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Práctico 3: Aritmética y funciones recursivas primitivas

La función de Ackermann La función de Ackermann ack : N2 → N está definida por:

ack(0, n) = n + 1
ack(m + 1, 0) = ack(m, 1)

ack(m + 1, n + 1) = ack(m, ack(m + 1, n))
(n,m ∈ N)

Ejercicio 1 (Propiedades de la función de Ackermann).
(1) Justificar por qué la función de Ackermann está bien definida en N2

(2) Verificar que la función de Ackermann cumple las siguientes propiedades:
(2.1) ack(1,m) = m + 2 (para todo m ∈ N).

(2.2) ack(2,m) = 2m + 3 (para todo m ∈ N).

(2.3) n < A(m, n) (para todos m, n ∈ N).

(2.4) A(m, n) < A(m, n + 1) (para todos m, n ∈ N).

(2.5) A(m, n + 1) ≤ A(m + 1, n) (para todos m, n ∈ N).

(2.6) A(m, n) < A(m + 1, n) (para todos m, n ∈ N).

(2.7) A(m1, A(m2, n)) < A(m1 + m2 + 2, y) (para todos m1,m2, n ∈ N).

(2.8) Para todos m1,m2 ∈ N, existe m′ ∈ N tal que
A(m1, n) + A(m2, n) < A(m′, n) para todo n ∈ N.

Ejercicio 2. Dadas funciones f : N2 → N y g : Nk → N (k ≥ 1), se dice que f mayora g
cuando existe m ∈ N tal que

g(n1, . . . , nk) < f (m,máx(n1, . . . , nk)) (para todo (n1, . . . , nk) ∈ Nk)

Usando las propiedades demostradas en el ejercicio anterior:

(1) Demostrar que una función f : N2 → N no se puede mayorar sí misma.
(2) Demostrar que todas las funciones iniciales z : N → N, s : N → N y πk

i : Nk → N

(k ≥ i ≥ 1) son mayoradas por la función de Ackermann.
(3) Demostrar que si f1, . . . , fp : Nk → N y g : Np → N (k, p ≥ 1) son mayoradas por la

función de Ackermann, entonces su compuesta g ◦ ( f1, . . . , fp) también lo es.
(4) Demostrar que si f : Nk → N y g : Nk+2 → N (k ≥ 1) son mayoradas por la función de

Ackermann, entonces la función rec( f , g) también lo es.
(5) Deducir de lo anterior que todas las funciones recursivas primitivas son mayoradas por

la función de Ackermann.
(6) Concluir que la función de Ackermann no es recursiva primitiva.

Fórmulas decidibles En lo siguiente se trabaja en las aritméticas intuicionista (HA) y clásica
(PA) “con lenguaje amplio”. Se recuerda que una fórmula A(x1, . . . , xk) (con variables libres
x1, . . . , xk) es decidible cuando HA ` ∀x1 · · · ∀xk(A(x1, . . . , xk) ∨ ¬A(x1, . . . , xk)) .

Vimos en el teórico que todas las fórmulas con cuantificaciones acotadas son decidibles.
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Ejercicio 3 (Representación de la función de Ackermann).
(1) Construir una fórmula Ack(x, y, z) tal que:

HA ` ∀y∀z (Ack(0, y, z) ⇔ z = y + 1)
HA ` ∀x∀z (Ack(x + 1, 0, z) ⇔ Ack(x, 1, z))
HA ` ∀x∀y∀z (Ack(x + 1, y + 1, z) ⇔ ∃z′ (Ack(x + 1, y, z′) ∧ Ack(x, z′, z)))

(2) Derivar: HA ` ∀x∀y∃!z Ack(x, y, z).
(3) Deducir de lo anterior que la fórmula Ack(x, y, z) es decidible.

Ejercicio 4 (Propiedades de clausura de las fórmulas decidibles).
(1) Demostrar que la fórmula (decidible) Ack(x, y, z) del ejercicio anterior no es equivalente

(en HA) a ninguna fórmula con cuantificaciones acotadas.
(2) Demostrar que si A(x1, . . . , xk) y B(x1, . . . , xk) son decidibles, entonces las fórmulas

A(x1, . . . , xk) ∧ B(x1, . . . , xk)
A(x1, . . . , xk) ∨ B(x1, . . . , xk)
A(x1, . . . , xk)⇒ B(x1, . . . , xk)

son decidibles.
(2) Demostrar que si la fórmula A(x, x1, . . . , xk) es decidible, entonces para todo término

t(x1, . . . , xk) las fórmulas

(∀x ≤ t(x1, . . . , xk))A(x, x1, . . . , xk)
(∃x ≤ t(x1, . . . , xk))A(x, x1, . . . , xk)

son decidibles.

Traducciones de Gödel-Gentzen y de Friedman
Ejercicio 5 (Teorema de Glivenko). En este ejercicio, se trabaja en un lenguaje de primer
orden L cualquiera.

(1) Derivar las equivalencias ¬¬(A ∧ B) ⇔ ¬¬A ∧ ¬¬B y ¬¬(A ⇒ B) ⇔ (¬¬A ⇒ ¬¬B)
en el sistema NJ. Se observará que la implicación ¬¬A ∧ ¬¬B⇒ ¬¬(A ∧ B) tiene dos
derivaciones distintas (sin cortes).

(2) Demostrar que para toda fórmula A del cálculo propositional (es decir: sin cuantificado-
res), la equivalencia AG ⇔ ¬¬A es derivable en el sistema NJ.

(3) Deducir de lo anterior el teorema de Glivenko:
Para toda fórmula A del cálculo proposicional: `NK A sii `NJ ¬¬A.

Ejercicio 6 (Teorías geométricas). Una fórmula P es positiva cuando está construida a partir
de las fórmulas atómicas sólo usando ∨, ∧ y ∃. Una fórmula A es geométrica cuando es de la
forma A ≡ ∀x1 · · · ∀xk (P⇒ Q), donde P y Q son fórmulas positivas, y una teoría geométrica es
cualquier conjunto (finito o infinito) T de fórmulas geométricas cerradas. Dadas una teoría T
y una fórmula A géométricas, demonstrar que PA + T ` A implica HA + T ` A.

Ejercicio 7 (Regla de Markov). Se dice que una teoría T cumple la regla de Markov cuando

T ` ∀x (A(x) ∨ ¬A(x)) y T ` ¬¬∃x A(x) implican T ` ∃x A(x)

para cada fórmula A(x) que sólo depende de la variable x. (Es obvio que cualquier teoría clásica
cumple dicha regla.) Combinando el teorema de eliminación de cortes en HA con argumentos
metateóricos clásicos (modelo estándar), demostrar que HA cumple la regla de Markov.
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