Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OOOO0OOO0OO0O00O000O00O0000 OOOOOO0OOOO00000 00000000000 00000000000 000000000 00000000

Introduccién a la correspondencia entre pruebas y programas:

La teoria de tipos de Martin-Lof

Alexandre Miquel

mayo de 2021

Introduccién Logical framework

Def. inductivas
900000000000 0000000000000 0000000 OO0000O000O000000 00000000000 0000000000000 0000000 00000000

Ejemplo y obs. Normalizacién fuerte

Interpretacién de Brouwer-Heyting-Kolmogorov

Filosofia del constructivismo:

El significado de una proposicién A es

el conjunto ®(A) de las “evidencias” (sentido intuitivo) que A se cumple:

(AN B)
®(AV B)
(A= B)
o(L)
o(T)

d(Vz:D. A(z))

O(Jz:D. A(z))

®(A) x ©(B) (Producto cartesiano)
®(A) + @(B) (Suma directa)
®(A) — ¢(B) (funciones “computables”)
1%} (Conjunto vacio)
{e} (Conjunto unitario)
1] 2A) (Producto dependiente)
zeD

> @A) (Suma dependiente)
@EID

Ejemplo tipico:

Va:Nat. Jy:Nat. A(x,y)

Introduccién

080000000000 OO0O000O0O0O0OO0000O000000 0000000000000 00 00000000000 000000000000 00000000 OO000000

Historia
1969
1971
1971
1972
1975
1984
1985

1989

Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte

W. A. Howard: The formulae-as-types notion of construction.
(Apuntes privados con difusién restringida)

J.-Y. Girard: Une extension de l'interprétation fonctionnelle de
Gédel a I'analyse et son application a I'élimination des coupures
dans I'analyse et la théorie des types (Sistema F)

P. Martin-Lof: A theory of types (Sistema «Type : Type»)

J.-Y. Girard: Interprétation fonctionnelle et élimination des
coupures de I'arithmétique d'ordre supérieur (Sistema Fw)

P. Martin-L&f: An Intuitionistic Theory of Types: Predicative Part
(Teoria de tipos intensional)

P. Martin-Lof: Intuitionistic Type Theory
(Teoria de tipos extensional)

T. Coquand & G. Huet: Constructions: A Higher Order Proof
System for Mechanizing Mathematics (Calculo de construcciones)

C. Paulin: Le calcul des constructions inductives (CIC, Coq)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 0O00O0000000000000000 OO0000O000O000000 00000000000 0000000000000 0000000 00000000

Historia (2/3)

P. Martin-L6f: A Theory of Types (1971):

In what follows, mathematical objects will be regarded as our own constructions.
Every mathematical object is of a certain kind or type which is uniquely associated
with the object in question. A type is defined by prescribing how we are allowed to
construct objects of that type. The types themselves are mathematical objects,
namely, those objects whose type is the type of types. [...]

A proposition is defined by prescribing what we have to do in order to prove it. For
example, . .
971 is a non prime number
is a proposition which we prove by exhibiting two natural numbers greater than one
and a computation which shows that their product equals 971. The similarity between
the notion of proposition and the notion of type described above is not accidental.
Indeed, a proposition may always be regarded as a type, namely, the type of proofs of
that proposition, and, conversely, a type always determines a proposition, namely, the
proposition which we prove by exhibiting an object of that type. This explains why |
shall treat the notion of type and the notion of proposition as one and the same
notion, thereby taking seriously the analogy between types [...] and propositions
discovered by [Curry and Feys 1958] in the case of the positive implicational calculus
and extended to Heyting arithmetic by [Howard 1969].

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 0OO00O00000000O00000000 OO0000000O000000 OO0O0000000 0000000000000 0000000 00000000

Historia (3/3)

P. Martin-Lof: A Theory of Types (1971):

En lo siguiente, los objetos matematicos seran considerados como nuestras propias
construcciones. Cada objeto matematico es de cierto género o tipo, asociado de modo
anico con dicho objeto. Un tipo esta definido prescribiendo cémo uno puede construir
objetos de ese tipo. Los tipos en si mismos son objetos matematicos, a saber, los
objetos cuyo tipo es el tipo de los tipos. [...]

Una proposicién esta definida prescribiendo cémo uno puede demostrarla. Por ejemplo,
971 es un ndmero no primo

es una proposicion que se demuestra exhibiendo dos enteros naturales mayores que
uno y una computacién que muestra que su producto vale 971. La semejanza entre la
nocién de proposicién y la nocién de tipo descritas previamente no es accidental. En
efecto, una proposicién siempre puede ser vista como un tipo, es decir, el tipo de las
demostraciones de esta proposicion, y reciprocamente, un tipo siempre determina una
proposicién, es decir: la proposicién que se demuestra exhibiendo un objeto de este
tipo. Esto explica por qué voy a tratar la nocién de tipo y la nocién de proposicién
como una misma nocidn, considerando seriamente la analogia entre los tipos [...] y
las proposiciones descubierta por [Curry and Feys 1958] en el caso del cilculo
implicacional positivo y extendida a la Aritmética de Heyting por [Howard 1969].

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000080000000 0OO00O0000000000000000 OO0000O000O000000 OO0O0000000 0000000000000 0000000 00000000

|deas fundamentales de la teoria de tipos

@ Tipo = «métodos» que permiten construir objetos de este tipo

@ Proposicion = «métodos» que permiten demostrar esta proposicion

@ Por lo tanto: Proposicion = Tipo (identificacién completa)
o En particularr A=B = A—B, AANB = AxB (etc.)
@ Demostracién = término de prueba

o Cada objeto matematico tiene un tipo ((nico)
@ Los tipos también tienen sus propios tipos:
Set, Type, ... = tipos de los tipos = universos

(se necesita distinguir varios niveles de tipos para evitar las paradojas)

@ Una nueva construccién: el producto dependiente
Mz:A.B(z) = Va:A.B(x) (véase mas adelante)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 0OO00O0000000000000000 OO0000O000O000000 00000000000 0000000000000 0000000 00000000

Tipos no dependientes...
@ Hasta ahora, sélo vimos tipos de base (Unit, Bool, Nat) o tipos
construidos a partir de otros tipos (A — B, A x B, A+ B)

o Ejemplo: El tipo de las listas
Tipos A,B == --- | List(A4))

e [| : List(A) (para todo tipo A)
@ [true; true; false; true| : List(Bool)

o [18; 42; 7; 28; 0; 13] : List(Nat)

@ [succ; (Az:Nat.0); plus 42] : List(Nat — Nat)

@ Sea la funcién make_listy na = la;...;q]

n veces

Tenemos que: make_listy : Nat — A — List(A4)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO00O0000000000000000 OO0000O000O000000 OO0O0000000 0000000000000 0000000 00000000

... y tipos dependientes

@ Tipo dependiente = tipo que depende de un término (de cierto tipo)

e Ejemplo: El tipo de las listas dependientes (= n-uplas)

Tipos A/B == -+ | Vect(4, N) (conN:Nat)J

@ [] : Vect(4,0) (para todo tipo A)
@ [true; true; false; true] : Vect(Bool, 4)

o [18; 42; 7; 28; 0; 13] : Vect(Nat, 6)

@ [succ; (Az:Nat.0); plus 42] : Vect(Nat — Nat, 3)

@ Sea la funcién make_vecty na = l[a;...;q]

n veces

Tenemos que: make_vecty : IIn:Nat.A — Vect(A, n)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000080000 0OO0000000000O00000000 OO0000O000O000000 00000000000 0000000000000 0000000 00000000

El producto dependiente

El producto dependiente

Tipos A B | Tz:A.B (liga la variable z en B)

o FV(Ilz: A.B) = FV(A)U(FV(B)\ {z})

o Ilz:A.B, = tipo de las funciones f que asocian
a cada objeto a: A un objeto fa: B,

= producto cartesiano generalizado H B,
z€A

@ Tipo flecha A — B = caso particular del producto dependiente:
A—B = Iz:A.B cuando z ¢ FV(B)

o Ejemplo: make_vecty : IIn:Nat.A — Vect(A4, n)

: IIn:Nat.Ilz: A.Vect(A, n)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000008000 OO00O0000000000000000 OO0000O000O000000 00000000000 0000000000000 0000000 00000000

Introduccién y eliminacion del producto dependiente

@ Tipado de la abstraccion:

I'z:A+ M : B
' - Me:A. M : Ilz:A.B

@ Tipado de la aplicacién:

' M : Hlx:A.B FrEN: A
' - MN : B[z:=N]

e Recordatorio: A— B = Ilz:A.B cuando z ¢ FV(B)

Correspondencia de Curry-Howard

Vr:A.B(z) = lz:A.B(%)

A=B = A—B (caso no dependiente)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000@00 OO000000000000000000 OO0000O000O000000 OO0O0000000 0000000000000 0000000 00000000

Ejemplo

e Concatenacién de listas (no dependientes):
concaty : List(A) — List(A) — List(A)
e Concatenacién de vectores (= listas dependientes):

vconcat 4
IIn:Nat . Vect(A,n) — IIm:Nat . Vect(A, m) — Vect(A,n + m)

(funcién con 4 argumentos)

e Dados vectores v :Vect(A,3) y w:Vect(4,4), tenemos que:

vconcaty 3 : Vect(A,3) — IIm:Nat . Vect(A,m) — Vect(4,3 +m)
veconcaty 3 v : IIm:Nat.Vect(A, m) — Vect(A,3 4+ m)
veoncaty 3v 4 : Vect(A,4) — Vect(A,3+4)

veconcaty 3v 4w : Vect(A,34+4) = Vect(A,7)

o Necesidad de una regla de conversién: TE M. S A=

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
0000000000@0 OO00O0000000000000000 OO0000O000O000000 OO0O0000000 0000000000000 0000000 00000000

Los universos (Set y Type)

i Cémo impedir los tipos mal formados, por ej. Vect(A, 3 + true) ?
Solucién: tipar los tipos = el universo Set

@ Nat : Set

@ Nat — Nat : Set

@ Vect Nat 7 : Set (= Vect(Nat, 7))

@ Vect : Set — Nat — Set

@ Set — Nat — Set : Type (para evitar las paradojas)

Dos especies de tipos:

@ Los tipos pequefios, de tipo Set:
Nat, Nat — Nat, Vect 4, Iz :Nat. Vectx

@ Los tipos grandes (= géneros), de tipo Type:
Set, Nat — Set, Iz :Nat . Vect(z + 3) — Set

555003000008 00600060600000000000 6000050060000 G6O0000600 B600500000609000000 39000600
Plan

© Introduccion

© Logical framework

© Definiciones inductivas
@ Ejemplo y observaciones
© Normalizacién fuerte

© Algunas extensiones

o Introduccion

© Logical framework

© Definiciones inductivas
@ Ejemplo y observaciones
© Normalizacion fuerte

© Algunas extensiones

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 0000000000000 000000 000000000000 000 OO00O0O000000 000000000 00000000000 00000000

El marco légico y sus extensiones

e Multiples versiones de la teoria de tipos de Martin-L&f (MLTT).
Todas estan basadas en un marco légico (logical framework), que
define el calculo lambda subyacente y sus reglas de tipado

@ El marco légico cumple las propiedades fundamentales:
confluencia + (-subject reduction + normalizacién fuerte

@ Luego se desarrolla el formalismo (la «teoria de tipos») afiadiendo
constantes con sus propias reglas de reduccién y de tipado

iCuidado! Se necesita verificar que cada extensién del formalismo mantiene las
3 propiedades fundamentales: confluencia + subject reduction + norm. fuerte

@ Aqui consideramos una presentacion en el estilo de los sistemas de
tipos puros (PTS), con una Gnica categoria sintactica de términos

@ En este marco, un tipo es un término de tipo Set o Type:

término : tipo : universo (= Set, Type)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OOe00000000000000000 OO0OO00O000000000 OOO0OO000000 000000000 00000000000 00000000

Sintaxis de MLTT

Definicién (Términos y tipos)

M,N,A, B = | Ar:A.M | M N (calculo X a la Church)
| Set | Type (universo, o suerte)
| Mz:A.B (producto dependiente)
| ¢ (constantes)
o Notaciones: FV (M) (variables libres), Mz := N] (sustitucién)

En particular: FV(Az:A.M) = FV(A)U (FV(M)\ {z})
FV(Ilz:A.B) FV(A)U(FV(B)\ {z})

o Como siempre, se trabaja a menos de a-conversién

e Ejercicio: (1) Definir la operacién de sustitucion M|z := N|
(2) Enunciar y demostrar el correspondiente lema de sustitucion

Recordatorio: A — B := Ilz: A.B cuando z ¢ FV(B)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OOOO0000000000000000 000000000000 000 00000000000 000000000 00000000000 00000000

Reduccién

@ El marco légico sélo viene con la regla de S-reduccion:

) (Az:A.M)N > Mlz:= N] |

+ clausura contextual

@ Luego se extiende el sistema con constantes (notacién: ¢, d, etc.)
acompafiadas con su tipo y sus reglas de reduccién: las o-reglas

@ Las d-reglas son en general de la forma:
d(C1) —

(«definicion por casos») donde:

e d es un destructor que opera sobre cierto tipo inductivo
® c1,...,Cn son los constructores de dicho tipo inductivo

o En lo siguiente, sélo consideraremos reglas que mantienen las 3
propiedades fundamentales: confluencia + S.R. + norm. fuerte

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO00eO000000000000000 O0OO00O000000000 OOO0OO00O000 000000000 00000000000 00000000

Tipado (1/2)

@ Sistema de tipado parametrizado por:

e Una funcién ¢+ ty(c) que asocia a cada constante ¢ su tipo ty(c)
(a priori, ty(c) es un término cerrado cualquiera)

o La relacién de conversién M = M’ inducida por la regla de
[B-reduccién y las d-reglas asociadas a las constantes del sistema

o Contexto de tipado = lista ordenada de declaraciones de la forma

' = x1:A,...,2,,: A,
r1,...,xn son variables distintas a pares
donde P .
Aq,..., Ay, son términos cualesquiera

@ Sistema de tipado basado en dos juicios:

e Un juicio de buena formacién de contexto
F T context «El contexto T" esta bien formado»
e Un juicio de tipado
'EM:A «En el contexto I, el término M tiene tipo A»

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO000®O0000000000000 000000000000 000 00000000000 000000000 00000000000 00000000

Tipado (2/2)
o Reglas del juicio F T" context (buena formacién de contexto)

I'FA:s
0 context ———————° s ag¢dom(I), s€{Set,T:
@ context FT,z: A context si w¢Fdom(I’), s€{Set,Type} J

@ Reglas del juicio T'F M : A (tipado)

F T context (e:A)eT I context = IT' context
FFz: A ' I'Ec:ty(c) I' - Set : Type
Lz:AFM:B PEM:Nze:A.B TEN:A
'Xe:A.M:1lz:A.B ' MN : Bz := N|

' A:s; Tz:AF B: s
I'-1Ilz: A.B: max(si,$S2)

si s1,s2€{Set, Type}

THM:A A :s
THM:A

si A~A’, s€{Set,Type}

(Con la convencién Set < Type)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO000O0G0000000000000 00000000000 0000 00000000000 000000000 00000000000 00000000

Ejemplo de derivacién

Dadas constantes Nat : Set, 0:Nat, S:Nat — Nat:

0 context
0 + Set : Type
X : Set context
X :Set - X : Set 0 context
b X :Set, z: X context 0 F Nat : Set
X :Set, z: X Fax:X b () context F g : Nat context
X:Set-Xz: X.z: X - X (O - Nat : Set x :Nat - Nat : Set
D AX:Set. Azx: X .z :1lx:Set. X — X () + Nat — Nat : Set 0 context
O (AX :Set. Az : X .x) (Nat — Nat) : (Nat — Nat) — Nat — Nat @+ S : Nat — Nat

O (AX :Set. Az : X .z) (Nat — Nat) S : Nat — Nat

@ Las derivaciones de la teoria de tipos son en general muy largas, debido a
la necesidad de justificar la buena formacién del contexto para cada
variable x, cada constante ¢, y cada ocurrencia del universo Set

@ Por suerte, cuando el sistema es confluente y normalizante, la relacién
I' M : A es decidible: no se necesita mantener las derivaciones

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO00000e000000000000 000000000000 000 OOO0O0O000000 0000000000000V 000000 00000000

Ejemplos: identidad monomoérfica y polimérfica

Dadas constantes Nat : Set, 0:Nat, S:Nat — Nat, tenemos que:

@ F Ax:Nat.x : Nat — Nat

@ F Nat — Nat : Set (tipo pequefio)

@ F A\z:Nat — Nat.z : (Nat — Nat) — Nat — Nat

@ I (Nat — Nat) — Nat — Nat : Set (tipo pequefio)

@ FAX:Set.dx: X .z : IIX:Set. X - X
o FIIX:Set. X —» X : Type (tipo grande)

F (AX :Set.\z: X .z)Nat : Nat — Nat
F (AX :Set.Az: X .z) (Nat — Nat) : (Nat — Nat) — Nat — Nat

@ Pero (AX:Set.\zx:X .z) (ILX :Set. X — X) estad mal tipado

= En la teoria de tipos de Martin-L6f, el polimorfismo es predicativo

® FAf:(IIX:Set. X — X).f : (IIX:Set.X — X) — (IIX :Set. X — X)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO000000G00000000000 000000000000 000 00000000000 000000000 00000000000 00000000

Ejemplos: calculando con los tipos

En la teoria de tipos de Martin-Lof, los tipos son términos particulares
= también se puede calcular con los tipos:

@ Sea idser := AX:Set.X : Set — Set

Tenemos que idse Nat (: Set) = Nat
(suponiendo Nat : Set)

@ Sea arrow := AX,Y:Set. X Y : Set— Set — Set

Tenemos que arrow Nat Bool (: Set) >> Nat — Bool
(suponiendo Nat,Bool : Set)

@ Mas generalmente, sea: marrow : Nat — Set — Set — Set
con las d-reglas: marrow 0 A B >~ B

marrow (Sn) AB > A — marrown A B

Para todos A, B:Set y n €IN, tenemos que:

marrow (S"0) AB =* A— ... A—B
—

n

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0000000e0000000000 000000000000 000 OOO0OO000000 000000000 00000000000 00000000

Ejemplo con vectores (= listas dependientes)

@ Sean las constantes

Nat : Set

0 : Nat

S : Nat — Nat (Notacién: 1:=80, 2:=81, etc.)
plus : Nat — Nat — Nat

Vect : Set — Nat — Set

vnil : IIA:Set.Vect AO

vcons : IIA:Set.IIn:Nat.A — Vect An — Vect A (Sn)
vconcat : IIA:Set.IIn:Nat.Vect An —

IIm :Nat . Vect A m — Vect A (plus n m)

con las d-reglas:
plus 0 m

plus (Sn)m

m
S (plus n m)

-
-

vconcat A0 (vnil A) mv > v
-

vconcat A (S n) (vcons An u) mv vcons A (plus n m) (vconcat m u m v)

@ Dados A:Set, u:Vect A3, wv:Vect A4, tenemos que:

vconcat A3ud4v : Vect A7 (por conversion)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO00000000®000000000 000000000000 000 OO00OO000000 0000000000000V 000000 00000000

Propiedades basicas (1/3)

Notaciéon: IVCT = I'esun prefijodel

Recordatorio: Las declaraciones de un contexto I son ordenadas

Lema (Buena formacién)
@Si I'M:A entonces F I' context
© Si kT context, entonces F I context paratodoIVC T

Demostracion. Mas generalmente, se demuestra por induccién sobre el tamafio de
las derivaciones involucradas que:

© Toda derivacién de I' = M : A contiene una subderivacién de F I' context

© Toda derivacién de + T' context contiene una subderivacién de + IV context
para cada prefijo IV C T O

v

Dicho de otro modo:
© EI contexto de un juicio de tipado derivable siempre esta bien formado

@ Todo prefijo de un contexto bien formado también esta bien formado

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 0000000000000 000000 000000000000 000 OOO0OO00V000 0000000000000V 000000 00000000

Propiedades basicas (2/3)

Lema (Variables libres)

Q@S Fxz:A,...,x,: A, context, entonces
o FV(A;) C{x1,...,x;—1} para todo i € [1..n]
Q@S z:A,...,x,: Ay M: A, entonces

o FV(A;) C{z1,...,x;—1} para todo i € [1..n]
o FV(M) CH{z1,...,zn} y FV(A) C{z1,...,zn}

Demostracion. Por induccién mutua sobre las derivaciones involucradas. DJ

Dicho de otro modo, los juicios de tipado derivables son de la forma:

1 :Al,
X Ag(xl),
x3 : As(z1,x2),

Tn : An(T1, ..., Tn-1)
F M(zi,...,20) @ A(Z1,...,2Zn)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0000000000®0000000 000000000000 000 OOO0O0O00O000 0000000000000V 000000 00000000

Propiedades basicas (3/3)

Recordatorio: Dados contextos I, I, se escribe I' C IV cuando
(z:A) €T implica (z : A) € T’ para toda declaracién (z : A)

Lema (Debilitamiento)
Si THFM:A T CI" y FTI'context, entoncesIVF M : A

Demostraciéon. Por induccién sobre la derivacién de T' = M : A. D)

Lema (Sustitutividad)
Q@Si FT,z:AT context y ' N : A,
entonces + T',TV[z := N] context
Q@S INz:AT"FM:B y 'k N:A,
entonces D' T'[z := N| + Mz := N]: B[z := N|

Demostracion. Por induccién mutua sobre las derivaciones de los juicios
FT,z: AT context y I',xz:AT'+ M : B, usando la propiedad de
debilitamiento para tratar el caso donde M =z O

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 000000000000 0®000000 000000000000 000 OOO0OO00O000 000000000 00000000000 00000000

El lema de inversién y sus consecuencias (1/2)
. (z:A) el
oel'Fz:C = dJA {C%A
el'Fc:C = C=ty(c)
@' Set: C = C = Type
oT+Xz:A.M:C = 3B {g"i:ﬁ‘“fAMéB
(con z ¢ dom(T")) -
I'EM:Ilz:A.B
oTHMN:C =~ 3ABI{TFN:A
C = B[z := N|
' A:s;
e I'FIlx:A.B:C = ds1,80 {T,x: AF B: sy
(con z ¢ dom(T")) C = max(s1, s2)

Demostraciéon. Por induccién sobre la derivacién. D)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 000000000000 00@00000 000000000000 000 OOO0O0O000000 0000000000000V 000000 00000000

El lema de inversién y sus consecuencias (2/2)

@ Si la reduccién (S + d-reglas) es confluente, entonces:

Corolario (Unicidad del tipo)

Si TFM:A y T'EM: A’ entonces A=A

Demostracion. Por induccién sobre M, usando el lema de inversién en cada etapa,
asi como la confluencia de la reduccién en el caso donde M es una aplicacién. O

Ejercicio: ;Por qué se necesita la confluencia?

Corolario (B-subject reduction)

Si TFM:A y M>gM', entonces I'M':A

Demostracion: Ejercicio.

@ Obs.: Para demostrar la propiedad de subject reduction completa,
se hace un razonamiento analogo para cada d-regla M = M’
(usando de vuelta el lema de inversion)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 000000000000 000e0000 000000000000 000 OOO0OO000000 0000000000000V 000000 00000000

Tipos de los tipos

@ Hasta ahora, no supusimos nada sobre la funcién ¢ — ty(c)
que parametriza el sistema de tipado

@ A partir de ahora, se supone que para cada constante ¢, tenemos
que 0+ ty(c) : s paraalgin s € {Set, Type}

(Esto implica en particular que ty(c) es un tipo cerrado)

Lema (Tipo de los tipos)

Bajo la hipétesis anterior, si ' = M : A, entonces:
@ o bien A= Type
@ obien T'F A:s paraalgin s € {Set, Type}

Demostracién. Por induccién sobre la derivacién de T' = M : A, usando el lema de
inversién en el caso de la regla de tipado la aplicacién. O

Ejercicio: Detallar todos los casos, y en particular el caso de la aplicacion

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 000000000000 0000®000 000000000000 000 OOO0O0O00V000 000000000 00000000000 00000000

Verificacion e inferencia de tipo (1/4)

Se consideran los siguientes tres problemas:

© Verificacion de contexto:
Dado T', determinar si el juicio F I' context es derivable o no

© Verificacion de tipo:
Dados I', M, A, determinar si el juicio ' = M : A es derivable o no

© Inferencia de tipo:
Dados I' y M, determinar si existe A talque ' M : A
(y devolver tal tipo A cuando existe)

Teorema

Si la Bd-reduccién es confluente, y si el sistema es fuertemente
normalizante, entonces los tres problemas anteriores son decidibles

@ La complejidad tedrica de los correspondientes algoritmos es la del
test de conversién A = A’ (decidible si confluencia + norm. fuerte)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 000000000000 00000e00 OOOO000000000000 OOO0OO000000 0000000000000V 000000 00000000

Verificacion e inferencia de tipo (2/4)

A partir de:
o la funcién de normalizacién M +— | M
@ el test de conversion M7 =X M, = [M; =M

Se implementan 4 funciones (mutuamente recursivas):

@ InferType(T', M) : calcular A (si existe)
talque ' M : A,
bajo la hipétesis que F T' context

@ InferSort(T", A) : calcular s € {Set, Type} (si existe)
talque 'F A : s,
bajo la hipétesis que F T' context

@ CheckType(I', M, A) : verificarsi ' = M : A,
bajo la hipétesis que + T' context

@ CheckCix(T") : verificar si I' context

Obs.: Por Curry-Howard, CheckType también jverifica las pruebas!

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 000000000000 000000®0 OOOO000000000000 OOO0O0O00O000 000000000 00000000000 00000000

Verificacion e inferencia de tipo (3/4)

InferType(I", M) :=
En funcién de la forma del término M:

e M=u: Si (z: A) € T para algin A: devolver A
si no: devolver “no tipable”

e M=c Devolver ty(c)

e M = Set: Devolver Type

e M = Type: Devolver “no tipable”

o M =MXc:A.M: Sea s := InferSort(I', A) (cuando existe)
Sea B := InferType((I',z: A), M) (cuando existe)

Si s, B existen: devolver Ilx: A. B;
Si no: devolver “no tipable”

o M = M; Ma: Sea A; := InferType(T’, M) (cuando existe)
Sea Ay := InferType(T", M2) (cuando existe)
Si A1, Ag existen y Ay 2Ilx:A.B

para algan B: devolver Blz := Mb];

Si no: devolver "no tipable”

e M=Ilz:A.B: Sea s; := InferSort(I", A) (cuando existe)
Sea sy := InferSort((I',z : A), B) (cuando existe)
Si s1, 2 existen: devolver max(s1, s2)
Si no: devolver “no tipable”

Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones

Introduccién Logical framework
000000000000 000000000000 0000000® OOOO000000000000 00000000000 000000000 00000000000 00000000

Verificacion e inferencia de tipo

InferSort(T", A) :=
Sea s := lInferType(T', A) (cuando existe)
Si s existe y s € {Set, Type}: devolver s
Si no: devolver “no es un tipo”

CheckType(T', M, A) :=
Sea A’ := InferType(T', M) (cuando existe)
Sea s := InferSort(I’, A) (cuando existe)
Si (A’ existey A’ = A = Type) o
(A, s existen y A’ =2 A): devolver “derivable”;

Si no: devolver "no derivable”

CheckCtx(I") :=
En funcién de la forma del contexto I':

e I'=0: devolver “bien formado”

e '=Tp,z: A: Si CheckCtx(I'o) y = ¢ dom(I'p):
Sea s := InferSort(I'y, A) (cuando existe)

Si s existe: devolver “bien formado”
Si no: devolver “mal formado”
Si no: devolver “mal formado”

o Introduccion

© Logical framework

© Definiciones inductivas
@ Ejemplo y observaciones
© Normalizacion fuerte

© Algunas extensiones

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O00000000000 O0000000000000 OO000O000000 000000000 00000000000 00000000

Afadiendo constantes

@ Tres especies de constantes:

o Constantes de (familias de) tipos (Nat, List, Vect)
o Constructores (0, 8, nil, cons)
o Destructores (if, nat_rec, list_rec)

o Cada destructor d viene con d-reglas de la forma

d o« (Cl “ e) SN >_
d oo (Cn “ e) oo >_
donde c¢1,...,¢, son los constructores del tipo inductivo

destruido por d

@ Requisito: Mantener los tres invariantes:

Confluencia + [0-Subject reduction + Norm. fuerte

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 000000000000 00000000 O0O®O000000000000 OOO00O000000 000000000 00000000000 00000000

El tipo de los enteros naturales

Nat : Set
0 : Nat
S : Nat — Nat

nat_elim : IIX:Set.X — (Nat - X — X) — Nat —» X

(nat_elim = recursor del sistema T)

0-reglas asociadas

nat_elim X xy f O = X0
nat_elimX z f (Sn) > fn(nat_elimX xo fn)

@ nat_elim permite implementar las funciones usuales:

plus = An,m:Nat. nat_elimNat m (A_,z:Nat. S z) n
mult := An,m.Nat nat_elimNat O (A_,z:Nat. z+m)n
pred := nat_elimNat O (Az, :Nat. z)

o Pregunta: ;Cémo demostrar las propiedades de estas funciones?

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00000O000000000 0000000000000 0 O0O00O000000 000000000 00000000000 00000000

El esquema de eliminacion dependiente

nat_elim : IIX:Set . X — (Nat - X — X) — Nat - X

X0 — X1 — X2 — ... — Xn J
f0 f1 £2 F(n=1)
X0 T
X . Nat — Set
To X0
f : Ip:Nat. Xp— X (Sp)
z, : Xn

Recursor dependiente

nat_rec : IIX :Nat — Set.
X0 — (IIp:Nat. Xp— X (Sp)) — IIn:Nat. Xn

= Principio de induccion (Curry-Howard)
@ nat_rec tiene las mismas J-reglas que nat_elim

@ nat_elim se puede implementar a partir de nat_rec

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 000000000000 00000000 00000000000 000 O0O00O000000 000000000 00000000000 00000000

Los enteros naturales, de vuelta

Nat : Set

0 : Nat

S : Nat — Nat
nat_rec : IIX:Nat — Set.

X0— (IIp:Nat.Xp — X(Sp)) » IIn:Nat. X n

<

0-reglas asociadas

nat_rec X zo f O)
nat_rec X zo f(Sn) > fn(nat_recX xofn)

@ Version no dependiente de nat_rec:

nat_elim : IIX:Set.X — (Nat - X — X) —» Nat —» X
:= AX:Set.nat_rec(A_:Nat.X)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O00O00O0000000 00000000000 000 OOO00O000000 000000000 00000000000 00000000

El tipo de los booleanos

Bool : Set
true : Bool
false : Bool

bool_rec : IIX :Bool — Set.
X true — X false — IIb:Bool. X b

| A

0-reglas asociadas

bool_rec X xytrue > =x
bool_rec X xyfalse >

@ Version no dependiente:

if IIX :Set.Bool -+ X — X — X
:= AX:Set.bool_rec (A :Bool.X)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00000O00O0000000 O00000®00000000 OOO00O000000 000000000 00000000000 00000000

El producto cartesiano A x B (= AA B)

Prod : Set — Set — Set (Notacién: A X B := Prod A B)
pair : ITA,B:Set. A~ B —+ AXxB (Notacién: (a,b) := pair A Bab)

prod_rec : IIA B:Set.IIX:A X B — Set.
(Mlz: A.Mly:B. X (z,y)) > 1Ip: AxB.Xp

0-regla asociada

prod_rec ABX f{a,b) = fab

@ Eliminacién no dependiente y proyecciones:

prod_elim : IMA,B,X:Set.(A—-B—-X)—>AxB—X
AA, B, X :Set.prod_rec AB(A_:Ax B.X)

fst : IIA,B:Set. AxB— A
snd : IIA,B:Set.Ax B — B

(Ejercicio)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones

000000000000 OO0O0VOO0O000O0O00O0000000 0000000000000 0 OO000O0O00000 0000000000000 0000000 00000000

La suma directa A+ B (= AV B)

Sum : Set — Set — Set (Notacién: A+ B := Sum A B)

inl : IIA,B:Set.A— A+ B (Notacién: inl(a) := inl A Ba)

inr 1_[147 B:Set.B—+ A+ B (Notacién: inr(b) := inr A Bb)
sum_rec : IIA,B:Set.IIX:A+ B — Set.
(Ilz: A. X (inl(z))) —» (Hy: B. X (inr(y))) —
Ms:A+B. Xs

V.

0-reglas asociadas

sum_rec ABX fg(inl(a)) = fa
sum_rec ABX fg(inr(b)) > gb

@ Eliminacién no dependiente:

ITA,B:Set . IIX:Set.(A— X) > (B—+X) > A+B— X
AA,B:Set.AX :Set.sum_rec AB(A_:A+ B.X)

sum_elim

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O00O00O0000000 00000000000 000 OO000O000000 0000000000000V 000000 00000000

El tipo vacio O (= L) y el tipo unitario 1 (= T)

e El tipo vacio 0 (= proposicién absurda L)

0 : Set
(Ningan constructor)

empty_rec : IIX:0 —Set.Ile:0.Xe

(Ninguna 0-regla asociada)
o El tipo unitario 1 (= proposicién obvia T)

1 : Set

() |
unit_rec : IIX:1—Set. X () —>Tu:1.Xu

0-regla asociada

unit_recXz() > =

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00000O000O000000 000000000 ®00000 OOO000O000000 000000000 00000000000 00000000

La suma dependiente ¥z: A. Bz (= dz:A.Bx)

DSum : IIA:Set.(A — Set) — Set (3z:A.Bz := DSum A B)

dpair : IIA:Set.IIB:A — Set.

x:A.Bx - Xx:A.Bx ({a,b) := dpair ABab)

dsum_rec : IIA:Set.IIB:A — Set.IIX:(Xz:A.B) — Set.
(Ilz: A.TMly:Bz. X (z,y)) — z:(Xz:A.Bz). X z

0-regla asociada

dsum_rec AB X f{a,b) = fab

@ Elimination no dependiente y proyecciones (Ejercicio):

dsum_elim : TIA:Set.IIB: A — Set.IIX :Set.
(Iz:A.Bx — X)— (Xz:A.Bz) > X

dfst : ITA:Set.IIB: A — Set.(Xz:A.Bz) — A
dsnd :

TTA:Set. IIB: A — Set.Ils: (Xz: A.Bxz).B(dfst ABs) :=

® Obs.: Siz ¢ FV(B), entonces Xzx:A.B ~ AXB (iso)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O00O0O00V00O000000000 00000000000 000 O0000O000000 0000000000000V 000000 00000000

El tipo identidad =z =4y (1/3)

Eq : ITA:Set. A — A — Set (Notacién: © =4 y := Eq A z y)
refl : IMA:Set. Ilz:A. =4z

eq_elim : IIA:Set. IIP: A — Set. Ilz,y: A.
Prx - z=4y - Py

d-regla asociada

eqelimAPzxzp(refl Az) = p

Obs.: La d-regla implementa la reduccién usual del corte de =:

p:-Px refl Az : =4z :
eqelimAPzaxp (reflAz) : Pz > p: Px

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00000000000000 0000000000000 0 OO000O000000 000000000 00000000000 00000000

El tipo identidad =z =4y (2/3)

El tipo identidad x =4 y cumple las propiedades deseadas:
(Usando la notacién Vz:A.B = Ilz: A.B)

o Lema: VA:Set. Vz:A. x=4x

Prueba: refl

o Lema: VA:Set. Vz,y:A. x =2y — y=azx
Prueba: MA:Set.Az,y:A.Xe:(z=4vy).
eqelimA (A\z:A.z=s2)zy (refl Ax) e
o Lema: VA:Set. Vr,y,z2:A. T=4y — yYy=42 — T =42
Prueba: MA:Set.A\z,y,z:A. de:(z=4y).Xe:(y=4a2).
eq_elim A (Ah:A.x=ah)yzee

o Lema: VA:Set. Vr,y:A. x =2y —
VB:Set. Vf:A—B. fz=pfuy

Prueba: MA:Set.\z,y:A.de:(zx=4y).AB:Set.\f:A— B.
eg_elim A (M\z:A.fx=p [z)zy (refl B (f x))

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O00O00O0000000 000000000000 800 OOO00O000000 000000000 00000000000 00000000

El tipo identidad =z =4y (3/3)

También se pueden demostrar los restantes axiomas de Peano:

(Ya demostramos el principio de induccién: nat_rec)

o Lema: Vz:Nat. plus x 0 =y ©

Prueba: M\z:Nat.refl Nat z (por conversion)

o Lema: Vax,y:Nat. plus z (S y) =pat S (plus z y)
Prueba: M\z,y:Nat.refl Nat (S (plus z y)) (por conversién)

@ Axiomas de mult: analogo

o Lema: Vz,y:Nat. Sz =yt Sy — & =pat ¥

Prueba: MAz,y:Nat.)le: (S z =yat S).
eq_elim Nat (Az:Nat.pred (S z) =yat pred z)
(Sz) (Sy) (refl Nat z) e

o Lema: Vz:Nat. S =y, 0 — L

Prueba: Véase mas adelante

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O00OO00000O00O0000000 000000000000 0®0 OOO00O000000 000000000 00000000000 00000000

Eliminacion fuerte (1/2)
@ nat_rec permite iterar una funcién sobre datos... n— 2"
... pero no permite iterar una funcién sobre tipos n — Nat”

Principio de eliminacion fuerte (+ d-reglas)

nat_rect : Set— (Nat — Set — Set) — Nat — Set

nat_rect X F'0 - X
nat_rect X F'(Sn) > Fn(nat_rectX Fn)

e Ejemplo:
marrow : Nat — Set — Set — Set
= An:Nat.)\A, B:Set.
nat_rect B (A_:Nat.AX:Set. A — X)
Para todos A, B :Set y n € IN, tenemos que:

marrow (S"0) AB >* A—-.-—>A— B
—_—

n

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O00O0O00O00O00O0000000 000000000000 00® OOO00O000000 000000000 00000000000 00000000

Eliminacion fuerte (2/2)

o Otro ejemplo:
Null Nat — Set
= An:Nat.nat_rect 1 (A_:Nat.A :Set.0)n

Por construccion: Null O =* 1
Null (Sn) >=* O

@ Permite derivar el axioma de Peano:

Lema: Vz:Nat. Sax =yt 0 — L

Prueba: Az :Nat.)\e:(S z =pat 0).
eq_elim Nat Null O (S z) () (eq_sym Nat (S z) 0 ¢)

e Por todo lo anterior:
Proposicion (Inclusién HA € MLTT)

La teoria de tipos de Martin-L6f es una extensién (no conservativa)
de la aritmética de Heyting: HA C MLTT

Obs.: Extensién no conservativa pues MLTT F Cons(HA) (Ejercicio)

o Introduccion

© Logical framework

© Definiciones inductivas
@ Ejemplo y observaciones
© Normalizacion fuerte

© Algunas extensiones

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00OO00O000000000 000000000000 000 00000000000 000000000 00000000000 00000000

Expresividad de MLTT

@ Como lenguaje de programacién, MLTT contiene mucho mas que el
sistema T de Godel (pero no contiene el sistema F de Girard)

@ En particular, MLTT permite el polimorfismo predicativo

@ Como sistema légico, MLTT contiene mucho mas que la Aritmética
intuicionista de los tipos finitos HA* (1) (pero no contiene HA2)

@ Aunque no contenga HA2, MLTT permite expresar cuantificaciones
universales sobre predicados de tipo Nat — Set (: Type), que
definen una nocién predicativa de conjunto (2

@ Finalmente, la identificacién entre tipos y proposiciones permite usar
los programas como pruebas, y las pruebas como programas

(1) HA“ = extensién conservativa de HA cuyos tipos y términos son los del sistema T,
y cuyo lenguaje de férmulas tiene cuantificaciones para todos los tipos del sistema T

() Las férmulas (: Set) que sirven para construir tales conjuntos (por comprensién)
prohiben cuantificaciones sobre los conjuntos (que inducen tipos grandes : Type)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O0V00O00V00O00O0O000000 000000000000 000 OOG®O00000000 000000000 00000000000 00000000

Observacién sobre la extensionalidad

@ MLTT provee una nocién de igualdad 2 =4y (= Eq A z y)
para cada tipo A : Set, inclusive para los tipos funcionales

Es obvio que dos funciones iguales son extensionalmente iguales:

VA,B:Set. Vf,g:A— B.
f=a-Bg9g > V:A. fr=pgx
Prueba:

AMA,B:Set . \f,g:A— B.Xe:(f=a-B9g) - A\z:A.
eq_elim (A — B) (AMh:A— B.fx=pha) fg(refl B(fz))e

Pero MLTT no cumple el reciproco (= axioma de extensionalidad):
MLTT V (Vz:A. fe=pgzx) - f=a5Bg

= Laigualdad de MLTT es una igualdad intensional

@ Intuicién: VIl:List Nat. quick_sort [= bubble_sort [
pero quick_sort # bubble_sort

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O0000O0000000 000000000000 000 O00OOO000000 V0000000000000 000000 00000000

Ejemplo de formalizacién aritmética (1/4)

«En lo siguiente, los objetos matematicos seran considerados
como nuestras propias construcciones>»

— Per Martin-Lof, A Theory of Types, 1971
@ Objectivo: Demostrar la férmula:
Vr:Nat. dy:Nat. z2=2xy V x=2xy+1
Es decir: Construir un término de tipo:

IIz:Nat. Yy:Nat. & =y mult 2y + T =pa S (mult 2 y)

@ En lo siguiente, se escriben:

Dolz, y] = = =pasmult2y

Di[z,y] = & =pas S(mult 2 y)

D[l‘, y] = Do[l’, y]\/Dl[]}, y]
]

Elz] := 3Jy:Nat. D[z,y]

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 000000000000 00000000 000000000000 000 0000000000 000000000 00000000000 00000000

Ejemplo de formalizacién aritmética (2/4)

Doz, y]
Dl[xv y]

T =pag mult 2 y Diz, y]
Z =pat S (mult 2 y) E[z]

Do[z, y] V D1z, y] J
Jy:Nat. D[z, y]

e Lema ind_base : FE|0]
:= dpair Nat (Ay:Nat.DJ0, y]) O
(inl Dg[0, 0] D10, 0] (refl Nat 0))
o Lema ind_step, : Vz,y:Nat.Dyz, y] = Di[Sz, y]

= Az,y:Nat.Ah:Dolz, y].
eq_elim Nat (Az:Nat.Sz =yat S 2)
z (mult 2 y) (refl Nat (Sx)) h

e Lema ind_step|, : Vz,y:Nat.Dgz, y|] = E[Sz]

= Az,y:Nat.Ah: Doz, y].
dpair Nat (Az:Nat.D[Sz, z]) y
(inr Do[Sz, y] D1[Sz, y] (ind_step, = y h))

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O00O000000000 000000000000 000 0000000000 0000000000000V 000000 OOO00000

Ejemplo de formalizacién aritmética (3/4)

Do[.’l?, y]

T =pat mult 2 y Diz, y]
D[z, y]

T =pat S (mult 2 y) El[z]

Do[m, y] VDl[xv y} J
Jy:Nat. D[z, y]

e Lema ind_step; : Vz,y:Nat.Ds[z, y] = Do[Sx, Sy]
= Az,y:Nat.Mh:Di[z, y].
eq_elim Nat (Az:Nat.Sz =yat S 2)
z (S (mult 2 y)) (refl Nat (Sz)) h

o Lema ind_step| : Vz,y:Nat.D;[x, y] — E[Sz]

= Az,y:Nat.Ah: Doz, y].
dpair Nat (Az:Nat.D[Sz, z]) (Sy)
(inl Do[Sz, Sy] D1[Sz, Sy] (ind_step; z y h))

o Lema ind_step : Vx:Nat.F[z] — E[S z]

:= Az:Nat.Ah:Ez].
dsum_elim Nat (Az:Nat.D[z]) E[S z]
(Az:Nat.sum_elim Dg[z] D1[x] E[S z]
(ind_step(,) (ind_step] z)) h

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O0O00O0000000O0000000 OO0OO00O000000000 0000000000 0000000000000V 000000 00000000

Ejemplo de formalizacién aritmética (4/4)

Dolz, y]
Dl[xv y]

T =pat mult 2 y Dz, y]
T =pat S (mult 2 y) El[z]

Do[z, y] v D1z, y] J
Jy:Nat. D[z, y]

@ Ya demostramos:

o Lema ind_base : E[0]
o Lema ind_step : Vz:Nat.E[z] — E[Sz]

y por lo tanto:

o Teorema foo :
Vz:Nat. Jy:Nat. & =ppemult 2y V & =ya S (mult 2 y)

Blz]

:= Az:Nat. nat_rec (Az:Nat.FE[z]) ind_base ind_step z

@ ;Cémo extraer la funcién div2 : Nat — Nat subyacente?

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 000000000000 00000000 000000000000 000 0000000000 000000000 00000000000 00000000

Extraccion de programas (1/3)

@ Recordatorio: Jrx:A.Bx = Yz:A.Bx = DSum A B, donde:
DSum : VA:Set.(A— Set) — Set (3z:A.Bz := DSumA B)

dpair : VA:Set.VB:A — Set.
Vr:A.Bx —3dz:A.Bx ({a,b) := dpair ABab)

dsum_rec : VA:Set.VB:A — Set.VX:(3z:A.B) — Set.
(Vz:A.Vy:Bz. X (z,y)) - Vs:(Fx:A.Bz).Xs

dsum_rec A B X f (dpair ABab) > fab

@ A partir del recursor «dsum_rec>», se pueden construir las
proyecciones dependientes (ejercicio):
dfst : VA:Set.VB:A —Set.(3z:A.Bz) — A
dsnd : VA:Set.VB:A — Set.Vs:(3x:A.Bx). B (dfst A B s)

*

de tal modo que: dfst A B (dpair A Bab) =" a
dsnd A B (dpair A Bab) =" b

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O0000O0000000 OO0O0O00O000000000 O0000000®00 O0O0OO0OV00000000000000 00000000

Extraccion de programas (2/3)

A partir de los términos:

foo : Vz:Nat. Jy:Nat. z=mult 2y V z =S (mult 2 y)

Dlz, y]
dfst : VA:Set.VB:A —Set.(3z:A.Bz) — A
dsnd : VA:Set.VB:A — Set.Vs:(3z:A.Bz). B (dfst A B s)

se pueden construir los términos:

div2 := Az:Nat.dfst Nat (Ay:Nat.D[z,y]) (foo x)
: Nat — Nat
div2_correct := Az:Nat.dsnd Nat (Ay:Nat.D[z,y]) (foo x)
: Vz:Nat. D[z, dfst (Ay:Nat.D[z,y]) (foo z)]
: Vz:Nat. D[z, div2 z] (por conversién)

: Vz:Nat. z =mult 2 (div2) V z =S (mult 2 (div2 z))

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 00000000V 00O00O0000000 000000000000 000 0000000000 OOOO00O000000000000000 00000000

Extraccion de programas (3/3)

Un mecanismo muy general: Dados tipos A, B : Set, un predicado
C: A— B — Set y un término (de prueba)

M : Vz:A. Jy:B. Czxy

siempre se pueden construir los términos:

f = M:Adfst B(Cz)(Mz) : A—B
feorreet = Ar:A.dsnd B (Cz) (M z) : Va:A. Cx(fx)
Intuitivamente:
o f recoge los testigos de dy:B. C z y (para cada z : A)

@ feorrect recoge las correspondientes justificaciones

Todo esto funciona sin suponer la unicidad de v : B...
. iun sabor de axioma de eleccién?

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O0V00O00000000000000 O0OO0O00O0000000 0000000000 ® OOOO00O000000000000000 00000000

El axioma de eleccién intensional

Teorema (Axioma de eleccién intensional)

VA,B:Set. VC:(A — B — Set).
(Vz:A. Jy:B. Czy) — If:(A—=B). Vz:A. Cz (f x)

Prueba: MA,B:Set.A\C:(A— B —Set).Ah:(Vz:A.Jy:B. C zy).
dpair (A — B) (A\f:(A— B).Vz:A. C z (f z))
(Az:A.dfst B (C z) (hx)) (Ax:A.dsnd B (C z) (h z))

Axioma de eleccién intensional — Variante

Toda funcién sobreyectiva tiene inversa por la derecha:

VA,B:Set. Vf:(A— B).
Vy:B. 3z:A. fr=py) — Jg:(B—A).Vy:B. f(9gy)=BY

Prueba: Ejercicio.

jCuidado! El axioma de eleccién de MLTT (intensional e intuicionista) es
mucho mas débil que el axioma de eleccién de ZF (extensional y clasico).
En particular, no implica ni el lema de Zorn, ni el teorema de Zermelo

o Introduccion

© Logical framework

© Definiciones inductivas
@ Ejemplo y observaciones
© Normalizacién fuerte

© Algunas extensiones

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O0O00O00V00O00O0O00O0000 OOOO0O00O0000000 00000000000 O8000000000000000000 OOO00000

Una teoria de tipos de Martin-Lof (1/2)

En esta seccidn, se considera la teoria de tipos de Martin-Lof (MLTT)
definida a partir de las siguientes constantes y d-reglas:

0 : Set
empty_rec : IIX:0 — Set.Ilzx:0.X x
1 : Set
O 1
unit_rec : IIX:1 —Set. X () »Ilz:1. Xz
unit_rec X z () > =«
Bool : Set
true : Bool
false : Bool
bool_rec : IIX :Bool — Set. X true — X false — Iz :Bool. X x

bool_rec X z y true - T
bool_rec X = y false > y

Nat : Set

0 : Nat

S : Nat — Nat
nat_rec : IIX:Nat — Set. X0 — (Ily:Nat. Xy — X (Sy)) — Ilz:Nat. X =
nat_rec X = f O - T
nat_rec X = f (Sn) > fn (nat_rec X = f n)
nat_rect : Set — (Nat — Set — Set) — Nat — Set
nat_rect X F' 0 - x

nat_rect X F (Sn) > F n (nat_rect X F n) ()

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O00O00O0000000 OOOO0O00O0000000 00000000000 OO®O0000000000000000 OO000000

Una teoria de tipos de Martin-Lof (2/2)

Prod : Set — Set — Set
pair : IIA,B:Set.A — B — Prod AB
prod_rec : IIA, B:Set.IIX :Prod AB — Set.

(MMmz: A.Mly: B. X (pair ABxzy)) - IIz:Prod AB. X z
prod_rec A B X f (pair ABab) > fab

Sum : Set — Set — Set

inl : IIA,B:Set.A — SumAB

inr : IIA,B:Set.B — SumAB
sum_rec : IIA,B:Set.IIX :SumA B — Set.

(MMz:A.X (inlABz)) —» (Ily: B. X (inr ABy)) - [1z:SumAB . X z
sumrec ABX fg(inlABa) > fa
sumrec AB X fg(inr ABb) = gb

DSum : ITA:Set.(A — Set) — Set
pair : IIA:Set.IIB: A — Set.Ilx:A.Bx — DSumA B
dsum_rec : IIA:Set.IIB:A — Set.IIX :DSum A B — Set.

(Mz: A.Mly: Bz . X (dpair ABzy)) — [Iz:DSumA B . X z
dsum_rec A B X f (dpair ABab) > fab

Eq : IIA:Set.A — A — Set
refl : IIA:Set.Illz:A.EqAxz
eq_elim : TIIA:Set.IIP:A — Set.Ilz,y:A.Px - EqAzy - Py

eqelim APz xzp(refl Az) > p

Ese sistema es confluente y cumple la subject reduction (Ejercicio)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0000O00O00O00O0O000000 000000000000 000 00000000000 0000000000000 000000 00000000

Formas candnicas (1/3)

Notaciones: Tres especies de constantes:

e ind = constante inductiva (Nat, Prod, Eq, etc.)
@ constr = constructor (0, pair, refl, etc.)
@ destr = destructor (nat_rec, prod_rec, eq_elim, etc.)

Cada constante c tiene una aridad fc (dada por su tipo)
Por ejemplo: #Eq = 3, firefl =2, feq_elim=6

Definicién (Forma canénica)

Una forma canédnica es todo término de la forma:

o Set, Type, Ilz:A.B, ind N (Tipos o familias de tipos)
@ \x:A.M, constr N (Funciones y constructores aplicados)
@ destr N1--- N, conk < fdestr (Destructores parcialmente aplicados)

Obs.: Las formas candnicas son estables por reduccién y por sustitucién
(Ejercicio)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O0000O0O000000 OOOO00O00O0000000 00000000000 O000®O000000000000000 OO000000

Formas candnicas (2/3)

Proposicién (Formas normales)

En el contexto vacio, todo término M bien tipado y en forma normal
es una forma canénica. Ademés:
@ Si M : Set, entonces M es

o obiendelaforma M = Ilz:A.B
e o biendelaforma M = indP;--- P, (con n = tind)

Q@Si M : Ilz:A.B, entonces M es

o obiendelaforma M = \z: A .M
e o bien de la forma M = destr Ny --- Ng (con k < fdestr)

©@Si M : indP,---P,, entonces M es de la forma
M = constr Ny --- Ng (con k = fconstr)

donde constr es uno de los constructores de ind

Demostracion. Ejercicio

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O0000O000O0000 OOO0O00O000000000 00000000000 0000000000000 000000 OO000000

Formas candnicas (3/3)

Corolario (Formas canénicas de los tipos inductivos)

En el contexto vacio:
@ Todo término M : Nat en forma normal es de la forma M = S" 0 (con n € IN)
@ Los Gnicos términos de tipo Bool en forma normal son true y false
@ El Gnico término de tipo 1 en forma normal es ()
@ No existe ningtn término de tipo 0 en forma normal
@ Todo término M : Prod AB (= A X B) en forma normal es de la forma
M = pairA’B’ab, con A’ =|A, BP=|B, a: Ay b:B
@ Todo término M : SumA B (= A+ B) en forma normal es de la forma:
e M = inlA’B’a, con A’=]|A, BB=|A y a:A, obien
o M = intrA’B’b, con A’=|A, B '=|A y b:B
@ Todo término M :DSumA B (= Xz: A.Bx) en forma normal es de la forma
M = dpair A’ B’ab, con A’ =]A, B =|B, a:A y b:Ba

@ Todo término M :EqAaiaz (= a1 =4 a2) en forma normal es de la forma
M = reflA’a’, con A/ =1A y d = la1 = las.

En particular, la existencia de M implica que a1 = a2

Demostracion. Ejercicio

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O0O00O0O0V00O000000000 OOOO0O00O0000000 00000000000 O00000®0000000000000 OO000000

El teorema de normalizaciéon fuerte

Los resultados anteriores (sobre las formas candnicas) tienen pruebas
puramente combinatorias (i.e. en HA). No es el caso del siguiente

Teorema (Normalizacién fuerte)

Si 'k M: A, entonces M es fuertemente normalizante

Demostracion. Véase préximas diapositivas

@ Obs.: Por un lema anterior, sabemos que I'+ M : A implica
que A=Type o I'k A:s paraalgin s € {Set, Type}

Aplicando el teorema de normalizacién fuerte al juicio T'F A : s,
también se deduce que A es fuertemente normalizante

@ De modo analogo, se demuestra que F I' context implica que
todos los tipos en I' son fuertemente normalizantes

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 000000000000 0O000O0000 OO0O0O00O00O0000000 00000000000 O000000e000000000000 00000000

Consecuencias del teorema de normalizacién fuerte

El teorema de normalizacién fuerte se cumple en todos los contextos
(bien formados). Ademas:

Corolarios

En el contexto vacio:

© Consistencia: No existe ninglin término M : 0

@ Disyunciéon: Todo término M :SumA B (= AV B) se reduce:
o o biensobre inl A’ B'a, con A=A, B =|B y a:A
o o biensobre inr A’ B'b, con A/=|A B'=|By b:B

@ Existencia: Todo término M :DSumAB (= Jz:A.Bx)
se reduce sobre dpair A’ B’ a b, con A'=]A, B =|B,
a:A (testigo) y b: Ba (justificacion)

Q lgualdad: Existe un término de tipo EqAajas (= a1 =4 as)
si y s6lo si los términos a1, as : A son convertibles: a; = as

Demostracion. Ejercicio

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O0000O0000000 OO0OO00O00O0000000 OOO0O0O000000 0000000000000 000000 OO000000

Candidatos de reducibilidad

@ SN = conjunto de los términos fuertemente normalizantes
@ Red; (M) = {M'eA : M > M}

@ Un término neutro es un término que no esta en forma canonica

Definicién (Candidato de reducibilidad)

Un conjunto de términos & C A (posiblemente abiertos) es un
candidato de reducibilidad cuando cumple los siguientes criterios:

(CR1) ¥ C SN
(CR2) Si M € %, entonces Redi(M)C %

(CR3) Si un término neutro M es tal que
Red: (M) C €, entonces M € ¢

Obs.: Por (CR3), un candidato de reducibilidad contiene todas las variables

@ Se escribe CR al conjunto de todos los candidatos de reducibilidad

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O00O00O0000000 OO0OO00O00O0000000 00000000000 0000000000000 000000 OO000000

Propiedades de clausura por 5d-expansion

Lema (Clausura por Sd-expansion)
Dado un candidato de reducibilidad %"

Si M[z:=N]€% y A,N € SN, entonces (Az: A.M)N € ¢
Si p€ ¥ y P €SN, entonces unit_rec P p () € €

Si pe¥ y P,q €SN, entonces bool_rec P p q true € €

Si g€ % y P,p € SN, entonces bool_rec P p q false € €

Si pe¥ y P,f €SN, entonces nat_rec Pp f0€ ¥

Si f n (nat_rec P p f n) € €, entonces nat_rec P p f (Sn) € €

Pe€%¢ y F €SN, entonces nat_rect P F 0 € €

Si f n (nat_rect P F n) € €, entonces nat_rect P f (Sn) € €

Si fabe ¥ y A, B €SN, entonces prod_rec A B P f (pair A Bab) €€
Si fa€e¥ y A ,B,g€ SN, entonces sum_rec A B P f g (inl A Ba) € ¢
Si gbe¥ y A,B,f €SN, entonces sum_rec A B P f g (inr A Bb) € €
Si fabe€ y A,B € SN, entonces dsum_rec A B P f (dpair A Bab) € ¢
Si pe¥ y A,P,q € SN, entonces eq_elim A Paap (refl Aa) € ¥

666000000000

Demostracion. Ejercicio.

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O0000O0000000 O0OO00O00O0000000 00000000000 0000000000000 000000 O0000000

Clausura por (CR3)

e Dado un conjunto de términos S, se define inductivamente el
conjunto S («clausura de S por (CR3)») por las reglas:

@ Si McS, entonces M e S

© Si M esneutro y Redi(M) C S, entonces M € S
(Recordatorio: Redi (M) = {Mj,..., M/} siempre es finito)

@ Por def., S es el minimo superconjunto de S que cumple (CR3)

("] Ejemplo: HN = o (= conjunto de los términos hereditariamente neutros)

Proposicion

Si S cumple (CR1) y (CR2), entonces S es un candidato de reducibilidad

= S es el candidato de reducibilidad generado por S

@ HN es el minimo candidato de reducibilidad

@ SN es el maximo candidato de reducibilidad

Introduccién Logical framework Def. inductivas Ejemplo y obs.

Normalizacién fuerte

Extensiones

000000000000 OO0O0VOO0O0O00O0O00O000O0000 OO0OOO0000O000000 OO000O0O0000 0000000000000 000000 00000000

Construccién de candidatos

o Candidatos asociados a los tipos basicos:
e 6o = @ (= HN)

o 41 = {()}
0 Goo1 := {true; false}
o Guar = {S"0 : n €N}
e Candidato asociado al tipo identidad:

o Para todos M, M’ € SN se escribe:

Craarrr) 1= {HN si no

con Gresn = {reflAM : A M € SN}

Obs.: No se necesita suponer mas que A, M € SN en la definicién del
candidato %res1, pues A y M son computacionalmente irrelevantes en la

construccién refl AM (sélo sirven para el tipado)

Claﬂref]_ si M = M/

(1/2)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O00O00O0000000 OO0OO00O00O0000000 OOO0O0O000000 000000000 000e0000000 O0000000

Construccién de candidatos (2/2)

@ Producto y suma dependientes de una familia de candidatos:
e Dados ¥ € CRy 9n € CR paratodo N € €, se definen:

[[2v = {(MeA : (YNe€) MN € on}
Ne&

> 9y = {dpair ABNM : A BESN, N€%, M€ In}
Ne¢€

Obs.: Ay B son computacionalmente irrelevantes en la def. de >° o I

@ Producto y suma de candidatos:

e 6¥x92 = {pair ABMN : A/ BeSN, M €%, N€ 9}

e ¥+ 2 = inl(%)Uinr(2)

{inlABM : A, BeESN, M €<%}
{intABM : A,B€ SN, M€ 2}

con inl(%)
inr(9)

Obs.: Misma observacién sobre Ay Benlasdef. de ¥ x 2y €+ 2

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O00000000000 OO0OO00O00O0000000 00000000000 0000000000000 e000000 O0000000

Interpretacion de los tipos pequefios (1/3)

Se define por induccién simultanea:
@ Un conjunto de términos &5 C A (interpretacién de Set)
@ Una funcién ¢g : &9 - CR (interpretacién de los tipos pequefios)
Definicién inductiva de ®¢ y ¢o: P9 — CR (clausulas 1-6/10):
1) 0e®y y ¢0(0):=%0
) 1e®) vy ¢o(1):=%
) Bool € @y y ¢o(Bool) := Gpoor
4) Nat € &g y ¢p(Nat) := Gat
)

Si Ae®y y M,M € ¢y(A),

entonces (EQAM M') € &y y ¢o(EQAM M') 1= Ceqar,mv)
(6) Si Ae®y y Blz:=N]e€ P, paratodo N € ¢o(A),
entonces (Ilz:A.B) e ®y vy

¢o(Mz:A.B) := [oo(Blz:=N)) (..)

Nepo(A)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O00O00O0000000 OO0OO00O00O0000000 00000000000 000000000 00000e00000 O0000000

Interpretacion de los tipos pequefios (2/3)

Definicién inductiva de ®¢ y ¢g: g — CR (clausulas 7-10/10):

(7) Si AE(I)Q y B € ®g,
entonces (AXB)e®y y ¢o(AxB) :

$0(A) x ¢o(B)

(8) Si Aedy y B e D,
entonces (A+B)e®y y ¢o(A+ B) := ¢o(A) + ¢o(B)

(9) Si Ae®y y BN e Py paratodo N € ¢p(A),
entonces (DSumA B) € &y vy

¢o(DSumAB) := Y ¢o(BN)

Nego(4)

(10) Si A es un término neutro tal que A’ € ®(para todo A’ € Red;(4),
entonces A € Oy vy

wit) = (U o)

A’€Red; (A)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O0V00O00O00O00O0O000000 OO0OO00O00O0000000 00000000000 000000000 000000e0000 OO000000

Interpretacion de los tipos pequefios (3/3)

@ Los 10 casos de la definicién inductiva de ®(son disjuntos
= el arbol de derivacién de cada A € & es Gnico
= la funcién ¢g : g — CR esta bien definida

Lema (Invariancia por reduccién)

@ P es un candidato de reducibilidad
@ Para todo A € ®j, tenemos que ¢o(A) = ¢o({A)

Demostracion.

© (CR1) y (CR2) se demuestran por induccién sobre la derivacién de A € ®o;
(CR3) sigue de la clausula (10) de la definicién de @g.

© Por induccédn sobre la derivacién de A € ®. O

@ Obs.: El lema permite observar que cuando A es un término neutro tal que
A’ € & para todo A’ € Red;(A) (clausula (10)), se tiene que:

HN si Red;1(A) =@

A) =
do(4) {¢0(A’) para cualquier A’ € Red(A) si no

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O0000O0000000 OO0O0O0O000000000 00000000000 000000000 0000000e000 O0000000

Interpretacion de los tipos grandes (y pequefios)

@ Se define (de vuelta) por induccién simultanea:

e Un conjunto de términos & C A (interpretacion de Type (3))
o Una funcién ¢ :® - CR (interpretacién de los tipos grandes)

@ Definicién inductivade @ y ¢: ® — CR:

o Se reutilizan las clausulas (1)—(10) que definen @y y ¢o: Do — CR
(remplazando en cada clausula @4 por ® y ¢ por ¢)

o Se afiade la clausula: (11) Sete ® y ¢(Set) := P

@ Obs.: Por construccién, tenemos que ®o C @ y ¢g = |,

Lema (Invariancia por reduccion)

© O es un candidato de reducibilidad
@ Para todo A € ¥, tenemos que ¢(A) = p(LA)

Demostracion. Anéaloga a la demostracién del lema anterior. DJ

(3) En la construccién de ® y ¢, se supone implicitamente que Set C Type

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O0O0000000000000 OOOO0O00O0000000 OOO0O0O000000 000000000 00000000®00 OO000000

Interpretacion de los contextos y normalizacion (1/2)

@ Se asocia a cada contexto I' un conjunto de sustituciones [I'],
definido por induccién sobre la lista T" por:

0] = {=} (sustitucién vacia)
[T,z:A] == {oU{z:=N} : 0 €[], Alo]e® y N € ¢(Alo])} J

@ jCuidado! La definicién se aplica a cualquier contexto sintactico, incluso a los
contextos mal formados. En muchos casos, la condicién A[o] € ® no se cumple
para ninguna sustitucién (pues A no es un tipo), de tal modo que [I'] = @.

Proposicién (1°" invariante de normalizacion)

Si ' M : A, entonces para todo o € [I'], tenemos que:

P si A = Type
Alo] € U {Type Mlo] €
[o] {Type} vy [o] {¢<A[U]) 5
Demostraciéon. Por induccién sobre la derivacién de T' = M : T. D)

Ejercicio. Detallar la prueba.

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O00O00O0O00O0000 000000000000 000 00000000000 000000000 00000000080 OO000000

Interpretacion de los contextos y normalizacion (2/2)
@ Dado un contexto I" = z1: Aq,...,2, : A,, se escribe
idr = [x1 =215 .20 = Ty (sustitucion identidad)

Proposicién (29 invariante de normalizacién)

Si T context, entonces idp € [I']

Demostracion. Por induccién sobre la derivacién de + I' context,
usando el 1°" invariante de normalizacién en cada etapa. O

Ejercicio. Detallar la prueba.

Corolario (Normalizacién fuerte)

Si ' M : A, entonces M es fuertemente normalizante

Demostracion. Basta con aplicar el 1¢" invariante de normalizacién con la
sustitucién o := idp € [I] (por el 2% invariante de normalizacién). O

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O000O00O00000000000 OO0OO00O00O0000000 00000000000 000000000 0000000000® OOO00000

Observaciones

@ El nicleo de la prueba es la definicién por induccién simultanea del
conjunto ® vy de la funcién ¢ : d — CR.

(Definicién en dos etapas, para interpretar Set y luego Type)

@ Esta construccién estd considerada como predicativa, y se puede
formalizar en algunas extensiones de la teoria de tipos de Martin-Lof
con un mecanismo de definicién inductiva-recursiva [Dybjer 2000]

o Cabe destacar que la misma construccién se puede formalizar
mediante una construccion impredicativa en HA2 (jEjerciciol)
Y por lo tanto:

MLTT < HA2

@ Hasta ahora, y a pesar de su considerable expresividad, todas las
versiones de la teoria de tipos de Martin-Lof tienen una fuerza
tedrica (estrictamente) menor que la de HA2

o Introduccion

© Logical framework

© Definiciones inductivas
@ Ejemplo y observaciones
© Normalizacion fuerte

© Algunas extensiones

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O00O0O00O00000000000 O0O0O00O000000000 00000000000 00000000000 000000000 08000000

Otros tipos inductivos: las listas (polimoérficas)

List : Set— Set

nil : IIA:Set. List A
cons : IIA:Set. A - ListA — List A

list_rec : IIA:Set. IIX :List A — Set.
X (nilA) —
(Mlz: A.T:List A. X1 — X (cons Azl)) —
IIl:List A. X]

”
0-reglas asociadas

list_recAX z f (nil A) - T
list_rec AX x f(consAal) > fal(list_recAXzfl)

Ejercicio: Implementar las funciones:
@ length : ITA:Set.List A — Nat
@ concat : ITA:Set.List A — List A — ListA

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O00O0O0000000O0000000 00000000000 0000 00000000000 00000000000 000000000 0OOe00000

Otros tipos inductivos: las listas dependientes («vectores»)

Vect : Set— Nat — Set

vnil : IIA:Set. Vect AO
vcons : IIA:Set. IIn:Nat. A — Vect An — Vect A(Sn)

vect_rec : IIA:Set. IIX :(IIn:Nat.Vect An — Set).
X 0(vnil A) —
(IIn:Nat . IIz: A . IIv:Vect An.
Xnv— X (Sn) (vcons Anzv)) —
IIn:Nat. [Mv:Vect An. Xnv

0-reglas asociadas

vect_rec A X x f0(vnil A) - x
vect_recAX z f(Sn)(vcons Anav) > fnav(vect_recAXz fnv)

Ejercicio: Implementar las funciones:
@ vlength : ITA:Set.IIn:Nat.Vect An — Nat (j2 soluciones!)

@ vconcat : IIA:Set.IIn:Nat.Vect An — IIm:Nat.Vect Am — Vect A (plusnm)

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 000000000000 00000000 O0O0O0O00O0000000 00000000000 00000000000 000000000 00080000

Otros tipos inductivos: los ordinales numerables

0rd : Set

o’ : Ord

s’ : Ord — Ord

lim : (Nat — Ord) — Oxd

ord_rec : IIX :0rd — Set.
X0 — (z:0rd. Xz — X(8'z)) —
(IIf :Nat — Ord. (IIn:Nat. X (fn)) — X (1im f)) —
IIz:0rd. X«

0-reglas asociadas

ord_rec X zgh0’ - T
ord_rec Xz gh (S 2) > gz(ord_recXxzghz)
ord_recXzgh(limf) > hf(An:Nat.ord_recXzgh(fn))

Obs.: Observar (en la 3" regla) la llamada recursiva bajo la A

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 OO0O00O0O00000000000000 OO00O00O000000000 00000000000 00000000000 000000000 0000000

La jerarquia de universos predicativos

@ Se puede afiadir una jerarquia infinita de universos predicativos:
Typey(= Set) € Type (= Type) € Type, € Type; €
o Modificacién de las reglas de tipado:

' A: Type, 'EM:A ' A’ : Type,

dom(T" A=A
FT,2: A context AR -M:A

F I context I'- A: Type, I,z:AF B: Type,
'+ Type; : Type; ;¢ PFTz:A.B : Type

max(,7)

@ Los tipos inductivos estan definidos en todos los universos

@ También se puede afiadir una regla de cumulatividad:

' M : Type,
I'= M : Type; 4

(iSe pierde la unicidad del tipo!)

Ejercicio: Adaptar el formalismo (tipos inductivos) + prueba de normalizacién

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 00000000V 00000000000 O0O0O0O000000000 00000000000 00000000000 000000000 00000800

¢ Unicidad de las pruebas de identidad?

o El tipo identidad Eq Axy (escrito =4y, con A: Set, z,y: A)
esta definido a partir de un Gnico constructor

refl : VA:Set.Vz:A. EqAzzx

@ Sin embargo, no se puede demostrar en MLTT que las pruebas de
igualdad son dnicas:

MLTT |f VA:Set.Vz,y:A.Ve,e':EqAzy. Eq(EqAxy)ee (1)
/' VA:Set.Vz:A.Ve:EqAzxz. EQ(EQAxzz)e(reflAx) (2)

Ejercicio: Demostrar que (1) y (2) son equivalentes en MLTT

@ En efecto (1) y (2) son independientes de MLTT:

e Se puede extender MLTT (de modo consistente) con el axioma K de
Streicher, de tipo (2) y con la é-regla adecuada — Ejercicio

e Por otro lado, el modelo de los grupoides [Hofmann & Streicher 2002]
refuta la unicidad de las pruebas de identidad

@ ;Cuél es la opcién mas interesante?

Introduccién Logical framework Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones
000000000000 000000000000 00000000 OO0O0O0O0O000000000 00000000000 00000000000 000000000 0000000

Teoria de tipos homotépicos (1/2)

Entre 2006 y 2009, Voyevodski(*) trabajé sobre una interpretacion
«topoldgica» de MLTT, en la cual:

@ Cada tipo A es un espacio topolégico
o Cada prueba e:EqAzy esuncaminodez ayen A

@ Segiin esta interpretacion:
eq_refl Ax : EqAzzx
~» camino identidad
eq_symAzxy : EqAzy > EqAycx
~~ operador de construccién del camino simétrico
eq_transAzyz : EqAzy > EqAyz —EqAzxz

~~ operador de composicién de caminos

@ En particular, una prueba de identidad h : Eq(EqAxzy)ee’ entre
dos pruebas e,e¢’ : EqAxzy es una homotopia h : e= ¢

(#)Vladimir Voyevodski (1966-2017), ganador de la medalla Fields en 2002

Def. inductivas Ejemplo y obs. Normalizacién fuerte Extensiones

Introduccién Logical framework
000000000000 OO0O00O0O00O00000000000 OO0O0O0O000000000 00000000000 00000000000 000000000 0000000e

Teoria de tipos homotdpicos
A partir de esas ideas surgié la teoria de tipos homotépicos (HoTT)

HoTT = MLTT + axioma de univalencia

@ Dos tipos A, B : Type; son isomorfos (notacion A ~ B) cuando
existen funciones f: A— B y g: B — A tales que
gof =asa ida y fog =p.p idp

@ Intuitivamente, las pruebas
e : Eq(A— A)(go f)ida y e
definen una equivalencia de homotopia entre los espacios Ay B

Esto sugiere el:

" 1 Eq(B— B)(fog)ids

@ Obviamente: A=1pe, B - A~ DB.

Axioma de univalencia
VA,B:Type;. A~ B — A=y, B

o Contenido computacional del axioma? Modelos? Aplicaciones?

	Introducción
	

	Logical framework
	

	Definiciones inductivas
	

	Ejemplo y observaciones
	

	Normalización fuerte
	

	Algunas extensiones
	

