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Introduccién

El calculo lambda: un formalismo simplisimo pero muy expresivo:
todas las funciones computables (recursivas) son representables

Sin embargo: muchas paradojas...

@ Funciones sin dominio ni codominio: auto-aplicacién posible:
MM, A = Mx.xx, AA—=gAA

e Todas las funciones tienen un punto fijo: Y M =3 M(Y M)
con Y = A .(Ax.f(xx))(Ax.f(xx))

~

@ Inconsistencia légica: ¢ = —¢, con ¢ = Y=
(sea lo que sea la definicion de —)

Idea sencilla para evitar las paradojas: Restringir el dominio de la
abstraccion, usando tipos: Ax:A.M

= Calculo lambda simplemente tipado
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Sintaxis

Definicion (Tipos)

Tipos AB = a | A—B

@ « es el tipo de base (podemos introducir maltiples: «, 3,7, etc.)

@ A — B es el tipo flecha: tipo de las funciones de A a B

Definicién (Términos)

Términos M,N == x | Mx:AM | MN

@ Abstraccién tipada: Ax:A.M (o XA M)
@ Como siempre, se trabaja a menos de a-equivalencia
e Notaciones: FV(M), M][x:= N] (sustitucion)

Lema de sustitucién

M[x := N][y := P] = M]Jy := P][x := N[y := P]] (six £y, x ¢ FUP))
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Reduccién

@ Relacion > de reduccion definida por:
(8) (Ax:A.M)N = Mx = N]

Extensiones
000000000000 000

+ clausura contextual

@ Relacién =* de reduccién en maltiples pasos
= clausura reflexiva-transitiva de >

@ Relacién = de conversién
= clausura reflexiva-simétrica-transitiva de >

o Confluencia + Church-Rosser:

M
VRN
My M} M1_<;>_M2

£ F fR F
M// M/

+ unicidad de las formas normales (cuando existen)
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Sistema de tipado

Definicion (Contextos de tipado)
Contextos NA = x31:A1,...,x.: A, (xi Z x; si i #Jj)

= lista finita de declaraciones de la forma (x : A)

+ una misma variable no puede ser declarada dos veces

Definicion (Relacion de tipado ' = M : A)

Se define inductivamente la relacién de tipado

FrEM:A («En el contexto T, el término M tiene tipo A»)

por las 3 reglas:
) Nx:AFM:B
— si (x:A)el
N=x:A FrN=Xx:AM:A— B

rTEM:A—B FTEN:A
= MN: B
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Ejemplos

x:A y:BFx:A
X AFx:A x:AFAy:B.x:B— A
FAXXCAx:A— A FAx:AAy:B.x:A—->B—A

YA ARy A=A x:AFx:A
FAY A=A y:(A0A) —-(A—=A) FXXAXx:A-A
FOAy:A=Ay)(Mx:A.x): A=A

g:B—>C, f:A>B x:A-f:A—>B g:B—>C, f:A—>B, x: A x:A
g:B—>C, f:A>B, x:A-g:B— C g:B—>C, f:A—B, x:AF fx:B
g:B—>C, f:A—B, x: Ak g(fx): C
g:B—C, f:A—>BF Ax:A.g(fx): A— C

B> CHXATB XA g(fx):(A— B) > A— C

F2gB=C AATB AA g(fx): (B> C) > (A= B) > A— C

Sistema dirigido por la sintaxis:
@ Una regla para cada construccién (variable, abstraccién, aplicacién)

@ El arbol de derivacién es isomorfo al término tipado
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Propiedades basicas (1/4)

Dado I'=x;:A1,...,%,: A, seescribe dom(l) :={x1,...,x,}

Lema (Declaracién de las variables libres)

Si TEM:A entonces FV(M) C dom(I)

Demostracion. Por induccién sobre la derivacién de ' = M : A. DJ

Dados contextos I, I, se escribe I C I’ cuando
(x: A) €T implica (x : A) € [’ para toda declaracién (x : A)

Lema (Debilitamiento)

FTEM:A

La siguiente regla es admisible: EM:A si TCr”’

Demostracion. Por induccién sobre la derivacién de ' = M : A. DJ
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Propiedades basicas (2/4)

Lema (Sustitutividad)

La siguiente regla es admisible:

x:AAFM:B TFN:A
IAF M[x:=N]:B

Demostracion. Por induccién sobre la derivacién de ', x: A/A - M : B,
usando la regla de debilitamiento para tratar el caso donde M = x. DJ

Ejercicio: Escribir la prueba, detallando todos los casos.

Caso particular (A = 0):
Nx:AFM:B FrEN:A
N- M[x:=N]:B
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Propiedades basicas

El siguiente lema muestra cémo “invertir” las reglas de tipado:

Lema de inversién

Q@ Si Tkx:C, entonces (x:C)eTl

Q@ Si T M:A.M: C, entonces
Nx:AF M: B para algin tipo Btalque C=A—B

©@ Si ' MN: C, entonces
Fr’EM:A—-C y TEN:A paraalgin tipo A

Extensiones
000000000000 000

(3/4)

Demostracion. Sigue del hecho que el sistema es dirigido por la sintaxis.

=

Ejercicio: Detallar los tres casos.
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Propiedades basicas (4/4)

El lema de inversién no sélo permite analizar las derivaciones, sino
también permite demostrar que ciertos términos no son tipables:

Ejercicio. Usando el lema de inversién, demostrar que los términos
@ Ay = M*.xx
0 Qup = Aalsp
@ Yagc = M (AXE.f(xx))(AxE.f(xx))

no son tipables, en ningiin contexto y para ningunos tipos A, B, C

Ademas:

Proposicién (Unicidad del tipo)

Si TEM:A y TEM:A, entonces A=A

Demostraciéon. Por induccién sobre el término M, usando el lema de inversién. D)
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Subject reduction (1/2)

Proposicién (Subject Reduction)
Si TEFM:A y M>M, entonces THM:A

Corolario
@S T-M:A y M>*M, entonces THM :A

@ En particular, la forma de normal de M (cuando existe)
tiene el mismo tipo que M (cuando existe)

Demostracion de la subject reduction. Por induccién sobre la derivacién de la
relaciéon M = M’, distinguiendo los casos en funcién de la dltima regla aplicada:

@ Regla B: M= (xB.M)Mx y M = M[x := My].
Sabemos que T (AxB.My)Ms : A, Por inversién (x 2), se deduce que:
(1) THFXB.My:B" Ay 'k Ms: B’ para algin B’
(2) T,x:BkF M;p: A para algin A’ talque B’ - A = B — A'.
Entonces A=A’, B=B’,yporlotanto: ,x:BFM;: Ay ' M : B.
Por sustitutividad: ' Myi[x := M) : A, esdecirr T M : A (...)
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Subject reduction

Demostracion de la subject reduction (continuacion).

@ Regla (CLam): M =XxB. My y M' =XxB.M{, con My > M].

Sabemos que T+ AxB .My : A, Por inversién, se deduce que:
[x:BkF Mj: C para algin C tal que A= B — C.

Por hipétesis de induccién, tenemos que I,x: B+ M : C.

Y por lo tanto I = AxB.Mj : B— C, esdecir: [+ M': A.

Regla (CApp1): M= MM y M =M{M, con My > Mj.
Sabemos que ' MiM> : A.  Por inversién, se deduce que:
r'-M;:B— Ay ' My: B paraalgin B.

Por hipétesis de induccién, tenemos que ' Mj : B — A.

Y porlo tanto '+ M{M; : A, esdecir: T = M : A

Regla (CAppz2): M= MM y M' = MiM), con Mz > Mj.
Sabemos que ' M;M, : A.  Por inversién, se deduce que:
r'-M;:B— Ay ' My: B paraalgin B.

Por hipétesis de induccién, tenemos que I = M) : B.

Y porlo tanto ' MiM) : A, esdecir: T = M : A

Extensiones
000000000000 000

(2/2)




Ir luccié Si: a la Church ... yalaCurry Normalizacién fuerte Extensiones

oo 00000000000 e00000000 00000000 00000000000 000000 000000000000 000

Normalizacidon fuerte

Vimos que los términos no fuertemente normalizantes
Qap = AxAg, Yagc = AMAL(AXE L f (xx)) (AxC . f (xx))

no son tipables. De hecho:

Teorema (Normalizacién fuerte)

Si T M: A, entonces M es fuertemente normalizante

Demostracion: Postergada

Corolario (Convertibilidad entre términos tipados)

© Dos términos de mismo tipo son S-convertibles  pg ~ * o py,

si y s6lo si tienen la misma forma normal:
* X\ Fox

N (normal)

@ La relacion My = M, entre términos tipados es decidible
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.Y la n-reduccién?

@ También se puede considerar la 7-reduccién, definida por:

(n) XA Mx =, M (sixgéFV(M))J

+ clausura contextual

@ Problema: g, no es confluente sobre los términos no tipados:

Mx:A.(Ay:B.y)x (no tipado si A # B)

@ Sin embargo, se puede demostrar (ejercicio) que:

Proposicion

@ La Bn-reduccién es confluente sobre los términos tipados
QSiT-M:Ay M=g, M, entonces T M : A (Bn-S.R.)

© Todos los términos tipados son Bn-normalizantes
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Verificacion e inferencia de tipo (1/2)

Se consideran los siguientes dos problemas:

© EIl problema de la verificacion de tipo:
Dados I', M, A, determinar si el juicio ' = M : A es derivable o no

© EIl problema de la inferencia de tipo:

Dados I', M, determinar si existe un tipo Atalque THF M : A
(y devolver tal tipo A cuando existe)

Proposicién (Decidabilidad)

El el calculo lambda simplemente tipado (a la Church), los problemas
de la verificacién y de la inferencia de tipo son decidibles

Demostracion. Véase los algoritmos en la siguiente diapositiva. DJ
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Verificacion e inferencia de tipo

Inferir(l', M) =

e Caso M = x:
Si (x: A) €T para algtn A: devolver A
si no: devolver “no tipable”

e Caso M = Ax”.M;:
Sea B := Inferir((l,x : A), Mz) (cuando existe)
Si B existe: devolver A — B;
si no: devolver “no tipable”

e Caso M = M; Ms:
Sea A; := Inferir(l', My) (cuando existe)
Sea Az := Inferir(l', M>) (cuando existe)

Si A1, Az existeny A} = A — B
para algin B: devolver B;
si no: devolver “no tipable”

Verificar(l, M, A) :=

Sea A’ := Inferir(l, M) (cuando existe)
Si A’ existe y A’ = A: devolver “derivable”;
si no: devolver “no derivable”

Extensiones
000000000000 000

(2/2)
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Expresividad: los booleanos (1/2)

@ Para todo tipo A, se definen:

Booly, = A—A—A
trues = Ax,y:A.x : Boola
falsea = Ax,y:A.y : Boolx
ifa = Ab:Boola.Ax,y:A.bxy

Boola > A—A— A

Ejercicio: Verificar que estas definiciones cumplen las reducciones deseadas
o Defecto: Se necesita un tipo Bool, para cada tipo Al

@ Sin embargo, se pueden implementar las operaciones booleanas:

nota = Ab:Boola.Ax,y:A.ifabyx : Bools — Boolpx
Aby, b2 :Boola . Ax,y:A.ifabi (baxy)y

Bools — Boola — Boolg
Abi, bz :Boola. Ax,y:A.ifa b1 x (b2 xy)

Boola — Boolp — Boolpy

anda

ora

1Aqui nos falta un poco de polimorfismo (véase curso de programacién funcional)
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Expresividad: los booleanos (2/2)

Ejercicio. En este ejercicio, se supone que el algebra de tipos del calculo
lambda simplemente tipado contiene un Gnico tipo de base, escrito «

(1) Demostrar que true, y false, son los Gnicos términos cerrados y en
forma normal de tipo Bool,

2) Construir para cada A un término if) : Bool, — A — A — A tal que:
A

ifa trueqs M N >_Z’77 M y if, falses M N >—2,] N

para todos M, N : A

(3) Construir para cada tipo A dos términos Ca : Booly — Boola y
C, : Bools — Bool, tales que:

Ca true, >~j, truea C) truea =5 trueq

Ca false, >3, falsea C) falsen -5 falseq

(4) Escribiendo My oa Mz = Ax:A.M; (M2 x), verificar que

CAO CA >'Z€ IBoola Yy CA o CA >_E77 IBoolA
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Expresividad: los enteros de Church (1/3)

@ Para todo tipo A, se definen:

Nata = (A—-A)—>A-A
a = M:A-SAXMA f(--(fx)--+) : Nata
~——
itera = An:Nata AMf:A—=A. M x:A.nfx

Nata > (A2 A) A= A

Ejercicio: Verificar que estas definiciones cumplen las reducciones deseadas
o Defecto: Se necesita un tipo Nat, para cada tipo A

@ Sin embargo, ya se pueden implementar las siguientes operaciones:

succa = An:Nata . AMf:A—= A Xx:A.f(nfx)
Nats — Nata

plus, = An,m:Nata.AMf:A— A.dx:A.nf(mfx)
Nats — Naty — Nata
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Expresividad: los enteros de Church (2/3)

Ejercicio (Funciones representables).

(1) Dado un tipo de base «, demostrar que los Gnicos términos cerrados y en
forma normal de tipo Nat,, son:

o los enteros de Church 7, : Nat, (n € IN)...
e ... mas un término N, : Nat, que se determinara

(1.1) {A qué entero corresponde el término N7
(1.2) ;Cémo cambiar las definiciones para excluir este caso patolégico?

(2) Construir un término mults : Nats — Nats — Natn tal que:
multaAamMa >5 AMa (n,m e IN)
(3) Construir un término ifzero : Nata — Nata — Nata — Nata tal que:

Pa sin=0

Gu Sin£0 (n,p,q € IN)
A

ifzeroaNaPada >p {
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Expresividad: los enteros de Church (3/3)

Ejercicio (Funciones representables, continuacién).

Se llaman polinomios extendidos a las funciones de tipo IN — IN generadas por
la suma, el producto y la funcién ifzero

(4) Definir formalmente la nocién de polinomio extendido  (para todo k > 1)

(5) Deducir de lo anterior que todos los polinomios extendidos son
representables en el calculo lambda simplemente tipado (con el tipo Naty)

Obs.: Se puede demostrar que los polinomios extendidos son las tnicas
funciones representables en el calculo lambda simplemente tipado con el
tipo Nat, (« tipo de base fijado) [Schwichtenberg 1975]

Sin embargo, se pueden representar mas funciones, autorizando tipos distintos
para los argumentos y el resultado: Nats, — --- — Nata, — Natg

(6) ¢Qué funcién representa el siguiente término?

misterios = A=A Am™A nom
Nata,a — Nata — Natp
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Sistema en el estilo de Curry: presentacién

Sistema a la Curry = Variante sin anotacién de tipo en el A

Definicion (Sintaxis del calculo simplemente tipado a la Curry)

Tipos AB = a | A—=B

Términos M,N == x | MXx.M | MN
Contextos A = x3:A,....xp: A, (xix; si i)
Reduccién (Ax.M)N > Mx := N]

@ Los tipos (y los contextos) no cambian

@ Los términos ahora son los términos lambda puros
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Sistema en el estilo de Curry: tipado

Definicion (Relacion de tipado ' = M : A)

i MNx:A-M:B
FEx: A ' FrNEXx.M:A— B

rTEM:A—-B FTEN:A
M= MN: B

@ Tipado de la abstraccién sin anotacién de tipo:
se pierde la unicidad del tipo: ambigiiedad tipica

FAXx.x:A—=A para todo tipo A

@ Sin embargo: existencia de tipos principales
(cf curso de programacién funcional)

@ La verificacién y la inferencia de tipo siguen siendo decidibles...
... pero con un algoritmo mucho mas sutil (Hindley-Milner)
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Sistema en el estilo de Curry: propiedades

@ Lemas basicos (variables libres, debilitamiento, sustitutividad)
= como en el sistema a la Church

Lema de inversién

Q@ Si THx:C, entonces (x:C)eTl

Q@ Si T MXx.M: C, entonces
Nx:AFE M: B para algunos tipos A, B talesque C=A— B

© Si ' MN : C, entonces
Fr’EM:A—C y TEN:A paraalgin tipo A

Demostracion. Ejercicio.

Proposicién (Subject Reduction)

Si TEFM:A y M>M, entonces THM:A

Demostracion. Ejercicio.
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La funcién de borrado (1/2)

Se define la funcién de borrado M +— |M| (Church — Curry) por:

x| = x
Ax:A.M| = Xx.|M|
IMN| = [M][N]|

4

Proposicién (Borrado de los juicios derivables)

@Si TkMy:A (Church), entonces T [Mp|: A (Curry)
QS IT-FM:A (Curry), entonces T'F My : A (Church)

para algin Mo € Church tal que |Mo| = M (no necesariamente (inico)
w

Demostracion: Ejercicio
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La funcién de borrado (2/2)

@ La funcién de borrado M +— |M| transforma:

Mundo de Church Mundo de Curry

derivaciones en derivaciones (isomorfismo)

juicios derivables en juicios derivables  (sobreyeccion)

o jCuidado! No es inyectiva sobre los juicios derivables:
x:ak (AZB7E x)(A\yE.y)a
~ o xtabk(Az.x)(Ay.y) i a para todo B

(Pero si es inyectiva sobre los juicios '+ M : A donde M esta en forma normal)

@ Conclusién: Ambos sistemas son esencialmente equivalentes
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Borrado y reduccién

Lema (Borrado y reduccion)

Q@ Si My > My (€ Church), entonces |Mp| > |Mj| (€ Curry)

Mo ——— [ M|

\
Mg 1= | M|
Q Si |[Mp| = M" (€ Curry), entonces My > My (€ Church)
para algin My € Church tal que |[Mg| = M’

M0|—>|M0|

v i

Mo 1 > |Mg| = M’

Demostracion. Ejercicio.

Obs.: La proposicién anterior no hace ninguna hipétesis de tipado
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Borrado y normalizacién

Corolario (Borrado y normalizacion)

Para todo My € Church, los siguientes enunciados son equivalentes:
@ My (€ Church) es fuertemente normalizante

@ M| (€ Curry) es fuertemente normalizante

Obs.: La proposicién anterior no hace ninguna hipétesis de tipado

Proposicién (Equivalencia de normalizacién)

Los enunciados
@ Todo término tipado € Church es fuertemente normalizante
© Todo término tipado € Curry es fuertemente normalizante

son combinatoriamente equivalentes

Demostracion. Ejercicio.



© Introduccion

© Sistema en el estilo de Church
© Sistema en el estilo de Curry
@ Teorema de normalizacion fuerte

Q Extensiones
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Problema de la normalizacién fuerte

El objetivo de esta seccién es demostrar el:

Teorema (Normalizacién fuerte)

Si T M: A, entonces M es fuertemente normalizante

Corolario (Normalizacién débil)

Todo término tipado tiene forma normal

@ Se puede demostrar indiferentemente en el sistema a la Church
o en el sistema a la Curry (equivalencia de normalizacién)

= Lo demostraremos aqui en el sistema a la Curry

o Literatura abundante sobre el tema:
o Pruebas de normalizacién fuerte: con los conjuntos saturados (Tait),
con los candidatos de reducibilidad (Girard), etc.

o Pruebas de normalizacién débil: pruebas combinatorias (induccién
sobre el grado de un término), normalizacién por evaluacién, etc.
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Preliminarios (1/4)

Dado un término M (a la Church o a la Curry):
@ Un reducido de M es un término M’ tal que M = M’ (1 paso)

@ Red;(M) = (M eAN: M= M} (conjunto de los reducidos de M)
Obs.: Red;(M) es finito (cardinal acotado por el nimero de redexes en M)

@ Una sucesion finita de reduccién a partir de M es una sucesion finita
(Mi)ie[O..n] talque M=My > My > M, 1 =M,

De modo analogo se definen las sucesiones infinitas de reduccién a partir de M,
remplazando [0..n] por IN

@ Las sucesiones finitas de reducciones a partir de M forman un arbol:
el arbol de reduccion de M

Las ramas infinitas de este arbol son las sucesiones infinitas de reduccién
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Preliminarios (2/4)

Definicién (Términino fuertemente normalizante)

Un término M es fuertemente normalizante cuando
todas las sucesiones de reduccién a partir de M son finitas

4

Proposicion

Para todo término M, los siguientes enunciados son equivalentes:

(1) M es fuertemente normalizante

(2) Todos los reducidos de M son fuertemente normalizantes
(3) El arbol de reduccion de M es finito

N,

Demostracion. (1) < (2) Obvio, por contrarreciproco.

(1) = (3) Sigue del lema de Kénig, que expresa que un arbol con ramificacién finita
y sin ramas infinitas es finito.

(3) = (1) Obvio, pues un arbol finito no tiene ramas infinitas. O

<
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Preliminarios (3/4)

El conjunto SN de los términos fuertemente normalizantes también se
puede definir inductivamente mediante la Gnica regla:

M, €SN --- M, eSN J

TSN {M}....,M}=Red; (M)

Caso de base escondido: Red;(M) = @, es decir: M esta en forma normal

@ La definicion inductiva del conjunto SN permite activar el principio
de razonamiento por induccién (sobre la hipétesis M € SN) asi como el
mecanismo de definicién de funcién por recursién (sobre M € SN)

@ Ejemplo: Definicién de la funcién e : SN — IN:

e(M) = max (1+¢(M"))
M’ €Reds (M)

:= longitud de la maxima sucesién finita
de reduccién a partir de M

En particular: ¢(M)=0 < Redi(M)=@ < M es normal
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Preliminarios (4/4)

Proposicion (Propiedades de los términos SN)
Q@ \x.M € SN sii MeSN
Ademas: e(Ax. M) = eg(M)

Q@ xNy---N, € SN i Nl,...,NkGSN
Ademas: e(x Ny---Ni) = e(Np)+---+e(Nk)

© Si M € SN, entonces M’ € SN para todo subtérmino M’ C M.
Ademas: ¢(M') < ¢(M)

@ Si M[x := N] € SN, entonces M € SN.
Ademas: (M) < e(M[x := N])

Demostracion. Ejercicio.
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Una prueba ingenua... y falsa

Teorema (Normalizacién fuerte)

Si T M: A, entonces M es fuertemente normalizante

Demostracién. Por induccién sobre la derivacién de T = M : A (en el sistema a la
Curry), distinguiendo los casos en funcién de la dltima regla aplicada:

@ Variable. La derivacién esdelaforma Tk x:A con (x:A)er.

Obviamente x € SN. »
Mx:AFM:B
@ Abstraccién. La derivacién esde laforma THAx.M: A— B

Por (HI), tenemos M € SN, y por lo tanto Ax.M € SN.

C C
FTEM:A—-B TEN:A
@ Aplicacién. La derivacién es de la forma ' MN:B

Por (HI), tenemos M € SNy N € SN... pero esto no implica que MN € SN
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Términos reducibles de tipo A

La hipétesis de induccion (HI) “M € SN” es demasiado débil: no tiene
en cuenta el caso donde M esta aplicado

= Se necesita introducir una HI mas fuerte que depende del tipo

Definicién (Términos reducibles de tipo A)
© Un término M es reducible de tipo o (de base) cuando M € SN

@ Un término M es reducible de tipo A — B cuando para todo N:
N reducible de tipo A = MN reducible de tipo B

Dicho de otro modo, se asocia a cada tipo A un conjunto [A] de los
términos reducibles de tipo A, definido (por induccién sobre A) por:

[«] = SN

[[A — B]] = [[A]] — [[B]] (flecha de Kleene)
: {MeA : VYN e [A], MN € [B]}




roduccié i a la Church ... yalaCurry Normalizacién fuerte Extensiones
000000000000 00000000 00000000 00000000e00000000 000000000000 000

Candldatos de reducibilidad (1/5)

Para estudiar las propiedades de los conjuntos [A],
es cémodo introducir la siguiente nocién:

Definicién (Candidato de reducibilidad) [Girard 1969]

Un conjunto de términos C C A (posiblemente abiertos) €s un
candidato de reducibilidad cuando cumple los siguientes criterios:

(CR1) CCSN
(CR2) Si M e C, entonces Red;(M)C C

(CR3) Si un término M que no es una abstraccion es tal que
Red; (M) C C, entonces M e C

Intuicion:  (CR1) lo que queremos demostrar (normalizacién fuerte)
(CR2) = clausura por reduccién
(CR3) = criterio técnico de clausura por expansién
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Candldatos de reducibilidad (2/5)

Un candidato de reducibilidad C contiene todas las variables: x € C

Demostracion. Dada una variable x, se observa que x no es una abstraccién y
Red1(x) =@ C C. Por lo tanto x € C por (CR3). DJ

Lema 2 (El candidato SN)

SN es un candidato de reducibilidad

Demostracién. (CR1) SN C SN: obvio.
(CR2) M € SN implica Red; (M) C SN: obvio.
(CR3) Si M # X--- es tal que Redi1(M) C SN, entonces M € SN: obvio. O
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Candidatos de reducibilidad (3/5)

Lema 3 (Clausura por la flecha de Kleene)

Si C, D C A son candidatos de reducibilidad, entonces el conjunto
C—»D = {MecA : VYNeC, MN € D} también lo es

Demostracion. (CR1) Sea M € C — D. Cualquier variable x pertenece a C
por el Lema 1, entonces M x € D C SN por (CR1), y por lo tanto M € SN.
(CR2) Sean M€ C— D y M’ € Redi(M). Paratodo N € C, tenemos que
MN € D, y como MN = M’N, se deduce que M’N € D por (CR2).

Por lo tanto, tenemos que que M’ € C — D.

(CR3) Sea M distinto de una abstraccién tal que Red; (M) C C — D ().
Demostremos por induccién bien fundada sobre N € C (NSN) que MN € D. Para
ello, se supone que MN’ € D para todo N’ € Red1(N) (HI). Dado un reducido
R € Red1(MN), se observa (como M no es una abstraccién) que:

@ O bien R = M'N, con M’ € Red1(M), y por lo tanto R = M’N € D por (x).
@ O bien R = MN’, con N’ € Redy(N), y por lo tanto R = MN’ € D por (HI).

Entonces Red;(MN) C D, y como MN tampoco es una abstraccién, se deduce que
MN € D por (CR3). O
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Candldatos de reducibilidad (4/5)

Recordatorio: El conjunto [A] de los términos reducibles de tipo A
esta definido (por induccién sobre A) por:

[e] := SN

[A—B] = [A]—[B] (flecha de Kleene)
= {MeA : VYNel[A], MN € [B]}

Corolario

Para todo tipo A, el conjunto [A] es un candidato de reducibilidad

Demostracién. Por induccién sobre A, usando el Lema 2 (caso de un tipo atémico)
y el Lema 3 (caso de un tipo flecha). DJ




Introduccuon Sistema a la Church ... yalaCurry Normalizacién fuerte Extensiones
000000000000 00000000 00000000 000000000000 e0000 000000000000 000

Candidatos de reducibilidad (5/5)

Lema 4 (Clausura por expansion de cabeza)

En cualquier candidato de reducibilidad C:
Si M[x:=N]e€ C y N &SN, entonces (Ax.M)N e C

Demostracién. Primero, se observa que M[x := N] € C implica que M € SN.
Luego, se demuestra por induccién doble sobre M, N € SN que M[x:= N] € C
implica (Ax.M)N € C. Dados M, N € SN, se supone que:

(HI1) M’[x:= N] € C implica (Ax.M’')N € C para todo M’ € Red1(M).
(HI2) Mi[x := N’] € C implica (Ax.M)N’ € C para todo N’ € Red;(N).

Suponiendo ademas que M[x := N] € C, queremos demostrar que (Ax.M)N € C.
Dado un reducido R € Red;((Ax.M)N), se distinguen los siguientes casos:

® R = M[x:= N]. Tenemos que R = M[x := N] € C, por hipétesis.
R = (Ax.M’)N, con M’ € Red;(M). Como M][x:=N] > M'[x:=N] € C
por (CR2), se deduce que R = (Ax.M’)N € C por (HI1).
R = (Ax.M)N’, con N’ € Red;(N). Como M][x := N] >* M[x:=N']e C
por (CR2), se deduce que R = (Ax.M)N’ € C por (HI2).
Entonces Red;((Ax.M)N) C C. Se concluye que (Ax. M)N € C por (CR3). O
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Interpretacién de los contextos

@ Una sustitucion es un conjunto finito de la forma

o = {x1:=Ny,...,x, := N} (con x; Z x; si i #J)
Notaciones: dom(c) = {x1,...,xn}
o(x;) = N; (1<i<n)
FVU(o) == FV(N1y)U U FV(N,)

@ Se define la operacion (M, o) — M|o] por:

{a(x) si x € dom(o)

x[o] : .
X si no

(Ax.M)[o] = Ix.M]o] (si x ¢ FV(0))
(MN)[o] = MIo]N[o]

Definicién (Interpretacién de los contextos)

[ry = {o sustituciéon : dom(c) = dom(l') y
o(x) € [A] para todo (x : A) € F}
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Invariante de normalizacién (1/2)

Proposicién (Invariante de normalizacién)
Si x1:A1,...,xp,: A= M: A, entonces

M[xy := Ny,...,x, := N,] € [A]
para todos Nj € [A1], ..., N, € [A/]

O de modo mas sintético:

Proposicién (Invariante de normalizacién)

Si T M: A, entonces M[o] € [A] para todo o € [I]

Demostracion. Por induccién sobre la derivacién de ' M : A, distinguiendo los
casos en funcién de la altima regla aplicada:

@ Var La derivacién esdelaforma THx:A con(x:A)el
Sea o € [[]. Tenemos que x[o] = o(x) € [A], por def de [I]. (..r)




Introduccién Sistema a la Church ... yalaCurry Normalizacién fuerte Extensiones
[o]e] 000000000000 00000000 00000000 0000000000000 00e0 000000000000 000

Invariante de normalizacién (2/2)

Demostracién (continuacion y fin).

Mx:AFM:B
@ Lam La derivacionesdelaforma THAx.M: A— B

Sea o € [[]. S.p.d.g., se puede suponer que x ¢ dom(I") U FV(0o).
Dado N € [A], se define o}, := oU{x:=N} € [I,x:A].

Por HI, se deduce que M[oy] € [B], esdecir: M[o][x:=N] € [B].
Como N € [A] C SN, se deduce que (Ax.M[c])N € [B] por el Lema 4,
es decir (Ax. M)[c]N € [B]. Demostramos que (Ax.M)[c]N € [B]
para todo N € [A], es decir: (Ax.M)[o] € [A] — [B] = [A — B].

TEFM:A5B TEN:A
@ App La derivacién es de la forma ' MN: A

Sea o € [[]. Por HI (x 2), tenemos que M]o] € [A — B] = [A] — [B]
y N[o] € [A]. Por lo tanto: (MN)[o] = M[c]N][o] € [B].
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Teorema de normalizacién fuerte

Teorema (Normalizacién fuerte)

Si T M : A, entonces M es fuertemente normalizante

Demostracion. Escribamos ' = x5 : A1,...,xn: An.

Sea o :={x1:=x1,...,Xxn := xn} (“sustitucién identidad”). Por construccién,

tenemos que o € [[] pues x; € [A;] para todo i € [1..n], por el Lema 1. Por el

invariante de normalizacién, se deduce que M = M([o] € [A] C SN, por (CR1). [
i

Corolarios

En el calculo lambda simplemente tipado (a la Church o a la Curry):
© Todo término tipado tiene forma normal

@ Dos términos tipados (y de mismo tipo) son [3-convertibles
si y s6lo si tienen la misma forma normal

© La relacion M; = M, (entre términos de mismo tipo) es decidible




© Introduccion

© Sistema en el estilo de Church
© Sistema en el estilo de Curry
@ Teorema de normalizacion fuerte

© Extensiones
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Extensiones del calculo lambda simplemente tipado

En su forma primitiva, el calculo lambda simplemente tipado esta
basado sélo en la construccién de tipo A — B (tipo flecha)

@ También se puede extender con:

e productos A X B y sumas directas A+ B (véase mas adelante)

e booleanos, enteros naturales, listas, etc. (Sistema T de Gédel)

@ Mas generalmente, se puede enriquecer el tipado con:
e Polimorfismo, segundo orden (Sistema F de Girard)
e Tipos dependientes (Teoria de tipos de Martin-L&f)

e Todo lo anterior, mas: tipos inductivos generalizados, universos, etc.
(Calculo de construcciones inductivas de Coquand-Paulin, Sistema Coq)

@ En todos los sistemas mencionados, se mantienen las propiedades
fundamentales: confluencia, subject reduction y normalizacion fuerte
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Extension con tipos productos (1/2)

@ Se enriquece la sintaxis de A™ con:
Tipos AB = --- | AxB
Términos M,N == - | (M,N) | m(M) | m(M)

@ Nuevas reglas de reduccion:

m((M,N)) = M ma((M,N)) = N |

@ Nuevas reglas de tipado:

Fr=M: A r=N:B Fr'EM:AxB FT'EM:Ax B J

- (M,N):AxB FrEm(M):A  TFm(M:B

e Ejemplo:  \z**B . (my(2),m1(2)) : AxB—>BxA

@ Se mantienen las propiedades deseadas:
confluencia, subject reduction, normalizacién fuerte
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Extensién con tipos productos

@ Una construcciéon muy atil: el “let” destructurante:

let (x*,yBY=NinM =
(A2 (AxA . AyB M) 71 (2) ma(2)) N

donde z es una variable fresca

Extensiones
000@00000000000

(2/2)

@ Por construccién:
FUN) U (FUM) \ {x,y})

FV(let (x#,yB) = N in M)

@ Regla de reduccién deducida:

let <XA7}’B> = (N1, No) in M -t M[x := Ny, y := Np]

@ Regla de tipado (admisible):
Fr'=N:AxB MNx:Ay:BFM:C

[ let (x4 yBYy=NinM: C
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Extensién con tipos suma (1/2)

@ Se enriquece las sintaxis de A~ (a la Church) con:
Tipos AB = ... | A+B
Términos M,N == - | JBwm) | 45BMm)
| case N {t1(x1) — My | ta(x2) — Mo}

Obs.: FV(case N {Ll(Xl) — M1 | L2(X2) — Mz})
= FVN)U(FV(M1)\ {a}) U (FU(M2) \ {x2})

@ Nuevas reglas de reduccion:
case Ll (N) {Ll( ) — Ml | L2(X2) — MQ} - Ml[Xl 0= N]
case L2 ( ) {ta(x1) = My | o) = Mo} = Ma[xo := N]

@ Obs.: En el sistema a la Curry, remplazar LI.A‘B(M) por ¢;(M) (i=1,2)
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Extensién con tipos suma (2/2)

Nuevas reglas de tipado:

Fr’=EM: A r'=M:B
T BM:A+B  THGLEM):A+B

Fr'=N:A+B Mixg :AE M : C Mx:BFM,:C
F}—caseN{Ll(xl)»—>M1|L2(X2)|—>M2}:C

@ Obs.: En el sistema a la Curry, remplazar L?’B(M) por ¢;(M) (i=1,2)

Ejemplo:  A\z*tB case z {11(x) = 157 (x) | t2a(y) = £ (y)}
A+B—B+A

o Otra vez, se mantienen las propiedades deseadas:
confluencia, subject reduction, normalizacién fuerte
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Sistema A7 sintaxis

Definicién (Tipos)

Tipos AB = a | AoB | AxB | A+B

Definicién (Términos)
Términos M,N = x | M:A.M | MN
| (M N) | (M) | (M)
| at (M) | (M)
| case N {t1(x1) = My | ta(x2) — Mo}

Obs.: En el sistema a la Curry, eliminar las anotaciones A, B en }, t1, t2

Ejercicio:
@ Definir los conjuntos FV(M) N BV(M) (variables libres y ligadas)

@ Definir la a-conversién y la sustitucidn
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Sistema A7 reduccién

Relacién = de reduccién definida por las 5 reglas:
(Ax:A.M)N = M[x:= N]
n((MN) = M
m((M,N)) >~ N
case Ll B(M) {u1(x) = My | L(x) = My} = Mi[x = N]
case 155 (M) {11(x1) = My | 12(x2) = Mo} = Ma[xz := N]

+ clausura contextual

Ejercicio: Demostrar la confluencia de >

Dos estrategias posibles:

@ Definir una reduccién paralela M = M’ (entre > y >=*) que tenga en cuenta
las 5 reglas, y demostrar que cumple la propiedad del diamante

@ Demostrar que las 5 reglas son confluentes (cada una individualmente), y luego
que conmutan de a dos (se estudiaran los correspondientes diagramas)
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Sistema A" tipado (1/2)
Contextos NA = x31:A1,...,%:: Ap (xi Zx;si i #J)

Definicion (Relacion de tipado ' = M : A)

| GeA)er Nx:AFM:B
TEx:A VS TF A M:A>B
[FM:A—>B TFN:A
- MN:B
FrEM:A TEN:B TFM:AxB THM:AxB
[ (M,N):AxB FTEm(M):A T Fm(M):B
F-M:A [-M:B

FreBM): A+B  THBSEM): A+B

Fr'EN:A+B Mxg:AFM;: C Mx:BEFM,:C
I case N {t1(x1) — My | ta(x2) — Mo} : C




Introduccién Sistema a la Church ... yalaCurry Normalizacién fuerte Extensiones
[o]e] 000000000000 00000000 00000000 00000000000 000000 000000000 e00000

Sistema A" tipado (2/2)

Ejercicio:
(1) Demostrar los lemas basicos (variables libres, sustitutividad, debilitamiento)

(

Enunciar y demostrar el lema de inversién:

2)

@ Si 'Fx:C, entonces ...

© Si TEAx:A.M: C, entonces ...

© Si T MN : C, entonces ...

O Si T+ (M,N):C, entonces ...

@ Si I'Fm(M): C, entonces ...

O Si TF m(M): C, entonces ...

@ Si T "®(M): C, entonces ...

O Si T+ 5B(M): C, entonces ...

O Si 'k case N {u1(x1) = M1 | t2(x2) — M2} : C, entonces ...

(3) Deducir la propiedad de subject reduction
(4) Mismas preguntas para el sistema a la Curry (+ funcién de borrado)
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Sistema A" candidatos de reducibilidad (1/3)

@ SN = conjunto de los términos fuertemente normalizantes (Curry)

@ Los términos en forma candnica (o constructores) son los siguientes:
Ax. M (M, N) 11 (M) t2(M)

Un término neutro es un término que no esta en forma candnica

Definicién (Candidato de reducibilidad)

Un conjunto de términos C C A (posiblemente abiertos) €s un
candidato de reducibilidad cuando cumple los siguientes criterios:

(CR1) CCSN
(CR2) Si M€ C, entonces Red;(M) C C

(CR3) Si un término neutro M es tal que
Red;(M) C C, entonces M e C
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Sistema A" candidatos de reducibilidad (2/3)

Un candidato de reducibilidad C contiene todas las variables: x € C

Demostracion. Ejercicio.

Lema (Propiedades de expansion)
Dado un candidato de reducibilidad C:

Q@ Si Mix:=N]eC y NeSN, entonces (Ax.M)N e C
@ Si MeC y NeSN, entonces m1((M,N)) e C

@ Si MeSN y N e C, entonces mp({M,N)) e C
(%]

Si Mi[x; :=N]e€ C y N,M, € SN, entonces
case Ll(N) {Ll(Xl) — My | L2(X2) — M2} e C

Q@ Si Ma[xo:=N]e C y N,M; € SN, entonces
case 1,2(/\/) {Ll(Xl) — M1 | L2(X2) — Mz} e C

Demostracion. Ejercicio.
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Sistema A" candidatos de reducibilidad (3/3)

Lema (El candidato SN)
SN es un candidato de reducibilidad

Demostracion. Ejercicio.

Definicion (Flecha, producto y suma de conjuntos de términos)

Dados conjuntos de términos C, D C A, se definen:

C—»D = {MeA :VYNeC, MN € D}
CxD = {MeA : m(M)eC A m(M)e D}
C+D = {MeA : VM (M>=*uu(M) = M eC)A

YM' (M =* 15(M') = M’ € D) }

Lema (Clausura de los candidatos por —, X y +)

Si C, D C A son candidatos de reducibilidad, entonces
los conjuntos C — D, C x D'y C + D también lo son

Demostracion. Ejercicio.
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Sistema A" interpretacién de los tipos y contextos

Definicion (Interpretacion de los tipos)

A cada tipo A se asocia el candidato de reducibilidad [A] definido por:
[«] := SN
[A—B] = [A]— [B]
[AxB] = [A]x[8]
[A+B] = [A]l+][8]

Definicién (Interpretacién de los contextos)

[r] = {0’ sustituciéon : dom(c) = dom(l') y
o(x) € [A] para todo (x : A) € F}
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Sistema A7 normalizacién fuerte

Proposicién (Invariante de normalizacién)

Si T M: A, entonces M[o] € [A] para todo o € [I]

Demostracion. Ejercicio.

Teorema (Normalizacién fuerte)

Si T M: A, entonces M es fuertemente normalizante

Demostracion. Ejercicio.

Corolarios

En el sistema A™>*>" (a la Church o a la Curry):
© Todo término tipado tiene forma normal

© Dos términos tipados (y de mismo tipo) son convertibles
si y sélo si tienen la misma forma normal

© La relacion M; = M, (entre términos de mismo tipo) es decidible




	Introducción
	

	Sistema en el estilo de Church
	

	Sistema en el estilo de Curry
	

	Teorema de normalización fuerte
	

	Extensiones
	


