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Practico 2: Elementos de reescritura

Observacion: La terminologia y las notaciones de este practico vienen de:
F. Baader, T. Nipkow, Term Rewriting and All That. Cambridge University Press, 1998.

Se llama sistema de reduccion abstracto (ARS) a todo par (A, —) formado por un conjun-
to A equipado con una relacién binaria (—) € A X A. Dado un sistema de reduccién abstracto
(A, =), se definen las siguientes relaciones sobre el conjunto A:
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Dado un elemento x € A, se dice que:

= x es reducible cuando existe y € A tal que x — y;
= x es en forma normal (notacién: x /) cuando x no es reducible;
= y es una forma normal de x cuando x = y /.
Cuando la forma normal de x existe y es Unica, se escribe | x;
= yes un sucesor directo de x cuando x — y;

+
= yes un sucesor de x cuando x — y.

Ademads, se dice que la relacién de reduccién — es:

= normalizante cuando todo elemento y € x tiene (al menos) una forma normal;

= fuertemente normalizante cuando no existe ninguna sucesion infinita de reducciones
ty = t, = , = ---, 0 de modo equivalente, cuando la relacion « estd bien fundada;

» Jocalmente confluente cuando para todos x, y;,y, € A:

las condiciones x — y; y x — y, implican que y; — z e y, — z para algiin z € A.
» semi confluente cuando para todos x, y;,y, € A:

las condiciones x — y; y x — y, implican que y; — z e y, — z para algiin z € A.
= confluente cuando para todos x, y;,y, € A:

las condiciones x = y; y x — y, implican que y; — z e y, — z para algin z € A.
» Church-Rosser cuando para todos xi, x, € A:

la condicién x; & x, implicaque x; =y e x, — y paraalgin y € A.
= convergente cuando — es confluente y fuertemente normalizante.

En los ejercicios que siguen, se trabaja con un sistema de reduccion abstracto (A, —).
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Figura 1: Nociones de confluencia

Ejercicio 1 (Confluencia, semi-confluencia y Church-Rosser).

(1) Demostrar que las siguientes tres propiedades son equivalentes:
(a) — es semi-confluente;
(b) — es confluente;
(c) — es Church-Rosser.

(2) Demostrar que si — es confluente, entonces la forma normal de cualquier elemento x € A,
cuando existe, es unica.

(3) Demostrar que si todo x € A tiene forma normal tinica, entonces — es confluente.

Ejercicio 2 (Confluencia local y lema de Newman).

(1) Hallar un ARS (A, —) localmente confluente pero no confluente.
(a) Dar un ejemplo donde A es finito (obs.: la relacién — puede tener ciclos).
(b) Dar otro ejemplo donde la relacién — no tiene ciclos (obs.: A puede ser infinito).

(2) Demostrar el lema de Newman:

Lema (Newman). Toda relacion — fuertemente normalizante y localmente
confluente es confluente (y por lo tanto es convergente).

Sugerencia: Razonar por induccion bien fundada sobre la relacion y « x.

Ejercicio 3 (Diamante y confluencia fuerte). Se dice que la relaciéon — cumple la propiedad
del diamante cuando para todos x,y;,y, € A, las condiciones x — y; y x — y, implican que

y1 — € y» — z paraalginz € A:
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Se nota que la relaciéon — es confluente si y sélo si su clausura reflexiva-transitiva — cumple
la propiedad del diamante.

(1) Demostrar que si — cumple la propiedad del diamante, entonces es confluente.

En la préctica, es poco frecuente que la relacion — cumpla la propiedad del diamante, pero es
mucho mds frecuente que su clausura reflexiva — cumpla dicha propiedad.

(2) Deducir que si — cumple la propiedad del diamante, entonces — es confluente.
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Mais generalmente, se dice que la relaciéon — es fuertemente confluente cuando para todos
X,y1,y» € A, las condiciones x — y; y x — y, implican que y; = z e y, — z para algdn
z € A. Se observa que por simetria (con respecto a y; e y;), las mismas condiciones también
implican que y; — 7' e y, — 7’ para algiin 7’ € A.
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(3) Demostrar que si — es fuertemente confluente, entonces es confluente.

Relaciones conmutantes Dadas relaciones —; y —, sobre un mismo conjunto A, se dice
o . * 3k

que — Y —; conmutan cuando para todos x,y;,y, € A, las condiciones x —; y; y X =7 ¥

. . * * .

implican que y; —;, z € y, — z paraalgin z € A:
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Se nota que una relacién — es confluente si y sélo si conmuta consigo misma.
Ejercicio 4 (Union de relaciones confluentes).

(1) Hallar un ejemplo de dos relaciones confluentes —; y —, sobre un mismo conjunto A
cuya unién —; U —, no es confluente.

(2) Demostrar que si dos relaciones confluentes —; y —; sobre un mismo conjunto A con-
mutan, entonces su union —; U —, también es confluente.

(3) Definir una nocién de conmutacion fuerte andloga a la nocién de confluencia fuerte del
Ejercicio 3, y demostrar que dos relaciones fuertemente conmutantes conmutan.

Términos de la Aritmética computacional En esta parte, se considera el conjunto 7" de los
términos de la Aritmética computacional definido por la gramadtica:

Términos tueT == x | 0 | s@ | pred(t) | t+u | tXu

Se equipa el conjunto 7" con la relacion binaria ¢t — ¢’ definida inductivamente por las 12 reglas:

———— (PredZero) (PredSucc)
pred(0) — O pred(s(?)) — t
———— (AddZero) (AddSucc)
t+0 - ¢ t+s(u) — st+u
———— (MulZero) (MulSucc)
tx0 - 0 tXs(u) - (tXu)+t
t—-t t—>t
——— (SuccCtx) (PredCtx)
s(t) = s(t) pred(r) — pred(?')
- >t
- (AddCtx;) — (AddCtx)
h+h = +0h h+h — h+1
h =1 h =t
n (MulCtxy) n (MulCtx;)
hH XMt = X0 hH Xt — I X1,



Ejercicio 5 (Propiedades de la relacién —). Se demostrard cada {tem, razonando por induccién
sobre la derivacioén de t — ¢, y detallando cada uno de los correspondientes 12 casos.

(1) Demostrar que si t — ¢, entonces FV(t') C FV(¢).
(2) Demostrar que sit — ¢, entonces f[x := u] — [x := u] (para todos x, u).

A cada término ¢ se asocia un peso w(t) € IN* definido por:

wkx) =1 w0) =1
w(s(t)) = w() +1 w(pred(r)) = w(t)+ 1
w(t+u) = w() +2w(u) w(t X u) = 3w®w(u)

(3) Demostrar que si t — ¢, entonces w(t) > w(t’).
Deducir que la relacién — es fuertemente normalizante.

Ejercicio 6 (Estructura de las formas normales). Se consideran las dos formas de términos
neut (“neutros”) y norm (“‘normales”) definidas por las gramaticas:

neut ::= x | pred(neut) | norm +neut | norm X neut
norm := neut | 0 | s(norm)

(1) Demostrar que un término ¢ es en forma normal si y sélo si estd en la categoria norm.
Se detallardn las inducciones usadas.

(2) Deducir que los términos cerrados en forma normal son los enteros de Peano.
Ejercicio 7 (Confluencia de la relacién —).

(1) Demostrar que la relaciéon — es localmente confluente:

t
/ \
t t
1. L2

Sugerencia: Razonar por induccion sobre las derivaciones de ¢ — 1] y t — 1}, tratando
cada uno de los 122 = 144 pares de reglas. jCuidado! Hay muchos casos imposibles.

(2) Deducir de lo anterior que la relacion — es convergente.



