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Práctico 2: Elementos de reescritura

Observación: La terminología y las notaciones de este práctico vienen de:
F. Baader, T. Nipkow, Term Rewriting and All That. Cambridge University Press, 1998.

Se llama sistema de reducción abstracto (ARS) a todo par (A,→) formado por un conjun-
to A equipado con una relación binaria (→) ⊆ A × A. Dado un sistema de reducción abstracto
(A,→), se definen las siguientes relaciones sobre el conjunto A:

0
→ := {(x, x) : x ∈ A} identidad
i+1
→ := i

→ ◦→ reducción en i + 1 pasos
+
→ :=

⋃
i>0

i
→ clausura transitiva

∗
→ := +

→∪
0
→ clausura reflexiva-transitiva

=
→ := →∪

0
→ clausura reflexiva

← := (→)−1 relación inversa
↔ := →∪← clausura simétrica
+
↔ := (↔)+ clausura simétrica-transitiva
∗
↔ := (↔)∗ clausura reflexiva-simétrica-transitiva

Dado un elemento x ∈ A, se dice que:

x es reducible cuando existe y ∈ A tal que x→ y;
x es en forma normal (notación: x 6→) cuando x no es reducible;
y es una forma normal de x cuando x ∗

→ y 6→.
Cuando la forma normal de x existe y es única, se escribe ↓x;
y es un sucesor directo de x cuando x→ y;
y es un sucesor de x cuando x +

→ y.

Además, se dice que la relación de reducción→ es:

normalizante cuando todo elemento y ∈ x tiene (al menos) una forma normal;
fuertemente normalizante cuando no existe ninguna sucesión infinita de reducciones
t0 → t1 → t2 → · · · , o de modo equivalente, cuando la relación← está bien fundada;
localmente confluente cuando para todos x, y1, y2 ∈ A:
las condiciones x→ y1 y x→ y2 implican que y1

∗
→ z e y2

∗
→ z para algún z ∈ A.

semi confluente cuando para todos x, y1, y2 ∈ A:
las condiciones x→ y1 y x ∗

→ y2 implican que y1
∗
→ z e y2

∗
→ z para algún z ∈ A.

confluente cuando para todos x, y1, y2 ∈ A:
las condiciones x ∗

→ y1 y x ∗
→ y2 implican que y1

∗
→ z e y2

∗
→ z para algún z ∈ A.

Church-Rosser cuando para todos x1, x2 ∈ A:
la condición x1

∗
↔ x2 implica que x1

∗
→ y e x2

∗
→ y para algún y ∈ A.

convergente cuando→ es confluente y fuertemente normalizante.

En los ejercicios que siguen, se trabaja con un sistema de reducción abstracto (A,→).
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Figura 1: Nociones de confluencia

Ejercicio 1 (Confluencia, semi-confluencia y Church-Rosser).

(1) Demostrar que las siguientes tres propiedades son equivalentes:
(a) → es semi-confluente;
(b) → es confluente;
(c) → es Church-Rosser.

(2) Demostrar que si→ es confluente, entonces la forma normal de cualquier elemento x ∈ A,
cuando existe, es única.

(3) Demostrar que si todo x ∈ A tiene forma normal única, entonces→ es confluente.

Ejercicio 2 (Confluencia local y lema de Newman).

(1) Hallar un ARS (A,→) localmente confluente pero no confluente.
(a) Dar un ejemplo donde A es finito (obs.: la relación→ puede tener ciclos).
(b) Dar otro ejemplo donde la relación→ no tiene ciclos (obs.: A puede ser infinito).

(2) Demostrar el lema de Newman:
Lema (Newman). Toda relación→ fuertemente normalizante y localmente
confluente es confluente (y por lo tanto es convergente).

Sugerencia: Razonar por inducción bien fundada sobre la relación y← x.

Ejercicio 3 (Diamante y confluencia fuerte). Se dice que la relación → cumple la propiedad
del diamante cuando para todos x, y1, y2 ∈ A, las condiciones x→ y1 y x→ y2 implican que
y1 → e y2 → z para algún z ∈ A:

x
~~   

y1

  

y2

~~
z

Se nota que la relación→ es confluente si y sólo si su clausura reflexiva-transitiva ∗
→ cumple

la propiedad del diamante.

(1) Demostrar que si→ cumple la propiedad del diamante, entonces es confluente.

En la práctica, es poco frecuente que la relación→ cumpla la propiedad del diamante, pero es
mucho más frecuente que su clausura reflexiva =

→ cumpla dicha propiedad.

(2) Deducir que si =→ cumple la propiedad del diamante, entonces→ es confluente.
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Más generalmente, se dice que la relación → es fuertemente confluente cuando para todos
x, y1, y2 ∈ A, las condiciones x → y1 y x → y2 implican que y1

=
→ z e y2

∗
→ z para algún

z ∈ A. Se observa que por simetría (con respecto a y1 e y2), las mismas condiciones también
implican que y1

∗
→ z′ e y2

=
→ z′ para algún z′ ∈ A.

x
~~   

y1

=   

y2

∗~~
z

x
~~   

y1

∗ ��

y2

=��
z′

(3) Demostrar que si→ es fuertemente confluente, entonces es confluente.

Relaciones conmutantes Dadas relaciones →1 y →2 sobre un mismo conjunto A, se dice
que→1 y→2 conmutan cuando para todos x, y1, y2 ∈ A, las condiciones x ∗

→1 y1 y x ∗
→2 y2

implican que y1
∗
→2 z e y2

∗
→1 z para algún z ∈ A:

x
∗

1~~
∗

2   
y1

∗

2

��

y2

∗

1

��
z

Se nota que una relación→ es confluente si y sólo si conmuta consigo misma.

Ejercicio 4 (Unión de relaciones confluentes).
(1) Hallar un ejemplo de dos relaciones confluentes →1 y →2 sobre un mismo conjunto A

cuya unión→1 ∪→2 no es confluente.
(2) Demostrar que si dos relaciones confluentes→1 y→2 sobre un mismo conjunto A con-

mutan, entonces su unión→1 ∪→2 también es confluente.
(3) Definir una noción de conmutación fuerte análoga a la noción de confluencia fuerte del

Ejercicio 3, y demostrar que dos relaciones fuertemente conmutantes conmutan.

Términos de la Aritmética computacional En esta parte, se considera el conjunto T de los
términos de la Aritmética computacional definido por la gramática:

Términos t, u ∈ T ::= x | 0 | s(t) | pred(t) | t + u | t × u

Se equipa el conjunto T con la relación binaria t → t′ definida inductivamente por las 12 reglas:

pred(0) → 0
(PredZero)

pred(s(t)) → t
(PredSucc)

t + 0 → t
(AddZero)

t + s(u) → s(t + u)
(AddSucc)

t × 0 → 0
(MulZero)

t × s(u) → (t × u) + t
(MulSucc)

t → t′
s(t) → s(t′)

(SuccCtx) t → t′
pred(t) → pred(t′)

(PredCtx)

t1 → t′1
t1 + t2 → t′1 + t2

(AddCtx1)
t2 → t′2

t1 + t2 → t1 + t′2
(AddCtx2)

t1 → t′1
t1 × t2 → t′1 × t2

(MulCtx1)
t2 → t′2

t1 × t2 → t1 × t′2
(MulCtx2)
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Ejercicio 5 (Propiedades de la relación→). Se demostrará cada ítem, razonando por inducción
sobre la derivación de t → t′, y detallando cada uno de los correspondientes 12 casos.

(1) Demostrar que si t → t′, entonces FV(t′) ⊆ FV(t).
(2) Demostrar que si t → t′, entonces t[x := u]→ t′[x := u] (para todos x, u).

A cada término t se asocia un peso w(t) ∈ N∗ definido por:

w(x) = 1 w(0) = 1
w(s(t)) = w(t) + 1 w(pred(t)) = w(t) + 1

w(t + u) = w(t) + 2w(u) w(t × u) = 3w(t)w(u)

(3) Demostrar que si t → t′, entonces w(t) > w(t′).
Deducir que la relación→ es fuertemente normalizante.

Ejercicio 6 (Estructura de las formas normales). Se consideran las dos formas de términos
neut (“neutros”) y norm (“normales”) definidas por las gramáticas:

neut ::= x | pred(neut) | norm + neut | norm × neut

norm ::= neut | 0 | s(norm)

(1) Demostrar que un término t es en forma normal si y sólo si está en la categoría norm.
Se detallarán las inducciones usadas.

(2) Deducir que los términos cerrados en forma normal son los enteros de Peano.

Ejercicio 7 (Confluencia de la relación→).

(1) Demostrar que la relación→ es localmente confluente:

t
�� ��

t′1
∗ ��

t′2
∗��

t′′

Sugerencia: Razonar por inducción sobre las derivaciones de t → t′1 y t → t′2, tratando
cada uno de los 122 = 144 pares de reglas. ¡Cuidado! Hay muchos casos imposibles.

(2) Deducir de lo anterior que la relación→ es convergente.
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