Facurtap DE CIENCIAS — CORRESPONDENCIA PRUEBAS-PROGRAMAS — PRIMER SEMESTRE DE 2021

Practico 7: Teoria de tipos de Martin-Lof

Ejercicio 1 (Las operaciones aritméticas y sus propiedades).
(1) Construir a partir del recursor
nat_rec : VYX:Nat — Set. X0 — (Vy:Nat.Xy — X(Sy)) » Vx:Nat.X x

términos plus,mult : Nat — Nat — Nat que cumplen las conversiones

m mult @ m 0

plus®m ~
S (plusnm) mult (Sn)m = plusm(multnm)

plus(Sn)m

1R

para todos n,m : Nat. (jCuidado! Aqui se definen plus y mult por recursion sobre su
primer argumento, al contrario de las diapositivas del curso.)

En lo siguiente, se escriben n+m = plusnm y nxXm = multnm.

(2) Demostrar (construyendo términos de pruebas) las siguientes proposiciones:
a) Yx,y,z:Nat. x+ (Y +2) =yar (X +Yy)+2
b) Yx:Nat. x+ 0 =yac X
c) Yx,y:Nat. x+ Sy =yt S(x+y)
d) Vx,y:Nat. x+y=yac y+x
(3) Demostrar (construyendo términos de pruebas) las siguientes proposiciones:
a) Yx:Nat. x X0 =y, O
b) Vx,y:Nat. x XSy =par (XxXy)+x
c) Vx,y:Nat. x Xy =y Y X x
d) VYx,y,z:Nat. (X +y)XZ=yar XXZ+YyXZ
e) Yx,y,z:Nat. x X (¥ X 2) =yar (X Xy) Xz
(4) Construir a partir del recursor nat_rec un término minus : Nat — Nat — Nat que
cumple las conversiones

minus®n = 0
minus(Sn)® = Sn
minus(Sn)(Sm) = minusnm

En lo siguiente, se escribe n ~m := minusnm.

(5) Demostrar (construyendo términos de pruebas) las siguientes proposiciones:
a) Yx:Nat. x =0 =yac X
b) Vx,y,z:Nat. (x+y) =~ (x+2) =yat Y — 2
c) Yx,y:Nat. (x+y) =y =yar X

Ejercicio 2 (El orden y sus propiedades). Se define el orden (usual) sobre los enteros naturales
por n <m = n-m =y, O (usando la resta acotada definida en el ejercicio anterior).

(1) Demostrar (construyendo términos de pruebas) las siguientes proposiciones:
a) Yx:Nat. x<x
b) Vx,y,z:Nat. x<y—->y<z—ox<z
¢) Vx,y:Nat. x<y—=>y<x— X =yar y



d) Vx,y:Nat. x<yVvy<x

e) Vx,y:Nat. x<y—->x<Sy

f) Vx,y:Nat. x<Sy—> x<yVx=puSy
g VYx,y,z:Nat. x<y—z+x<z+y

Se define el orden estricto sobre los enteros naturales por n <m := Sn < m.

(2) Demostrar (construyendo términos de pruebas) las siguientes proposiciones:
a) Yx,y:Nat. x<y—-x<y
b) ¥x:Nat. =(x < x)
¢) Yx:Nat. -(x <0)
d) Vx,y,z:Nat. x<y—->y<z—->x<Z
e) Vx,y,z:Nat. x<y—->y<z—-x<z
f) Vx,y,z:Nat. x<y—-y<z—ox<z
g) Vx,y:Nat. x<y—>x<Sy
h) Vx,y:Nat. x<Sy > x<yV X =yary
i) Vx,y:Nat. x<y e x <y A (X =gar y)
(3) Demostrar (construyendo un término de prueba) el principio de induccién fuerte:

YP:Nat — Set. (Vx:Nat. (Vy:Nat. y<x—> Py) > Px) — Vx:Nat. Px

Ejercicio 3 (Listas). En la teoria de tipos de Martin-Lof, se define el tipo (polimérfico) de las
listas mediante las constantes

List . Set — Set

nil : YA:Set. ListA

cons : YA:Set. A - ListA — ListA

list_rec : VYA:Set. VX:ListA — Set.
X(nilA) —»
(Vx:A.VIl:ListA. X] - X(consAx])) —
VI:ListA.X!

con las o-reglas: list_recAXxf(nilA) > X

list_ recAXxf(consAal) > fal(list_recAXxfI)

(1) Construir a partir del recursor 1ist_rec términos length: VA:Set.List A — Nat y
concat : YA:Set.ListA — List A — List A que cumplen las conversiones

lengthA(nilA) = 0
lengthA(consAal) = S(lengthAl)
concatA(nilA)/ I

1R

concat A(consAal)l consAa(concatAll')

(2) Demostrar (construyendo términos de pruebas) las siguientes proposiciones:
a) YA:Set.Vl,I':ListA. length A (concatA[/l') =y.: lengthA [+ lengthA/
b) YA:Set.Vl:ListA. concat A(nil A)l =pjstal
c) YA:Set.Vl:ListA. concat AI(nilA) =pjsta
d) YA:Set.VYI,I',]” :ListA. concatAl(concatAl'l”) =pista
concat A (concatAll')!l”

2



Ejercicio 4 (Vectores). En la teoria de tipos de Martin-Lof, se define el tipo (polimérfico) de
los vectores (o listas dependientes) mediante las constantes

Vect : Set —» Nat — Set
vnil : VYA:Set. VectA©®
vcons : YA:Set.Vn:Nat. A —» VectAn — VectA(Sn)

vect_rec : VYA:Set. VX:(Vn:Nat.VectAn — Set).
X0(vnilA) —
(Vn:Nat.Vx:A.Vv:VectAn. Xnv - X(Sn)(vconsAnxv)) —
Vn:Nat.Vv:VectAn.Xnv

con las o-reglas: vect_recAXxf0(vnilA) > X
vect_recAXxf(Sn)(vconsAnav) > fnav(vect_recAXxfnv)
(1) Construir a partir del recursor vect_rec un término

vconcat : Yn:Nat.VectAn — Vm:Nat.VectAm — VectAn(n+ m)

que cumple las conversiones
vconcatA®(vnilA)ymw = w
vconcat A(Sn)(vconsAav)ymw = vconsAa(m+n)(vconcatAnvmw)
(Cudles conversiones tiene que cumplir la suma n + m para que el término vconcat esté

bien tipado? ;L.a misma definicion funcionaria con una suma n+m definida por recursién
sobre el segundo argumento?

(2) Explicar por qué no se puede construir un término de tipo
Vn:Nat.Vu:VectAn.Vm:Nat.Vv:VectAm.Vp:Nat.Vw:VectAp.
vconcat Anu(m+ p)(vconcat Amv pw) = vconcat A (n+ m) (vconcatAnumv)pw
(3) Definir una funcién list_of_vect : VA:Set.Vn:Nat. VectAn — ListA que
convierte cada vector en la correspondiente lista, y demostrar que

VA:Set.Vn:Nat.Vv:VectAn. lengthA (list_of_vectAnv) =y, n

(4) Demostrar que

YA:Set.Vn:Nat.Vv:VectAn.Vm:Nat.Vw:VectAm.
list_of_vect A(n+m)(vconcatAnvmw) =pista
concat A (list_of_vectAnv)(list_of_vectAmw)

(5) Definir una funcién vect_of_list : YA:Set.V/:ListA.Vect A (lengthAl) que
convierte listas en vectores de misma longitud, y demostrar que

VA:Set.VI:A. list_of_vect A(lengthAl)(vect_of_listAl) =ista !

Ejercicio 5 (Axioma K de Streicher e igualdad de John Major). En la teoria de tipos de Martin-
Lof, la proposicion

VA:Set.Vx,y:A.Ve,e':x=py. e =, €

(que expresa que, entre dos objetos x,y : A cualesquiera, hay a lo sumo una prueba de igualdad)
es indecidible, y los recientes trabajos sobre la teoria de tipos homotdpica sugieren que es mas
interesante trabajar en teorias de tipos que refutan esta proposicién. Sin embargo, en 1992
Streicher propuso extender la teoria de tipos de Martin-Lof con una nueva constante

3



K: VA:Set.Vx:A.YP:(x =4 x > Set).P(reflAx) > Ve:x=4 x.Pe

conlaod-regla KAaP p(reflAa) > p.

(1) Demostrar que el axioma K de Streicher implica las siguientes férmulas:
a) YA:Set.Vx:A.Ve:x =4 x. e =—,, reflAx
b) YA:Set.Vx:A.Ve,e' :x=4x. e =4, €
c) VA:Set.Vx,y:A.Ve,e':x=py. e =, €

En 2002, McBride introdujo la igualdad heterogénea x =45 y (con x : A ey : B), llamada
igualdad de John MajorV y definida a partir de las constantes

JMEq : VYA:Set.A — VB:Set.B — Set (notacién: IMEQAxBy = x =43Y)
JMrefl : VA:Set.Vx:A. JMEQAxAx

JMrec : VYA:Set.Vx:A.VP:(VB:Set.Vy:B.JMEqAxBy — Set).
PAx(JMreflAx) —» VB:Set.Vy:B.Ve:IJMEqAxBy. PBye

con la 6-regla: IMrecAaPpAa(IMreflAa) > p.

(2) Demostrar que la igualdad usual implica la igualdad de John Major:
VA:Set.Vx,y:A. EQAxy — JMEqQAxAYy

Se llama axioma de John Major ala proposicidn reciproca, que expresa que la igualdad de John
Major implica la igualdad usual: VA:Set.Vx,y:A. JMEQAxAy —» EqQAxy

(3) Demostrar que el axioma K de Streicher implica el axioma de John Major.
(4) Demostrar que el axioma de John Major implica el axioma K de Streicher.

(MBasédndose en la politica de John Major (1943-), lider del Partido Conservador y primer ministro del Reino
Unido de 1990 a 1997 (después de Margaret Thatcher y antes de Tony Blair).

4



