, ya que —g no es normalizante)

Solucién: Razonar sobre una relacién auxiliar: la reduccion paralela
[Martin-L&f 1971]
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Reduccién paralela (1/7)

Definicién (S-reduccién paralela)

La relacién = de [-reduccién paralela esta definida inductivamente por
las siguientes reglas:
! !
—— (PRefl) M= M N= N (PBeta)
M= M (M. M)N = M[x:=N]
M= M (PLam) M=M N=N (PApP)
Ax.M = Ax.M MN = M'N’
Observaciones:
@ La relacién = es compatible (obvio por (PRefl), (PLam) y (PApp))
@ Tenemos que: (—5) C (=) C (=p) (Demostracién: ejercicio)

Lema (Sustitucién paralela)

Si M= My N= N entonces M[x:= N]= M[x:= N
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Reduccién paralela (2/7)

Demostracion del lema de sustitucion paralela. Por induccién sobre la derivacién
de M = M’, distinguiendo los casos en funcién de la altima regla aplicada:

@ (PRefl). Tenemos que M = M’.
Se demuestra por induccién sobre M que M[x := N] = M[x := N’],
distinguiendo los tres casos posibles (variable, abstraccién, aplicacién).

@ (PBeta). Tenemos que M = (A\y.Mi)Mz y M’ = Mj[y := M}], con My = M;
y M2 = MJ. S.p.d.g, se puede suponer que y ¢ FV(M2M,NN’).
Por HI, sabemos que My[x := N] = Mj[x := N'] y Ma[x := N] = Mj[x := N'].
Por (PBeta), se deduce que M[x := N] = (Ay . M1[x := N])(Maz[x := N])
= Mj[x = N][y := Mj[x := N']] = (M;[y .= Mj])[x :== N'] = M’'[x := N'].

@ (PLam). Tenemos que M =M\y. My y M’ = Xy.Mj, con My = Mj.
S.p.d.g, se puede suponer que y ¢ FV(NN').
Por HI, sabemos que My [x := N] = Mj[x := N’]. Por (PLam), se deduce que
M[x := N] = Ay . Mi[x := N] = Ay . M{[x := N'] = M'[x := N'].

@ (PApp). Tenemos que M = MiMo y M’ = MM}, con My = My Mz = Mj.
Por HI, sabemos que My[x := N] = Mj[x := N'] y Ma[x := N] = Mj[x := N'].
Por (PApp), se deduce que M[x := N] = My[x := N]Mz[x := N]
= Mi[x :== N'IMj[x := N'] = M'[x := N']. O
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Reduccién paralela (3/7)

Proposicién (Propiedad del diamante)

La reduccién paralela cumple la M
propiedad del diamante: / \
Si M= M, y M= M), My M
entonces existe M" tal que N
M= M"y M)=M" M

Corolario (Confluencia de la reduccién paralela)

La reduccién paralela es confluente: . \*
H * / * / /
Si M= Ml Yy ,,)/I = MZV M{ Mé
entonces existe M" tal que e
M, =* M" y My =* M" *AM,,H

N

Demostracién. Sigue del resultado demostrado en el Practico 2, Ejercicio 3 (1). DJ
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Reduccién paralela (4/7)

Demostracion de la propiedad del diamante. Por induccién sobre las derivaciones
de M= M; y M= M), distinguiendo los casos en funcién de los pares de reglas
que acaban éstas. Se observa que los casos posibles son los siguientes:

M = M,
(PRefl) | (PBeta) | (PLam) | (PApp)
(PRefl) X X X X
/ (PBeta) X X X
M= M —phm Tx X
(PApp) X X X
@ (PRefl)/ . En este caso, tenemos que M; = M, basta con tomar M"' := Mj,.

@ /(PRefl). En este caso, tenemos que M) = M; basta con tomar M"' := M;.




Introduccién
00000

Sintaxis B-Reduccién 7-Reduccién
00000000 0000000000000 00e0000 000000000

Reduccion paralela

Demostracién de la propiedad del diamante (continuacién).

(PBeta)/(PBeta). En este caso, sabemos que
o M= (Xx.N)P
o M= Nj[x:=P{],con N= NjyP= P
o M) = Nj[x:=P],con N= N,y P= P}
Por HI, sabemos que
o existe N tal que Nj = Ny Nj = N”
o existe P” tal que P = P" y P, = P"
Tomando M’ := N”[x := P’'], se observa que

o Mj = Nj[x:=P{]= N'[x:=P']=M"
o M) = Nj[x:=Pj] = N'[x:=P'] =M

aplicando 2 veces el lema de sustitucién paralela.

De Bruijn Computabilidad
00000000 0000000000000 000000000

(5/7)
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Reduccién paralela (6/7)

Demostracién de la propiedad del diamante (continuacién).
@ (PLam)/(PLam). En este caso, sabemos que
o M=Xx.N Ax. N
o Mj = Ax.Nj, con N = Nj / \
o M} = Ax.Nj, con N= N}
Ax . Nj Ax . N
Por HI, sabemos que x 1 J.}_X 2

o existe N tal que Nj = Ny Nj = N n g

Ax. N
Basta con tomar M/ := Ax. N, x
@ (PApp)/(PApp). En este caso, sabemos que
e M= NP NP
e M{ =NjP;,con N= NjyP= P
o M) =N,P) con N= Ny P =P / \
Por HI, sabemos que N{Pi NéPé
o existe N’ tal que Nj = N y Nj = N” oo
o existe P” tal que P = P" y P, = P" N P

Basta con tomar M" := N P". (...)
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Reduccién paralela (7/7)

Demostracién de la propiedad del diamante (fin).
@ (PBeta)/(PApp). En este caso, sabemos que
M = (Ax.N)P
e Mj = Nj[x:=Pj],con N= NjyP=P;
o M) =RP,, con \>x.N= R,y P= P,
Ademas, analizando las derivaciones posibles de Ax. N = R},
se deduce que R} = Ax. N}, con N = Nj.

Por HI, sabemos que (Ax. N)P

o existe N’ tal que Nj = N y Nj = N” / \

o existe P” tal que P = P" y P, = P" Np[x : P 1] ()\x N3P,
Tomando M’ := N”[x := P"'], se concluye que Q

o Mj = Nj[x:=Pj]= N"'[x:=P"']=M" N7 [x = P”]

por el lema de sustitucién paralela
o Mj = (Ax.Ny)P, = N"[x := P"] = M" por (PBeta)

@ (PApp)/(PBeta). Caso simétrico del caso anterior. O
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Confluencia de la B-reduccién (1/2)

@ Vimos que la reduccion paralela = es confluente

o Por otro lado, sabemos que (=) C (=) C (5p).
Esto implica que: (53) C (=) C (&)

I
—
1

=
~—

o Por lo tanto, tenemos que (—5) = (=), vy luego:

Teorema (Confluencia de la S-reduccién)

La B-reduccién es confluente: /M\
* *
Si M55 M; y M55 M, Y% M
: " 1 2
entonces existe M” tal que
« N Ly

M S5 My My S5 M
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Confluencia de la B-reduccién (2/2)

Corolario (Church-Rosser)

La B-reduccién es Church-Rosser:

Si My =5 M,
entonces existe M’ tal que
Ml sﬁ MI Yy M2 i)ﬂ M/

Corolario (formas normales)

(1) La forma normal de un término, cuando existe, es nica

(2) Dos formas normales son 3-convertibles si y sélo si son iguales

Obs.: (2) = consistencia computacional del calculo lambda:
la B-conversién nunca identifica dos formas normales distintas

xZsy, 1 # K K% A (etc.)
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El problema de la extensionalidad (1/2)

@ Dos términos M, M’ son extensionalmente equivalentes cuando

(1) MN =5 M'N (para todo N)

Pregunta: ;Son tales términos [-convertibles?

Por sustitutividad, la condicién (1) es equivalente a

(1) Mx =g M'x (x variable fresca)

o Contraejemplo: Tenemos que
(Az.yz)x —p yx
mientras Az.yz Pg y

@ ;Coémo extender la relacién de -conversién de tal modo que
dos términos extensionalmente equivalentes sean convertibles?
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El problema de la extensionalidad (2/2)

@ Sea = C A X A una relacién de equivalencia compatible y
sustitutiva que contiene la 8-conversion. Se dice que la relacién
2 es extensional cuando cumple la regla

Mx =M x
M= M

(x fresca)

Proposicion

Las dos condiciones son equivalentes:
(1) = es extensional
(2) Zestalque Mx.Mx = M para todos M, x con x & FV(M)

Demostracién. (1) = (2) Dados M, x, z tales que x, z ¢ FV(M), se observa que
(Ax.Mx)z —g Mz, entonces (Ax.Mx)z= Mz, yluego Ax.Mx= M por (1).
(2) = (1) Supongamos que Mx = M’x, con x ¢ FV(M) y x ¢ FV(M’). Entonces
Ax.Mx = Ax.M'x por compatibilidad, y luego M = M’ por (2). O

V.

@ Motiva la nueva regla: X . Mx —, M (x ¢ FVY(M))
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Definicion de la n-reduccion

Definicién (n-reduccion)
(1) La nocion de n-reduccion n € A x A esta definida por la regla:
si x¢ FV(M)

X.Mx n M

(2) La relacién —,, de n-reduccién en un paso esta definida como la
clausura contextual de la relacién 7

Propiedades basicas de la n-reduccién

(1) La relacién n es sustitutiva, y por lo tanto:

(2) La relacién —,, es compatible y sustitutiva

Ademas:
(3) Si M —,, M, entonces FV(M') = FV(M)

Obs.: Variables libres nunca desaparecen (ni aparecen) durante la n-reduccién
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Propiedades de la n-reduccion

Proposicion (Normalizacién fuerte)

(1) Para todos M —, M’, tenemos que |M| > |M’|
Y por lo tanto:

(2) La relacién —,, es fuertemente normalizante

A

Proposicién (Propiedad del diamante)

La relacién =, cumple la M
propiedad del diamante: :/ \—
Si MS, M, y M=, M, My M;
entonces existe M” tal que N g
M S, My My S, M M

A

Demostracion. Ejercicio.



ntr luccié n-Reduccién De Bruijn Computabilidad
00000 00000000 0000000000000 0000000 00000e000 00000000 0000000000000 000000000

Confluencia de la n-reduccion

Teorema (Confluencia de la 7-reduccién)

La n-reduccién es confluente: /M\
* *

Si M5, M, y M5, M, M,
entonces existe M” tal que o
M Sy M7y M= M Y

M,

Demostraciéon. Sigue del resultado demostrado en el Practico 2, Ejercicio 3 (2). DJ

Corolario (Church-Rosser + unicidad de las formas n-normales)

(1) La forma n-normal de cualquier término es Gnica
(2) La n-reduccién es Church-Rosser

(3) Dos términos son n-convertibles sii tienen misma forma n-normal
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Conmutation 5/n

Proposicién (Conmutacién (/7

., . M
La relacién —,, conmuta con —g3: V \:
Si M55 My M5, M, m "
entonces existe M” tal que .m B .
E~
M; S5 M" y M5, M Y

Demostracién. En primer lugar, se demuestra (Ejercicio) que las relaciones — 3
y —y tienen la siguiente propiedad de conmutacién fuerte:

M
Si MSs My M5, M), /B n\*
entonces existe M’ tal que Mj M}
M " ’ X " wmoB o
1= M’y My =y M L s
M//

Demostracién: ejercicio.

Luego se concluye usando el resultado demostrado en el Practico 2, Ejercicio 4 (3).

O

v
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Confluencia de la Bn-reduccién

Se define la Bn-reduccién por  —g, = —uy = —pU—y

Teorema (Confluencia de la 3n-reduccién)

La Bn-reduccién es confluente:

. * *
Si M —>577 M{ y M —)/3,7 Mﬁ, Ml
entonces existe M” tal que
M S5, M" y My 5 BnM” M

Demostracién. Sigue del resultado demostrado en el Practico 2, Ejercicio 4 (2). DJ

Corolario (Church-Rosser + unicidad de las formas 87-normales)

(1) La pn-reduccién es Church-Rosser
(2) La forma fn-normal de un término, cuando existe, es Gnica
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Postergacion de la regla n

Proposicién (Postergacion de la regla 7)

. . Bn 7
Si M 53, M", entonces existe M’ B 3
talque M =g M y M —, M" M

M/
Demostracion. Sigue de los siguientes diagramas (ejercicio):
My My My
* * *
AN N AN
M M// M M// M M//
n i n B n
<\ * =\ ok * X T
M, M; M;

(donde = indica la B-reduccién paralela, y observando que = = i>/3)
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. Cémo evitar los problemas de a-conversion?

o Idea: Remplazar cada variable ligada por un entero natural i > 1
(indice de De Bruijn) que indica la posicién del correspondiente A:

1 = dltimo A\, 2 = pendltimo A, etc.

e Ejemplos: Ax.x o~ Al
Ay.y ~ Al
AXAY . X~ A2
AXLAY.Yy o~ AL
A Ay Az.xz(yz) ~ AAA31(21)
Ax.x(Ay.yx) ~ A1(A12)

@ Obs.: Siguiendo [Barendregt 1984], usamos aqui indices n > 1. Sin embargo en
muchas implementaciones concretas, se usan indices n > 0
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Términos con indices de De Bruijn (1/2)

Definicién (Términos lambda con indices de De Bruijn)

Términos con indices M,N == i | XM | MN (i>1)

@ El conjunto FI(M) de los indices libres de un término M con indices
de De Bruijn esta definido por:

FI(i) = {i}

FIAM) = (FIM)\ {1})—1
= {i>1:i+1eF(M)}
FIMN) = FI(M)U FI(N)

@ Intuicién: Cada indice libre i € FV(M) representa la i-ésima variable x;
de algin “contexto de variables” {x1,...,xn}
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Términos con indices de De Bruijn (2/2)

Cada término lambda M con variables libres xi, ..., x, se traduce en un
término (M)Ef...,xn con indices de De Bruijn libres 1..n definido por:
()b =
Ay -MRE e = MMPPE
(MN)RE . = (M)RE L (N2E

Proposicién (Criterio de a-equivalencia)

Para todos M, M’ € A tales que FUMM') C {x1,...,xn}, tenemos que:
= (M/)DB

M=, M sii (M)PB X X

X1

Demostracion. Ejercicio.
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Lifting y sustitucion (1/3)

Definicion (Lifting)

Se define la operacién de lifting tPM (k,p > 1) por:
wom [ S
i+p—1 sii>k

POM) = A M

HMN) = 1M

Obs.: Tenemos que TiM =M (k>1)

Para todo M € A tal que FV(M) C {x1,...,x,}, tenemos que:

(M))I?I?--7Xk717y17~~'vyp—1>Xk7--~7Xn = TZ(M)EEJ"

Demostracion. Ejercicio.
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Lifting y sustitucion (2/3)

Definicion (Sustitucion con indices de De Bruijn)

Se define la operacién de sustitucion M[p:=P] (p>1) por:
i sii<p
ilp:=P] = MP sii=p
i1 sii>p
AM)p:=P] = AM[p+1:=P]
(MN)[p:=P] := M]p:= P]N[p:= P]

v
Lema

Para todos M, P € A tales que FUUM) C {x1,...,Xp,¥1,---,Yn} ¥
FV(P) C {y1,...,¥n}, tenemos que:

(M[XP = P])Ql?...,xp,hyl,...,y,, = (M)Q?...,xp,yh ,yn[p = (P)y17 ]

Demostracion. Ejercicio.
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Lifting y sustitucion (3/3)

Proposicién (Propiedades del lifting y de la sustitucién)

Para todos términos M, N, P con indices de De Bruijn,
y para todos n, p,j, k > 1:

1) kM = M

2) P(1eM) = 5" M (si k <j< k+n)
3) (M) = 15,1 (17 M) (sij < k)
(M) = N] = 1% (sik<p<k+n-1)
T%(Mlp:=N]) = (1iM)[p+n—1:=N] (si k< p)
Thep—1(Mlp:= N]) = (17, ,M)[p+ n:=1¢N]
(Mlp:=N])[p+n—1:=P] = Mlp+n:=P][p:= N[n:=P]|

5
6

(
(
(
(4
(
(
(7

~— — ~— ~— ~— ~—

Obs.: (7) es el lema de sustitucién para los términos con indices de De Bruijn

Demostracion. Ejercicio.
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Coémo utilizar los términos con indices de De Bruijn

Con las notaciones anteriores, se define la S-reduccién por:

(AMN —5 M[1:=N] J

+ clausura contextual

En una implementacién concreta:
@ Se pueden usar indices i > 0

@ Se pueden usar nombres para las variables libres, reservando los
indices para las variables ligadas (convencion de Coquand)

e Cada A (o simbolo ligador) puede ser acompafiado con una
sugerencia de nombre de variable x (para desplegar el término)

Términos M,N == x | i | MM | MN J
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Computabilidad

iCémo programar en el calculo lambda?
@ Booleanos
@ Pares y n-uplas
@ Enteros naturales
°

Puntos fijos (i.e. recursién no acotada)

Expresividad del calculo lambda

@ ;Cuales son las funciones definibles en el calculo lambda?

Problema de la decision (,,Entscheidungsproblem™)
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Representacion de los booleanos

@ Se definen

true = Axy.x
false = Mxy.y
if = Abxy.bxy

@ Tenemos que:
if true N i>5 N
if false NN 55 N

@ A partir de las construcciones anteriores, se pueden definir las
operaciones booleanas usuales:

not := Mx.if x false true

and Axy.if x y false

or = Axy.if x truey



7-Reduccién De Bruijn Computabilidad
00000 00000000 0000000000000 0000000 000000000 00000000 0000000000000 000000000

Representacion de los pares

@ Se definen:

(M, Mp) = Xz.zM; M, (z fresca)
pair = Axyz.zxy
fst = Az.z(\xy.x)
snd = Az.z(Axy.y)

@ Tenemos que:
pair My My 55 (M, Ms)
fst (M, My) S5 My
snd (My, Mp) 55 Mo,
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Representacion de las n-uplas

e Mas generalmente (n > 0) se definen:

(My,....,Mn) = Az.zMy--- M, (z fresca)
upla, = AX{ - :XpZ.ZX{:':Xp
proj? = Az.z(Axq - Xp.X;) (1<i<n)

@ Tenemos que:
upla, My ---M, S5 (My,...,M,)
proj” (My,....,M,) S5 M;
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Representacién de los enteros naturales (1/2)

@ Se definen los enteros de Church por:
n o= M. x. f(---(Fx)---)
——
M .fo---of (n€IN)
—_———

n

@ Intuicién: Entero de Church 7
= operador que permite iterar n veces una funcién:

nFM S5 F(--(FM)--)

n

= recursién acotada
= bucle «for»
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Representacién de los enteros naturales (2/2)

@ Se definen:

succ Anfx . f(nfx)
null := An.n(M\x. false)true

plus = Anmfx.nf(mf x)
mult = Anm.n(plusm)O0
pow = Apn.n(multp)l
pred = An.fst(n (A\z.z(M\xy.(y, succy))) (0, 0))
minus = Anm.mpred n
o Tenemos que:  succh g n+1

il true sin=0
A false sin>1

plusAm g ntm (etc.)
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Puntos fijos (1/5)

@ El combinador de punto fijo de Church es el término:

Y = M. (Ax.f(xx))(Ax.f(xx))

Para todo término M, tenemos que: Y M =3 M (Y M)

Demostracién. Tenemos que

YM = (AF.(Ax . f (xx)) (Ax. f(xx))) M
=3 (Ax.M(xx))(Ax. M (xx))
=5 M((Ax.M(xx))(Ax.M(xx))) g+ M(YM) O

Todo término M tiene un punto fijo Fy, tal que M Fy =3 Fuy

Demostracién. Basta con tomar Fy = Y M. D)
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Puntos fijos (2/5)

@ La existencia de puntos fijos explica por qué el calculo lambda es

inconsistente como sistema |6gico  (al menos de modo ingenuo)

En efecto, en tal sistema se podria formar la férmula
o = Y() X5 =9

@ Se observa que Y M nunca es fuertemente normalizante:

YM =5 (Ax.M(xx))(Ax. M (xx))
S5 M((Ax. M (xx)) (Ax. M (xx)))
S5 M (M ((Ax. M(xx)) (Ax. M (xx))))

Ss M(M(M(M(M(M(M ---)))))
En particular: Y1 i)ﬁ AN =g AA —5 --- (A= Ax.xx)

@ Pero a veces, Y M tiene forma normal, por ejemplo:

Y(KI) =25 KI(Y(KD) S5 |
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Puntos fijos (3/5)

@ Puntos fijos son muy dtiles en programacion, por ejemplo:
fact = YM, con
M = Mx.if (nullx) 1 (mult x (f (pred x)))

@ Tenemos que fact =g M fact, vy por lo tanto:

fact 0 23 M fact 0
g if (null0) I (mult O (fact (pred 0))) =3 1

fact (n+1) =g M fact (n+1)
g if (null(n+ 1)) 1 (mult (n+ 1) (fact (pred (n+1))))
=3 mult (n+ 1) (fact n)

Proposicion

Paratodo n€ IN: factn 5 nl

@ Intuicién: puntos fijos = recursién no acotada
= bucle «while»
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Puntos fijos (4/5)

@ Observacion: El combinador de punto fijo de Church tiene un
pequefio defecto sintactico:

YM =5 M(YM),
pero s MY M)

@ Se puede corregir usando el combinador de punto fijo de Turing:

T = (W .fyy )y .fyyf))

Proposicién (Combinador de punto fijo)

Para todo término M, tenemos que: T M 35 M (T M)

Demostracion. Ejercicio
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Puntos fijos (5/5)

e Otro ejemplo de combinador de punto fijo:

U = Xabc...xyz.z(esecombinadoresunaestupidez)
v.=U.--U
——
26

o Ejercicio: Verificar que VM 55 M (VM) (para todo M)
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M-definibilidad

@ Notaciones: Dado k > 1, se escriben:
INK ~IN = conjunto de la funciones parciales de IN* a IN

IN© - IN = conjunto de la funciones totales de INK a IN

Tenemos que (IN* — IN) C (INK — IN)

Definicién (Funciones A-definibles)
Se dice que una funcién parcial f : IN* —~ IN es \-definible cuando existe
un término lambda M tal que para todos ny, ..., n, € IN:

M7y - g f(n,...,n) si (m,...,nx) € dom(f)

My ... 7 diverge si (n1,...,ng) ¢ dom(f)

En este caso, se dice que M es una A-definicién de f

o Pregunta: ;Cuales son las funciones \-definibles?
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Funciones iniciales (recordatorio)

Se llaman funciones iniciales a las siguientes funciones:

@ La funcién nula z : IN — IN, definida por

z(n) =0 J

(para todo n € IN)

@ La funcién sucesor s : IN — IN, definida por

s(n) == n+1 )

(para todo n € IN)

o Las proyecciones 7% : INK — IN (k > i >1), definidas por

i

(N1, ..., k) = n; J

(para todo (ny, ..., n) € INK)
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Esquemas de composicién y de recursion primitiva

o Esquema de composicién A partirde fi,...,f, : N —~IN y
g : INP —IN, definir la funcion h : INK —IN por

h(ny,....n) = g(fi(n, ..., 0k), ..., (", ..., 0K)) J

(para todo (n1, ..., ng) € INk donde el lado derecho esta definido)

Senota h = go(f,...,f)

e Esquema de recursién primitiva A partirde f : INK ~IN y
g : INFt2 N, definir la funcién h : INKt1 —~ IN por:

h(0,n1,...,nk) = f(ny,...,nk)
h(n+1,n1,...,n¢) = g(n,h(nyny, ..., 0k),n1,...,0k)
(para todos n € IN'y (n1,...,n) € IN¥ donde el lado derecho esta definido)

Se nota h = rec(f,g)
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Esquema de minimizacion

e Esquema de minimizacién A partir de f : INKt1 —~ N, definir
la funcién h : IN¥ — IN por

h(ny,...,ng) == pn.f(n,ny,...,ng) >0

el tnico n € IN (cuando existe) tal que
(Ym < n)f(m,ny,...,nk) >0 y
f(nyny,...,nk) =0

(para todo (n1, ..., nk) € INk donde el lado derecho esta definido)

Senota h = p(f)

Obs.: El valor h(n1,..., nk) no esta definido cuando:
e o bien existe n € IN tal que f(m, n,...,nc) >0 para todo m < n
mientras f(n, ny, ..., ng) no esta definido
e o bien f(m,ny,...,nk) > 0 para todo me IN

En particular: h = p(f) puede ser parcial aunque f sea total
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Funciones recursivas generales (1/2)

Definicién (Funciones recursivas)

El conjunto de las funciones recursivas es el minimo conjunto
k . . I
C Uks1(IN“ —IN) que contiene todas las funciones iniciales
z, s, w (k>i>1)

I

y esta cerrado por composicién, recursién primitiva y minimizacién:

(A, fo,8) > go(f,..., 1) (f,g) — rec(f,g) f— p(f)

Intuiciones:
Esquema de recursién primitiva = recursién acotada
= bucle «for» (Pascal)
Esquema de minimizacién = recursioén no acotada

= bucle «while» (Pascal, C, etc.)
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Funciones recursivas generales (2/2)

Observaciones:

@ Las funciones recursivas generales (que pueden ser parciales)
contienen todas las funciones recursivas primitivas (todas totales)

o Existen funciones recursivas totales que no son recursivas primitivas,
por ejemplo la funcién de Ackermann

@ Funciones parciales s6lo pueden ser construidas por minimizacién
(= Gnico esquema que puede introducir la parcialidad)

e Dada f : IN* —IN recursiva, la condicién (ny,...,nx) ¢ dom(f)
expresa que el calculo de f(ny,...,nk) no termina (= diverge)

@ Asimetria fundamental de la computacién (y de la légica):
terminacion #  no terminacién

(computacién finita) (computacién infinita)

@ Para saber que una funcién recursiva es total, en general
se necesita una prueba... jpero en cual sistema formal?
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Todos los caminos conducen a Rema la computabilidad

Teorema [Church-Turing-Kleene]

Para toda funcién parcial f : IN* — IN, las siguientes condiciones son
equivalentes:

© f es recursiva
© £ es \-definible f es computable

© f es computable por maquina de Turing

Y de modo equivalente: f es programable en Fortran, Pascal, C,
C++, Lisp, Java, Python, Ruby, OCaml, Haskell, etc.?

Tesis de Church-Turing

Toda funcién que puede ser “calculada por un algoritmo” (nocién intuitiva)
es una funcién computable (nocién formal)

1Con memoria y tiempo ilimitados
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Otro teorema del punto fijo

Ahora se supone dada una codificacién efectiva? M — "M de los
términos lambda por los enteros naturales: "M™ € IN

Teorema (Punto fijo a través de la codificacién)

Para todo término M, existe un término Fp tal que M"Fy ' =g Fpy

Demostracion. Como la codificacién es efectiva, existen términos A y N tales que:

@ ATMTTNT =g "TMN™ (para todos M, N € A)
@ Nm =g "A\x.f(---(fx)---)] = n' (para todo n € IN)
N——

n

Sea Fy = Wyn™Wy7, con Wy = Ax. M (Ax(Nx)). Se observa que:

FM = W/\/]rWM—|
=g M(ATWyT(N"WyT)
=5 M Wy TWyT = MTRyT O

2Es decir: todas las operaciones sintacticas sobre los términos (abstraccion,
aplicacién, sustitucién, etc.) son calculables a través de la codificacion M — "M™
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El problema de la parada

Teorema (Problema de la parada)

No existe ningtin término lambda H que decida si un término tiene forma
normal o no, es decir tal que

HEE true si M tiene forma normal
B

false sino

para todo término M

Demostraciéon. Supongamos que H existe. Se define G := Ax.if (Hx) (AA)I
y se considera un punto fijo F =g GTF? =g if (H"F") (AA) L
@ Si F tiene forma normal, entonces F =g if true (AA)l =g AA.
Entonces F no tiene forma normal: contradiccién.

@ Si F no tiene forma normal, entonces F =3 if false (AA)l =3 I
Entonces F tiene forma normal: contradiccién.

Ambos casos son absurdos, y por lo tanto, el término H no existe. O
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El problema de la decision  (,,Entscheidungsproblem")

Problema de la decisién [Hilbert & Ackermann, 1928]

i Existe un “método efectivo’ que permita decidir si una férmula ¢ de la
l6gica de primer orden es universalmente valida (= ¢) o no?

Antes de todo, se necesita definir lo que es un “método efectivo”

@ En su articulo de 1936, Church:

@ Introduce el calculo lambda, con la tesis que éste constituye una
modelacién adecuada de la nocién intuitiva de “método efectivo”

@ Muestra que el problema de la parada es indecidible

© Muestra cémo asociar (de modo efectivo) a cada término lambda M
una féormula ¢ (en un lenguaje de primer orden adecuado) tal que

M tiene forma normal sii E oum

@ El punto anterior constituye una reduccién del problema de la parada
al problema de la decisién, lo que implica que éste es indecidible.
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