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Introducción Sistema a la Church ... y a la Curry Normalización fuerte Extensiones

Introducción

El cálculo lambda: un formalismo simplísimo pero muy expresivo:
todas las funciones computables (recursivas) son representables

Sin embargo: muchas paradojas...

Funciones sin dominio ni codominio: auto-aplicación posible:
MM, ∆ :≡ λx . x x , ∆ ∆→β ∆ ∆

Todas las funciones tienen un punto fijo: YM ∼=β M (YM)
con Y :≡ λf . (λx . f (x x)) (λx . f (x x))

Inconsistencia lógica: φ ∼= ¬φ, con φ :≡ Y¬
(sea lo que sea la definición de ¬)

Idea sencilla para evitar las paradojas: Restringir el dominio de la
abstracción, usando tipos: λx :A .M

⇒ Cálculo lambda simplemente tipado
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Sintaxis

Definición (Tipos)

Tipos A,B ::= α | A→ B

α es el tipo de base (podemos introducir múltiples: α, β, γ, etc.)

A→ B es el tipo flecha: tipo de las funciones de A a B

Definición (Términos)

Términos M,N ::= x | λx :A .M | M N

Abstracción tipada: λx :A .M (o λxA .M)
Como siempre, se trabaja a menos de α-equivalencia
Notaciones: FV(M), M[x := N] (sustitución)

Lema de sustitución
M[x := N][y := P] ≡ M[y := P][x := N[y := P]] (si x 6≡ y , x /∈ FV(P))
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Reducción

Relación � de reducción definida por:

(β) (λx :A .M)N � M[x := N]

+ clausura contextual

Relación �∗ de reducción en múltiples pasos
= clausura reflexiva-transitiva de �

Relación ∼= de conversión
= clausura reflexiva-simétrica-transitiva de �

Confluencia + Church-Rosser:

M
∗
��

∗
��

M ′1

∗ ��

M ′2

∗��
M ′′

M1 oo
∗ //

∗ ��

M2

∗��
M ′

+ unicidad de las formas normales (cuando existen)
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Sistema de tipado

Definición (Contextos de tipado)

Contextos Γ,∆ ::= x1 : A1, . . . , xn : An (xi 6≡ xj si i 6= j)

= lista finita de declaraciones de la forma (x : A)
+ una misma variable no puede ser declarada dos veces

Definición (Relación de tipado Γ ` M : A)

Se define inductivamente la relación de tipado

Γ ` M : A («En el contexto Γ, el término M tiene tipo A»)

por las 3 reglas:

Γ ` x : A
si (x :A)∈Γ

Γ, x : A ` M : B

Γ ` λx :A .M : A→ B

Γ ` M : A→ B Γ ` N : A
Γ ` MN : B
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Ejemplos

x : A ` x : A
` λx :A . x : A→ A

x : A, y : B ` x : A

x : A ` λy :B . x : B → A

` λx :A . λy :B . x : A→ B → A

y : A→ A ` y : A→ A

` λy :A→ A . y : (A→ A)→ (A→ A)
x : A ` x : A

` λx :A . x : A→ A

` (λy :A→ A . y) (λx :A . x) : A→ A

g : B → C, f : A → B, x : A ` g : B → C

g : B → C, f : A → B, x : A ` f : A → B g : B → C, f : A → B, x : A ` x : A

g : B → C, f : A → B, x : A ` f x : B

g : B → C, f : A → B, x : A ` g (f x) : C

g : B → C, f : A → B ` λx : A . g (f x) : A → C

g : B → C ` λf A→B . λxA . g (f x) : (A → B) → A → C

` λgB→C . λf A→B . λxA . g (f x) : (B → C) → (A → B) → A → C

Sistema dirigido por la sintaxis:

Una regla para cada construcción (variable, abstracción, aplicación)

El árbol de derivación es isomorfo al término tipado
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Propiedades básicas (1/4)

Dado Γ ≡ x1 : A1, . . . , xn : An, se escribe dom(Γ) := {x1, . . . , xn}

Lema (Declaración de las variables libres)

Si Γ ` M : A, entonces FV(M) ⊆ dom(Γ)

Demostración. Por inducción sobre la derivación de Γ ` M : A.

Dados contextos Γ, Γ′, se escribe Γ ⊆ Γ′ cuando
(x : A) ∈ Γ implica (x : A) ∈ Γ′ para toda declaración (x : A)

Lema (Debilitamiento)

La siguiente regla es admisible:
Γ ` M : A

Γ′ ` M : A
si Γ⊆Γ′

Demostración. Por inducción sobre la derivación de Γ ` M : A.
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Propiedades básicas (2/4)

Lema (Sustitutividad)

La siguiente regla es admisible:

Γ, x : A,∆ ` M : B Γ ` N : A

Γ,∆ ` M[x := N] : B

Demostración. Por inducción sobre la derivación de Γ, x : A,∆ ` M : B,
usando la regla de debilitamiento para tratar el caso donde M ≡ x .

Ejercicio: Escribir la prueba, detallando todos los casos.

Caso particular (∆ ≡ ∅):

Γ, x : A ` M : B Γ ` N : A

Γ ` M[x := N] : B
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Propiedades básicas (3/4)

El siguiente lema muestra cómo “invertir” las reglas de tipado:

Lema de inversión
1 Si Γ ` x : C , entonces (x : C ) ∈ Γ

2 Si Γ ` λx :A .M : C , entonces
Γ, x : A ` M : B para algún tipo B tal que C ≡ A→ B

3 Si Γ ` MN : C , entonces
Γ ` M : A→ C y Γ ` N : A para algún tipo A

Demostración. Sigue del hecho que el sistema es dirigido por la sintaxis.

Ejercicio: Detallar los tres casos.
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Propiedades básicas (4/4)

El lema de inversión no sólo permite analizar las derivaciones, sino
también permite demostrar que ciertos términos no son tipables:

Ejercicio. Usando el lema de inversión, demostrar que los términos

∆A :≡ λxA . x x

ΩA,B :≡ ∆A ∆B

YA,B,C :≡ λf A . (λxB . f (x x)) (λxC . f (x x))

no son tipables, en ningún contexto y para ningunos tipos A, B, C

Además:

Proposición (Unicidad del tipo)

Si Γ ` M : A y Γ ` M : A′, entonces A ≡ A′

Demostración. Por inducción sobre el término M, usando el lema de inversión.
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Subject reduction (1/2)

Proposición (Subject Reduction)

Si Γ ` M : A y M � M ′, entonces Γ ` M ′ : A

Corolario
1 Si Γ ` M : A y M �∗ M ′, entonces Γ ` M ′ : A

2 En particular, la forma de normal de M (cuando existe)
tiene el mismo tipo que M (cuando existe)

Demostración de la subject reduction. Por inducción sobre la derivación de la
relación M � M′, distinguiendo los casos en función de la última regla aplicada:

Regla β: M ≡ (λxB .M1)M2 y M′ ≡ M1[x := M2].
Sabemos que Γ ` (λxB .M1)M2 : A. Por inversión (× 2), se deduce que:
(1) Γ ` λxB .M1 : B′ → A y Γ ` M2 : B′ para algún B′

(2) Γ, x : B ` M1 : A′ para algún A′ tal que B′ → A ≡ B → A′.
Entonces A ≡ A′, B ≡ B′, y por lo tanto: Γ, x : B ` M1 : A y Γ ` M2 : B.
Por sustitutividad: Γ ` M1[x := M2] : A, es decir: Γ ` M′ : A (...)
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Subject reduction (2/2)

Demostración de la subject reduction (continuación).

Regla (CLam): M ≡ λxB .M1 y M′ ≡ λxB .M′1, con M1 � M′1.

Sabemos que Γ ` λxB .M1 : A. Por inversión, se deduce que:
Γ, x : B ` M1 : C para algún C tal que A ≡ B → C .
Por hipótesis de inducción, tenemos que Γ, x : B ` M′1 : C .

Y por lo tanto Γ ` λxB .M′1 : B → C , es decir: Γ ` M′ : A.

Regla (CApp1): M ≡ M1M2 y M′ ≡ M′1M2, con M1 � M′1.
Sabemos que Γ ` M1M2 : A. Por inversión, se deduce que:
Γ ` M1 : B → A y Γ ` M2 : B para algún B.
Por hipótesis de inducción, tenemos que Γ ` M′1 : B → A.
Y por lo tanto Γ ` M′1M2 : A, es decir: Γ ` M′ : A.

Regla (CApp2): M ≡ M1M2 y M′ ≡ M1M′2, con M2 � M′2.
Sabemos que Γ ` M1M2 : A. Por inversión, se deduce que:
Γ ` M1 : B → A y Γ ` M2 : B para algún B.
Por hipótesis de inducción, tenemos que Γ ` M′2 : B.
Y por lo tanto Γ ` M1M′2 : A, es decir: Γ ` M′ : A.
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Normalización fuerte

Vimos que los términos no fuertemente normalizantes

ΩA,B :≡ ∆A ∆B , YA,B,C :≡ λf A . (λxB . f (x x)) (λxC . f (x x))

no son tipables. De hecho:

Teorema (Normalización fuerte)

Si Γ ` M : A, entonces M es fuertemente normalizante

Demostración: Postergada

Corolario (Convertibilidad entre términos tipados)
1 Dos términos de mismo tipo son β-convertibles

si y sólo si tienen la misma forma normal:
M1 oo

∗ //

∗ ��

M2

∗��
N (normal)

2 La relación M1 ∼= M2 entre términos tipados es decidible
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¿Y la η-reducción?

También se puede considerar la η-reducción, definida por:

(η) λx :A .M x �η M (si x /∈ FV(M))

+ clausura contextual

Problema: �βη no es confluente sobre los términos no tipados:

λx :A . (λy :B . y) x (no tipado si A 6≡ B)
β

��

η

��
λx :A . x 6≡α λy :B . y (si A 6≡ B)

Sin embargo, se puede demostrar (ejercicio) que:

Proposición

1 La βη-reducción es confluente sobre los términos tipados
2 Si Γ ` M : A y M �βη M ′, entonces Γ ` M ′ : A (βη-S.R.)
3 Todos los términos tipados son βη-normalizantes
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Verificación e inferencia de tipo (1/2)

Se consideran los siguientes dos problemas:

1 El problema de la verificación de tipo:
Dados Γ, M, A, determinar si el juicio Γ ` M : A es derivable o no

2 El problema de la inferencia de tipo:
Dados Γ, M, determinar si existe un tipo A tal que Γ ` M : A
(y devolver tal tipo A cuando existe)

Proposición (Decidabilidad)

El el cálculo lambda simplemente tipado (a la Church), los problemas
de la verificación y de la inferencia de tipo son decidibles

Demostración. Véase los algoritmos en la siguiente diapositiva.
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Verificación e inferencia de tipo (2/2)

Inferir(Γ, M) :=

• Caso M ≡ x:
Si (x : A) ∈ Γ para algún A: devolver A
si no: devolver “no tipable”

• Caso M ≡ λxA .M1:
Sea B := Inferir((Γ, x : A), M1) (cuando existe)
Si B existe: devolver A→ B;
si no: devolver “no tipable”

• Caso M ≡ M1 M2:
Sea A1 := Inferir(Γ, M1) (cuando existe)
Sea A2 := Inferir(Γ, M2) (cuando existe)
Si A1,A2 existen y A1 ≡ A2 → B

para algún B: devolver B;
si no: devolver “no tipable”

Verificar(Γ, M, A) :=

Sea A′ := Inferir(Γ, M) (cuando existe)
Si A′ existe y A′ ≡ A: devolver “derivable”;
si no: devolver “no derivable”
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Expresividad: los booleanos (1/2)

Para todo tipo A, se definen:

BoolA :≡ A→ A→ A

trueA :≡ λx , y :A . x : BoolA
falseA :≡ λx , y :A . y : BoolA

ifA :≡ λb : BoolA . λx , y :A . b x y
: BoolA → A→ A→ A

Ejercicio: Verificar que estas definiciones cumplen las reducciones deseadas

Defecto: Se necesita un tipo BoolA para cada tipo A1

Sin embargo, se pueden implementar las operaciones booleanas:

notA :≡ λb : BoolA . λx , y :A . ifA b y x : BoolA → BoolA
andA :≡ λb1, b2 : BoolA . λx , y :A . ifA b1 (b2 x y) y

: BoolA → BoolA → BoolA
orA :≡ λb1, b2 : BoolA . λx , y :A . ifA b1 x (b2 x y)

: BoolA → BoolA → BoolA

1Aquí nos falta un poco de polimorfismo (véase curso de programación funcional)
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Expresividad: los booleanos (2/2)
Ejercicio. En este ejercicio, se supone que el álgebra de tipos del cálculo
lambda simplemente tipado contiene un único tipo de base, escrito α

(1) Demostrar que trueα y falseα son los únicos términos cerrados y en
forma normal de tipo Boolα

(2) Construir para cada A un término if′A : Boolα → A→ A→ A tal que:

ifA trueα M N �∗βη M y ifA falseα M N �∗βη N

para todos M,N : A

(3) Construir para cada tipo A dos términos CA : Boolα → BoolA y
C ′A : BoolA → Boolα tales que:

CA trueα �∗βη trueA
CA falseα �∗βη falseA

C ′A trueA �∗β trueα
C ′A falseA �∗β falseα

(4) Escribiendo M1 ◦A M2 :≡ λx :A .M1 (M2 x), verificar que

C ′A ◦ CA �∗β IBoolα y CA ◦ C ′A �∗βη IBoolA
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Expresividad: los enteros de Church (1/3)

Para todo tipo A, se definen:

NatA :≡ (A→ A)→ A→ A

nA :≡ λf :A→ A . λx :A . f (· · · (f︸ ︷︷ ︸
n

x) · · · ) : NatA

iterA :≡ λn : NatA . λf :A→ A . λx :A . n f x
: NatA → (A→ A)→ A→ A

Ejercicio: Verificar que estas definiciones cumplen las reducciones deseadas

Defecto: Se necesita un tipo NatA para cada tipo A

Sin embargo, ya se pueden implementar las siguientes operaciones:

succA :≡ λn : NatA . λf :A→ A . λx :A . f (n f x)
: NatA → NatA

plusA :≡ λn,m : NatA . λf :A→ A . λx :A . n f (m f x)
: NatA → NatA → NatA
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Expresividad: los enteros de Church (2/3)

Ejercicio (Funciones representables).

(1) Dado un tipo de base α, demostrar que los únicos términos cerrados y en
forma normal de tipo Natα son:

los enteros de Church nα : Natα (n ∈ N)...
... más un término Nα : Natα que se determinará

(1.1) ¿A qué entero corresponde el término Nα?
(1.2) ¿Cómo cambiar las definiciones para excluir este caso patológico?

(2) Construir un término multA : NatA → NatA → NatA tal que:

multA nA mA �∗β nmA (n,m ∈ N)

(3) Construir un término ifzero : NatA → NatA → NatA → NatA tal que:

ifzeroA nA pA qA �∗β

{
pA si n = 0
qA si n 6= 0

(n, p, q ∈ N)
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Expresividad: los enteros de Church (3/3)

Ejercicio (Funciones representables, continuación).

Se llaman polinomios extendidos a las funciones de tipo Nk → N generadas por
la suma, el producto y la función ifzero

(4) Definir formalmente la noción de polinomio extendido (para todo k ≥ 1)

(5) Deducir de lo anterior que todos los polinomios extendidos son
representables en el cálculo lambda simplemente tipado (con el tipo Natα)

Obs.: Se puede demostrar que los polinomios extendidos son las únicas
funciones representables en el cálculo lambda simplemente tipado con el
tipo Natα (α tipo de base fijado) [Schwichtenberg 1975]

Sin embargo, se pueden representar más funciones, autorizando tipos distintos
para los argumentos y el resultado: NatA1 → · · · → NatAk → NatB

(6) ¿Qué función representa el siguiente término?

misterioA :≡ λnNatA→A . λmNatA . nm
: NatA→A → NatA → NatA
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Sistema en el estilo de Curry: presentación

Sistema a la Curry = Variante sin anotación de tipo en el λ

Definición (Sintaxis del cálculo simplemente tipado a la Curry)

Tipos A,B ::= α | A→ B

Términos M,N ::= x | λx .M | M N

Contextos Γ,∆ ::= x1 : A1, . . . , xn : An (xi 6≡xj si i 6=j)

Reducción (λx .M)N � M[x := N]

Los tipos (y los contextos) no cambian
Los términos ahora son los términos lambda puros
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Sistema en el estilo de Curry: tipado

Definición (Relación de tipado Γ ` M : A)

Γ ` x : A
si (x :A)∈Γ

Γ, x : A ` M : B

Γ ` λx .M : A→ B

Γ ` M : A→ B Γ ` N : A
Γ ` MN : B

Tipado de la abstracción sin anotación de tipo:
se pierde la unicidad del tipo: ambigüedad típica

` λx . x : A→ A para todo tipo A

Sin embargo: existencia de tipos principales
(cf curso de programación funcional)

La verificación y la inferencia de tipo siguen siendo decidibles...
... pero con un algoritmo mucho más sutil (Hindley-Milner)
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Sistema en el estilo de Curry: propiedades

Lemas básicos (variables libres, debilitamiento, sustitutividad)
⇒ como en el sistema a la Church

Lema de inversión
1 Si Γ ` x : C , entonces (x : C) ∈ Γ

2 Si Γ ` λx .M : C , entonces

Γ, x : A ` M : B para algunos tipos A,B tales que C ≡ A→ B

3 Si Γ ` MN : C , entonces

Γ ` M : A→ C y Γ ` N : A para algún tipo A

Demostración. Ejercicio.

Proposición (Subject Reduction)

Si Γ ` M : A y M � M ′, entonces Γ ` M ′ : A

Demostración. Ejercicio.
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La función de borrado (1/2)

Se define la función de borrado M 7→ |M| (Church→ Curry) por:

|x | :≡ x
|λx :A .M| :≡ λx . |M|

|M N| :≡ |M||N|

Proposición (Borrado de los juicios derivables)
1 Si Γ ` M0 : A (Church), entonces Γ ` |M0| : A (Curry)

2 Si Γ ` M : A (Curry), entonces Γ ` M0 : A (Church)
para algún M0 ∈ Church tal que |M0| ≡ M (no necesariamente único)

Demostración: Ejercicio
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La función de borrado (2/2)

La función de borrado M 7→ |M| transforma:

Mundo de Church Mundo de Curry

derivaciones en derivaciones (isomorfismo)
juicios derivables en juicios derivables (sobreyección)

¡Cuidado! No es inyectiva sobre los juicios derivables:

x : α ` (λzB→B . x) (λyB . y) : α

 x : α ` (λz . x) (λy . y) : α para todo B

(Pero sí es inyectiva sobre los juicios Γ ` M : A donde M está en forma normal)

Conclusión: Ambos sistemas son esencialmente equivalentes
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Borrado y reducción

Lema (Borrado y reducción)
1 Si M0 � M ′0 (∈ Church), entonces |M0| � |M ′0| (∈ Curry)

M0
� //

��

|M0|

��
M ′0

� // |M ′0|

2 Si |M0| � M ′ (∈ Curry), entonces M0 � M ′0 (∈ Church)

para algún M ′0 ∈ Church tal que |M ′0| ≡ M ′

M0
� //

��

|M0|

��
M ′0

� // |M ′0| ≡ M ′

Demostración. Ejercicio.

Obs.: La proposición anterior no hace ninguna hipótesis de tipado
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Borrado y normalización

Corolario (Borrado y normalización)

Para todo M0 ∈ Church, los siguientes enunciados son equivalentes:
1 M0 (∈ Church) es fuertemente normalizante
2 |M0| (∈ Curry) es fuertemente normalizante

Obs.: La proposición anterior no hace ninguna hipótesis de tipado

Proposición (Equivalencia de normalización)

Los enunciados
1 Todo término tipado ∈ Church es fuertemente normalizante
2 Todo término tipado ∈ Curry es fuertemente normalizante

son combinatoriamente equivalentes

Demostración. Ejercicio.



Introducción Sistema a la Church ... y a la Curry Normalización fuerte Extensiones

Plan

1 Introducción

2 Sistema en el estilo de Church

3 Sistema en el estilo de Curry

4 Teorema de normalización fuerte

5 Extensiones



Introducción Sistema a la Church ... y a la Curry Normalización fuerte Extensiones

Problema de la normalización fuerte

El objetivo de esta sección es demostrar el:

Teorema (Normalización fuerte)

Si Γ ` M : A, entonces M es fuertemente normalizante

Corolario (Normalización débil)

Todo término tipado tiene forma normal

Se puede demostrar indiferentemente en el sistema a la Church
o en el sistema a la Curry (equivalencia de normalización)
⇒ Lo demostraremos aquí en el sistema a la Curry

Literatura abundante sobre el tema:

Pruebas de normalización fuerte: con los conjuntos saturados (Tait),
con los candidatos de reducibilidad (Girard), etc.

Pruebas de normalización débil: pruebas combinatorias (inducción
sobre el grado de un término), normalización por evaluación, etc.
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Preliminarios (1/4)

Dado un término M (a la Church o a la Curry):

Un reducido de M es un término M ′ tal que M � M ′ (1 paso)

Red1(M) := {M ′ ∈ Λ : M � M ′} (conjunto de los reducidos de M)

Obs.: Red1(M) es finito (cardinal acotado por el número de redexes en M)

Una sucesión finita de reducción a partir de M es una sucesión finita
(Mi )i∈[0..n] tal que M ≡ M0 � M1 � · · · � Mn−1 � Mn

De modo análogo se definen las sucesiones infinitas de reducción a partir de M,
remplazando [0..n] por N

Las sucesiones finitas de reducciones a partir de M forman un árbol:
el árbol de reducción de M

Las ramas infinitas de este árbol son las sucesiones infinitas de reducción
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Preliminarios (2/4)

Definición (Términino fuertemente normalizante)

Un término M es fuertemente normalizante cuando
todas las sucesiones de reducción a partir de M son finitas

Proposición

Para todo término M, los siguientes enunciados son equivalentes:
(1) M es fuertemente normalizante
(2) Todos los reducidos de M son fuertemente normalizantes
(3) El árbol de reducción de M es finito

Demostración. (1)⇔ (2) Obvio, por contrarrecíproco.

(1)⇒ (3) Sigue del lema de Kőnig, que expresa que un árbol con ramificación finita
y sin ramas infinitas es finito.

(3)⇒ (1) Obvio, pues un árbol finito no tiene ramas infinitas.
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Preliminarios (3/4)

El conjunto SN de los términos fuertemente normalizantes también se
puede definir inductivamente mediante la única regla:

M ′1 ∈ SN · · · M ′n ∈ SN
M ∈ SN

{M′
1,...,M

′
n}=Red1(M)

Caso de base escondido: Red1(M) = ∅, es decir: M está en forma normal

La definición inductiva del conjunto SN permite activar el principio
de razonamiento por inducción (sobre la hipótesis M ∈ SN) así como el
mecanismo de definición de función por recursión (sobre M ∈ SN)

Ejemplo: Definición de la función ε : SN→ N:

ε(M) := max
M′∈Red1(M)

(1 + ε(M ′))

:= longitud de la máxima sucesión finita
de reducción a partir de M

En particular: ε(M) = 0 ⇔ Red1(M) = ∅ ⇔ M es normal
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Preliminarios (4/4)

Proposición (Propiedades de los términos SN)
1 λx .M ∈ SN sii M ∈ SN

Además: ε(λx .M) = ε(M)

2 x N1 · · ·Nk ∈ SN sii N1, . . . ,Nk ∈ SN
Además: ε(x N1 · · ·Nk) = ε(N1) + · · ·+ ε(Nk)

3 Si M ∈ SN, entonces M ′ ∈ SN para todo subtérmino M ′ v M.
Además: ε(M ′) ≤ ε(M)

4 Si M[x := N] ∈ SN, entonces M ∈ SN.
Además: ε(M) ≤ ε(M[x := N])

Demostración. Ejercicio.
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Una prueba ingenua... y falsa

Teorema (Normalización fuerte)

Si Γ ` M : A, entonces M es fuertemente normalizante

Demostración. Por inducción sobre la derivación de Γ ` M : A (en el sistema a la
Curry), distinguiendo los casos en función de la última regla aplicada:

Variable. La derivación es de la forma Γ ` x : A con (x : A) ∈ Γ.

Obviamente x ∈ SN.

Abstracción. La derivación es de la forma

.... d

Γ, x : A ` M : B

Γ ` λx .M : A→ B

Por (HI), tenemos M ∈ SN, y por lo tanto λx .M ∈ SN.

Aplicación. La derivación es de la forma

.... d1

Γ ` M : A→ B

.... d1

Γ ` N : A
Γ ` MN : B

Por (HI), tenemos M ∈ SN y N ∈ SN... pero esto no implica que MN ∈ SN
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Términos reducibles de tipo A

La hipótesis de inducción (HI) “M ∈ SN” es demasiado débil: no tiene
en cuenta el caso donde M está aplicado

⇒ Se necesita introducir una HI más fuerte que depende del tipo

Definición (Términos reducibles de tipo A)
1 Un término M es reducible de tipo α (de base) cuando M ∈ SN
2 Un término M es reducible de tipo A→ B cuando para todo N:

N reducible de tipo A ⇒ MN reducible de tipo B

Dicho de otro modo, se asocia a cada tipo A un conjunto JAK de los
términos reducibles de tipo A, definido (por inducción sobre A) por:

JαK := SN

JA→ BK := JAK→ JBK (flecha de Kleene)

:= {M ∈ Λ : ∀N ∈ JAK, MN ∈ JBK}
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Candidatos de reducibilidad (1/5)

Para estudiar las propiedades de los conjuntos JAK,
es cómodo introducir la siguiente noción:

Definición (Candidato de reducibilidad) [Girard 1969]

Un conjunto de términos C ⊆ Λ (posiblemente abiertos) es un
candidato de reducibilidad cuando cumple los siguientes criterios:

(CR1) C ⊆ SN

(CR2) Si M ∈ C , entonces Red1(M) ⊆ C

(CR3) Si un término M que no es una abstracción es tal que
Red1(M) ⊆ C , entonces M ∈ C

Intuición: (CR1) = lo que queremos demostrar (normalización fuerte)
(CR2) = clausura por reducción
(CR3) = criterio técnico de clausura por expansión
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Candidatos de reducibilidad (2/5)

Lema 1
Un candidato de reducibilidad C contiene todas las variables: x ∈ C

Demostración. Dada una variable x , se observa que x no es una abstracción y
Red1(x) = ∅ ⊆ C . Por lo tanto x ∈ C por (CR3).

Lema 2 (El candidato SN)

SN es un candidato de reducibilidad

Demostración. (CR1) SN ⊆ SN: obvio.

(CR2) M ∈ SN implica Red1(M) ⊆ SN: obvio.

(CR3) Si M 6≡ λ · · · es tal que Red1(M) ⊆ SN, entonces M ∈ SN: obvio.
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Candidatos de reducibilidad (3/5)

Lema 3 (Clausura por la flecha de Kleene)

Si C ,D ⊆ Λ son candidatos de reducibilidad, entonces el conjunto
C → D := {M ∈ Λ : ∀N ∈ C , MN ∈ D} también lo es

Demostración. (CR1) Sea M ∈ C → D. Cualquier variable x pertenece a C
por el Lema 1, entonces M x ∈ D ⊆ SN por (CR1), y por lo tanto M ∈ SN.

(CR2) Sean M ∈ C → D y M′ ∈ Red1(M). Para todo N ∈ C , tenemos que
MN ∈ D, y como MN � M′N, se deduce que M′N ∈ D por (CR2).
Por lo tanto, tenemos que que M′ ∈ C → D.

(CR3) Sea M distinto de una abstracción tal que Red1(M) ⊆ C → D (∗).
Demostremos por inducción bien fundada sobre N ∈ C (∩SN) que MN ∈ D. Para
ello, se supone que MN′ ∈ D para todo N′ ∈ Red1(N) (HI). Dado un reducido
R ∈ Red1(MN), se observa (como M no es una abstracción) que:

O bien R ≡ M′N, con M′ ∈ Red1(M), y por lo tanto R ≡ M′N ∈ D por (∗).
O bien R ≡ MN′, con N′ ∈ Red1(N), y por lo tanto R ≡ MN′ ∈ D por (HI).

Entonces Red1(MN) ⊆ D, y como MN tampoco es una abstracción, se deduce que
MN ∈ D por (CR3).
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Candidatos de reducibilidad (4/5)

Recordatorio: El conjunto JAK de los términos reducibles de tipo A
está definido (por inducción sobre A) por:

JαK := SN

JA→ BK := JAK→ JBK (flecha de Kleene)

:= {M ∈ Λ : ∀N ∈ JAK, MN ∈ JBK}

Corolario

Para todo tipo A, el conjunto JAK es un candidato de reducibilidad

Demostración. Por inducción sobre A, usando el Lema 2 (caso de un tipo atómico)
y el Lema 3 (caso de un tipo flecha).
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Candidatos de reducibilidad (5/5)

Lema 4 (Clausura por expansíon de cabeza)

En cualquier candidato de reducibilidad C :
Si M[x := N] ∈ C y N ∈ SN, entonces (λx .M)N ∈ C

Demostración. Primero, se observa que M[x := N] ∈ C implica que M ∈ SN.
Luego, se demuestra por inducción doble sobre M,N ∈ SN que M[x := N] ∈ C
implica (λx .M)N ∈ C . Dados M,N ∈ SN, se supone que:

(HI1) M′[x := N] ∈ C implica (λx .M′)N ∈ C para todo M′ ∈ Red1(M).

(HI2) M[x := N′] ∈ C implica (λx .M)N′ ∈ C para todo N′ ∈ Red1(N).

Suponiendo además que M[x := N] ∈ C , queremos demostrar que (λx .M)N ∈ C .
Dado un reducido R ∈ Red1((λx .M)N), se distinguen los siguientes casos:

R ≡ M[x := N]. Tenemos que R ≡ M[x := N] ∈ C , por hipótesis.

R ≡ (λx .M′)N, con M′ ∈ Red1(M). Como M[x := N] � M′[x := N] ∈ C
por (CR2), se deduce que R ≡ (λx .M′)N ∈ C por (HI1).

R ≡ (λx .M)N′, con N′ ∈ Red1(N). Como M[x := N] �∗ M[x := N′] ∈ C
por (CR2), se deduce que R ≡ (λx .M)N′ ∈ C por (HI2).

Entonces Red1((λx .M)N) ⊆ C . Se concluye que (λx .M)N ∈ C por (CR3).
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Interpretación de los contextos

Una sustitución es un conjunto finito de la forma

σ :≡ {x1 := N1, . . . , xn := Nn} (con xi 6≡ xj si i 6= j)

Notaciones: dom(σ) := {x1, . . . , xn}
σ(xi ) := Ni (1 ≤ i ≤ n)

FV(σ) := FV(N1) ∪ · · · ∪ FV(Nn)

Se define la operación (M, σ) 7→ M[σ] por:

x [σ] :=

{
σ(x) si x ∈ dom(σ)

x si no

(λx .M)[σ] :≡ λx .M[σ] (si x /∈ FV(σ))

(MN)[σ] :≡ M[σ]N[σ]

Definición (Interpretación de los contextos)

JΓK :=
{
σ sustitución : dom(σ) = dom(Γ) y

σ(x) ∈ JAK para todo (x : A) ∈ Γ
}
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Invariante de normalización (1/2)

Proposición (Invariante de normalización)

Si x1 : A1, . . . , xn : An ` M : A, entonces

M[x1 := N1, . . . , xn := Nn] ∈ JAK

para todos N1 ∈ JA1K, . . . , Nn ∈ JAnK

O de modo más sintético:

Proposición (Invariante de normalización)

Si Γ ` M : A, entonces M[σ] ∈ JAK para todo σ ∈ JΓK

Demostración. Por inducción sobre la derivación de Γ ` M : A, distinguiendo los
casos en función de la última regla aplicada:

Var La derivación es de la forma Γ ` x : A con (x : A) ∈ Γ

Sea σ ∈ JΓK. Tenemos que x[σ] ≡ σ(x) ∈ JAK, por def de JΓK. (...)
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Invariante de normalización (2/2)

Demostración (continuación y fin).

Lam La derivación es de la forma

....
Γ, x : A ` M : B

Γ ` λx .M : A→ B

Sea σ ∈ JΓK. S.p.d.g., se puede suponer que x /∈ dom(Γ) ∪ FV(σ).
Dado N ∈ JAK, se define σ′N := σ ∪ {x := N} ∈ JΓ, x : AK.
Por HI, se deduce que M[σ′N ] ∈ JBK, es decir: M[σ][x := N] ∈ JBK.
Como N ∈ JAK ⊆ SN, se deduce que (λx .M[σ])N ∈ JBK por el Lema 4,
es decir (λx .M)[σ]N ∈ JBK. Demostramos que (λx .M)[σ]N ∈ JBK
para todo N ∈ JAK, es decir: (λx .M)[σ] ∈ JAK→ JBK = JA→ BK.

App La derivación es de la forma

....
Γ ` M : A→ B

....
Γ ` N : A

Γ ` MN : A

Sea σ ∈ JΓK. Por HI (× 2), tenemos que M[σ] ∈ JA→ BK = JAK→ JBK
y N[σ] ∈ JAK. Por lo tanto: (MN)[σ] ≡ M[σ]N[σ] ∈ JBK.
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Teorema de normalización fuerte

Teorema (Normalización fuerte)

Si Γ ` M : A, entonces M es fuertemente normalizante

Demostración. Escribamos Γ ≡ x1 : A1, . . . , xn : An.
Sea σ := {x1 := x1, . . . , xn := xn} (“sustitución identidad”). Por construcción,
tenemos que σ ∈ JΓK pues xi ∈ JAi K para todo i ∈ [1..n], por el Lema 1. Por el
invariante de normalización, se deduce que M ≡ M[σ] ∈ JAK ⊆ SN, por (CR1).

Corolarios

En el cálculo lambda simplemente tipado (a la Church o a la Curry):
1 Todo término tipado tiene forma normal
2 Dos términos tipados (y de mismo tipo) son β-convertibles

si y sólo si tienen la misma forma normal
3 La relación M1 ∼= M2 (entre términos de mismo tipo) es decidible
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Plan

1 Introducción

2 Sistema en el estilo de Church

3 Sistema en el estilo de Curry

4 Teorema de normalización fuerte

5 Extensiones
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Extensiones del cálculo lambda simplemente tipado

En su forma primitiva, el cálculo lambda simplemente tipado está
basado sólo en la construcción de tipo A→ B (tipo flecha)

También se puede extender con:

productos A× B y sumas directas A + B (véase más adelante)

booleanos, enteros naturales, listas, etc. (Sistema T de Gödel)

Más generalmente, se puede enriquecer el tipado con:

Polimorfismo, segundo orden (Sistema F de Girard)

Tipos dependientes (Teoría de tipos de Martin-Löf)

Todo lo anterior, más: tipos inductivos generalizados, universos, etc.
(Cálculo de construcciones inductivas de Coquand-Paulin, Sistema Coq)

En todos los sistemas mencionados, se mantienen las propiedades
fundamentales: confluencia, subject reduction y normalización fuerte
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Extensión con tipos productos (1/2)

Se enriquece la sintaxis de λ→ con:

Tipos A,B ::= · · · | A× B

Términos M,N ::= · · · | 〈M,N〉 | π1(M) | π2(M)

Nuevas reglas de reducción:

π1(〈M,N〉) � M π2(〈M,N〉) � N

Nuevas reglas de tipado:

Γ ` M : A Γ ` N : B
Γ ` 〈M,N〉 : A× B

Γ ` M : A× B

Γ ` π1(M) : A
Γ ` M : A× B

Γ ` π2(M) : B

Ejemplo: λzA×B . 〈π2(z), π1(z)〉 : A× B → B × A

Se mantienen las propiedades deseadas:
confluencia, subject reduction, normalización fuerte
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Extensión con tipos productos (2/2)

Una construcción muy útil: el “let” destructurante:

let 〈xA, yB〉 = N in M :≡
(λzA×B . (λxA . λyB .M)π1(z)π2(z))N

donde z es una variable fresca

Por construcción:

FV
(
let 〈xA, yB〉 = N in M

)
= FV(N) ∪ (FV(M) \ {x , y})

Regla de reducción deducida:

let 〈xA, yB〉 = 〈N1,N2〉 in M �+ M[x := N1, y := N2]

Regla de tipado (admisible):

Γ ` N : A× B Γ, x : A, y : B ` M : C

Γ ` let 〈xA, yB〉 = N in M : C
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Extensión con tipos suma (1/2)

Se enriquece las sintaxis de λ→ (a la Church) con:

Tipos A,B ::= · · · | A + B

Términos M,N ::= · · · | ιA,B1 (M) | ιA,B2 (M)

| case N {ι1(x1) 7→ M1 | ι2(x2) 7→ M2}

Obs.: FV(case N {ι1(x1) 7→ M1 | ι2(x2) 7→ M2})
:= FV(N) ∪ (FV(M1) \ {x1}) ∪ (FV(M2) \ {x2})

Nuevas reglas de reducción:

case ιA,B1 (N) {ι1(x1) 7→ M1 | ι2(x2) 7→ M2} � M1[x1 := N]

case ιA,B2 (N) {ι1(x1) 7→ M1 | ι2(x2) 7→ M2} � M2[x2 := N]

Obs.: En el sistema a la Curry, remplazar ιA,Bi (M) por ιi (M) (i = 1, 2)
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Extensión con tipos suma (2/2)

Nuevas reglas de tipado:

Γ ` M : A

Γ ` ιA,B1 (M) : A + B

Γ ` M : B

Γ ` ιA,B2 (M) : A + B

Γ ` N : A + B Γ, x1 : A ` M1 : C Γ, x2 : B ` M2 : C

Γ ` case N {ι1(x1) 7→ M1 | ι2(x2) 7→ M2} : C

Obs.: En el sistema a la Curry, remplazar ιA,Bi (M) por ιi (M) (i = 1, 2)

Ejemplo: λzA+B . case z {ι1(x) 7→ ιB,A2 (x) | ι2(y) 7→ ιB,A1 (y)}
: A + B → B + A

Otra vez, se mantienen las propiedades deseadas:
confluencia, subject reduction, normalización fuerte
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Sistema λ→,×,+: sintaxis

Definición (Tipos)

Tipos A,B ::= α | A→ B | A× B | A + B

Definición (Términos)

Términos M,N ::= x | λx :A .M | M N

| 〈M,N〉 | π1(M) | π2(M)

| ιA,B1 (M) | ιA,B2 (M)

| case N {ι1(x1) 7→ M1 | ι2(x2) 7→ M2}

Obs.: En el sistema a la Curry, eliminar las anotaciones A, B en λ, ι1, ι2

Ejercicio:
Definir los conjuntos FV(M) y BV(M) (variables libres y ligadas)

Definir la α-conversión y la sustitución
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Sistema λ→,×,+: reducción

Relación � de reducción definida por las 5 reglas:

(λx :A .M)N � M[x := N]

π1(〈M,N〉) � M

π2(〈M,N〉) � N

case ιA,B1 (M) {ι1(x1) 7→ M1 | ι2(x2) 7→ M2} � M1[x1 := N]

case ιA,B2 (M) {ι1(x1) 7→ M1 | ι2(x2) 7→ M2} � M2[x2 := N]

+ clausura contextual

Ejercicio: Demostrar la confluencia de �

Dos estrategias posibles:

1 Definir una reducción paralela M ⇒ M′ (entre � y �∗) que tenga en cuenta
las 5 reglas, y demostrar que cumple la propiedad del diamante

2 Demostrar que las 5 reglas son confluentes (cada una individualmente), y luego
que conmutan de a dos (se estudiarán los correspondientes diagramas)
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Sistema λ→,×,+: tipado (1/2)

Contextos Γ,∆ ::= x1 : A1, . . . , xn : An (xi 6≡ xj si i 6= j)

Definición (Relación de tipado Γ ` M : A)

Γ ` x : A
si (x :A)∈Γ

Γ, x : A ` M : B

Γ ` λx :A .M : A→ B

Γ ` M : A→ B Γ ` N : A
Γ ` MN : B

Γ ` M : A Γ ` N : B
Γ ` 〈M,N〉 : A× B

Γ ` M : A× B

Γ ` π1(M) : A
Γ ` M : A× B

Γ ` π2(M) : B

Γ ` M : A

Γ ` ιA,B1 (M) : A + B

Γ ` M : B

Γ ` ιA,B2 (M) : A + B

Γ ` N : A + B Γ, x1 : A ` M1 : C Γ, x2 : B ` M2 : C

Γ ` case N {ι1(x1) 7→ M1 | ι2(x2) 7→ M2} : C
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Sistema λ→,×,+: tipado (2/2)

Ejercicio:
(1) Demostrar los lemas básicos (variables libres, sustitutividad, debilitamiento)

(2) Enunciar y demostrar el lema de inversión:

1 Si Γ ` x : C , entonces . . .

2 Si Γ ` λx :A .M : C , entonces . . .

3 Si Γ ` MN : C , entonces . . .

4 Si Γ ` 〈M,N〉 : C , entonces . . .

5 Si Γ ` π1(M) : C , entonces . . .

6 Si Γ ` π2(M) : C , entonces . . .

7 Si Γ ` ιA,B1 (M) : C , entonces . . .

8 Si Γ ` ιA,B2 (M) : C , entonces . . .

9 Si Γ ` case N {ι1(x1) 7→ M1 | ι2(x2) 7→ M2} : C , entonces . . .

(3) Deducir la propiedad de subject reduction
(4) Mismas preguntas para el sistema a la Curry (+ función de borrado)
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Sistema λ→,×,+: candidatos de reducibilidad (1/3)

SN = conjunto de los términos fuertemente normalizantes (Curry)

Los términos en forma canónica (o constructores) son los siguientes:

λx .M 〈M,N〉 ι1(M) ι2(M)

Un término neutro es un término que no está en forma canónica

Definición (Candidato de reducibilidad)

Un conjunto de términos C ⊆ Λ (posiblemente abiertos) es un
candidato de reducibilidad cuando cumple los siguientes criterios:

(CR1) C ⊆ SN

(CR2) Si M ∈ C , entonces Red1(M) ⊆ C

(CR3) Si un término neutro M es tal que
Red1(M) ⊆ C , entonces M ∈ C
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Sistema λ→,×,+: candidatos de reducibilidad (2/3)

Lema
Un candidato de reducibilidad C contiene todas las variables: x ∈ C

Demostración. Ejercicio.

Lema (Propiedades de expansión)

Dado un candidato de reducibilidad C :

1 Si M[x := N] ∈ C y N ∈ SN, entonces (λx .M)N ∈ C

2 Si M ∈ C y N ∈ SN, entonces π1(〈M,N〉) ∈ C

3 Si M ∈ SN y N ∈ C , entonces π2(〈M,N〉) ∈ C

4 Si M1[x1 := N] ∈ C y N,M2 ∈ SN, entonces
case ι1(N) {ι1(x1) 7→ M1 | ι2(x2) 7→ M2} ∈ C

5 Si M2[x2 := N] ∈ C y N,M1 ∈ SN, entonces
case ι2(N) {ι1(x1) 7→ M1 | ι2(x2) 7→ M2} ∈ C

Demostración. Ejercicio.
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Sistema λ→,×,+: candidatos de reducibilidad (3/3)

Lema (El candidato SN)

SN es un candidato de reducibilidad

Demostración. Ejercicio.

Definición (Flecha, producto y suma de conjuntos de términos)

Dados conjuntos de términos C ,D ⊆ Λ, se definen:

C → D := {M ∈ Λ : ∀N ∈ C , MN ∈ D}

C × D := {M ∈ Λ : π1(M) ∈ C ∧ π2(M) ∈ D}

C + D :=
{
M ∈ Λ : ∀M ′ (M �∗ ι1(M ′) ⇒ M ′ ∈ C) ∧

∀M ′ (M �∗ ι2(M ′) ⇒ M ′ ∈ D)
}

Lema (Clausura de los candidatos por →, × y +)

Si C ,D ⊆ Λ son candidatos de reducibilidad, entonces
los conjuntos C → D, C × D y C + D también lo son

Demostración. Ejercicio.
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Sistema λ→,×,+: interpretación de los tipos y contextos

Definición (Interpretación de los tipos)

A cada tipo A se asocia el candidato de reducibilidad JAK definido por:

JαK := SN
JA→ BK := JAK→ JBK
JA× BK := JAK× JBK
JA + BK := JAK + JBK

Definición (Interpretación de los contextos)

JΓK :=
{
σ sustitución : dom(σ) = dom(Γ) y

σ(x) ∈ JAK para todo (x : A) ∈ Γ
}



Introducción Sistema a la Church ... y a la Curry Normalización fuerte Extensiones

Sistema λ→,×,+: normalización fuerte

Proposición (Invariante de normalización)

Si Γ ` M : A, entonces M[σ] ∈ JAK para todo σ ∈ JΓK

Demostración. Ejercicio.

Teorema (Normalización fuerte)

Si Γ ` M : A, entonces M es fuertemente normalizante

Demostración. Ejercicio.

Corolarios

En el sistema λ→,×,+ (a la Church o a la Curry):
1 Todo término tipado tiene forma normal
2 Dos términos tipados (y de mismo tipo) son convertibles

si y sólo si tienen la misma forma normal
3 La relación M1 ∼= M2 (entre términos de mismo tipo) es decidible
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