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Práctico 7: Teoría de tipos de Martin-Löf

Ejercicio 1 (Las operaciones aritméticas y sus propiedades).

(1) Construir a partir del recursor

nat_rec : ∀X : Nat→ Set . X 0→ (∀y : Nat . X y→ X (S y))→ ∀x : Nat . X x

términos plus, mult : Nat→ Nat→ Nat que cumplen las conversiones
plus 0m � m mult 0m � 0

plus (S n) m � S (plus n m) mult (S n) m � plusm (mult n m)

para todos n,m : Nat. (¡Cuidado! Aquí se definen plus y mult por recursión sobre su
primer argumento, al contrario de las diapositivas del curso.)

En lo siguiente, se escriben n + m :≡ plus n m y n × m :≡ mult n m.

(2) Demostrar (construyendo términos de pruebas) las siguientes proposiciones:
a) ∀x, y, z : Nat . x + (y + z) =Nat (x + y) + z
b) ∀x : Nat . x + 0 =Nat x
c) ∀x, y : Nat . x + S y =Nat S (x + y)
d) ∀x, y : Nat . x + y =Nat y + x

(3) Demostrar (construyendo términos de pruebas) las siguientes proposiciones:
a) ∀x : Nat . x × 0 =Nat 0
b) ∀x, y : Nat . x × S y =Nat (x × y) + x
c) ∀x, y : Nat . x × y =Nat y × x
d) ∀x, y, z : Nat . (x + y) × z =Nat x × z + y × z
e) ∀x, y, z : Nat . x × (y × z) =Nat (x × y) × z

(4) Construir a partir del recursor nat_rec un término minus : Nat → Nat → Nat que
cumple las conversiones

minus 0 n � 0
minus (S n) 0 � S n

minus (S n) (Sm) � minus n m

En lo siguiente, se escribe n .
− m :≡ minus n m.

(5) Demostrar (construyendo términos de pruebas) las siguientes proposiciones:
a) ∀x : Nat . x .

− 0 =Nat x
b) ∀x, y, z : Nat . (x + y) .

− (x + z) =Nat y − z
c) ∀x, y : Nat . (x + y) .

− y =Nat x

Ejercicio 2 (El orden y sus propiedades). Se define el orden (usual) sobre los enteros naturales
por n ≤ m :≡ n .

− m =Nat 0 (usando la resta acotada definida en el ejercicio anterior).

(1) Demostrar (construyendo términos de pruebas) las siguientes proposiciones:
a) ∀x : Nat . x ≤ x
b) ∀x, y, z : Nat . x ≤ y→ y ≤ z→ x ≤ z
c) ∀x, y : Nat . x ≤ y→ y ≤ x→ x =Nat y
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d) ∀x, y : Nat . x ≤ y ∨ y ≤ x
e) ∀x, y : Nat . x ≤ y→ x ≤ S y
f ) ∀x, y : Nat . x ≤ S y→ x ≤ y ∨ x =Nat S y
g) ∀x, y, z : Nat . x ≤ y→ z + x ≤ z + y

Se define el orden estricto sobre los enteros naturales por n < m :≡ S n ≤ m.

(2) Demostrar (construyendo términos de pruebas) las siguientes proposiciones:
a) ∀x, y : Nat . x < y→ x ≤ y
b) ∀x : Nat . ¬(x < x)
c) ∀x : Nat . ¬(x < 0)
d) ∀x, y, z : Nat . x < y→ y ≤ z→ x < z
e) ∀x, y, z : Nat . x ≤ y→ y < z→ x < z
f ) ∀x, y, z : Nat . x < y→ y < z→ x < z
g) ∀x, y : Nat . x < y→ x < S y
h) ∀x, y : Nat . x < S y→ x < y ∨ x =Nat y
i) ∀x, y : Nat . x < y↔ x ≤ y ∧ ¬(x =Nat y)

(3) Demostrar (construyendo un término de prueba) el principio de inducción fuerte:

∀P : Nat→ Set . (∀x : Nat . (∀y : Nat . y < x→ P y)→ P x) → ∀x : Nat . P x

Ejercicio 3 (Listas). En la teoría de tipos de Martin-Löf, se define el tipo (polimórfico) de las
listas mediante las constantes

List : Set→ Set

nil : ∀A : Set . List A
cons : ∀A : Set . A→ List A→ List A

list_rec : ∀A : Set . ∀X : List A→ Set .
X (nil A)→
(∀x : A .∀l : List A . X l→ X (cons A x l))→
∀l : List A . X l

con las δ-reglas: list_rec A X x f (nil A) � x
list_rec A X x f (cons A a l) � f a l (list_rec A X x f l)

(1) Construir a partir del recursor list_rec términos length : ∀A : Set . List A→ Nat y
concat : ∀A : Set . List A→ List A→ List A que cumplen las conversiones

length A (nil A) � 0
length A (cons A a l) � S (length A l)

concat A (nil A) l′ � l′

concat A (cons A a l) l′ � cons A a (concat A l l′)

(2) Demostrar (construyendo términos de pruebas) las siguientes proposiciones:
a) ∀A : Set .∀l, l′ : List A . length A (concat A l l′) =Nat length A l + length A l′

b) ∀A : Set .∀l : List A . concat A (nil A) l =List A l
c) ∀A : Set .∀l : List A . concat A l (nil A) =List A l
d) ∀A : Set .∀l, l′, l′′ : List A . concat A l (concat A l′ l′′) =List A

concat A (concat A l l′) l′′
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Ejercicio 4 (Vectores). En la teoría de tipos de Martin-Löf, se define el tipo (polimórfico) de
los vectores (o listas dependientes) mediante las constantes

Vect : Set→ Nat→ Set

vnil : ∀A : Set . Vect A 0
vcons : ∀A : Set .∀n : Nat . A→ Vect A n→ Vect A (S n)

vect_rec : ∀A : Set . ∀X : (∀n : Nat . Vect A n→ Set) .
X 0 (vnil A)→
(∀n : Nat .∀x : A .∀v : Vect A n . X n v→ X (S n) (vcons A n x v))→
∀n : Nat .∀v : Vect A n . X n v

con las δ-reglas: vect_rec A X x f 0 (vnil A) � x
vect_rec A X x f (S n) (vcons A n a v) � f n a v (vect_rec A X x f n v)

(1) Construir a partir del recursor vect_rec un término
vconcat : ∀n : Nat . Vect A n→ ∀m : Nat . Vect A m→ Vect A n (n + m)

que cumple las conversiones
vconcat A 0 (vnil A) m w � w

vconcat A (S n) (vcons A a v) m w � vcons A a (m + n) (vconcat A n v m w)

¿Cuáles conversiones tiene que cumplir la suma n +m para que el término vconcat esté
bien tipado? ¿La misma definición funcionaría con una suma n+m definida por recursión
sobre el segundo argumento?

(2) Explicar por qué no se puede construir un término de tipo
∀n : Nat .∀u : Vect A n .∀m : Nat .∀v : Vect A m .∀p : Nat .∀w : Vect A p .
vconcat A n u (m + p) (vconcat A m v p w) = vconcat A (n + m) (vconcat A n u m v) p w

(3) Definir una función list_of_vect : ∀A : Set .∀n : Nat . Vect A n → List A que
convierte cada vector en la correspondiente lista, y demostrar que

∀A : Set .∀n : Nat .∀v : Vect A n . length A (list_of_vect A n v) =Nat n

(4) Demostrar que
∀A : Set .∀n : Nat .∀v : Vect A n .∀m : Nat .∀w : Vect A m .

list_of_vect A (n + m) (vconcat A n v m w) =List A

concat A (list_of_vect A n v) (list_of_vect A m w)

(5) Definir una función vect_of_list : ∀A : Set .∀l : List A . Vect A (length A l) que
convierte listas en vectores de misma longitud, y demostrar que

∀A : Set .∀l : A . list_of_vect A (length A l) (vect_of_list A l) =List A l

Ejercicio 5 (Axioma K de Streicher e igualdad de John Major). En la teoría de tipos de Martin-
Löf, la proposición

∀A : Set .∀x, y : A .∀e, e′ : x =A y . e =x=Ay e′

(que expresa que, entre dos objetos x, y : A cualesquiera, hay a lo sumo una prueba de igualdad)
es indecidible, y los recientes trabajos sobre la teoría de tipos homotópica sugieren que es más
interesante trabajar en teorías de tipos que refutan esta proposición. Sin embargo, en 1992
Streicher propuso extender la teoría de tipos de Martin-Löf con una nueva constante
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K : ∀A : Set .∀x : A .∀P : (x =A x→ Set) . P (refl A x)→ ∀e : x =A x . P e

con la δ-regla K A a P p (refl A a) � p.

(1) Demostrar que el axioma K de Streicher implica las siguientes fórmulas:
a) ∀A : Set .∀x : A .∀e : x =A x . e =x=A x refl A x
b) ∀A : Set .∀x : A .∀e, e′ : x =A x . e =x=A x e′

c) ∀A : Set .∀x, y : A .∀e, e′ : x =A y . e =x=Ay e′

En 2002, McBride introdujo la igualdad heterogénea x =A,B y (con x : A e y : B), llamada
igualdad de John Major(1) y definida a partir de las constantes

JMEq : ∀A : Set . A→ ∀B : Set . B→ Set (notación: JMEq A x B y ≡ x =A,B y)
JMrefl : ∀A : Set .∀x : A . JMEq A x A x
JMrec : ∀A : Set .∀x : A .∀P : (∀B : Set .∀y : B . JMEq A x B y→ Set) .

P A x (JMrefl A x)→ ∀B : Set .∀y : B .∀e : JMEq A x B y . P B y e

con la δ-regla: JMrec A a P p A a (JMrefl A a) � p.

(2) Demostrar que la igualdad usual implica la igualdad de John Major:
∀A : Set .∀x, y : A . Eq A x y→ JMEq A x A y

Se llama axioma de John Major a la proposición recíproca, que expresa que la igualdad de John
Major implica la igualdad usual: ∀A : Set .∀x, y : A . JMEq A x A y→ Eq A x y

(3) Demostrar que el axioma K de Streicher implica el axioma de John Major.
(4) Demostrar que el axioma de John Major implica el axioma K de Streicher.

(1)Basándose en la política de John Major (1943–), líder del Partido Conservador y primer ministro del Reino
Unido de 1990 a 1997 (después de Margaret Thatcher y antes de Tony Blair).
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