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Un poco de historia

1878 Estudiando las series trigonométricas (conjuntos derivados), Georg
Cantor (1845-1918) descubre los nimeros ordinales.

Inicio de la teoria de conjuntos: niimeros ordinales, niimeros
cardinales, hipétesis del continuo

1879 Gottlob Frege (1848-1925) introduce la Begriffsschrift
(“conceptografia” ), el antepasado del célculo de predicados

1903 Frege propone una primera formalizacién de la teoria de conjuntos
de Cantor, basada en su Begriffsschrift.

Bertrand Russell (1872-1970) demuestra su inconsistencia

1908 Ernst Zermelo (1871-1953) da una nueva axiomatizacién de la
teoria de conjuntos (Z). Introduce el axioma de eleccién (AC)

1922 Abraham Fraenkel (1891-1965) y Thoralf Skolem (1887-1963)
introducen (independientemente) el esquema de reemplazo (Z — ZF)
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i Qué es la teoria de conjuntos?

@ Descripcién de un universo (no vacio) cuyos objectos son los conjuntos.
Aqui: conjunto = conjunto puro  (i.e. cuyos elementos son conjuntos puros)

@ El universo conjuntista esta regido por dos relaciones primitivas:

o La igualdad: =1y (donde z e y son conjuntos)

o La pertenencia: z €y (donde z e y son conjuntos)

@ Los conjuntos son bastante flexibles para codificar los conceptos
matematicos: n-uplas, relaciones, funciones, matrices, nimeros...

Universo conjuntista = universo matematico )

e Una axiomatizacién estdndar (ZF) + muchos axiomas extra:

e Axioma de fundacién (AF), Axioma de eleccién (AC)
o Hipétesis del continuo (HC), Hip. generalizada del cont. (HGC)
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El lenguaje de ZF

@ La teoria de conjuntos de ZF estd presentada en el lenguaje de la
|6gica de primer orden (con igualdad):

| oAy | Ve | Voo | Tz¢

Ningun simbolo de constante o de funcién: los tnicos términos son las variables

Férmulas ¢,¢) == 2=y | z€y | ¢ | ¢6=79 J

@ Abreviaturas estandar:

z#y = (z=y)
vy = -(rey)
Veea ¢(z) = Vr(re€a= ¢(x))
Jreca d(xr) = Fx(x €anp(x))
Nz ¢p(x) = Fxo(z) A VeV (px) Aop(a)) =z =1')
xCy = Vz(z€x=>z€y)
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Los axiomas de ZF (con axioma de fundacién)

Extensionalidad  Va Vb (Vz(z caszcb) = a=0)

Pares YaVb3IcVr (r€c & z=aVa=0>0)

Comprension VZ VaIbVz (z€b & x€ad(x,?))
para cada férmula ¢(z, 7)

Unidn Va3bVz (zx€b & Jyca x €y)

Potencia VYa b Vr (x€b & zCa)

Infinitud Ja (GreaVz(z¢z) A

Vezc€aIycaVz (z€yez€aVz=ur))

Reemplazo VZ Va (Vzca Ny ¢(z,y,2) =
b Vrea Iyeb y(z,y,2))

para cada férmula ¢ (z,y, 2)

Fundacién Va (Jz x €a) = JxcaVycayd )
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Clases (1/3)

@ Una clase es una férmula ¢(z,aq,...,a,) abstraida con respecto a
una de sus variables libres x. Notacién:
— 5 A1, ...,0n =
C = {:Z? o qS(x,al,...,an)} <parémetros de C')J

Los elementos de C' son los conjuntos x que cumplen ¢(x,...):
xeC sii d(z,a1,...,a,)

@ Se considera que dos clases C = {z : ¢(z)} v D ={z : ¢¥(x)}
son iguales cuando tienen los mismos elementos:

C=D sii vV (¢(z) < ¢¥(z))

o Ejemplos:
o La clase universal (o universo): V ={z : x = x}

o La clase de los ordinales:  On = {« : « conjunto transitivo A
(€) buen orden estricto en a}

o La clase de los cardinales: Cn ={x : On(k) A (Va<k)a % Kk}
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Clases (2/3)

@ Cada conjunto a se puede considerar como una clase, a saber como
la clase de sus elementos: a = {x:ze€a}

o Existen clases que no son conjuntos, por ejemplo:
{r:xzé¢z} V, On, OCn
Se dice de tales clases que son clases propias

@ Las clases se pueden manipular como si fueran conjuntos, y dadas
clases C={z : ¢(x)} y D= {x :¢¥(x)}, se escriben:
C=D = Vz(¢p(z) ©¢Y(x)) CCD := Vo(o(z) = 9¥(z))
CUD = {z:¢(x)Vy(x)} CND = {z:¢(x) ANY(x)}
C-D = A{z: () A(x)}  UC = {y:3z(o(x) ANy €a)}
@ Unaclase C' ={x:¢(x)} puede aparecer por la izquierda del
simbolo € sélo cuando es un conjunto:

ceD Jz(x=C A YP(x))
Jz(Vy (y € z < d(y) N Y(x))
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Clases (3/3)

o Mas generalmente, el lenguaje de las clases permite recuperar las
notaciones usuales mediante las siguientes abreviaturas:

{a,b} == {z :z=aVz =10}

(a,b) = {{a},{a,b}}
= {x:$:{a}\/x:{a,b}}
={z:Vyyeresy=a) V
Vy(yer s y=aVy=>0)}
PB(a) = {z:zCa}
Ua = {z: Jycazcy}

AxB = {z:3x€AJyeBz=(z,y)}
dom(f) := {z : 3y(=z,y) € f}
img(f) = {y : Jz(z,9) € f}
fl@) = {z: W({(z,y) e fAzEY}
@ = {z:z#z}

s(a) == {z:xecavVe=a} (etc.)
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El axioma de extensionalidad

@ El axioma de extensionalidad

VaVb (Vz(zr€asxzeb) = a=bh) J

expresa que dos conjuntos a y b que tienen los mismos elementos
son iguales: a=1b (EI reciproco es obvio; sigue de las reglas de =)

@ Tautolégicamente equivalente a la antisimetria de C:

VaVb (a CbAbDC a= a=0Dh)

@ Por lo tanto, la inclusién C es una relacion de orden sobre V'
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El axioma de pares

o El axioma de pares

YaVb3dcVr (x €c & z=aVa=0>)

introduce el conjunto  {a,b} = {z:z=aVax=0>}
e Tenemos que {a,b} = {b,a}. Mdas generalmente:

Proposicién: {a,b} ={c,d} & (a=cAb=d)V(a=dAb=c)

e Conjunto unitario definido por:  {a} := {a,a}
@ Par ordenado definido por: (a,b) := {{a}, {a,b}}

Proposicion: (a,b) = (¢,d) & a=cAb=d

e Tuplas: (a,b,c) :=((a,b),c), (a,b,c,d):=((a,b,c),d), etc.
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El esquema de comprension

El esquema de axiomas de comprension

VZ Va IbVz (z€b & x €aAd(x,?)) J

introduce el conjunto  {x € a : ¢(z,2)}

@ De modo equivalente, el esquema de comprensién expresa que:
» La interseccién de un conjunto con una clase es un conjunto:
a conjunto = a N C conjunto
» Toda clase incluida en un conjunto es un conjunto:

a conjunto A C' Ca = C conjunto

Implica que V' no es un conjunto (clase propia)

@ Permite formar los siguientes conjuntos:
andb = {r€a:zecb}
a—1>b {r€a:xz¢b}

g = a—a (a cualquiera)
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El axioma de la union

@ El axioma de la unién

Va 3bVz (x €b & Jyca xz€y) J

introduce el conjunto (Ja = U y = {z:3Jy€a x €y}
yEa

@ Permite formar los siguientes conjuntos:

aub = U{a,b}

{a,b,c} = {a,b} U{c}
{a,b,¢,d} = {a,b,c} U{d}
{ai,...;an} = {a1}U---U{an}

alAb := (a—b)U(b—a)
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El axioma del conjunto potencia

o El axioma del conjunto potencia

VYa 3bVx (x €b & z Ca)

introduce el conjunto  P(a) = {z : z Ca}
@ Implica que el producto cartesiano
AxB = {z:3r€AJyeBz=(z,y)}
es un conjunto, pues A x B C P(P(A U B))
@ Mas generalmente:

AxBxC = (AxB)xC
AxBxCxD = (AxBxC)xD (etc.)



Teoria de Zermelo-Fraenkel Ordinales y card Axioma de fundacién Axioma de eleccién
0000000000000800 0000000000 000000000000000 0000000000000

Grafos y funciones

@ Un grafo es un conjunto de pares:
G grafo = Vze@G Jx Jy 2= (x,y)
@ Una funcidn es un grafo funcional:
f funciéon = f grafo A
Vevyvy' (z,y) € fA(xy) e f=y=1)
@ Se escriben: dom(f) = {z : 3y (z,y) € f} (Cyun
img(f) = {y : 3w (z,y) € f} (cuUu”n
f@) = Wy : (zy) € f} (cUuu”n
@ Dados A y B, se escribe

BA = {f : f funcién A
dom(f) = A A img(f) C B} (CP(Ax B)

@ Conceptos usuales: funcién identidad ida, funcién compuesta go f,
imagen/preimagen, funcién inyectiva/sobreyectiva/biyectiva, etc.



Teoria de Zermelo-Fraenkel Ordinales y card Axioma de fundacién Axioma de eleccién
0000000000000080 0000000000 000000000000000 0000000000000

El axioma de infinitud

@ Se recuerda que un conjunto A es Dedekind-infinito cuando existe
una funcién f : A — A inyectiva y no sobreyectiva

@ El axioma de infinitud

Ja (GreaVz(z¢z) A
Vr€aJycaVz (z€ysz€aVa=nu)) J

expresa la existencia de un conjunto a que contiene 0:= @ vy es
estable por sucesor s(z) :=ax U {x}

e Como la operacién x +— s(x) es inyectiva (en V') y nunca alcanza 0,
se deduce que el conjunto a es Dedekind-infinito

Y como a contiene todos los ordinales finitos: w C a es un conjunto

@ Otras formulaciones posibles:

» Existe un conjunto Dedekind-infinito
» Existe un ordinal limite
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El esquema de reemplazo

@ Una clase funcional (o funcional) es una clase F' de pares tal que
VevyVy' ((z,y) € FA(,y) € F=y=y')

Se definen las clases: dom(F) = {z : Jy (z,y) € F}
img(F) := {y : 3z (z,y) € F}

o El esquema de axiomas de reemplazo

VZ Va (Vz€a Ny ¢(z,y,2) =
3b Vo €a yeb ¢(z,y,2)) J

expresa que si el dominio de una clase funcional es un conjunto,
entonces su imagen tambien es un conjunto:

F clase funcional A dom(F') conjunto = img(F') conjunto )

@ De modo equivalente:

F clase funcional A a conjunto = Fl[a] conjunto )




© La teoria de conjuntos de Zermelo-Fraenkel

© Ordinales y cardinales

© El axioma de fundacién

0 El axioma de eleccién



Teoria de Zermelo-Fraenkel Ordinales y card. Axioma de fundacién Axioma de eleccién
0000000000000000 0®00000000 000000000000000 0000000000000

Buenos ordenes

Definicién (Buen orden / buen orden estricto)

Sea A un conjunto. Un buen orden sobre A es una relacién de orden (<)
sobre A tal que todo subconjunto no vacio de A tiene un minimo:
(<) buen orden sobre A =
(<) orden (amplio) sobre A A
VXCA)(X#@= FeeX)(YyeX)z<y).

Un buen orden estricto sobre A es un orden estricto (<) cuya relacién de
orden asociada (<) := (<) W (=4) es un buen orden

.

Proposicién (Induccién bien fundada)

Si (<) es un buen orden estricto sobre A, entonces:

(VX CA)VzeA)(Vyed)(y<z=yeX) = z€X) = X =A]

v
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La nocidon de ordinal

@ Un conjunto (una clase) X es transitivo(a) cuando Ve X = C X

Definicién (Ordinal)

Un ordinal es un conjunto transitivo en que la relacién € es un buen

orden estricto. Se escribe On a la clase de los ordinales:

On = {a: (Vrea)Vyex)(y € a) A
(Vrea)(z ¢ x) A
(Ve y,z€a)(x €EYyNy €z = x € 2) A
VXCa)(X #@ = (FrxeX)(VWweX)zeyVae=y))}

v

e Orden sobre On: a<f =acCp (o, B € On)

Proposiciéon

@ Todo elemento de un ordinal es un ordinal
@ Paratodos a, 5 € On: a<f si a€ef
@ Paratodoa€e On: a={f€ On : f<a}
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Construccidon de ordinales

Proposicién (Ordinal sucesor)

Para todo o € On:  s(a) := aU {a} es el menor ordinal mayor a a.
Tenemos que: a<p sii s(a) < B (o, 8 € On)

@ Los primeros ordinales son

0 = o

1 := s(0) := {0} = {o}

2 = s(1) = {0,1} = {@,{o}}

3 = s(2) = {0,1,2} = {2,{2},{7,{2}}} (etc.)

Proposicién (Supremo)

Todo conjunto X C On tiene supremo: sup(X) =X

Corolario

On es una clase propia
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Ordinales y buen orden

@ Por definicion, cada ordinal @ es un conjunto bien ordenado por <
(orden de inclusién). Ademis:

Proposicién (Buen orden)

@ Elorden a < 3 es un buen orden sobre On, en el sentido en que
toda clase C no vacia de ordinales tiene minimo:

CCOn NC#2 = Hapel Vael o<«
@ Dos ordinales son isomorfos*) si y sélo si son iguales

© Todo conjunto bien ordenado es isomorfo*) a un tnico ordinal

(%) en el sentido de los conjuntos ordenados

» On = sistema de representantes de los conjuntos bien ordenados

Corolario (Induccién transfinita)

Dado un predicado ¢(«) definido sobre On:
(Vo€ On)[(VB<a)¢(B) = ¢(a)] = (Vo€ On)(a)
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Ordinales Iimites

Definicién (Ordinal limite)

Un ordinal limite es un ordinal que no es ni 0, ni un ordinal sucesor

@ Principio de tricotomia: Para todo a € On:

a =0 V « ordinal sucesor V « ordinal limite
@ Axioma de infinitud: Existe un ordinal limite

@ Se escribe w al minimo ordinal limite. Los elementos de w son los
ordinales finitos (i.e. menores que cualquier ordinal limite)

Proposicién (Induccién transfinita, variante)

Dado un predicado ¢(«) definido sobre On:
$(0) A (Vae On)(¢(a) = ¢(s(a))) A
(VA€ On, Xlimite)[(Va <) ¢p(a) = ¢(N)]
= (Yae€ On)¢(a)
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Sucesiones transfinitas

@ Un sucesién transfinita es una clase funcional Y con dominio On.
Notacién: Y = (ya)acon

@ Dada una clase funcional ®, se llama funcién ®-inductiva a toda
funcién f tal que
© dom(f) € On
Q fis €dom(®) y f(B) =P(f15) paratodo € dom(f)

Teorema (Definicién por recursidn transfinita)

Dada una clase funcional ® cuyo dominio incluye a todas las funciones
®-inductivas, existe una (lnica) sucesién transfinita (Yo )acon tal que

Yo = ®((ys)p<a) para todo a € On
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Aritmética de ordinales

e Definicién de la suma («, 5, A € On, A limite):

a+0 = «a a+s(B) = s(a+B) a+ A = sup(a+p)
B<X

Suma asociativa y no conmutativa: l14+w=w # s(w)=w+1

o Definicién del producto («, 3, A € On, X limite):

a-0:=0 a-s(f) = a-B+a a- A = sup(a-fB)
B<A

Producto asociativo y no conmutativo: 2 - w=w#w+w=w"2.
También se usa la notacién invertida fBa (= «a- 8

o Definicion de la potenciacién («, 3, A € On, A limite):

a’ =1 a*® = of ot = sup(a”)

B<A
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Cardinales, sin axioma de eleccidn (1/2)

@ Dados conjuntos A y B, se escriben
A<B (3f € BA) f inyectiva
A~B := (3f€B?) f biyectiva (equipotencia)

Teorema (Cantor-Bernstein-Schroder)

SiA<ByB=A, entonces A~ B

Definicién (Cardinal)

Un cardinal es un ordinal k£ que no es equipotente con ningtn ordinal
menor que k. Se escribe Cn a la clase de los cardinales:

Cn = {k:keOn N Va<k) ak}

@ Todos los ordinales finitos son cardinales, asi como w (notado Ng).
El primer ordinal que no es un cardinal es w + 1
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Cardinales, sin axioma de eleccidn (2/2)

Propiedades demostrables en ZF (sin AC):

@ Para todos k, u € Cn:
k2p & K<p

K~ & K=

@ Todo ordinal « es equipotente a un dnico cardinal, escrito Card(c)

@ Para todo cardinal %, la clase On, := {a € On : a~ K} esun
conjunto, y por lo tanto Cn es una clase propia

Para todo cardinal &, existe un menor cardinal mayor a &, escrito k*

(]

El supremo de cualquier conjunto de cardinales es un cardinal

@ Un conjunto X es equipotente a algin cardinal (escrito Card(X)
o |X|) siy sélo si el conjunto X admite un buen orden
Jerarquia de los cardinales infinitos (sin AC):

Ry = w Noy1 = N Ny = supN, (A limite)
a<A
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El axioma de fundacidn

e El axioma de fundacién (AF)

Va (Jzz€a) = IrcaVycayd¢a),
es decir: Va (a#@ = Jz€a zNa=9)

expresa que todo conjunto a no vacio tiene un elemento = € a que
es €-minimal, es decir: tal que y ¢ x para todo y € a

@ Dicho axioma implica que no existen sucesiones infinitas de la forma
ToDT1 DX2DTI DLy D

(Considerar el conjunto a = {zo, z1,x2, 23, Z4,...})

@ En particular, no existe ningiin conjunto x tal que
rEX
ni ciclos de pertenencia

r1E€ETyET3E - ECETy, €T
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Clausura transitiva y elementos €-minimales

Proposicién y definicién (Clausura transitiva)

Para todo a, existe un minimo conjunto transitivo a’ tal que a C a’.
Se llama la clausura transitiva de a, y se escribe Cl(a)

new

Demo. Tomar Cl(a) := U an, donde ap:=a y ant1:=Ja, paratodon € w. DJ

@ Se observa que Cl(a) = aU U Cl(x)

rea

Si C es una clase no vacia, entonces C tiene un elemento &-minimal

que x N X = . Para todo y € x, tenemos que y ¢ X, pero como y € Cl({a}) (puesy € z y
O

Demo. Fijado a € C, se considera X := C' N Cl({a}) (3 a). Como X # O, existe z € X tal
z € Cl({a})), se deduce que y ¢ C. Por lo tanto: z N C = @. J
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El principio de €-induccién

Proposicién (Razonamiento por e-induccién)

—\

Dada una férmula ¢(z, 2)

Ve [(Vyex) oy, 2) = ¢(z,%)] = Vz ¢(z,2)

(donde Z son parametros cualesquiera)

y
Demo. Fijados Z, se supone que Vz [(Vy € z) ¢(y, Z) = ¢(x, Z)] (*) y se escribe
C :={z : ~¢(x, Z)}. Supongamos por el absurdo que C' no es vacio. Entonces existe un
elemento x € C que es €-minimal en C. Esto quiere decir que para todo y € z, tenemos
que y & C'y luego ¢(y, Z). Por (x) se deduce que ¢(z, Z), es decir: = ¢ C: contradiccién.
Por lo tanto, C' = &, es decir: Vz ¢(z, ). D)

Ejercicio: Verificar que la €-induccién implica el axioma de fundacién
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Construcciéon de funcional por E-recursidn

Proposicién (Construccién de funcional por e-recursién)

Si I es una clase funcional de dominio V, entonces existe otra clase
funcional G de mismo dominio tal que

G(z) = F({G(y):y € }) (zeV)]

Demo. Se considera la clase

G = {(z,2) : 3g (g funcién A dom(g) = Cl({z}) A :v) =2
(va' € Cl({z})) g(=') = F({g(¥') : ¢’ € 2'}) )}

Luego se demuestra por €-induccién que G(z) = F({G(y):y € x}) paratodoz € V. O
4
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La jerarquia acumulativa (1/2)

@ La jerarquia acumulativa (von Neumann) es la sucesién transfinita
(V&) ac on definida por

Vo = [JB(Wp) (aEOn)J

B<la

o de modo equivalente:

Vo =9, Vap=PBVa), W= |JW (X limite)
B<A

Proposiciéon

Para todos «, 8 € On:

(1) Vi, es transitivo (3) a<p implica V, C V3
2) aCVy y a€Vyp (4) a<p implica V, € V3

| A
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La jerarquia acumulativa (2/2)

Proposicion

Todo conjunto pertenece a algiin V,: V = U Va
acOn
y
Demo. Por €-induccién sobre x. Supongamos que para todo y € z, existe a € On tal que
y € V. Para cada y € z, se escribe oy al minimo ordinal tal que y € Vay.
Sea «a := SUp, ¢y Oty- Por construccién, tenemos que y € V,, para todo y € z, entonces
x C Vg, y por lo tanto: = € P(Va) = Vagt1. O
4
@ A cada conjunto x se asocia su rango rk(z) € On definido por:
rk(z) = minimo « € On talque =z CV,
:= minimo a € On talque x €V,
@ En particular:
(1) rk(z) = sup(rk(y) +1) para todo conjunto x

=
(2) k(o) =« para todo a € On
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Aplicaciones del rango

@ A cada clase C, se asocia el subconjunto C C C definido por:
C = {zeC : rk(z) < rk(y) para todo y € C}

Obs.: (C siempre es un conjunto:
e Si C =, entonces C =0

o Si C# o, entonces C'=CNVyy1, donde o= migrk(x)
z€

» Método uniforme para extraer un subconjunto C' no vacio
a partir de cualquier clase C' no vacia

@ Ejemplo: cociente de una clase propia. Sea C una clase propia
equipada con una relacién de equivalencia E(z,y).

Problema: Las clases de equivalencia [z]5 = {y € C : E(z,y)}
pueden ser clases propias, lo que impide formar el cociente C/E

Solucién: Reemplazar [z]/5 por [/x\]/E, y tomar C/E := {[/x\]/E tx € C}.

Tenemos que: E(z,y) < [/x\]/E = [y]/E para todos z,y € C
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El esquema de coleccién

e Otra aplicacién del rango es la siguiente:

Teorema (Esquema de coleccién)

Dada una férmula ¢(z,y, Z), tenemos que:

Va IbVrea y ¢(x,y,2) = Tyeb o(z,vy,2))

(donde Z' son parametros cualesquiera)

Demo. Fijados Z, se nota C, := {y : ¢(z,y, Z)} paratodo z € a, y se toma

b = Uém O

z€a

@ Obs.: El esquema de coleccién implica el esquema de reemplazo;
por lo tanto ambos esquemas son equivalentes (en presencia de AF)
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Trivialidad de los €-isomorfismos

@ Otra consecuencia del axioma de la fundacién es que el universo V'
no admite ninglin €-automorfismo no trivial:

Teorema (Trivialidad de los €-isomorfismos)

(1) Sean T, T’ dos clases transitivas. Si ® : T'=> T’ realiza un
€-isomorfismo entre (7', €) y (T7, €), es decir:

D(y) ed(z) & yex (para todos z,y € T),
entonces T=T" y & =idyp

(2) En particular, no hay ningin €-automorfismo no trivial de (V, €)

Demo. (1) Se demuestra por €-induccién que = € T = ®(z) =z paratodoz € V.
Luego se deduce que ® = idr y T’ = T. (2) Obvio. DJ

@ Obs.: Existen modelos de ZF — AF con €-automorfismos no triviales
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Relaciones bien fundadas (1/2)

Definicién (Relacién bien fundada)

Sea U una clase. Se dice que una relacién binaria R(y,x) sobre U
estd bien fundada cuando:

(1) Paratodox € U: R7'(z):={y € U:R(y,z)} es un conjunto

(2) Todo conjunto X C U no vacio tiene un elemento R-minimal,
i.e. un elemento z € X tal que R} (z)NX =@

@ Obs.: Cuando U es un conjunto, no se necesita verificar (1), que se
cumple automdaticamente

Sea U una clase equipada con una relacién binaria R(y, ) bien fundada.

Entonces toda clase C C U no vacia tiene un elemento R-minimal, i.e.
un elemento z € C tal que R (z)NC =2

Demo. Ejercicio
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Relaciones bien fundadas (2/2)

Sea U una clase equipada con una relacién binaria R(y,x) bien fundada

Proposicién (Razonamiento por R-induccién)

Dada una férmula ¢(z, Z), tenemos que:

(VzeU)[(VyeR™(2)) 8(y, 2) = ¢(x,2)] = (VzeU)d(x,2)

(donde Z son pardmetros cualesquiera)

Demo. Ejercicio

Proposicién (Construccién de funcional por R-recursién)

Si I es una clase funcional de dominio V, entonces existe una clase
funcional G de dominio U tal que

G(z) = F{G(y):y € R™'(2)}) (z€U)

Demo. Ejercicio
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Teorema de colapso de Mostowski

@ Se dice que una relacién binaria E(y, z) sobre una clase U es
extensional cuando

E-lY(2)=FE12) = z=2a (para todos z,z’ € U)

Teorema (Colapso de Mostowski)

Si E(y,x) es una relacién binaria extensional y bien fundada sobre
una clase U, entonces existe una clase transitiva M y una biyeccién
® : U = M que realiza un isomorfismo entre (U, E) y (M, €):

E(y,z) & ®(y)e d(x) (para todos z,y € U)

Ademas, la clase transitiva M y la biyeccién ® : U = M son (nicas

Demo. Se define la funcional ® : U — V por E-recursidén por
d(z) = {®(y):y € E" (x)} (para todo = € U)

Se demuestra por E-induccién que la funcional ® es inyectiva (usando el hecho que E es
extensional), y luego se define M := img(®). La unicidad de M y ® es obvia. O

v
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Relaciones bien fundadas y buenos érdenes

Se recuerda que una relacién R(y, z) sobre un conjunto A es:
Irreflexiva cuando  (Vx € A) ~R(z, x)
Transitiva cuando  (Vx,y,z € A)(R(z,y) A R(y, 2) = R(x, 2))
Un orden estricto cuando R es irreflexiva y transitiva
Conexa cuando  (Vz,y€ A)(x # y = R(x,y) V R(y, x))
Bien fundada cuando:
(VXCAX#£0 = (FzeX)(VyeX) ~R(y,x))
@ Un buen orden estricto cuando R es un orden estricto y:
VXCA)(X #£2 = (FzeX)MyeX)(R(z,y) Ve =y)

Proposicion

Para todo conjunto A equipado con una relacién binaria R:

R buen orden estricto < R conexa y bien fundada

Demo. Ejercicio
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Simplificacion de la definicién de los ordinales

@ Se recuerda que un ordinal es un conjunto transitivo en que la
relacién € es un buen orden estricto:

a€eOn = Vzea)(Vyex)(y € o) A
(Vzea)(z ¢ x) A
(Vz,y,z€a)(r EYNY €z = x € 2) A
VXCa)(X#@ = (FreX)VyeX)(zcyVa=y))

@ Pero bajo el axioma de fundacién, la relacién € estd bien fundada en
cualquier conjunto «. Por la Prop. anterior, un ordinal es cualquier
conjunto transitivo en que la relacién € es conexa:

acOn = Wzxea)Vyezx)(ye€ a) A
Vz,yea)x £y=x€yVy € x)

» Férmula Ay (= con cuantificaciones acotadas)



© La teoria de conjuntos de Zermelo-Fraenkel
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© El axioma de fundacién

© El axioma de eleccién
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Unas definiciones...

@ El producto cartesiano (generalizado) de una familia de conjuntos
(A;)ier esta definido por:
HAZ' = {(ai)ig : (VZEI) a; € Az}
il
@ Sea A un conjunto equipado con una relacién de equivalencia ~.
Un sistema de representantes de ~ es un conjunto S C A tal que:
(Vee A)(Ilap e S) x ~ xo

© Sean dos funciones f: A—- Byg: B— A (A 'y B cualesquiera).
Cuando go f =1idy, se dice que:

e g es una inversa por la izquierda de f (= g sobreyectiva)

e f es una inversa por la derecha de g (= f inyectiva)

@ Una funcién de eleccién sobre un conjunto A es una funcidn
h @ P*(A) — A (donde P*(4) = B(A) — {2}) tal que:
(VX eP*(A) h(X)e X
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El axioma de eleccién (AC)

Axioma de eleccién
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Proposicién (en ZF sin infinitud /reemplazo/AF)
Las siguientes férmulas son equivalentes:

(1) El producto de una familia de conjuntos no vacios nunca es vacio
(2) Toda relacién de equivalencia tiene un sistema de representantes
(3) Toda funcién sobreyectiva tiene una inversa por la derecha

4) Todo conjunto tiene una funcién de eleccién

@ Se puede demostrar que las 4 férmulas anteriores (equivalentes) son
independientes de la teoria de ZF. El axioma de eleccién (AC) se
formula usando cualquier una de ésas, por ejemplo:

Axioma de eleccién (AC)

Todo conjunto tiene una funcién de eleccion:

VA (3h € AF () (VX eP*(A)) h(X) € X

@ Notacion: ZFC := ZF + AC
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Lema de Zorn y teorema de Zermelo

Lema de Zorn

Sea A un conjunto ordenado. Si todas las cadenas de A estan
superiormente acotadas, entonces A tiene un elemento maximal

Variante (con hipétesis mds débil)

Sea A un conjunto ordenado. Si todas las cadenas bien ordenadas de A estan
superiormente acotadas, entonces A tiene un elemento maximal

@ Ejercicio: Usando el lema de Zorn (esténdar), demostrar que si A
cumple la hipédtesis débil (para las cadenas bien ordenadas), entonces A
también cumple la hipétesis fuerte (para todas las cadenas)

Teorema de Zermelo

Todo conjunto tiene un buen orden

o ZF(—AF)  AC < Lemade Zorn < Teorema de Zermelo
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Otras formulaciones del axioma de eleccidn

Muchos teoremas de ZFC son equivalentes a AC. Por ejemplo:

Lema de Zorn

Teorema de Zermelo

Para todo conjunto infinito: A~ A Xx A

Para todos conjuntos A,B: A<B o B=<A

Todo conjunto ordenado tiene una cadena maximal

Todo conjunto ordenado tiene una anticadena maximal
Todo anillo tiene un ideal maximal (= Teorema de Krull)
Todo espacio vectorial tiene una base

Todo conjunto no vacio tiene una estructura de grupo

El producto cartesiano de cualquier familia de espacios topoldgicos
conexos es un espacio topoldgico conexo

El producto cartesiano de cualquier familia de espacios topoldgicos
compactos es un espacio topoldgico compacto (= Teo. de Tycho

0000800000000

nov)
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Aritmética de los cardinales (1/3)

@ En ZFC, todo conjunto X tiene un cardinal, escrito Card(X) o | X].
Para todos X e Y, tenemos que:

X XY & Card(X) < Card(Y)
X~Y & Card(X) = Card(Y)

@ Dados cardinales « y u, se definen

k+u = Card(k + /1,) (cardinal de la suma directa)
Rl = Card(n X u) (cardinal del producto cartesiano)
KM = Card(ﬁ“) (cardinal del espacio de funciones)

e Dada una familia (k;);cr de cardinales, se definen:

E ki = Card( E Hi> (cardinal de la suma directa)

i€l iel

H K Card (H I{i) (cardinal del producto cartesiano)

iel i€l
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Aritmética de los cardinales (2/3)

Proposicion

(1) Para todos cardinales k p y v:

K+pu=pu+k KL = [k AT = gHFRY
(k+p)+v=r+(p+v) (kp)v = k(pv)  (k*)Y = &H
K+0=0+kr=r k0=0k =0 K=1 0*=0 (u>1)

k(p+v) = kp + kv kl=1k =k kKl=r 1#=1

(2) Para todos cardinales &, k', py p':
R<K = k+p<k +p k<K = kH<E*
k<K = rku<rk'p K>1Ap<y = KMSKM’

(3) Para todo cardinal k y para toda familia (u;);c; de cardinales:

() - T e e

i€l i€l i€l
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Aritmética de los cardinales (3/3)

Proposicion

(1) Para todo cardinal infinito: k2 = &

(2) Si k, p son cardinales infinitos y n un cardinal finito:
K+ up = kp = max(k, ) kK+n = K

kn = K" = K (sin>1) nt = 2¢ (sin>2)

(3) Si Ky w son cardinales infinitos, entonces:
max(r,2*) < k* < max(2%,2*)
KT = 2" k<2 = gF=2F

Obs.: No hay ninguna férmula sencilla para calcular k* cuando k > 2#

Teorema (Konig)

Si k; < p; paratodo i € I, entonces: Zm— < H“i
iel iel

Caso particular: ki=1p; =2 (i €l) = Card(l) < Card(2]) (Cantor)
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Cardinal del continuo

@ Recordatorio:

@ Cardinal del continuo:

Axioma de fundacién
000000000000000

K < 2% (= Card(B(x)))

Axioma de eleccién
0000000080000

[Cantor 1878]

¢ := Card(R) = Card(P(w)) = 2% > N,

Proposicién: ¢ =¢ y ¢ =2°

e Como ¢ > N, tenemos que ¢ > Nj.

Hipétesis del continuo (HC)
Hip. generalizada del cont. (HGC)

iQué hay de la igualdad?

Mo = W
(Va€ On) 28« =N,

o Jerarquia J:

:0 = NO :a+1 = 2:“

e HGC & (Ya€eOn) R,=13,

'y

sup Jda
a<A

(X limite)
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Conjuntos finitos, infinitos y Dedekind-infinitos

Definicién (Conjuntos finitos e infinitos)

Un conjunto A es:

finito cuando es equipotente con algin ordinal finito
infinito cuando no es equipotente con ningun ordinal finito

Dedekind-infinito (o D-infinito) cuando existe una funcién
f: A — A inyectiva y no sobreyectiva

Es claro (sin AC) que todo conjunto Dedekind-infinito es infinito.
Y con AC, todo conjunto A tiene un cardinal, luego:

o O bien Card(A) < Ng, y A es finito
e O bien Card(A) > Ng, y A es Dedekind-infinito

Pero en ZF, no se puede mostrar que: infinito = Dedekind-infinito

De hecho, hay modelos de ZF (sin AC) en que existen conjuntos
infinitos que no son Dedekind-infinitos
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El axioma de eleccién numerable (AC,)

Existen formas mas débiles de AC, por ejemplo:

Axioma de eleccién numerable (AC,,)

El producto de una familia numerable de conjuntos no vacios no es vacio:

V(An)new |(TneEw) A, £ & = (H An> 4 @}

new

e Ejercicio:

(1) Demostrar en ZF (sin AC.) que todo conjunto D-infinito es infinito
(es decir: que no es equipotente con ningtin ordinal finito)

(2) Demostrar en ZF + AC,, que todo conjunto infinito es D-infinito

(3) Demostrar en ZF + AC,, que la unién de cualquier familia numerable
de conjuntos numerables es un conjunto numerable
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El axioma de eleccién dependiente (DC) (1/2)

Otra forma débil de AC es la siguiente:

Axioma de eleccién dependiente (DC)

(VA#£Z)VRCAX A)[(Vzre A)(Fye A)z Ry =
(F(@n)new € A¥)(Vn Ew) 2y R2p41]

@ Variante con punto inicial fijado (DCp):

VA(VRC A x A)
(Vxe A)(Bye A)z Ry =
(Ve € A)(Ixn)new € A) (20 = 2 A (VR EW) Ty RTpy1)]

e Ejercicio:
(1) Demostrar en ZF que: AC = DC y DCy = AC,
(2) Demostrar en ZF que: DC < DGy
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El axioma de eleccién dependiente (DC) (2/2)

o El axioma de eleccién dependiente (DC) se usa mucho en anilisis,
notablemente para extraer sucesiones convergentes

@ Una aplicacién tipica de DC es la siguiente:

Teorema (Baire)

En un espacio métrico completo X, toda intersecciéon numerable de
subconjuntos abiertos densos de X es un subconjunto denso

Demo: Ejercicio
e En 1977, C. Blair demostré que el teorema de Baire implica DC

@ Otra consecuencia de DC es la siguiente:

Proposicién

Una relacién binaria R C X? es bien fundada si y sélo si no existe ninguna
sucesion (Zn)necw € X tal que R(zn41,%,) para todo n € w




	La teoría de conjuntos de Zermelo-Fraenkel
	

	Ordinales y cardinales
	

	El axioma de fundación
	

	El axioma de elección
	


