
Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Introducción a la correspondencia entre pruebas y programas:

La teoría de tipos de Martin-Löf

Alexandre Miquel

mayo de 2021

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Interpretación de Brouwer-Heyting-Kolmogorov

Filosofía del constructivismo: El significado de una proposición A es
el conjunto Φ(A) de las “evidencias” (sentido intuitivo) que A se cumple:

Φ(A ∧B) = Φ(A)× Φ(B) (Producto cartesiano)

Φ(A ∨B) = Φ(A) + Φ(B) (Suma directa)

Φ(A⇒ B) = Φ(A)→ Φ(B) (funciones “computables”)

Φ(⊥) = ∅ (Conjunto vacío)

Φ(>) = {•} (Conjunto unitario)

Φ(∀x :D . A(x)) =
∏
x∈D

Φ(A(x)) (Producto dependiente)

Φ(∃x :D . A(x)) =
∑
x∈D

Φ(A(x)) (Suma dependiente)

Ejemplo típico: ∀x : Nat . ∃y : Nat . A(x, y)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Historia (1/3)

1969 W. A. Howard: The formulae-as-types notion of construction.
(Apuntes privados con difusión restringida)

1971 J.-Y. Girard: Une extension de l’interprétation fonctionnelle de
Gödel à l’analyse et son application à l’élimination des coupures
dans l’analyse et la théorie des types (Sistema F)

1971 P. Martin-Löf: A theory of types (Sistema «Type : Type»)

1972 J.-Y. Girard: Interprétation fonctionnelle et élimination des
coupures de l’arithmétique d’ordre supérieur (Sistema Fω)

1975 P. Martin-Löf: An Intuitionistic Theory of Types: Predicative Part
(Teoría de tipos intensional)

1984 P. Martin-Löf: Intuitionistic Type Theory
(Teoría de tipos extensional)

1985 T. Coquand & G. Huet: Constructions: A Higher Order Proof
System for Mechanizing Mathematics (Cálculo de construcciones)

1989 C. Paulin: Le calcul des constructions inductives (CIC, Coq)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Historia (2/3)

P. Martin-Löf: A Theory of Types (1971):

In what follows, mathematical objects will be regarded as our own constructions.
Every mathematical object is of a certain kind or type which is uniquely associated
with the object in question. A type is defined by prescribing how we are allowed to
construct objects of that type. The types themselves are mathematical objects,
namely, those objects whose type is the type of types. [. . .]

A proposition is defined by prescribing what we have to do in order to prove it. For
example,

971 is a non prime number

is a proposition which we prove by exhibiting two natural numbers greater than one
and a computation which shows that their product equals 971. The similarity between
the notion of proposition and the notion of type described above is not accidental.
Indeed, a proposition may always be regarded as a type, namely, the type of proofs of
that proposition, and, conversely, a type always determines a proposition, namely, the
proposition which we prove by exhibiting an object of that type. This explains why I
shall treat the notion of type and the notion of proposition as one and the same
notion, thereby taking seriously the analogy between types [...] and propositions
discovered by [Curry and Feys 1958] in the case of the positive implicational calculus
and extended to Heyting arithmetic by [Howard 1969].

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Historia (3/3)

P. Martin-Löf: A Theory of Types (1971):

En lo siguiente, los objetos matemáticos serán considerados como nuestras propias
construcciones. Cada objeto matemático es de cierto género o tipo, asociado de modo
único con dicho objeto. Un tipo está definido prescribiendo cómo uno puede construir
objetos de ese tipo. Los tipos en sí mismos son objetos matemáticos, a saber, los
objetos cuyo tipo es el tipo de los tipos. [. . .]

Una proposición está definida prescribiendo cómo uno puede demostrarla. Por ejemplo,

971 es un número no primo

es una proposición que se demuestra exhibiendo dos enteros naturales mayores que
uno y una computación que muestra que su producto vale 971. La semejanza entre la
noción de proposición y la noción de tipo descritas previamente no es accidental. En
efecto, una proposición siempre puede ser vista como un tipo, es decir, el tipo de las
demostraciones de esta proposición, y recíprocamente, un tipo siempre determina una
proposición, es decir: la proposición que se demuestra exhibiendo un objeto de este
tipo. Esto explica por qué voy a tratar la noción de tipo y la noción de proposición
como una misma noción, considerando seriamente la analogía entre los tipos [. . .] y
las proposiciones descubierta por [Curry and Feys 1958] en el caso del cálculo
implicacional positivo y extendida a la Aritmética de Heyting por [Howard 1969].

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Ideas fundamentales de la teoría de tipos

Tipo = «métodos» que permiten construir objetos de este tipo

Proposición = «métodos» que permiten demostrar esta proposición

Por lo tanto: Proposición = Tipo (identificación completa)

En particular: A⇒ B = A→ B, A ∧B = A×B (etc.)

Demostración = término de prueba

Cada objeto matemático tiene un tipo (único)

Los tipos también tienen sus propios tipos:

Set, Type, ... = tipos de los tipos = universos

(se necesita distinguir varios níveles de tipos para evitar las paradojas)

Una nueva construcción: el producto dependiente

Πx :A .B(x) = ∀x :A .B(x) (véase más adelante)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Tipos no dependientes...

Hasta ahora, sólo vimos tipos de base (Unit, Bool, Nat) o tipos
construidos a partir de otros tipos (A→ B, A×B, A+B)

Ejemplo: El tipo de las listas

Tipos A,B ::= · · · | List(A)

[] : List(A) (para todo tipo A)

[true; true; false; true] : List(Bool)

[18; 42; 7; 28; 0; 13] : List(Nat)

[succ; (λx : Nat . 0); plus 42] : List(Nat→ Nat)

Sea la función make_listA n a := [a; . . . ; a]︸ ︷︷ ︸
n veces

Tenemos que: make_listA : Nat→ A→ List(A)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

... y tipos dependientes

Tipo dependiente = tipo que depende de un término (de cierto tipo)

Ejemplo: El tipo de las listas dependientes (= n-uplas)

Tipos A,B ::= · · · | Vect(A, N) (con N : Nat)

[] : Vect(A, 0) (para todo tipo A)

[true; true; false; true] : Vect(Bool, 4)

[18; 42; 7; 28; 0; 13] : Vect(Nat, 6)

[succ; (λx : Nat . 0); plus 42] : Vect(Nat→ Nat, 3)

Sea la función make_vectA n a := [a; . . . ; a]︸ ︷︷ ︸
n veces

Tenemos que: make_vectA : Πn : Nat . A→ Vect(A, n)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

El producto dependiente

El producto dependiente

Tipos A,B ::= · · · | Πx :A .B (liga la variable x en B)

FV (Πx :A .B) = FV (A) ∪ (FV (B) \ {x})

Πx :A .Bx = tipo de las funciones f que asocian
a cada objeto a : A un objeto f a : Ba

= producto cartesiano generalizado
∏
x∈A

Bx

Tipo flecha A→ B = caso particular del producto dependiente:

A→ B ≡ Πx :A .B cuando x /∈ FV (B)

Ejemplo: make_vectA : Πn : Nat . A→ Vect(A, n)
≡

: Πn : Nat .Πx :A . Vect(A, n)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Introducción y eliminación del producto dependiente

Tipado de la abstracción:

Γ, x : A ` M : B

Γ ` λx :A .M :

A→ B ?

Πx :A .B

Tipado de la aplicación:

Γ ` M : Πx :A .B Γ ` N : A
Γ ` M N : B

?

[x := N]

Recordatorio: A→ B ≡ Πx :A .B cuando x /∈ FV (B)

Correspondencia de Curry-Howard

∀x :A .B(x) ≡ Πx :A .B(x)

A⇒ B ≡ A→ B (caso no dependiente)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Ejemplo

Concatenación de listas (no dependientes):

concatA : List(A)→ List(A)→ List(A)

Concatenación de vectores (= listas dependientes):

vconcatA :
Πn : Nat . Vect(A,n)→ Πm : Nat . Vect(A,m)→ Vect(A,n+m)

(función con 4 argumentos)

Dados vectores v : Vect(A, 3) y w : Vect(A, 4), tenemos que:

vconcatA 3 : Vect(A, 3)→ Πm : Nat . Vect(A,m)→ Vect(A, 3 +m)

vconcatA 3 v : Πm : Nat . Vect(A,m)→ Vect(A, 3 +m)

vconcatA 3 v 4 : Vect(A, 4)→ Vect(A, 3 + 4)

vconcatA 3 v 4 w : Vect(A, 3 + 4) ∼= Vect(A, 7)

Necesidad de una regla de conversión:
Γ ` M : A
Γ ` M : A′

si A∼=A′

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Los universos (Set y Type)

¿ Cómo impedir los tipos mal formados, por ej. Vect(A, 3 + true) ?

Solución: tipar los tipos ⇒ el universo Set

Nat : Set

Nat→ Nat : Set

Vect Nat 7 : Set (= Vect(Nat, 7))
Vect :

?

Set→ Nat→ Set

Set→ Nat→ Set :

?Set ?

Type (para evitar las paradojas)

Dos especies de tipos:

Los tipos pequeños, de tipo Set:
Nat, Nat→ Nat, Vect 4, Πx : Nat . Vectx

Los tipos grandes (= géneros), de tipo Type:
Set, Nat→ Set, Πx : Nat . Vect(x+ 3)→ Set

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Plan

1 Introducción

2 Logical framework

3 Definiciones inductivas

4 Ejemplo y observaciones

5 Normalización fuerte

6 Algunas extensiones

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Plan

1 Introducción

2 Logical framework

3 Definiciones inductivas

4 Ejemplo y observaciones

5 Normalización fuerte

6 Algunas extensiones

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

El marco lógico y sus extensiones

Múltiples versiones de la teoría de tipos de Martin-Löf (MLTT).
Todas están basadas en un marco lógico (logical framework), que
define el cálculo lambda subyacente y sus reglas de tipado

El marco lógico cumple las propiedades fundamentales:
confluencia + β-subject reduction + normalización fuerte

Luego se desarrolla el formalismo (la «teoría de tipos») añadiendo
constantes con sus propias reglas de reducción y de tipado

¡Cuidado! Se necesita verificar que cada extensión del formalismo mantiene las
3 propiedades fundamentales: confluencia + subject reduction + norm. fuerte

Aquí consideramos una presentación en el estilo de los sistemas de
tipos puros (PTS), con una única categoría sintáctica de términos

En este marco, un tipo es un término de tipo Set o Type:

término : tipo : universo (= Set, Type)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Sintaxis de MLTT

Definición (Términos y tipos)

M,N,A,B ::= x | λx :A .M | M N (cálculo λ a la Church)
| Set | Type (universo, o suerte)
| Πx :A .B (producto dependiente)
| c (constantes)

Notaciones: FV (M) (variables libres), M [x := N] (sustitución)

En particular: FV (λx :A .M) = FV (A) ∪ (FV (M) \ {x})
FV (Πx :A .B) = FV (A) ∪ (FV (B) \ {x})

Como siempre, se trabaja a menos de α-conversión

Ejercicio: (1) Definir la operación de sustitución M [x := N]
(2) Enunciar y demostrar el correspondiente lema de sustitución

Recordatorio: A→ B :≡ Πx :A .B cuando x /∈ FV (B)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Reducción

El marco lógico sólo viene con la regla de β-reducción:

(β) (λx :A .M)N � M [x := N]

+ clausura contextual

Luego se extiende el sistema con constantes (notación: c, d, etc.)
acompañadas con su tipo y sus reglas de reducción: las δ-reglas

Las δ-reglas son en general de la forma:
d · · · (c1 · · ·) · · · � · · ·

...
...

d · · · (cn · · ·) · · · � · · ·

(«definición por casos») donde:
d es un destructor que opera sobre cierto tipo inductivo
c1, . . . , cn son los constructores de dicho tipo inductivo

En lo siguiente, sólo consideraremos reglas que mantienen las 3
propiedades fundamentales: confluencia + S.R. + norm. fuerte

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Tipado (1/2)

Sistema de tipado parametrizado por:

Una función c 7→ ty(c) que asocia a cada constante c su tipo ty(c)
(a priori, ty(c) es un término cerrado cualquiera)

La relación de conversión M ∼= M ′ inducida por la regla de
β-reducción y las δ-reglas asociadas a las constantes del sistema

Contexto de tipado = lista ordenada de declaraciones de la forma

Γ ≡ x1 : A1, . . . , xn : An

donde
{
x1, . . . , xn son variables distintas a pares
A1, . . . , An son términos cualesquiera

Sistema de tipado basado en dos juicios:

Un juicio de buena formación de contexto
` Γ context «El contexto Γ está bien formado»

Un juicio de tipado
Γ ` M : A «En el contexto Γ, el término M tiene tipo A»

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Tipado (2/2)

Reglas del juicio ` Γ context (buena formación de contexto)

` ∅ context
Γ ` A : s

` Γ, x : A context
si x/∈dom(Γ), s∈{Set,Type}

Reglas del juicio Γ ` M : A (tipado)

` Γ context
Γ ` x : A

si (x:A)∈Γ
` Γ context
Γ ` c : ty(c)

` Γ context
Γ ` Set : Type

Γ, x : A ` M : B

Γ ` λx :A .M : Πx :A .B
Γ ` M : Πx :A .B Γ ` N : A

Γ ` M N : B[x := N]

Γ ` A : s1 Γ, x : A ` B : s2

Γ ` Πx :A .B : max(s1, s2)
si s1,s2∈{Set,Type}

Γ ` M : A Γ ` A′ : s

Γ ` M : A′
si A∼=A′, s∈{Set,Type}

(Con la convención Set < Type)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Ejemplo de derivación

Dadas constantes Nat : Set, 0 : Nat, S : Nat→ Nat:

` ∅ context
∅ ` Set : Type

` X : Set context
X : Set ` X : Set

` X : Set, x : X context
X : Set, x : X ` x : X

X : Set ` λx :X . x : X → X

∅ ` λX : Set . λx :X . x : Πx : Set . X → X

` ∅ context
∅ ` Nat : Set

` ∅ context
∅ ` Nat : Set

` x : Nat context
x : Nat ` Nat : Set

∅ ` Nat→ Nat : Set

∅ ` (λX : Set . λx :X . x) (Nat→ Nat) : (Nat→ Nat)→ Nat→ Nat
` ∅ context

∅ ` S : Nat→ Nat

∅ ` (λX : Set . λx :X . x) (Nat→ Nat) S : Nat→ Nat

Las derivaciones de la teoría de tipos son en general muy largas, debido a
la necesidad de justificar la buena formación del contexto para cada
variable x, cada constante c, y cada ocurrencia del universo Set

Por suerte, cuando el sistema es confluente y normalizante, la relación
Γ ` M : A es decidible: no se necesita mantener las derivaciones

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Ejemplos: identidad monomórfica y polimórfica

Dadas constantes Nat : Set, 0 : Nat, S : Nat→ Nat, tenemos que:

` λx : Nat . x : Nat→ Nat

` Nat→ Nat : Set (tipo pequeño)

` λx : Nat→ Nat . x : (Nat→ Nat)→ Nat→ Nat

` (Nat→ Nat)→ Nat→ Nat : Set (tipo pequeño)

` λX : Set . λx :X .x : ΠX : Set . X → X

` ΠX : Set . X → X : Type (tipo grande)

` (λX : Set . λx :X .x) Nat : Nat→ Nat

` (λX : Set . λx :X .x) (Nat→ Nat) : (Nat→ Nat)→ Nat→ Nat

Pero (λX : Set . λx :X .x) (ΠX :Set . X → X) está mal tipado

⇒ En la teoría de tipos de Martin-Löf, el polimorfismo es predicativo

` λf : (ΠX :Set . X → X) . f : (ΠX :Set . X → X)→ (ΠX :Set . X → X)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Ejemplos: calculando con los tipos

En la teoría de tipos de Martin-Löf, los tipos son términos particulares
⇒ también se puede calcular con los tipos:

Sea idSet :≡ λX : Set . X : Set→ Set

Tenemos que idSet Nat (: Set) � Nat
(suponiendo Nat : Set)

Sea arrow :≡ λX, Y :Set . X → Y : Set→ Set→ Set

Tenemos que arrow Nat Bool (: Set) �2 Nat→ Bool
(suponiendo Nat, Bool : Set)

Más generalmente, sea: marrow : Nat→ Set→ Set→ Set

con las δ-reglas: marrow 0 A B � B
marrow (S n) A B � A→ marrow n A B

Para todos A,B : Set y n ∈ N, tenemos que:

marrow (Sn 0) A B �∗ A→ · · · → A︸ ︷︷ ︸
n

→ B

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Ejemplo con vectores (= listas dependientes)

Sean las constantes
Nat : Set
0 : Nat
S : Nat→ Nat (Notación: 1 :≡ S 0, 2 :≡ S 1, etc.)
plus : Nat→ Nat→ Nat

Vect : Set→ Nat→ Set
vnil : ΠA :Set . Vect A 0
vcons : ΠA :Set .Πn : Nat . A→ Vect A n→ Vect A (S n)

vconcat : ΠA :Set .Πn : Nat . Vect A n→
Πm : Nat . Vect A m→ Vect A (plus n m)

con las δ-reglas:
plus 0 m � m

plus (S n) m � S (plus n m)

vconcat A 0 (vnil A) m v � v
vconcat A (S n) (vcons A n u) m v � vcons A (plus n m) (vconcat n u m v)

Dados A : Set, u : Vect A 3, v : Vect A 4, tenemos que:

vconcat A 3 u 4 v : Vect A 7 (por conversión)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Propiedades básicas (1/3)

Notación: Γ′ v Γ ≡ Γ′ es un prefijo de Γ

Recordatorio: Las declaraciones de un contexto Γ son ordenadas

Lema (Buena formación)
1 Si Γ ` M : A, entonces ` Γ context
2 Si ` Γ context, entonces ` Γ′ context para todo Γ′ v Γ

Demostración. Más generalmente, se demuestra por inducción sobre el tamaño de
las derivaciones involucradas que:

1 Toda derivación de Γ ` M : A contiene una subderivación de ` Γ context
2 Toda derivación de ` Γ context contiene una subderivación de ` Γ′ context

para cada prefijo Γ′ v Γ

Dicho de otro modo:
1 El contexto de un juicio de tipado derivable siempre está bien formado
2 Todo prefijo de un contexto bien formado también está bien formado

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Propiedades básicas (2/3)

Lema (Variables libres)
1 Si ` x1 : A1, . . . , xn : An context, entonces

FV (Ai) ⊆ {x1, . . . , xi−1} para todo i ∈ [1..n]

2 Si x1 : A1, . . . , xn : An ` M : A, entonces
FV (Ai) ⊆ {x1, . . . , xi−1} para todo i ∈ [1..n]
FV (M) ⊆ {x1, . . . , xn} y FV (A) ⊆ {x1, . . . , xn}

Demostración. Por inducción mutua sobre las derivaciones involucradas.

Dicho de otro modo, los juicios de tipado derivables son de la forma:

x1 : A1,
x2 : A2(x1),
x3 : A3(x1, x2),
...
xn : An(x1, . . . , xn−1)
` M(x1, . . . , xn) : A(x1, . . . , xn)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Propiedades básicas (3/3)

Recordatorio: Dados contextos Γ,Γ′, se escribe Γ ⊆ Γ′ cuando
(x : A) ∈ Γ implica (x : A) ∈ Γ′ para toda declaración (x : A)

Lema (Debilitamiento)

Si Γ ` M : A, Γ ⊆ Γ′ y ` Γ′ context, entonces Γ′ ` M : A

Demostración. Por inducción sobre la derivación de Γ ` M : A.

Lema (Sustitutividad)
1 Si ` Γ, x : A,Γ′ context y Γ ` N : A,

entonces ` Γ,Γ′[x := N] context
2 Si Γ, x : A,Γ′ ` M : B y Γ ` N : A,

entonces Γ,Γ′[x := N] ` M [x := N] : B[x := N]

Demostración. Por inducción mutua sobre las derivaciones de los juicios
` Γ, x : A,Γ′ context y Γ, x : A,Γ′ ` M : B, usando la propiedad de
debilitamiento para tratar el caso donde M ≡ x

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

El lema de inversión y sus consecuencias (1/2)

Lema de inversión

Γ ` x : C ⇒ ∃A
{

(x : A) ∈ Γ
C ∼= A

Γ ` c : C ⇒ C ∼= ty(c)

Γ ` Set : C ⇒ C ≡ Type

Γ ` λx :A .M : C
(con x /∈ dom(Γ))

⇒ ∃B
{

Γ, x : A ` M : B
C ∼= Πx :A .B

Γ ` M N : C ⇒ ∃A,B


Γ ` M : Πx :A .B
Γ ` N : A
C ∼= B[x := N]

Γ ` Πx :A .B : C
(con x /∈ dom(Γ))

⇒ ∃s1, s2


Γ ` A : s1

Γ, x : A ` B : s2

C ∼= max(s1, s2)

Demostración. Por inducción sobre la derivación.

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

El lema de inversión y sus consecuencias (2/2)

Si la reducción (β + δ-reglas) es confluente, entonces:

Corolario (Unicidad del tipo)

Si Γ ` M : A y Γ ` M : A′, entonces A ∼= A′

Demostración. Por inducción sobre M , usando el lema de inversión en cada etapa,
así como la confluencia de la reducción en el caso donde M es una aplicación.

Ejercicio: ¿Por qué se necesita la confluencia?

Corolario (β-subject reduction)

Si Γ ` M : A y M �β M ′, entonces Γ ` M ′ : A

Demostración: Ejercicio.

Obs.: Para demostrar la propiedad de subject reduction completa,
se hace un razonamiento análogo para cada δ-regla M �M ′
(usando de vuelta el lema de inversión)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Tipos de los tipos

Hasta ahora, no supusimos nada sobre la función c 7→ ty(c)
que parametriza el sistema de tipado

A partir de ahora, se supone que para cada constante c, tenemos
que ∅ ` ty(c) : s para algún s ∈ {Set,Type}
(Esto implica en particular que ty(c) es un tipo cerrado)

Lema (Tipo de los tipos)

Bajo la hipótesis anterior, si Γ ` M : A, entonces:
o bien A ≡ Type

o bien Γ ` A : s para algún s ∈ {Set,Type}

Demostración. Por inducción sobre la derivación de Γ ` M : A, usando el lema de
inversión en el caso de la regla de tipado la aplicación.

Ejercicio: Detallar todos los casos, y en particular el caso de la aplicación

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Verificación e inferencia de tipo (1/4)

Se consideran los siguientes tres problemas:

1 Verificación de contexto:
Dado Γ, determinar si el juicio ` Γ context es derivable o no

2 Verificación de tipo:
Dados Γ, M , A, determinar si el juicio Γ ` M : A es derivable o no

3 Inferencia de tipo:
Dados Γ y M , determinar si existe A tal que Γ ` M : A
(y devolver tal tipo A cuando existe)

Teorema
Si la βδ-reducción es confluente, y si el sistema es fuertemente
normalizante, entonces los tres problemas anteriores son decidibles

La complejidad teórica de los correspondientes algoritmos es la del
test de conversión A ∼= A′ (decidible si confluencia + norm. fuerte)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Verificación e inferencia de tipo (2/4)

A partir de:
la función de normalización M 7→ ↓M
el test de conversión M1

∼= M2 := ↓M1 ≡ ↓M2

Se implementan 4 funciones (mutuamente recursivas):

InferType(Γ, M) : calcular A (si existe)
tal que Γ ` M : A,
bajo la hipótesis que ` Γ context

InferSort(Γ, A) : calcular s ∈ {Set,Type} (si existe)
tal que Γ ` A : s,
bajo la hipótesis que ` Γ context

CheckType(Γ, M, A) : verificar si Γ ` M : A,
bajo la hipótesis que ` Γ context

CheckCtx(Γ) : verificar si ` Γ context

Obs.: Por Curry-Howard, CheckType también ¡verifica las pruebas!

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Verificación e inferencia de tipo (3/4)

InferType(Γ, M) :=

En función de la forma del término M :

• M ≡ x: Si (x : A) ∈ Γ para algún A: devolver A
si no: devolver “no tipable”

• M ≡ c: Devolver ty(c)

• M ≡ Set: Devolver Type

• M ≡ Type: Devolver “no tipable”

• M ≡ λx :A .M1: Sea s := InferSort(Γ, A) (cuando existe)
Sea B := InferType((Γ, x : A), M1) (cuando existe)
Si s,B existen: devolver Πx :A .B;
Si no: devolver “no tipable”

• M ≡M1 M2: Sea A1 := InferType(Γ, M1) (cuando existe)
Sea A2 := InferType(Γ, M2) (cuando existe)
Si A1, A2 existen y A1

∼= Πx :A2 . B
para algún B: devolver B[x := M2];

Si no: devolver “no tipable”

• M ≡ Πx :A .B: Sea s1 := InferSort(Γ, A) (cuando existe)
Sea s2 := InferSort((Γ, x : A), B) (cuando existe)
Si s1, s2 existen: devolver max(s1, s2)
Si no: devolver “no tipable”

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Verificación e inferencia de tipo (4/4)

InferSort(Γ, A) :=

Sea s := ↓InferType(Γ, A) (cuando existe)
Si s existe y s ∈ {Set,Type}: devolver s
Si no: devolver “no es un tipo”

CheckType(Γ, M, A) :=

Sea A′ := InferType(Γ, M) (cuando existe)
Sea s := InferSort(Γ, A) (cuando existe)
Si (A′ existe y A′ ≡ A ≡ Type) o

(A′, s existen y A′ ∼= A): devolver “derivable”;
Si no: devolver “no derivable”

CheckCtx(Γ) :=

En función de la forma del contexto Γ:

• Γ ≡ ∅: devolver “bien formado”

• Γ ≡ Γ0, x : A: Si CheckCtx(Γ0) y x /∈ dom(Γ0):
Sea s := InferSort(Γ0, A) (cuando existe)
Si s existe: devolver “bien formado”
Si no: devolver “mal formado”

Si no: devolver “mal formado”

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Plan

1 Introducción

2 Logical framework

3 Definiciones inductivas

4 Ejemplo y observaciones

5 Normalización fuerte

6 Algunas extensiones

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Añadiendo constantes

Tres especies de constantes:

Constantes de (familias de) tipos (Nat, List, Vect)

Constructores (0, S, nil, cons)

Destructores (if, nat_rec, list_rec)

Cada destructor d viene con δ-reglas de la forma

d · · · (c1 · · ·) · · · � · · ·
d · · · (c2 · · ·) · · · � · · ·

...
...

d · · · (cn · · ·) · · · � · · ·

donde c1, . . . , cn son los constructores del tipo inductivo
destruido por d

Requísito: Mantener los tres invariantes:

Confluencia + βδ-Subject reduction + Norm. fuerte

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

El tipo de los enteros naturales

Nat : Set

0 : Nat
S : Nat→ Nat

nat_elim : ΠX :Set . X → (Nat→ X → X)→ Nat→ X

(nat_elim = recursor del sistema T)

δ-reglas asociadas

nat_elimX x0 f 0 � x0

nat_elimX x0 f (Sn) � f n (nat_elimX x0 f n)

nat_elim permite implementar las funciones usuales:

plus :≡ λn,m : Nat . nat_elim Nat m (λ_, z : Nat . S z) n

mult :≡ λn,m . Nat nat_elim Nat 0 (λ_, z : Nat . z +m) n

pred :≡ nat_elim Nat 0 (λz,_ : Nat . z)

Pregunta: ¿Cómo demostrar las propiedades de estas funciones?

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

El esquema de eliminación dependiente

nat_elim : ΠX :Set . X → (Nat→ X → X)→ Nat→ X

X 0 −→
f 0

X 1 −→
f 1

X 2 −→
f 2

· · · −→
f (n−1)

X n
x0 xn

X

p

:

Set

Nat→ Set

(p : Nat)

x0 : X 0
f

p

:

X → XX p→ X (S p)

Πp : Nat . X p→ X (S p)

(p : Nat)

xn : X n

Recursor dependiente

nat_rec : ΠX : Nat→ Set .
X 0 → (Πp : Nat . X p→ X (S p)) → Πn : Nat . X n

= Principio de inducción (Curry-Howard)
nat_rec tiene las mismas δ-reglas que nat_elim

nat_elim se puede implementar a partir de nat_rec

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Los enteros naturales, de vuelta

Nat : Set

0 : Nat
S : Nat→ Nat

nat_rec : ΠX : Nat→ Set .
X 0→ (Πp : Nat . X p→ X(S p))→ Πn : Nat . X n

δ-reglas asociadas

nat_recX x0 f 0 � x0

nat_recX x0 f (Sn) � f n (nat_recX x0 f n)

Versión no dependiente de nat_rec:

nat_elim : ΠX :Set . X → (Nat→ X → X)→ Nat→ X
:≡ λX :Set . nat_rec (λ_ : Nat . X)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

El tipo de los booleanos

Bool : Set

true : Bool
false : Bool

bool_rec : ΠX : Bool→ Set .
X true→ X false→ Πb : Bool . X b

δ-reglas asociadas

bool_recX xy true � x
bool_recX xy false � y

Versión no dependiente:

if : ΠX :Set . Bool→ X → X → X
:≡ λX :Set . bool_rec (λ_ : Bool . X)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

El producto cartesiano A×B (= A ∧B)

Prod : Set→ Set→ Set (Notación: A× B :≡ ProdAB)

pair : ΠA,B :Set . A→ B → A×B (Notación: 〈a, b〉 :≡ pairAB a b)

prod_rec : ΠA,B :Set .ΠX :A×B → Set .
(Πx :A .Πy :B . X 〈x, y〉)→ Πp :A×B .X p

δ-regla asociada

prod_recABX f 〈a, b〉 � f a b

Eliminación no dependiente y proyecciones:

prod_elim : ΠA,B,X : Set . (A→ B → X)→ A×B → X
:≡ λA,B,X :Set . prod_recAB (λ_ :A×B .X)

fst : ΠA,B : Set . A×B → A :≡ · · ·
snd : ΠA,B : Set . A×B → B :≡ · · · (Ejercicio)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

La suma directa A+B (= A ∨B)

Sum : Set→ Set→ Set (Notación: A+ B :≡ SumAB)

inl : ΠA,B :Set . A→ A+B (Notación: inl(a) :≡ inlAB a)

inr : ΠA,B :Set . B → A+B (Notación: inr(b) :≡ inrAB b)

sum_rec : ΠA,B :Set .ΠX :A+B → Set .
(Πx :A . X (inl(x)))→ (Πy :B . X (inr(y)))→

Πs :A+B . X s

δ-reglas asociadas

sum_recABX f g (inl(a)) � f a
sum_recABX f g (inr(b)) � g b

Eliminación no dependiente:

sum_elim : ΠA,B : Set .ΠX :Set . (A→ X)→ (B → X)→ A+B → X
≡ λA,B : Set . λX : Set . sum_recAB (λ_ :A+B .X)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

El tipo vacío 0 (= ⊥) y el tipo unitario 1 (= >)

El tipo vacío 0 (= proposición absurda ⊥)

0 : Set

(Ningún constructor)

empty_rec : ΠX :0→ Set .Πe :0 . X e

(Ninguna δ-regla asociada)

El tipo unitario 1 (= proposición obvia >)

1 : Set

〈〉 : 1

unit_rec : ΠX :1→ Set . X 〈〉 → Πu :1 . X u

δ-regla asociada

unit_recX x 〈〉 � x

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

La suma dependiente Σx :A .B x (= ∃x :A .B x)

DSum : ΠA : Set . (A→ Set)→ Set (Σx :A .B x :≡ DSumAB)

dpair : ΠA : Set .ΠB :A→ Set .
Πx :A .B x→ Σx :A .B x (〈a, b〉 :≡ dpairAB a b)

dsum_rec : ΠA :Set .ΠB :A→ Set .ΠX : (Σx :A .B)→ Set .
(Πx :A .Πy :B x . X 〈x, y〉)→ Πz : (Σx :A .B x) . X z

δ-regla asociada

dsum_recABX f 〈a, b〉 � f a b

Elimination no dependiente y proyecciones (Ejercicio):

dsum_elim : ΠA : Set .ΠB :A→ Set .ΠX :Set .
(Πx :A .B x→ X)→ (Σx :A .B x)→ X :≡ · · ·

dfst : ΠA : Set .ΠB :A→ Set . (Σx :A .B x)→ A :≡ · · ·
dsnd : ΠA : Set .ΠB :A→ Set .Πs : (Σx :A .B x) . B (dfstAB s) :≡ · · ·

Obs.: Si x /∈ FV (B), entonces Σx :A .B ∼ A×B (iso)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

El tipo identidad x =A y (1/3)

Eq : ΠA :Set . A→ A→ Set (Notación: x =A y :≡ Eq A x y)

refl : ΠA :Set .Πx :A . x =A x

eq_elim : ΠA :Set . ΠP :A→ Set . Πx, y :A .
P x → x =A y → P y

δ-regla asociada

eq_elim A P x x p (refl A x) � p

Obs.: La δ-regla implementa la reducción usual del corte de =:
....

p : P x refl A x : x =A x

eq_elim A P x x p (refl A x) : P x �

....
p : P x

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

El tipo identidad x =A y (2/3)

El tipo identidad x =A y cumple las propiedades deseadas:
(Usando la notación ∀x :A .B ≡ Πx :A .B)

Lema: ∀A :Set . ∀x :A . x =A x

Prueba: refl

Lema: ∀A :Set . ∀x, y :A . x =A y → y =A x

Prueba: λA : Set . λx, y :A . λe : (x =A y) .
eq_elim A (λz :A . z =A x) x y (refl A x) e

Lema: ∀A :Set . ∀x, y, z :A . x =A y → y =A z → x =A z

Prueba: λA : Set . λx, y, z :A . λe : (x =A y) . λe′ : (y =A z) .
eq_elim A (λh :A . x =A h) y z e e′

Lema: ∀A :Set . ∀x, y :A . x =A y →
∀B :Set . ∀f :A→ B . f x =B f y

Prueba: λA : Set . λx, y :A . λe : (x =A y) . λB : Set . λf :A→ B .
eq_elim A (λz :A . f x =B f z) x y (refl B (f x))

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

El tipo identidad x =A y (3/3)

También se pueden demostrar los restantes axiomas de Peano:
(Ya demostramos el principio de inducción: nat_rec)

Lema: ∀x : Nat . plus x 0 =Nat x

Prueba: λx : Nat . refl Nat x (por conversión)

Lema: ∀x, y : Nat . plus x (S y) =Nat S (plus x y)

Prueba: λx, y : Nat . refl Nat (S (plus x y)) (por conversión)

Axiomas de mult: análogo

Lema: ∀x, y : Nat . S x =Nat S y → x =Nat y

Prueba: λx, y : Nat . λe : (S x =Nat S y) .
eq_elim Nat (λz : Nat . pred (S x) =Nat pred z)

(S x) (S y) (refl Nat x) e

Lema: ∀x : Nat . S x =Nat 0 → ⊥
Prueba: Véase más adelante

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Eliminación fuerte (1/2)

nat_rec permite iterar una función sobre datos... n 7→ 2n

... pero no permite iterar una función sobre tipos n 7→ Natn

Principio de eliminación fuerte (+ δ-reglas)

nat_rect : Set→ (Nat→ Set→ Set)→ Nat→ Set

nat_rectX F 0 � X
nat_rectX F (Sn) � F n (nat_rectX F n)

Ejemplo:

marrow : Nat→ Set→ Set→ Set
:≡ λn : Nat . λA,B :Set .

nat_rect B (λ_ : Nat . λX :Set . A→ X)

Para todos A,B : Set y n ∈ N, tenemos que:

marrow (Sn 0) A B �∗ A→ · · · → A︸ ︷︷ ︸
n

→ B

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Eliminación fuerte (2/2)

Otro ejemplo:

Null : Nat→ Set
:≡ λn : Nat . nat_rect 1 (λ_ : Nat . λ_ :Set .0) n

Por construcción: Null 0 �∗ 1
Null (S n) �∗ 0

Permite derivar el axioma de Peano:

Lema: ∀x : Nat . S x =Nat 0 → ⊥
Prueba: λx : Nat . λe : (S x =Nat 0) .

eq_elim Nat Null 0 (S x) 〈〉 (eq_sym Nat (S x) 0 e)

Por todo lo anterior:

Proposición (Inclusión HA ⊂ MLTT)

La teoría de tipos de Martin-Löf es una extensión (no conservativa)
de la aritmética de Heyting: HA ⊂ MLTT

Obs.: Extensión no conservativa pues MLTT ` Cons(HA) (Ejercicio)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Plan

1 Introducción

2 Logical framework

3 Definiciones inductivas

4 Ejemplo y observaciones

5 Normalización fuerte

6 Algunas extensiones

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Expresividad de MLTT

Como lenguaje de programación, MLTT contiene mucho más que el
sistema T de Gödel (pero no contiene el sistema F de Girard)

En particular, MLTT permite el polimorfismo predicativo

Como sistema lógico, MLTT contiene mucho más que la Aritmética
intuicionista de los tipos finitos HAω (1) (pero no contiene HA2)

Aunque no contenga HA2, MLTT permite expresar cuantificaciones
universales sobre predicados de tipo Nat→ Set (: Type), que
definen una noción predicativa de conjunto (2)

Finalmente, la identificación entre tipos y proposiciones permite usar
los programas como pruebas, y las pruebas como programas

(1) HAω = extensión conservativa de HA cuyos tipos y términos son los del sistema T,
y cuyo lenguaje de fórmulas tiene cuantificaciones para todos los tipos del sistema T

(2) Las fórmulas (: Set) que sirven para construir tales conjuntos (por comprensión)
prohiben cuantificaciones sobre los conjuntos (que inducen tipos grandes : Type)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Observación sobre la extensionalidad

MLTT provee una noción de igualdad x =A y (≡ Eq A x y)
para cada tipo A : Set, inclusive para los tipos funcionales

Es obvio que dos funciones iguales son extensionalmente iguales:

∀A,B :Set . ∀f, g :A→ B .
f =A→B g → ∀x :A . f x =B g x

Prueba:
λA,B : Set . λf, g :A→ B . λe : (f =A→B g) . λx :A .

eq_elim (A→ B) (λh :A→ B . f x =B h x) f g (refl B (f x)) e

Pero MLTT no cumple el recíproco (= axioma de extensionalidad):

MLTT 6` (∀x :A . f x =B g x) → f =A→B g

⇒ La igualdad de MLTT es una igualdad intensional

Intuición: ∀l : List Nat . quick_sort l = bubble_sort l

pero quick_sort 6= bubble_sort

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Ejemplo de formalización aritmética (1/4)

«En lo siguiente, los objetos matemáticos serán considerados
como nuestras propias construcciones»

— Per Martin-Löf, A Theory of Types, 1971

Objectivo: Demostrar la fórmula:

∀x : Nat . ∃y : Nat . x = 2× y ∨ x = 2× y + 1

Es decir: Construir un término de tipo:

Πx : Nat . Σy : Nat . x =Nat mult 2 y + x =Nat S (mult 2 y)

En lo siguiente, se escriben:

D0[x, y] :≡ x =Nat mult 2 y

D1[x, y] :≡ x =Nat S (mult 2 y)

D[x, y] :≡ D0[x, y] ∨D1[x, y]

E[x] :≡ ∃y : Nat . D[x, y]

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Ejemplo de formalización aritmética (2/4)

D0[x, y] :≡ x =Nat mult 2 y D[x, y] :≡ D0[x, y] ∨D1[x, y]
D1[x, y] :≡ x =Nat S (mult 2 y) E[x] :≡ ∃y : Nat . D[x, y]

Lema ind_base : E[0]

:= dpair Nat (λy : Nat . D[0, y]) 0
(inl D0[0, 0] D1[0, 0] (refl Nat 0))

Lema ind_step0 : ∀x, y : Nat . D0[x, y]→ D1[Sx, y]

:= λx, y : Nat . λh :D0[x, y] .
eq_elim Nat (λz : Nat . Sx =Nat S z)

x (mult 2 y) (refl Nat (Sx)) h

Lema ind_step′0 : ∀x, y : Nat . D0[x, y]→ E[Sx]

:= λx, y : Nat . λh :D0[x, y] .
dpair Nat (λz : Nat . D[Sx, z]) y

(inr D0[Sx, y] D1[Sx, y] (ind_step0 x y h))

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Ejemplo de formalización aritmética (3/4)

D0[x, y] :≡ x =Nat mult 2 y D[x, y] :≡ D0[x, y] ∨D1[x, y]
D1[x, y] :≡ x =Nat S (mult 2 y) E[x] :≡ ∃y : Nat . D[x, y]

Lema ind_step1 : ∀x, y : Nat . D1[x, y]→ D0[Sx, S y]

:= λx, y : Nat . λh :D1[x, y] .
eq_elim Nat (λz : Nat . Sx =Nat S z)

x (S (mult 2 y)) (refl Nat (Sx)) h

Lema ind_step′1 : ∀x, y : Nat . D1[x, y]→ E[Sx]

:= λx, y : Nat . λh :D0[x, y] .
dpair Nat (λz : Nat . D[Sx, z]) (S y)

(inl D0[Sx, S y] D1[Sx, S y] (ind_step1 x y h))

Lema ind_step : ∀x : Nat . E[x]→ E[S x]

:= λx : Nat . λh :E[x] .
dsum_elim Nat (λx : Nat . D[x]) E[S x]

(λx : Nat . sum_elim D0[x] D1[x] E[S x]
(ind_step′0 x) (ind_step′1 x)) h

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Ejemplo de formalización aritmética (4/4)

D0[x, y] :≡ x =Nat mult 2 y D[x, y] :≡ D0[x, y] ∨D1[x, y]
D1[x, y] :≡ x =Nat S (mult 2 y) E[x] :≡ ∃y : Nat . D[x, y]

Ya demostramos:

Lema ind_base : E[0]

Lema ind_step : ∀x : Nat . E[x]→ E[Sx]

y por lo tanto:

Teorema foo :
∀x : Nat . ∃y : Nat . x =Nat mult 2 y ∨ x =Nat S (mult 2 y)︸ ︷︷ ︸

E[x]

:= λx : Nat . nat_rec (λz : Nat . E[z]) ind_base ind_step x

¿Cómo extraer la función div2 : Nat→ Nat subyacente?

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Extracción de programas (1/3)

Recordatorio: ∃x :A .B x ≡ Σx :A .B x ≡ DSum A B, donde:

DSum : ∀A :Set . (A→ Set)→ Set (∃x :A .B x :≡ DSumAB)

dpair : ∀A :Set . ∀B :A→ Set .
∀x :A .B x→ ∃x :A .B x (〈a, b〉 :≡ dpairAB a b)

dsum_rec : ∀A : Set . ∀B :A→ Set . ∀X : (∃x :A .B)→ Set .
(∀x :A . ∀y :B x . X 〈x, y〉)→ ∀s : (∃x :A .B x) . X s

dsum_rec A B X f (dpair A B a b) � f a b

A partir del recursor «dsum_rec», se pueden construir las
proyecciones dependientes (ejercicio):

dfst : ∀A :Set . ∀B :A→ Set . (∃x :A .B x) → A

dsnd : ∀A :Set . ∀B :A→ Set . ∀s : (∃x :A .B x) . B (dfst A B s)

de tal modo que: dfst A B (dpair A B a b) �∗ a
dsnd A B (dpair A B a b) �∗ b

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Extracción de programas (2/3)

A partir de los términos:

foo : ∀x : Nat . ∃y : Nat . x = mult 2 y ∨ x = S (mult 2 y)︸ ︷︷ ︸
D[x, y]

dfst : ∀A : Set . ∀B :A→ Set . (∃x :A .B x) → A

dsnd : ∀A : Set . ∀B :A→ Set . ∀s : (∃x :A .B x) . B (dfst A B s)

se pueden construir los términos:

div2 :≡ λx : Nat . dfst Nat (λy : Nat . D[x, y]) (foo x)

: Nat→ Nat

div2_correct :≡ λx : Nat . dsnd Nat (λy : Nat . D[x, y]) (foo x)

: ∀x : Nat . D[x, dfst (λy : Nat . D[x, y]) (foo x)]

: ∀x : Nat . D[x, div2 x] (por conversión)

: ∀x : Nat . x = mult 2 (div2 x) ∨ x = S (mult 2 (div2 x))

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Extracción de programas (3/3)

Un mecanismo muy general: Dados tipos A,B : Set, un predicado
C : A→ B → Set y un término (de prueba)

M : ∀x :A . ∃y :B . C x y

siempre se pueden construir los términos:

f :≡ λx :A . dfst B (C x) (M x) : A→ B

fcorrect :≡ λx :A . dsnd B (C x) (M x) : ∀x :A . C x (f x)

Intuitivamente:
f recoge los testigos de ∃y :B . C x y (para cada x : A)
fcorrect recoge las correspondientes justificaciones

Todo esto funciona sin suponer la unicidad de y : B...
... ¿un sabor de axioma de elección?

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

El axioma de elección intensional

Teorema (Axioma de elección intensional)

∀A,B :Set . ∀C : (A→ B → Set) .
(∀x :A . ∃y :B . C x y) → ∃f : (A→ B) . ∀x :A . C x (f x)

Prueba: λA,B : Set . λC : (A→ B → Set) . λh : (∀x :A . ∃y :B . C x y) .
dpair (A→ B) (λf : (A→ B) . ∀x :A . C x (f x))

(λx :A . dfst B (C x) (h x)) (λx :A . dsnd B (C x) (h x))

Axioma de elección intensional – Variante

Toda función sobreyectiva tiene inversa por la derecha:

∀A,B : Set . ∀f : (A→ B) .
(∀y :B . ∃x :A . f x =B y) → ∃g : (B → A) . ∀y :B . f (g y) =B y

Prueba: Ejercicio.

¡Cuidado! El axioma de elección de MLTT (intensional e intuicionista) es
mucho más débil que el axioma de elección de ZF (extensional y clásico).
En particular, no implica ni el lema de Zorn, ni el teorema de Zermelo

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Plan

1 Introducción

2 Logical framework

3 Definiciones inductivas

4 Ejemplo y observaciones

5 Normalización fuerte

6 Algunas extensiones

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Una teoría de tipos de Martin-Löf (1/2)

En esta sección, se considera la teoría de tipos de Martin-Löf (MLTT)
definida a partir de las siguientes constantes y δ-reglas:

0 : Set
empty_rec : ΠX : 0→ Set .Πx : 0 . X x

1 : Set
〈〉 : 1

unit_rec : ΠX : 1→ Set . X 〈〉 → Πx : 1 . X x
unit_rec X x 〈〉 � x

Bool : Set
true : Bool

false : Bool
bool_rec : ΠX : Bool→ Set . X true→ X false→ Πx : Bool . X x
bool_rec X x y true � x
bool_rec X x y false � y

Nat : Set
0 : Nat
S : Nat→ Nat

nat_rec : ΠX : Nat→ Set . X 0→ (Πy : Nat . X y → X (S y))→ Πx : Nat . X x
nat_rec X x f 0 � x
nat_rec X x f (S n) � f n (nat_rec X x f n)
nat_rect : Set→ (Nat→ Set→ Set)→ Nat→ Set
nat_rect X F 0 � x
nat_rect X F (S n) � F n (nat_rect X F n) (· · ·)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Una teoría de tipos de Martin-Löf (2/2)

Prod : Set→ Set→ Set
pair : ΠA,B : Set . A→ B → ProdAB

prod_rec : ΠA,B : Set .ΠX : ProdAB → Set .
(Πx :A .Πy :B .X (pairAB xy))→ Πz : ProdAB .X z

prod_rec A B X f (pair A B a b) � f a b

Sum : Set→ Set→ Set
inl : ΠA,B : Set . A→ SumAB
inr : ΠA,B : Set . B → SumAB

sum_rec : ΠA,B : Set .ΠX : SumAB → Set .
(Πx :A .X (inlAB x))→ (Πy :B .X (inrAB y))→ Πz : SumAB .X z

sum_rec A B X f g (inl A B a) � f a
sum_rec A B X f g (inr A B b) � g b

DSum : ΠA : Set . (A→ Set)→ Set
pair : ΠA : Set .ΠB :A→ Set .Πx :A .B x→ DSumAB

dsum_rec : ΠA : Set .ΠB :A→ Set .ΠX : DSumAB → Set .
(Πx :A .Πy :B x .X (dpairAB xy))→ Πz : DSumAB .X z

dsum_rec A B X f (dpair A B a b) � f a b

Eq : ΠA : Set . A→ A→ Set
refl : ΠA : Set .Πx :A . EqAxx

eq_elim : ΠA : Set .ΠP :A→ Set .Πx, y :A .P x→ EqAxy → P y
eq_elim A P x x p (refl A x) � p

Ese sistema es confluente y cumple la subject reduction (Ejercicio)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Formas canónicas (1/3)

Notaciones: Tres especies de constantes:
ind = constante inductiva (Nat, Prod, Eq, etc.)
constr = constructor (0, pair, refl, etc.)
destr = destructor (nat_rec, prod_rec, eq_elim, etc.)

Cada constante c tiene una aridad]c (dada por su tipo)
Por ejemplo:]Eq = 3,]refl = 2,]eq_elim = 6

Definición (Forma canónica)

Una forma canónica es todo término de la forma:
Set, Type, Πx :A .B, ind ~N (Tipos o familias de tipos)

λx :A .M , constr ~N (Funciones y constructores aplicados)

destr N1 · · ·Nk, con k <]destr (Destructores parcialmente aplicados)

Obs.: Las formas canónicas son estables por reducción y por sustitución
(Ejercicio)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Formas canónicas (2/3)

Proposición (Formas normales)

En el contexto vacío, todo término M bien tipado y en forma normal
es una forma canónica. Además:

1 Si M : Set, entonces M es
o bien de la forma M ≡ Πx :A .B
o bien de la forma M ≡ ind P1 · · ·Pn (con n =]ind)

2 Si M : Πx :A .B, entonces M es
o bien de la forma M ≡ λx :A′ .M
o bien de la forma M ≡ destr N1 · · ·Nk (con k <]destr)

3 Si M : ind P1 · · ·Pn, entonces M es de la forma
M ≡ constr N1 · · ·Nk (con k =]constr)

donde constr es uno de los constructores de ind

Demostración. Ejercicio

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Formas canónicas (3/3)

Corolario (Formas canónicas de los tipos inductivos)
En el contexto vacío:

Todo término M : Nat en forma normal es de la forma M ≡ Sn 0 (con n ∈ N)
Los únicos términos de tipo Bool en forma normal son true y false

El único término de tipo 1 en forma normal es 〈〉
No existe ningún término de tipo 0 en forma normal

Todo término M : ProdAB (= A×B) en forma normal es de la forma
M ≡ pairA′B′ a b, con A′ ≡ ↓A, B′ ≡ ↓B, a : A y b : B

Todo término M : SumAB (= A+B) en forma normal es de la forma:

M ≡ inlA′B′ a, con A′ ≡ ↓A, B′ ≡ ↓A y a : A, o bien
M ≡ inrA′B′ b, con A′ ≡ ↓A, B′ ≡ ↓A y b : B

Todo término M : DSumAB (= Σx :A .B x) en forma normal es de la forma
M ≡ dpairA′B′ a b, con A′ ≡ ↓A, B′ ≡ ↓B, a : A y b : B a

Todo término M : EqAa1 a2 (≡ a1 =A a2) en forma normal es de la forma
M ≡ reflA′ a′, con A′ = ↓A y a′ ≡ ↓a1 ≡ ↓a2.

En particular, la existencia de M implica que a1
∼= a2

Demostración. Ejercicio

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

El teorema de normalización fuerte

Los resultados anteriores (sobre las formas canónicas) tienen pruebas
puramente combinatorias (i.e. en HA). No es el caso del siguiente

Teorema (Normalización fuerte)

Si Γ ` M : A, entonces M es fuertemente normalizante

Demostración. Véase próximas diapositivas

Obs.: Por un lema anterior, sabemos que Γ ` M : A implica
que A ≡ Type o Γ ` A : s para algún s ∈ {Set,Type}

Aplicando el teorema de normalización fuerte al juicio Γ ` A : s,
también se deduce que A es fuertemente normalizante

De modo análogo, se demuestra que ` Γ context implica que
todos los tipos en Γ son fuertemente normalizantes

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Consecuencias del teorema de normalización fuerte

El teorema de normalización fuerte se cumple en todos los contextos
(bien formados). Además:

Corolarios
En el contexto vacío:

1 Consistencia: No existe ningún término M : 0

2 Disyunción: Todo término M : SumAB (≡ A ∨B) se reduce:
o bien sobre inl A′ B′ a, con A′ ≡ ↓A, B′ ≡ ↓B y a : A
o bien sobre inr A′ B′ b, con A′ ≡ ↓A, B′ ≡ ↓B y b : B

3 Existencia: Todo término M : DSumAB (≡ ∃x :A .B x)
se reduce sobre dpair A′ B′ a b, con A′ ≡ ↓A, B′ ≡ ↓B,
a : A (testigo) y b : B a (justificación)

4 Igualdad: Existe un término de tipo EqAa1 a2 (≡ a1 =A a2)
si y sólo si los términos a1, a2 : A son convertibles: a1

∼= a2

Demostración. Ejercicio

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Candidatos de reducibilidad

SN = conjunto de los términos fuertemente normalizantes

Red1(M) := {M ′ ∈ Λ : M �M ′}

Un término neutro es un término que no está en forma canonica

Definición (Candidato de reducibilidad)

Un conjunto de términos C ⊆ Λ (posiblemente abiertos) es un
candidato de reducibilidad cuando cumple los siguientes criterios:

(CR1) C ⊆ SN

(CR2) Si M ∈ C , entonces Red1(M) ⊆ C

(CR3) Si un término neutro M es tal que
Red1(M) ⊆ C , entonces M ∈ C

Obs.: Por (CR3), un candidato de reducibilidad contiene todas las variables

Se escribe CR al conjunto de todos los candidatos de reducibilidad

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Propiedades de clausura por βδ-expansión

Lema (Clausura por βδ-expansión)

Dado un candidato de reducibilidad C :

1 Si M [x := N] ∈ C y A,N ∈ SN, entonces (λx :A .M)N ∈ C

2 Si p ∈ C y P ∈ SN, entonces unit_rec P p 〈〉 ∈ C

3 Si p ∈ C y P, q ∈ SN, entonces bool_rec P p q true ∈ C

4 Si q ∈ C y P, p ∈ SN, entonces bool_rec P p q false ∈ C

5 Si p ∈ C y P, f ∈ SN, entonces nat_rec P p f 0 ∈ C

6 Si f n (nat_rec P p f n) ∈ C , entonces nat_rec P p f (Sn) ∈ C

7 Si P ∈ C y F ∈ SN, entonces nat_rect P F 0 ∈ C

8 Si f n (nat_rect P F n) ∈ C , entonces nat_rect P f (Sn) ∈ C

9 Si f a b ∈ C y A,B ∈ SN, entonces prod_rec A B P f (pair A B a b) ∈ C

10 Si f a ∈ C y A,B, g ∈ SN, entonces sum_rec A B P f g (inl A B a) ∈ C

11 Si g b ∈ C y A,B, f ∈ SN, entonces sum_rec A B P f g (inr A B b) ∈ C

12 Si f a b ∈ C y A,B ∈ SN, entonces dsum_rec A B P f (dpair A B a b) ∈ C

13 Si p ∈ C y A,P, q ∈ SN, entonces eq_elim A P a a p (refl A a) ∈ C

Demostración. Ejercicio.

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Clausura por (CR3)

Dado un conjunto de términos S, se define inductivamente el
conjunto S («clausura de S por (CR3)») por las reglas:

1 Si M ∈ S, entonces M ∈ S
2 Si M es neutro y Red1(M) ⊆ S, entonces M ∈ S

(Recordatorio: Red1(M) = {M ′
1, . . . ,M

′
n} siempre es finito)

Por def., S es el mínimo superconjunto de S que cumple (CR3)

Ejemplo: HN := ∅ (= conjunto de los términos hereditariamente neutros)

Proposición

Si S cumple (CR1) y (CR2), entonces S es un candidato de reducibilidad

⇒ S es el candidato de reducibilidad generado por S

HN es el mínimo candidato de reducibilidad

SN es el máximo candidato de reducibilidad

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Construcción de candidatos (1/2)

Candidatos asociados a los tipos básicos:

C0 := ∅ (= HN)

C1 := {〈〉}

CBool := {true; false}

CNat := {Sn 0 : n ∈ N}

Candidato asociado al tipo identidad:

Para todos M,M ′ ∈ SN se escribe:

CEq(M,M′) :=

{
Crefl si M ∼= M ′

HN si no

con Crefl := {reflAM : A,M ∈ SN}

Obs.: No se necesita suponer más que A,M ∈ SN en la definición del
candidato Crefl, pues A y M son computacionalmente irrelevantes en la
construcción reflAM (sólo sirven para el tipado)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Construcción de candidatos (2/2)

Producto y suma dependientes de una familia de candidatos:

Dados C ∈ CR y DN ∈ CR para todo N ∈ C , se definen:∏
N∈C

DN = {M ∈ Λ : (∀N ∈C) M N ∈ DN}

∑
N∈C

DN = {dpairABN M : A,B ∈ SN, N ∈ C , M ∈ DN}

Obs.: A y B son computacionalmente irrelevantes en la def. de
∑

N∈C DN

Producto y suma de candidatos:

C ×D := {pairABM N : A,B ∈ SN, M ∈ C , N ∈ D}

C + D := inl(C) ∪ inr(D)

con inl(C) := {inlABM : A,B ∈ SN, M ∈ C }
inr(D) := {inrABM : A,B ∈ SN, M ∈ D}

Obs.: Misma observación sobre A y B en las def. de C × D y C + D

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Interpretación de los tipos pequeños (1/3)

Se define por inducción simultánea:
Un conjunto de términos Φ0 ⊆ Λ (interpretación de Set)

Una función φ0 : Φ0 → CR (interpretación de los tipos pequeños)

Definición inductiva de Φ0 y φ0 : Φ0 → CR (cláusulas 1–6/10):

(1) 0 ∈ Φ0 y φ0(0) := C0

(2) 1 ∈ Φ0 y φ0(1) := C1

(3) Bool ∈ Φ0 y φ0(Bool) := CBool

(4) Nat ∈ Φ0 y φ0(Nat) := CNat

(5) Si A ∈ Φ0 y M,M ′ ∈ φ0(A),
entonces (EqAM M ′) ∈ Φ0 y φ0(EqAM M ′) := CEq(M,M ′)

(6) Si A ∈ Φ0 y B[x := N] ∈ Φ0 para todo N ∈ φ0(A),
entonces (Πx :A .B) ∈ Φ0 y

φ0(Πx :A .B) :=
∏

N∈φ0(A)

φ0(B[x := N]) (...)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Interpretación de los tipos pequeños (2/3)

Definición inductiva de Φ0 y φ0 : Φ0 → CR (cláusulas 7–10/10):

(7) Si A ∈ Φ0 y B ∈ Φ0,
entonces (A×B) ∈ Φ0 y φ0(A×B) := φ0(A)× φ0(B)

(8) Si A ∈ Φ0 y B ∈ Φ0,
entonces (A+B) ∈ Φ0 y φ0(A+B) := φ0(A) + φ0(B)

(9) Si A ∈ Φ0 y BN ∈ Φ0 para todo N ∈ φ0(A),
entonces (DSumAB) ∈ Φ0 y

φ0(DSumAB) :=
∑

N∈φ0(A)

φ0(BN)

(10) Si A es un término neutro tal que A′ ∈ Φ0 para todo A′ ∈ Red1(A),
entonces A ∈ Φ0 y

φ0(A) :=

(⋃
A′∈Red1(A)

φ0(A′)

)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Interpretación de los tipos pequeños (3/3)

Los 10 casos de la definición inductiva de Φ0 son disjuntos
⇒ el árbol de derivación de cada A ∈ Φ0 es único
⇒ la función φ0 : Φ0 → CR está bien definida

Lema (Invariancia por reducción)

1 Φ0 es un candidato de reducibilidad
2 Para todo A ∈ Φ0, tenemos que φ0(A) = φ0(↓A)

Demostración.
1 (CR1) y (CR2) se demuestran por inducción sobre la derivación de A ∈ Φ0;

(CR3) sigue de la cláusula (10) de la definición de Φ0.
2 Por induccón sobre la derivación de A ∈ Φ0.

Obs.: El lema permite observar que cuando A es un término neutro tal que
A′ ∈ Φ0 para todo A′ ∈ Red1(A) (cláusula (10)), se tiene que:

φ0(A) =

{
HN si Red1(A) = ∅
φ0(A′) para cualquier A′ ∈ Red1(A) si no

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Interpretación de los tipos grandes (y pequeños)

Se define (de vuelta) por inducción simultánea:
Un conjunto de términos Φ ⊆ Λ (interpretación de Type (3))
Una función φ : Φ→ CR (interpretación de los tipos grandes)

Definición inductiva de Φ y φ : Φ→ CR:
Se reutilizan las cláusulas (1)–(10) que definen Φ0 y φ0 : Φ0 → CR
(remplazando en cada cláusula Φ0 por Φ y φ0 por φ)

Se añade la cláusula: (11) Set ∈ Φ y φ(Set) := Φ0

Obs.: Por construcción, tenemos que Φ0 ⊂ Φ y φ0 = φ|Φ0

Lema (Invariancia por reducción)

1 Φ es un candidato de reducibilidad
2 Para todo A ∈ Φ, tenemos que φ(A) = φ(↓A)

Demostración. Análoga a la demostración del lema anterior.

(3) En la construcción de Φ y φ, se supone implícitamente que Set ⊂ Type

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Interpretación de los contextos y normalización (1/2)

Se asocia a cada contexto Γ un conjunto de sustituciones JΓK,
definido por inducción sobre la lista Γ por:

J∅K := {∅} (sustitución vacía)

JΓ, x : AK := {σ ∪ {x := N} : σ ∈ JΓK, A[σ] ∈ Φ y N ∈ φ(A[σ])}

¡Cuidado! La definición se aplica a cualquier contexto sintáctico, incluso a los
contextos mal formados. En muchos casos, la condición A[σ] ∈ Φ no se cumple
para ninguna sustitución (pues A no es un tipo), de tal modo que JΓK = ∅.

Proposición (1er invariante de normalización)

Si Γ ` M : A, entonces para todo σ ∈ JΓK, tenemos que:

A[σ] ∈ Φ ∪ {Type} y M [σ] ∈

{
Φ si A ≡ Type

φ(A[σ]) si no

Demostración. Por inducción sobre la derivación de Γ ` M : T .

Ejercicio. Detallar la prueba.

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Interpretación de los contextos y normalización (2/2)

Dado un contexto Γ ≡ x1 : A1, . . . , xn : An, se escribe

idΓ :≡ [x1 := x1; . . . ;xn := xn] (sustitución identidad)

Proposición (2do invariante de normalización)

Si ` Γ context, entonces idΓ ∈ JΓK

Demostración. Por inducción sobre la derivación de ` Γ context,
usando el 1er invariante de normalización en cada etapa.

Ejercicio. Detallar la prueba.

Corolario (Normalización fuerte)

Si Γ ` M : A, entonces M es fuertemente normalizante

Demostración. Basta con aplicar el 1er invariante de normalización con la
sustitución σ :≡ idΓ ∈ JΓK (por el 2do invariante de normalización).

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Observaciones

El núcleo de la prueba es la definición por inducción simultánea del
conjunto Φ y de la función φ : Φ→ CR.
(Definición en dos etapas, para interpretar Set y luego Type)

Esta construcción está considerada como predicativa, y se puede
formalizar en algunas extensiones de la teoría de tipos de Martin-Löf
con un mecanismo de definición inductiva-recursiva [Dybjer 2000]

Cabe destacar que la misma construcción se puede formalizar
mediante una construcción impredicativa en HA2 (¡Ejercicio!)
Y por lo tanto:

MLTT < HA2

Hasta ahora, y a pesar de su considerable expresividad, todas las
versiones de la teoría de tipos de Martin-Löf tienen una fuerza
teórica (estrictamente) menor que la de HA2

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Plan

1 Introducción

2 Logical framework

3 Definiciones inductivas

4 Ejemplo y observaciones

5 Normalización fuerte

6 Algunas extensiones

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Otros tipos inductivos: las listas (polimórficas)

List : Set→ Set

nil : ΠA :Set . ListA
cons : ΠA :Set . A→ ListA→ ListA

list_rec : ΠA :Set . ΠX : ListA→ Set .
X (nilA)→

(Πx :A .Πl : ListA . X l→ X (consAx l))→
Πl : ListA .X l

δ-reglas asociadas

list_recAX xf (nilA) � x
list_recAX xf (consAa l) � f a l (list_recAX xf l)

Ejercicio: Implementar las funciones:

length : ΠA : Set . ListA→ Nat

concat : ΠA : Set . ListA→ ListA→ ListA

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Otros tipos inductivos: las listas dependientes («vectores»)

Vect : Set→ Nat→ Set

vnil : ΠA :Set . VectA 0
vcons : ΠA :Set . Πn : Nat . A→ VectAn→ VectA (Sn)

vect_rec : ΠA :Set . ΠX : (Πn : Nat . VectAn→ Set) .
X 0 (vnilA)→

(Πn : Nat .Πx :A .Πv : VectAn .
X n v → X (Sn) (vconsAnx v))→

Πn : Nat . Πv : VectAn . X n v

δ-reglas asociadas

vect_recAX xf 0 (vnilA) � x
vect_recAX xf (Sn) (vconsAna v) � f n a v (vect_recAX xf n v)

Ejercicio: Implementar las funciones:

vlength : ΠA :Set .Πn : Nat . VectAn→ Nat (¡2 soluciones!)

vconcat : ΠA :Set .Πn : Nat . VectAn→ Πm : Nat . VectAm→ VectA (plusnm)

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Otros tipos inductivos: los ordinales numerables

Ord : Set

0′ : Ord
S′ : Ord→ Ord
lim : (Nat→ Ord)→ Ord

ord_rec : ΠX : Ord→ Set .
X 0′ → (Πx : Ord . X x→ X(S′ x)) →

(Πf : Nat→ Ord . (Πn : Nat . X (f n))→ X (lim f)) →
Πx : Ord . X x

δ-reglas asociadas

ord_recX xg h 0′ � x
ord_recX xg h (S′ z) � g z (ord_recX xg h z)
ord_recX xg h (lim f) � h f (λn : Nat . ord_recX xg h (f n))

Obs.: Observar (en la 3ra regla) la llamada recursiva bajo la λ

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

La jerarquía de universos predicativos

Se puede añadir una jerarquía infinita de universos predicativos:

Type0(= Set) ∈ Type1(= Type) ∈ Type2 ∈ Type3 ∈ · · ·

Modificación de las reglas de tipado:

Γ ` A : Typei
` Γ, x : A context

x/∈dom(Γ)
Γ ` M : A Γ ` A′ : Typei

Γ ` M : A′
A∼=A′

` Γ context
Γ ` Typei : Typei+1

Γ ` A : Typei Γ, x : A ` B : Typej

Γ ` Πx :A .B : Typemax(i,j)

Los tipos inductivos están definidos en todos los universos

También se puede añadir una regla de cumulatividad:

Γ ` M : Typei
Γ ` M : Typei+1

(¡Se pierde la unicidad del tipo!)

Ejercicio: Adaptar el formalismo (tipos inductivos) + prueba de normalización

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

¿Unicidad de las pruebas de identidad?

El tipo identidad EqAxy (escrito x =A y, con A : Set, x, y : A)
está definido a partir de un único constructor

refl : ∀A :Set .∀x :A . EqAxx

Sin embargo, no se puede demostrar en MLTT que las pruebas de
igualdad son únicas:

MLTT 6` ∀A : Set . ∀x, y :A . ∀e, e′ : EqAxy . Eq (EqAxy) e e′ (1)

6` ∀A : Set . ∀x :A . ∀e : EqAxx . Eq (EqAxx) e (reflAx) (2)

Ejercicio: Demostrar que (1) y (2) son equivalentes en MLTT

En efecto (1) y (2) son independientes de MLTT:

Se puede extender MLTT (de modo consistente) con el axioma K de
Streicher, de tipo (2) y con la δ-regla adecuada – Ejercicio

Por otro lado, el modelo de los grupoides [Hofmann & Streicher 2002]
refuta la unicidad de las pruebas de identidad

¿Cuál es la opción más interesante?

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Teoría de tipos homotópicos (1/2)

Entre 2006 y 2009, Voyevodski(4) trabajó sobre una interpretación
«topológica» de MLTT, en la cual:

Cada tipo A es un espacio topológico

Cada prueba e : EqAxy es un camino de x a y en A

Según esta interpretación:

eq_reflAx : EqAxx
 camino identidad

eq_symAxy : EqAxy → EqAy x
 operador de construcción del camino simétrico

eq_transAxy z : EqAxy → EqAy z → EqAxz
 operador de composición de caminos

En particular, una prueba de identidad h : Eq (EqAxy) e e′ entre
dos pruebas e, e′ : EqAxy es una homotopía h : e⇒ e′

(4)Vladímir Voyevodski (1966–2017), ganador de la medalla Fields en 2002

Introducción Logical framework Def. inductivas Ejemplo y obs. Normalización fuerte Extensiones

Teoría de tipos homotópicos (2/2)

A partir de esas ideas surgió la teoría de tipos homotópicos (HoTT)

HoTT = MLTT + axioma de univalencia

Dos tipos A,B : Typei son isomorfos (notación A ∼ B) cuando
existen funciones f : A→ B y g : B → A tales que

g ◦ f =A→A idA y f ◦ g =B→B idB

Intuitivamente, las pruebas

e : Eq (A→ A) (g ◦ f) idA y e′ : Eq (B → B) (f ◦ g) idB

definen una equivalencia de homotopía entre los espacios A y B

Obviamente: A =Typei B → A ∼ B. Esto sugiere el:

Axioma de univalencia
∀A,B :Typei . A ∼ B → A =Typei B

Contenido computacional del axioma? Modelos? Aplicaciones?

	Introducción
	

	Logical framework
	

	Definiciones inductivas
	

	Ejemplo y observaciones
	

	Normalización fuerte
	

	Algunas extensiones
	

