
Facultad de Ciencias — Correspondencia pruebas-programas — Primer semestre de 2021

Práctico 6: Sistema F y Aritmética de segundo orden

Programación en el sistema F Se recuerda que en el sistema F, los tipos Bool, Nat, A × B y
A + B están definidos por:

Bool :≡ ∀γ . γ → γ → γ
Nat :≡ ∀γ . γ → (γ → γ)→ γ

A × B :≡ ∀γ . (A→ B→ γ)→ γ
A + B :≡ ∀γ . (A→ γ)→ (B→ γ)→ γ

Además, se usan las abreviaturas (aquí en el estilo de Church):

true :≡ λγ . λx, y : γ . x : Bool
false :≡ λγ . λx, y : γ . y : Bool

n :≡ λγ . λx : γ . λ f : γ → γ . f (· · · (f︸ ︷︷ ︸
n

x) · · ·) : Nat

〈M1,M2〉
A×B :≡ λγ . λ f : A→ B→ γ . f M1 M2 : A × B

ιA+B
1 (M1) :≡ λγ . λ f : A→ γ . λg : B→ γ . f M1 : A + B
ιA+B
2 (M2) :≡ λγ . λ f : A→ γ . λg : B→ γ . g M2 : A + B

para todos n ∈ N, M1 : A y M2 : B.

Ejercicio 1 (Los tipos Bool y Nat).
(1) Implementar (en el sistema F a la Church) las siguientes funciones:

not : Bool→ Bool
and : Bool→ Bool→ Bool
or : Bool→ Bool→ Bool

(negación booleana)
(conjunción booleana)
(disyunción booleana)

Se darán dos implementaciones distintas (en forma normal) de cada función.
(2) Implementar (en el sistema F a la Church) las siguientes funciones:

succ : Nat→ Nat
plus : Nat→ Nat→ Nat
mult : Nat→ Nat→ Nat
pow : Nat→ Nat→ Nat
ack : Nat→ Nat→ Nat

(sucesor)
(adición)

(multiplicación)
(potencia)

(función de Ackermann)

Se darán dos implementaciones distintas (en forma normal) de plus, mult y pow.
(3) Implementar (en el sistema F a la Church) una función

rec : ∀α . α→ (Nat→ α→ α)→ Nat→ α

tal que
rec A M M′ n � M′ (n − 1) (M′ (n − 2) (· · · (M′ 0 M) · · ·))

para todo tipo A, para todos términos M : A, M′ : Nat→ A→ A y para todo n ∈ N.

1

(4) Deducir de lo anterior una implementación de la función predecesor

pred : Nat→ Nat .

Ejercicio 2 (Los tipos A × B, A + B y ∃α . B).
(1) Verificar que si los términos M1 : A y M2 : B son en forma normal, entonces los términos
〈M1,M2〉

A×B : A × B, ιA+B
1 (M1) : A + B y ιA+B

2 (M2) : A + B también lo son.
(2) Implementar funciones pair : ∀α, β . α→ β→ α × β

fst : ∀α, β . α × β→ α
snd : ∀α, β . α × β→ β

tales que pair A B M1 M2 �
∗ 〈M1,M2〉

A×B

fst A B 〈M1,M2〉
A×B �∗ M1

snd A B 〈M1,M2〉
A×B �∗ M2

para todos tipos A, B y para todos términos M1 : A y M2 : B.
(3) Implementar funciones in1 : ∀α, β . α→ α + β

in2 : ∀α, β . β→ α + β
case : ∀α, β, γ . (α→ γ)→ (β→ γ)→ α + β→ γ

tales que in1 A B M1 �
∗ ιA+B

1 (M1)
in2 A B M2 �

∗ ιA+B
2 (M2)

case A B C M′
1 M′

2 ι
A+B
1 (M1) � M′

1 M1

case A B C M′
1 M′

2 ι
A+N
2 (M2) � M′

2 M2

para todos tipos A, B,C y para todos M1 : A, M2 : B, M′
1 : A→ C y M′

2 : B→ C.
(4) Sea B ≡ B(α) un tipo que depende (posiblemente) de la variable α. Por analogía con las

definiciones anteriores, definir un «tipo existencial» ∃α . B(α) con términos
ex_introB : ∀α0 . B(α0)→ ∃α . B(α)
ex_elimB : ∀γ . (∃α . B(α))→ (∀α . B(α)→ γ)→ γ

tales que ex_elimB C (ex_introB A M) M′ � M′ A M para todos tipos A,C y para
todos términos M : B(A) y M′ : ∀α . B(α)→ C.

Ejercicio 3 (Los intrusos de tipos A × B y A + B).
(1) Usando el lema de inversión, demostrar que los únicos términos cerrados y en forma

normal de tipo Bool son true y false.
(2) Usando el lema de inversión, demostrar que los únicos términos cerrados y en forma

normal de tipo Nat son los enteros de Church n (n ∈ N).

A partir de ahora, el objetivo del ejercicio es construir términos cerrados y en forma normal de
tipo A × B (resp. de tipo A + B) que no son de la forma 〈M1,M2〉

A×B (resp. que no son de la
forma ιA+B

1 (M1) o ιA+B
2 (M2)) — los «intrusos». Para ello, se definen

1 :≡ ∀γ . γ → γ
id :≡ λγ . λx : γ . x : 1

2A :≡ ∀γ . (A→ γ)→ γ
〈M〉2A :≡ λγ . λ f : A→ γ . f M : 2A

para todo tipo A y para todo término M : A. Intuitivamente, el tipo 2A es una conjunción unaria
(o una disyunción unaria), mientras 〈M〉2A es la correspondiente 1-upla.

2

(3) Implementar funciones box : ∀α . α→ 2α
unbox : ∀α .2α→ α

tales que box A M �∗ 〈M〉2A

unbox A 〈M〉2A �∗ M
para todos A y M : A. Dado N : 2A, ¿se tiene que box A (unbox A N) � N ?

(4) Dados A0 :≡ ∀δ . δ→ 1
A :≡ A0 → 1
N :≡ λγ . λ f : A→ γ . f (λx : A0 . x γ (f (λy : A . id)))

verificar que el término N está cerrado, en forma normal y de tipo 2A, aunque no sea de
la forma 〈M〉2A para ningún término M : A(1).

(5) Usando el contraejemplo anterior, construir tipos A, B así como un término M : A × B
cerrado y en forma normal que no es de la forma 〈M1,M2〉

A×B.
(6) Construir un contraejemplo similar de tipo A + B.

Demostraciones en lógica intuicionista de segundo orden En esta sección, se trabaja en el
lenguaje de la lógica mínima de segundo orden

Fórmulas A, B ::= X(t1, . . . , tk) | A⇒ B | ∀x A | ∀X A

con un lenguaje L de términos de primer orden cualquiera, usando las abreviaturas:

> :≡ ∀Z (Z ⇒ Z) (Obviedad)
⊥ :≡ ∀Z Z (Absurdidad)
¬A :≡ A⇒ ⊥ (Negación)

A ∧ B :≡ ∀Z ((A⇒ B⇒ Z)⇒ Z) (Conjunción)
A ∨ B :≡ ∀Z ((A⇒ Z)⇒ (B⇒ Z)⇒ Z) (Disyunción)

∃x A(x) :≡ ∀Z (∀x (A(x)⇒ Z)⇒ Z) (∃, primer orden)
∃X A(X) :≡ ∀Z (∀X (A(X)⇒ Z)⇒ Z) (∃, segundo orden)

t = u :≡ ∀Z (Z(t)⇒ Z(u)) (Igualdad de Leibniz)

Ejercicio 4 (Reglas derivables). Usando la regla admisible de debilitamiento como si fuera una
regla primitiva, derivar las siguientes reglas:

Γ ` A Γ ` B
Γ ` A ∧ B Γ ` >

Γ ` A ∧ B
Γ ` A

Γ ` A ∧ B
Γ ` B

Γ ` A
Γ ` A ∨ B

Γ ` B
Γ ` A ∨ B

Γ ` A ∨ B Γ, A ` C Γ, B ` C
Γ ` C

Γ ` ⊥

Γ ` A

Γ ` A[x := u]
Γ ` ∃x A

Γ ` ∃x A Γ, A ` B
Γ ` B

si x<FV(Γ,B)

Γ ` A[X := P]
Γ ` ∃X A

si]X=]P
Γ ` ∃X A Γ, A ` B

Γ ` B
si X<FV(Γ,B)

Γ ` t = t
Γ ` t = u Γ ` A[x := t]

Γ ` A[x := u]

Verificar que los correspondientes cortes se reducen del modo usual.
(1)Véase tesis de doctorado de Christine Paulin-Mohring (p. 118–119), U. Paris 7, 1989.

3

Ejercicio 5 (Sustitutividad de la igualdad extensional). En lógica de segundo orden, se define
la igualdad extensional P = Q entre dos predicados P y Q de misma aridad k por:

P = Q :≡ ∀x1 · · · ∀xk (P(x1, . . . , xk)⇔ Q(x1, . . . , xk)) .

(1) Dados predicados P, Q y una variable de segundo orden X de misma aridad k, construir
para cada fórmula A una derivación del secuente

P = Q ` A[X := P]⇔ A[X := Q]

en el sistema NJ2. Se construirá la derivación por inducción sobre A.
(2) Deducir que la igualdad extensional P = Q es sustitutiva en lógica de segundo orden, en

el sentido de que la regla
Γ ` P = Q Γ ` A[X := P]

Γ ` A[X := Q]

es derivable. (Sin embargo, se observará que la derivación depende de la fórmula A.)

Observación: El carácter sustitutivo de la igualdad extensional es una propiedad específica
de la lógica de segundo orden, que ya no se cumple en lógica de orden mayor.

Demostraciones en aritmética intuicionista de segundo orden En esta sección, se trabaja
en el lenguaje de la aritmética de segundo orden, cuyos términos

Términos t, u ::= x | 0 | s(t) | pred(t) | t + u | t × u

están equipados con la relación de reducción convergente definida por las 6 reglas:

pred(0) � 0 t + 0 � t t × 0 � 0
pred(s(t)) � t t + s(u) � s(t + u) t × s(u) � (t × u) + t

Se recuerda que el conjunto N de los enteros de Dedekind es el predicado

N :≡ x̂ ∀Z (Z(0)⇒ ∀y (Z(y)⇒ Z(s(y)))⇒ Z(x))

mientras el axioma de inducción es la fórmula Ind :≡ ∀x (x ∈ N). Se usa la abreviatura
(∀x ∈N) A(x) :≡ ∀x (x ∈ N ⇒ A(x)) para notar la cuantificación universal numérica, y se
considera más generalmente la operación de relativización A 7→ AN definida por:

(X(t1, . . . , tk))N :≡ X(t1, . . . , tk)
(A⇒ B)N :≡ AN ⇒ BN

(∀x A)N :≡ ∀x (x ∈ N⇒ AN)
(∀X A)N :≡ ∀X AN

Ejercicio 6 (Eliminación del axioma de inducción).
(1) Derivar en el sistema NJ2 (sin axiomas) la fórmula:

∀Z [Z(0)⇒ (∀y ∈N)(Z(y)⇒ Z(s(y)))⇒ (∀x ∈N) Z(x)] .

Deducir que la fórmula IndN es derivable en el sistema NJ2 (sin axiomas).

4

(2) Derivar la equivalencia (∃x A(x))N ⇔ ∃x (x ∈ N ∧ A(x)N) en el sistema NJ2.
(3) Derivar las siguientes fórmulas en el sistema NJ2 (sin axiomas):

0 ∈ N
(∀x ∈N) s(x) ∈ N
(∀x ∈N) pred(x) ∈ N
(∀x ∈N)(∀y ∈N) (x + y ∈ N)
(∀x ∈N)(∀y ∈N) (x × y ∈ N)

(4) Demostrar que para todo término t(x1, . . . , xk) con variables libres x1, . . . , xk, el secuente

x1 ∈ N, . . . , xk ∈ N ` t(x1, . . . , xn) ∈ N

es derivable en el sistema NJ2. Se construirá la derivación por inducción sobre t.
(5) Demostrar (por inducción sobre la derivación involucrada) que

Γ, Ind `NJ2 A implica x1 ∈ N, . . . , xk ∈ N,Γ
N `NJ2 AN

donde x1, . . . , xk son las variables libres del secuente Γ ` A.
¿Qué pasa cuando se traduce la regla (∀1-elim)?

(6) Deducir de lo anterior que para toda fórmula cerrada A, se tiene que:

Ind `NJ2 A sii `NJ2 AN .

Ejercicio 7 (Extracción de programas). En este ejercicio, se considera la procedura de extrac-
ción de programas (del sistema NJ2 en el sistema F) definida por las traducciones:

(X(t1, . . . , tk))∗ :≡ αX

(A⇒ B)∗ :≡ A∗ → B∗
(∀x A)∗ :≡ A∗

(∀X A)∗ :≡ ∀αX . A∗ (x̂1 · · · x̂k A)∗ :≡ A∗

(donde αX es la variable de tipo asociada a la variable de segundo orden X)(
Γ ` A

)∗
:≡ ξA (con A′ � A ∈ Γ)

.... d
Γ, A ` B

Γ ` A⇒ B


∗

:≡ λξA : A∗ . d∗


.... d
Γ ` A⇒ B

.... d′

Γ ` A
Γ ` B


∗

:≡ d∗ d′∗


.... d

Γ ` A′
Γ ` ∀x A


∗

:≡ d∗


.... d
Γ ` ∀x A
Γ ` A′


∗

:≡ d∗ (con A′ � A[x := t])


.... d

Γ ` A
Γ ` ∀X A


∗

:≡ λαX . d∗


.... d
Γ ` ∀x A
Γ ` A′


∗

:≡ d∗ P∗ (con A′ � A[X := P])

(donde ξA : A∗ es la variable asociada a la hipótesis A en el contexto considerado).

(1) Determinar el programa extraido a partir de la derivación del Ejercicio 6 (1).
(2) Determinar los programas extraidos a partir de las derivaciones del Ejercicio 6 (3).

¿Qué calculan estos programas?
(3) Determinar el programa extraido a partir de la derivación del Ejercicio 6 (4) para cada

término t(x1, . . . , xk) con variables libres x1, . . . , xk. ¿Qué calcula este programa?

5

