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Lenguajes y estructuras (recordatorio)

Definición (Lenguaje de 1er orden)

Un lenguaje (de 1er orden) está definido a partir de:

un conjunto de śımbolos de función (notación: f , g, h, etc.)
un conjunto de śımbolos de predicado (notación: p, q, r, etc.)

en que cada śımbolo s (función/predicado) viene con su aridad ♯s (∈ N)

Dichos śımbolos definen los términos (notación: t, u, v, etc.) y
las fórmulas (notación: φ, ψ, χ, etc.) del lenguaje considerado

Dado un lenguaje de 1er orden L :

Definición (L -estructura)

Una L -estructura es un conjunto M ̸= ∅ equipado con:

una función fM : M k →M para cada śımbolo de función f (♯f = k)

una relación pM ⊆M k para cada śımbolo de predicado p (♯p = k)
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Interpretación del lenguaje (recordatorio)

Dados un lenguaje L y una L -estructura M , se interpretan:

cada término t(x⃗) con parámetros a⃗ ∈M por un elemento Jt(⃗a)KM ∈M :

JaKM := a (a ∈ M parámetro)

Jf(t1(⃗a), . . . , tk (⃗a))KM := fM (Jt1(⃗a)KM , . . . , Jtk (⃗a)KM )

cada fórmula φ(x⃗) con parámetros a⃗ ∈M por una relación M |= φ(⃗a):

M |= t(⃗a) = u(⃗a) :≡ Jt(⃗a)KM = Ju(⃗a)KM

M |= p(t1(⃗a), . . . , tk (⃗a)) :≡
(
Jt1(⃗a)KM , . . . , Jtk (⃗a)KM

)
∈ pM

M |= ¬φ(⃗a) :≡ M ̸|= φ(⃗a)

M |= φ(⃗a) ∧ ψ(⃗a) :≡ M |= φ(⃗a) y M |= ψ(⃗a)

M |= φ(⃗a) ∨ ψ(⃗a) :≡ M |= φ(⃗a) o M |= ψ(⃗a)

M |= φ(⃗a)⇒ ψ(⃗a) :≡ M |= φ(⃗a) implica M |= ψ(⃗a)

M |= ∀xφ(x, a⃗) :≡ M |= φ(a0, a⃗) para todo a0 ∈M

M |= ∃xφ(x, a⃗) :≡ M |= φ(a0, a⃗) para algún a0 ∈M
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Teoŕıas y modelos (recordatorio)

Definición (Teoŕıa de 1er orden)

Una teoŕıa T (de 1er orden) está definida a partir de:

su lenguaje L (de 1er orden)
sus axiomas (= fórmulas cerradas de L )

Una fórmula φ de L es un teorema de T cuando es derivable a partir de
los axiomas de T . Notación: T ⊢ φ (“T demuestra φ”)

Dada una teoŕıa de 1er orden T sobre un lenguaje L :

Definición (Modelo de Tarski de T )

Un modelo de Tarski de T es una L -estructura M tal que
M |= φ para todo axioma φ de T . Notación: M |= T

Más generalmente, tenemos que M |= φ para todo teorema φ de T (corrección)
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Los principales teoremas (recordatorio)

Dada una teoŕıa de 1er orden T sobre un lenguaje L :

1 Completitud: T es consistente sii T tiene un modelo

Corolario: T ⊢ φ sii M |= φ para todo M |= T

2 Compacidad: T tiene un modelo sii
cada conjunto finito de axiomas de T tiene un modelo

3 Löwenheim-Skolem: Si T tiene un modelo infinito M0,
entonces T tiene un modelo Mκ de cardinal κ para cada cardinal
infinito κ ≥ Card(L )∗. Además, se puede construir Mκ tal que:

Mκ es elementalmente equivalente a M0

Mκ ⊆M0, cuando κ ≤ Card(M0)

Mκ ⊇M0, cuando κ ≥ Card(M0)

∗Aqúı: Card(L ) = Card({fórmulas de L }) = max(Card({śımbolos de L }),ℵ0)
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El conjunto de las fórmulas (internas) (1/2)

Para formalizar la teoŕıa de modelos en ZF, se internaliza el lenguaje de
ZF adentro de ZF, con un conjunto Form de las fórmulas (internas)

Las variables son representadas por ordinales finitos: Var := ω.
Notación: x, y, z, . . . ∈ Var (variables internas)

Sólo se consideran fórmulas construidas a partir de =, ∈, ¬, ∨ y ∃,
usando la codificación:

x =̇ x′ := (0, (x, x′))
x ∈̇ x′ := (1, (x, x′))

¬̇ f := (2, f)
f1 ∨̇ f2 := (3, (f1, f2))

(∃̇ x) f := (4, (x, f))

(donde =̇, ∈̇, ¬̇, ∨̇, ∃̇ son los śımbolos internos)

Las otras construcciones se deducen por la leyes de De Morgan:

f1 ∧̇ f2 := ¬̇(¬̇ f1 ∨̇ ¬̇ f2) = (2, (3, ((2, f1), (2, f2))))
f1 ⇒̇ f2 := ¬̇ f1 ∨̇ f2 = (3, ((2, f1), f2))

(∀̇ x) f := ¬̇(∃̇ x) ¬̇ f = (2, (4, (x, (2, f))))
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El conjunto de las fórmulas (internas) (2/2)

Se considera la función Φ : P(Vω)→ P(Vω) definida por:

Φ(X) = ({0} × (Var ×Var)) ∪ ({1} × (Var ×Var)) ∪
({2} ×X) ∪ ({3} × (X ×X)) ∪ ({4} × (Var ×X))

y se define el conjunto Form de las fórmulas (internas) como el
menor punto fijo de la función Φ:

Form :=
⋃
n∈ω

Φn(∅) (⊆ Vω)

(donde Φn(∅) es el conjunto de las fórmulas de altura ≤ n)

Para cada fórmula (interna) f ∈ Form, se escribe FV (f) (⊆ Var) a
su conjunto de variables libres, y para todo n ∈ ω se define

Formn := {f ∈ Form : FV (f) ⊆ n}

con n = {0, . . . , n− 1} = {x0, . . . , xn−1}

Form0 es el conjunto de las fórmulas (internas) cerradas
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Codificación de las fórmulas (externas)

A cada fórmula φ (externa) se asocia su código ⌈φ⌉ ∈ Form,
usando la correspondencia descrita en las diapositivas anteriores

Por ejemplo, la fórmula ∀z (z ∈ x⇒ z = y) está representada en
el conjunto Form por el código

⌈∀z (z ∈ x⇒ z = y)⌉ = ∀̇ z (z ∈̇ x ⇒̇ z =̇ y)

= ¬̇ ∃̇ z ¬̇(¬̇ z ∈̇ x ∨̇ z =̇ y)
= (2, (4, (z, (2, (3, (2, (1, (z, x))), (0, (z, y)))))))

Para toda fórmula φ tenemos que: ZF ⊢ ⌈φ⌉ ∈ Form

La correspondencia φ 7→ ⌈φ⌉ no es inyectiva (pues ∧̇, ⇒̇, ∀̇ definidos a

partir de ¬̇, ∨̇, ∃̇), pero sólo identifica fórmulas equivalentes:

⌈φ⌉ = ⌈ψ⌉ implica φ ≡LK ψ

No es posible expresar en ZF que φ 7→ ⌈φ⌉ es sobreyectiva, y
existen extensiones (conservativas) de ZF en que no lo es
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Evaluación de una fórmula

Dado un conjunto M con una relación binaria E ⊆M2:

Una valuación en M es una función ρ ∈MVar

Dados ρ ∈MVar , x ∈ Var y a ∈M , se define:

(ρ, x← a) := (ρ↾Var−{x}) ∪ {(x, a)}

Definición (Función de verdad)

Se define la función de verdad Val (M,E) : Form → P(MVar ) por
recursión bien fundada sobre el tamaño de f ∈ Form, escribiendo:

Val (M,E)(x =̇ y) := {ρ ∈MVar : ρ(x) = ρ(y)}
Val (M,E)(x ∈̇ y) := {ρ ∈MVar : E(ρ(x), ρ(y))}
Val (M,E)(¬̇ f) := Val (M,E)(f)

c

Val (M,E)(f1 ∨̇ f2) := Val (M,E)(f1) ∪Val (M,E)(f2)

Val (M,E)((∃̇ x) f) := {ρ ∈MVar : (∃a∈M) (ρ, x← a) ∈ Val (M,E)(f)}
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Predicado de satisfacción

Lema

Para todos f ∈ Form y ρ, ρ′ ∈MVar tales que ρ↾FV (f) = ρ′↾FV (f):

ρ ∈ Val (M,E)(f) ⇔ ρ′ ∈ Val (M,E)(f)

En particular, para todo f ∈ Form0:

o bien Val (M,E)(f) = ∅ (“f es falsa en (M,E)”)
o bien Val (M,E)(f) = P(MVar ) (“f es verdadera en (M,E)”)

Definición (Predicado de satisfacción)

Dada una fórmula f = f(x1, . . . , xn) con variables libres x1, . . . , xn
y dados parámetros a1, . . . , an ∈M , se escribe:

(M,E) |= f(a1, . . . , an) :≡
(∃ρ∈MVar )(ρ(x1) = a1 ∧ · · · ∧ ρ(xn) = an ∧ ρ ∈ Val (M,E)(f))

⇔ (∀ρ∈MVar )(ρ(x1) = a1 ∧ · · · ∧ ρ(xn) = an ⇒ ρ ∈ Val(M,E)(f))
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Teorema de Löwenheim-Skolem (1/3)

Teorema de Löwenheim-Skolem descendente (con AC)

Sea M un conjunto equipado con una relación binaria E ⊆M2.
Para todo P ⊆M , existe Q ⊆M tal que:

(1) Q ⊇ P y |Q| ≤ max(|P |,ℵ0)

(2) Para toda fórmula f = f (⃗x) ∈ Form con variables libres x⃗:

(∀a⃗∈Q)[(Q,E) |= f (⃗a) ⇔ (M,E) |= f (⃗a)]

Observaciones:

El teorema expresa que cada subconjunto P ⊆M se puede extender en
un subconjunto Q ⊆M de mismo cardinal que P (si P infinito) tal que
(Q,E) es una subestructura elemental de (M,E)

Aqúı, AC sólo sirve para construir una función de elección sobre M .
En ZF (sin AC), se necesita agregar la hipótesis que el conjunto M
tiene una función de elección (o equivalentemente que M es bien ordenable)
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Teorema de Löwenheim-Skolem (2/3)

Demo. Sea una función de elección h : P∗(M) → M .

Se define una sucesión (Qk)k∈ω de subconjuntos de M a partir de Q0 := P .
Para todo k ∈ ω, se define Qk+1 como el conjunto de todos los elementos de M de la forma

h({a ∈ M : (M,E) |= f(a, a1, . . . , an)})

donde n ∈ N, f ∈ Formn+1 y a1, . . . , an ∈ Qk son tales que

{a ∈ M : (M,E) |= f(a, a1, . . . , an)} ̸= ∅

Tenemos que Qk ⊆ Qk+1. En efecto, dado a ∈ Qk y escribiendo f(x0, x1) := x0 =̇ x1
(∈ Form2), se observa que {a0 ∈ M : (M,E) |= f(a0, a)} = {a}, y por lo tanto:

a = h({a0 ∈ M : (M,E) |= f(a0, a)}) ∈ Qk+1.

También se observa que

|Qk+1| ≤
∑
n∈N

|Formn+1 ×Q
n
k | ≤ max(|Qk|,ℵ0).

Ahora se escribe Q :=
⋃

k∈ω Qk (unión creciente). Es claro que Q ⊇ P , y por inducción sobre

k ∈ ω, se verifica que |Qk| ≤ max(|P |,ℵ0). Por lo tanto: |Q| ≤ max(|P |,ℵ0). (...)
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Teorema de Löwenheim-Skolem (3/3)

Demo (continuación y fin). Ahora se trata de demostrar que

(∀a⃗∈Q)[(Q,E) |= f(a⃗) ⇔ (M,E) |= f(a⃗)]

para toda fórmula f = f(a⃗) ∈ Form con variables libres x⃗.

Para ello, se razona por inducción sobre la estructura de f . Se supone que la equivalencia ya se
cumple para las subfórmulas de f (HI) y se distinguen los siguientes casos:

Si f es de la forma x1 =̇ x2 o x1 ∈̇ x2, la equivalencia es obvia.

Si f es una negación o una disyunción, la equivalencia se deduce directamente de HI.

Se supone ahora que f (⃗x) = (∃̇ x0)f0(x0, x⃗), y se consideran parámetros a⃗ ∈ Q.

Implicación directa Supongamos que (Q,E) |= f(a⃗), es decir: (Q,E) |= f0(a0, a⃗) para
algún a0 ∈ Q. Por HI tenemos que (M,E) |= f0(a0, a⃗), y luego (M,E) |= f(a⃗) (pues
a0 ∈ Q ⊆ M).

Implicación rećıproca Supongamos que (M,E) |= f(a⃗), es decir: (M,E) |= f0(a0, a⃗)
para algún a0 ∈ M . Como a⃗ ∈ Q =

⋃
k∈ω Qk (unión creciente), existe un ı́ndice k ∈ ω

tal que a⃗ ∈ Qk (i.e. todos los parámetros están en el mismo Qk).

Por lo anterior, es claro que a0 ∈ {a ∈ M : (M,E) |= f0(a, a⃗)} ̸= 0, lo que permite
considerar el elemento a′0 := h({a ∈ M : (M,E) |= f0(a, a⃗)}) ∈ Qk+1.

Por construcción, tenemos que a′0, a⃗ ∈ Q y (M,E) |= f(a′0, a⃗). Por HI se deduce que
(Q,E) |= f0(a

′
0, a⃗), y luego (Q,E) |= f(a⃗) (pues a′0 ∈ Q).
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Modelos y consistencia

Definición (Modelo)

Sea F ⊆ Form0 un conjunto de fórmulas cerradas.

Un modelo de F es un par (M,E) formado por un conjunto M ̸= ∅
y una relación E ⊆M2 que satisfacen todas las fórmulas de F :

(M,E) |= F :≡ M ̸= ∅ ∧ E ⊆M2 ∧ (∀f ∈F ) (M,E) |= f

También se puede definir en ZF (ejercicio) un predicado F ⊢ f
que expresa que una fórmula f ∈ Form0 es derivable (en LK) a
partir de un conjunto de fórmulas F ⊆ Form0

Se escribe Cons(F ) :≡ (∃f ∈Form0)F ̸⊢ f (“F es consistente”)

Proposición (en ZF)

Todo conjunto de fórmulas que tiene un modelo es consistente:

(∀F ⊆Form0)
[
(∃M ∃E (M,E) |= F ) ⇒ Cons(F )

]
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Pruebas de consistencia absoluta

Una prueba de la fórmula Cons(F ) en ZF es una prueba de
consistencia absoluta de la teoŕıa F (⊆ Form0) adentro de ZF.

Notación: F < ZF

Ejemplo: Sea Z ⊆ Form0 el conjunto de (las codificaciones de) los
axiomas de la teoŕıa de Zermelo (= ZF − reemplazo). Tenemos que:

Proposición (Z < ZF): (V2ω,∈) |= Z, y por lo tanto: Cons(Z)

Demo. Se recuerda que V2ω =
⋃
n∈ω

P
n
(Vω), con Vω =

⋃
n∈ω

P
n
(∅), y se observa que:

(V2ω,∈) cumple el axioma de extensionalidad, pues V2ω es un conjunto transitivo.

(V2ω,∈) cumple el axioma de pares, pues (∀a, b∈V2ω) {a, b} ∈ V2ω .

(V2ω,∈) cumple todos los axiomas de comprensión, pues (∀a∈V2ω)(∀b⊆ a) b ∈ V2ω .

(V2ω,∈) cumple el axioma de unión, pues (∀a∈V2ω)
⋃
a ∈ V2ω .

(V2ω,∈) cumple el axioma de potencia, pues (∀a∈V2ω) P(a) ∈ V2ω .

(V2ω,∈) cumple el axioma de infinito, pues ω ∈ Vω+1 ⊆ V2ω .

(V2ω,∈) cumple el axioma de fundación, pues ∈ está bien fundada en V2ω .
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Ĺımites de los modelos conjuntistas

El 2do teorema de incompletitud de Gödel expresa que una teoŕıa T
que es recursiva y aritmética (como PA, Z o ZF) no puede demostrar
su propia consistencia, salvo si T es inconsistente:

T ⊢ Cons(T ) implica T ⊢ ⊥

Por lo tanto, si ZF es consistente, es imposible de hallar (en ZF)
un conjunto M ̸= ∅ equipado con una relación binaria E ⊆M2

tales que (M,E) |= ZF

Por esta razón, vamos a considerar en lo que sigue una noción de
modelo (M,E) más general, en que M puede ser una clase propia

Veremos que dicha noción de modelo es más adecuada para obtener
pruebas de consistencia relativa (entre varios sistemas)

▶ Necesidad de introducir la noción de relativización
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Relativización de una fórmula

Sea M una clase equipada con una relación binaria E ⊆M2

Se asocia a cada fórmula φ (externa) otra fórmula escrita φM,E y
llamada fórmula φ relativizada al conjunto M y a la relación E

Formalmente, la fórmula φM,E está definida por recursión (externa)

sobre la fórmula φ, usando las siguientes ecuaciones:

(x = y)M,E :≡ x = y

(x ∈ y)M,E :≡ E(x, y)

(¬φ)M,E :≡ ¬φM,E

(φ ∨ ψ)M,E :≡ φM,E ∨ ψM,E

(∃xφ(x))M,E :≡ (∃x∈M)φM,E(x)

(y de modo similar para ∧, ⇒ y ∀)

Obs.: Las variables libres de la fórmula φM,E son las de la fórmula φ,
más (cuando existen) los parámetros de las clases M y E

Cuando E es ∈ (pertenencia), se escribe φM en lugar de φM,∈
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Relativización y satisfacción

Cuando M es un conjunto, la operación φ 7→ φM,E está vinculada
con el predicado (M,E) |= f (⃗a) del modo siguiente:

Lema (Relativización y satisfacción)

Sea M un conjunto equipado con una relación binaria E ⊆M2.
Para toda fórmula φ(x1, . . . , xn), tenemos que:

(∀a1, . . . , an ∈M)
(
φM,E(a1, . . . , an) ⇔ (M,E) |= ⌈φ⌉(a1, . . . , an)

)
Demo. Por inducción externa sobre φ.

Obs.: En la equivalencia

φM,E(a1, . . . , an) ⇔ (M,E) |= ⌈φ⌉(a1, . . . , an)
se observa que el lado izquierdo no está definido cuando φ ∈ Form,
mientras el lado derecho no lo está cuando M es una clase propia

En conclusión, sólo tenemos dos opciones:

(1) Evaluar una fórmula interna en un conjunto ⇒ satisfacción
(2) Evaluar una fórmula externa en una clase ⇒ relativización
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La verdad no es definible

La imposibilidad de evaluar una fórmula interna en una clase propia
está vinculada con un teorema famoso de Tarski, que expresa que la
verdad (de un sistema formal) no es definible (en el mismo sistema formal)

En ZF, se llama predicado de verdad a toda fórmula T (x) tal que

T (⌈φ⌉) ⇔ φ (para toda fórmula cerrada φ)

Teorema (Tarski)

No existe ningún predicado de verdad en el lenguaje de ZF

Demo. Supongamos dado un predicado de verdad T (x) en el lenguaje de ZF.

Internalizando la codificación φ 7→ ⌈φ⌉ adentro de ZF, se puede definir en ZF una función
δ : Form1 → Form0 tal que δ(⌈φ(x)⌉) = ⌈φ(⌈φ(x)⌉)⌉ para toda fórmula externa φ(x).

Ahora se considera la fórmula ψ(x) :≡ ¬T (δ(x)), y se observa que

ψ(⌈ψ(x)⌉) ⇔ ¬T (δ(⌈ψ(x)⌉)) ⇔ ¬T (⌈ψ(⌈ψ(x)⌉)⌉) ⇔ ¬ψ(⌈ψ(x)⌉)

¡Contradicción!
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Modelos de clases (1/2)

Sea M una clase equipada con una relación binaria E ⊆M2.
Dada una fórmula φ(x1, . . . , xn) con parámetros a1, . . . , an ∈M ,
se usa la notación:

(M,E) |= φ(a1, . . . , an) :≡ φM,E(a1, . . . , an)

Obs.: Coincide con (M,E) |= ⌈φ⌉(a1, . . . , an) cuando M es un conjunto.

Definición (Modelo de clase)

(1) Un modelo (de clase) es un par (M,E) (intuitivo) formado por una
clase M ̸= ∅ (posiblemente propia) y una relación binaria E ⊆M2

(2) Dada una teoŕıa T sobre el lenguaje de ZF, se llama modelo de T a
todo modelo (M,E) tal que (M,E) |= φ para cada axioma de T .

Notación: (M,E) |= T (= esquema de hipótesis en ZF)

Ejemplos triviales: (V,∈) |= ZF (en ZF)

(V,∈) |= ZFC (en ZFC)
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Modelos de clases (2/2)

Lema (Corrección de las reglas de deducción)

Sea M una clase equipada con una relación binaria E ⊆M2.
Para todo secuente Γ(x⃗) ⊢ φ(x⃗) derivable en NK, el secuente

M ̸= ∅, x⃗ ∈M, ΓM,E(x⃗) ⊢ φM,E(x⃗)

también es derivable en NK

Demo. Por inducción (externa) sobre la derivación del secuente Γ(x⃗) ⊢ φ(x⃗).

Teorema (Corrección)

Sean T una teoŕıa de 1er orden sobre el lenguaje de ZF,
M una clase no vaćıa y E ⊆M2 una relación binaria sobre M .

Si (M,E) |= T , entonces (M,E) |= φ para todo teorema φ de T︸ ︷︷ ︸
esquema de hip. en ZF(C)

︸ ︷︷ ︸
esquema de conclusión en ZF(C)
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Pruebas de consistencia relativa

Un modelo (M,E) de una teoŕıa T (sobre el lenguaje de ZF) definido
adentro de ZF permite transformar cualquier inconsistencia de T
en una inconsistencia de ZF

En efecto, si: T ⊢ ∃x (x ̸= x) (inconsistencia en T )

entonces: (ZF ⊢) (M,E) |= ∃x (x ̸= x) (teorema de corrección)

es decir: (ZF ⊢) (∃x∈M) x ̸= x (inconsistencia en ZF)

Tal razonamiento constituye una prueba de consistencia relativa de
la teoŕıa T con respecto a ZF. Notación: T ≤ ZF

Obs.: En lo anterior, se puede reemplazar ZF por cualquier teoŕıa
de conjuntos en que se puede definir el modelo (M,E)
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Ejemplo: consistencia relativa del axioma de fundación

Sea ZF− := ZF− AF (ZF sin fundación)

En ZF−, se define la jerarqúıa acumulativa (Vα)α∈On de modo
usual, observando que su unión V :=

⋃
α∈On Vα no coincide

necesariamente con la clase universal U := {x : x = x}:

ZF− ̸⊢ V = U

Sin embargo, tenemos que:

Proposición: (V,∈) |= ZF (en ZF−)

Demo. Ejercicio

En conclusión: ZF ≤ ZF− (consistencia relativa)

y como: ZF− ≤ ZF (por inclusión)

se deduce que: ZF ≈ ZF− (equiconsistencia)
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Modelos transitivos

Definición

Se dice que un modelo (M,E) es:

▶ Extensional cuando (∀x, x′ ∈M)(E−1(x) = E−1(x′) ⇒ x = x′)

equivalente a: (M,E) |= “axioma de extensionalidad”

▶ Bien fundado cuando la relación E ⊆M2 está bien fundada
implica (M,E) |= “axioma de fundación”, pero no equivalente

▶ Transitivo cuando M es una clase transitiva y E es ∈ (restringida a M)

Todo modelo transitivo (M,∈) es extensional y bien fundado

Y por el teorema de colapso de Mostowski, tenemos que:

Proposición

Todo modelo extensional y bien fundado (M,E) es isomorfo
a un (único) modelo transitivo (M ′,∈)
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Fórmulas ∆0

Definición (Fórmulas ∆0)

Una fórmula φ de ZF es ∆0 cuando todas sus cuantificaciones son
restringidas, es decir: de la forma (∀x∈ y)ψ(x) o (∃x∈ y)ψ(x).

Formalmente, las fórmulas ∆0 son generadas por la gramática:

φ,ψ ::= x = y | x ∈ y | ¬φ | φ⇒ ψ
| φ ∧ ψ | φ ∨ ψ | ∀x (x ∈ y ⇒ φ) | ∃x (x ∈ y ∧ φ)

Lema

Si (M,∈) es un modelo transitivo, entonces para toda fórmula ∆0

φ(x1, . . . , xn), tenemos que

(∀a1, . . . , an ∈M)
(
φM (a1, . . . , an) ⇔ φ(a1, . . . , an)

)
Demo. Por inducción externa sobre φ.

▶ Intuición: Las fórmulas ∆0 son absolutas (para cualquier M transitivo)
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Ejemplos de fórmulas ∆0 (1/2)

Muchas fórmulas de ZF son ∆0:

Nociones básicas:

x ⊆ y ≡ (∀z ∈x) (z ∈ y)
x = ∅ ≡ (∀z ∈x) (z /∈ x)

y = {x} ≡ x ∈ y ∧ (∀z ∈ y) (z = x)
y = {x1, x2} ≡ x1 ∈ y ∧ x2 ∈ y ∧ (∀z ∈ y) (z = x1 ∨ z = x2)
y = (x1, x2) ≡ (∃z1, z2 ∈ y) (z1 = {x1} ∧ z2 = {x1, x2} ∧ y = {z1, z2})
y = (x1, ) ≡ (∃z1, z2 ∈ y) (∃x2 ∈ z2) (z1 = {x1} ∧ z2 = {x1, x2} ∧ y = {z1, z2})
y = ( , x2) ≡ (∃z1, z2 ∈ y) (∃x1 ∈ z2) (z1 = {x1} ∧ z2 = {x1, x2} ∧ y = {z1, z2})
y = ( , ) ≡ (∃z1, z2 ∈ y) (∃x1, x2 ∈ z2) (z1 = {x1} ∧ z2 = {x1, x2} ∧ y = {z1, z2})

Operaciones sobre los conjuntos

C = A ∪B ≡ A ⊆ C ∧ B ⊆ C ∧ (∀z ∈C) (z ∈ A ∨ z ∈ B)
C = A ∩B ≡ C ⊆ A ∧ C ⊆ B ∧ (∀z ∈A) (z ∈ B ⇒ z ∈ C)
C = A−B ≡ (∀x∈A) (x /∈ B ⇒ x ∈ C) ∧ (∀x∈C) (x ∈ A ∧ x /∈ B)
C ⊆ A×B ≡ (∀z ∈C) (∃x∈A) (∃y ∈B) (z = (x, y))
C = A×B ≡ C ⊆ A×B ∧ (∀x∈A) (∀y ∈B) (∃z ∈C) (z = (x, y))
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Ejemplos de fórmulas ∆0 (2/2)

Funciones:
f función ≡ (∀z ∈ f) z = ( , ) ∧

(∀z1, z2 ∈ f) (∀u1 ∈ z1) (∀u2 ∈ z2) (∀x, y1 ∈u1)(∀y2 ∈u2)
(z1 = (x, y1) ∧ z2 = (x, y2) ⇒ y1 = y2)

y = f(x) ≡ (∃z ∈ f) (z = (x, y))
A = dom(f) ≡ (∀x∈A) (∃z ∈ f) (z = (x, )) ∧ (∀z ∈ f) (∃x∈A) (z = (x, ))
B = img(f) ≡ (∀y∈B) (∃z ∈ f) (z = ( , y)) ∧ (∀z ∈ f) (∃y ∈B) (z = ( , y))
f : A ⇀ B ≡ f ⊆ A× B ∧ (∀x∈A) (∀y, y′ ∈B) (y = f(x) ∧ y′ = f(x) ⇒ y = y′)
f : A → B ≡ (f : A ⇀ B) ∧ (∀x∈A) (∃y ∈B) (y = f(x))
f : A ↪→ B ≡ f : A → B ∧ (∀x, x′ ∈A) (∀y∈B) (y = f(x) ∧ y = f(x′) ⇒ x = x′)
f : A ↠ B ≡ f : A → B ∧ (∀y∈B) (∃x∈A) (y = f(x))
f : A →̃ B ≡ f : A ↪→ B ∧ f : A ↠ B
g = f ↾ X ≡ g ⊆ f ∧ (∀x∈X)(∀z ∈ f) (z = (x, ) ⇒ z ∈ g)

Ordinales:
y = x+ 1 ≡ x ⊆ y ∧ x ∈ y ∧ (∀z ∈ y) (z ∈ x ∨ z = x)
x transitivo ≡ (∀y∈ x) (∀z ∈ y) (z ∈ x)
α ordinal ≡ α transitivo ∧ (∀x, y ∈α) (x ∈ y ∨ x = y ∨ y ∈ x)

α ordinal ĺımite ≡ α ordinal ∧ α ̸= ∅ ∧ (∀x∈α) (∃y ∈α) (x ∈ y)
α ordinal sucesor ≡ α ordinal ∧ (∃β ∈α) (∀x∈α) (x ∈ β ∨ x = β)
α ordinal infinito ≡ α ordinal ĺımite ∨ (∃β ∈α) (β ordinal ĺımite)

α ∈ ω ≡ α ordinal ∧ ¬(α ordinal infinito)
α = ω ≡ α ordinal ĺımite ∧ (∀β ∈α)¬(β ordinal ĺımite)
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Fórmulas Σ1 y Π1

Por otro lado, muchas nociones importantes de teoŕıa de conjuntos no se
pueden expresar mediante fórmulas ∆0, por ejemplo:

Y = P(X), C = BA, α es un cardinal, etc.

X e Y son equipotentes, X es numerable, etc.

(Π1)

(Σ1)

Definición (Fórmulas Σ1 y Π1)

Una fórmula φ de ZF es:

Σ1 si es de la forma φ ≡ ∃x⃗ φ0, donde φ0 es una fórmula ∆0

Π1 si es de la forma φ ≡ ∀x⃗ φ0, donde φ0 es una fórmula ∆0

Lema

Si (M,∈) es un modelo transitivo, entonces:

(∀a⃗∈M)
(
φM (⃗a) ⇒ φ(⃗a)

)
si φ(x⃗) es una fórmula Σ1

(∀a⃗∈M)
(
φM (⃗a) ⇐ φ(⃗a)

)
si φ(x⃗) es una fórmula Π1

Demo. Ejercicio
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Jerarqúıa de Lévy (1/2)

Definición (Jerarqúıa de Lévy)

Una fórmula φ de ZF es:

Σ0 o Π0 si es ∆0 (= fórmula con cuantificaciones acotadas)

Σn+1 si es de la forma φ ≡ ∃x⃗ ψ, donde ψ es Πn

Πn+1 si es de la forma φ ≡ ∀x⃗ ψ, donde ψ es Σn

Más generalmente, se dice que una propiedad es:

Σn si se puede expresar por una fórmula Σn

Πn si se puede expresar por una fórmula Πn

∆n si se puede expresar por una fórmula Σn y por otra fórmula Πn

(Nociones definidas a menos de equivalencia lógica en ZF)

Σ1 Σ2 Σn

↗ ↘ ↗ ↘ ↗ ↘
∆0 = Σ0 = Π0 → ∆1 ∆2 ∆3 · · · ∆n ∆n+1 · · ·

↘ ↗ ↘ ↗ ↘ ↗
Π1 Π2 Πn
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Jerarqúıa de Lévy (2/2)

Proposición (Complejidad de las fórmulas compuestas)

Se determina la complejidad(∗) de una fórmula compuesta a partir de
la de su(s) subfórmula(s) directas como indicado el la siguiente tabla:

φ,ψ ∆n Σn Πn

¬φ ∆n Πn Σn

φ ∨ ψ ∆n Σn Πn

φ ∧ ψ ∆n Σn Πn

(∃x∈ y)φ ∆n Σn Πn

(∀x∈ y)φ ∆n Σn Πn

∃xφ Σn Σn Σn+1

∀xφ Πn Πn+1 Πn
(∗) A menos de equivalencia lógica en ZF

Demo. Ejercicio. (Sugerencia: usar el esquema de colección para las cuantificaciones acotadas)
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Modelos internos

Como la fórmula On(α) es de clase ∆0, tenemos que:

Proposición

Si (M,∈) es un modelo transitivo de ZF, entonces:

(∀α∈M)
(
OnM (α) ⇔ On(α)

)
Es decir: OnM = On ∩M

Sin embargo, pueden existir ordinales afuera de la clase M ,
lo que motiva la siguiente definición:

Definición (Modelo interno)

Un modelo interno de ZF es un modelo transitivo (M,∈) de ZF
que contiene todos los ordinales de V : On ⊆M

En tal modelo, siempre tenemos que: OnM = On
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Motivación

Dada una ∈-estructura (M,E), el teorema de Löwenheim-Skolem
expresa que existe una subestructura elemental (Q,E) ⊆ (M,E)
de cardinal |Q| = κ para cada cardinal κ entre ℵ0 y |M | :

Teorema de Löwenheim-Skolem descendente (con AC)

Sea M un conjunto equipado con una relación binaria E ⊆M2.
Para todo P ⊆M , existe Q ⊆M tal que:

(1) Q ⊇ P y |Q| ≤ max(|P |,ℵ0)
(2) Para toda fórmula f = f (⃗x) ∈ Form con variables libres x⃗:

(∀a⃗∈Q)[(Q,E) |= f (⃗a) ⇔ (M,E) |= f (⃗a)]

Por otro lado, el teorema de Tarski (inexistencia de un pred. de verdad)

implica que no existe ningún conjunto X tal que la ∈-estructura
(X,∈) sea elementalmente equivalente al universo (V,∈)

Sin embargo, siempre se puede hallar un conjunto X equivalente a V
con respecto a finitas fórmulas fijadas ⇒ principio de reflexión



Modelos conjuntistas Modelos de clase Principio de reflexión Conjuntos constructibles Consecuencias

El principio de reflexión

Se dice que un conjunto X refleja una fórmula φ(x⃗) cuando

(∀a⃗∈X)
(
φX (⃗a) ⇔ φ(⃗a)

)
Teorema (Principio de reflexión) (en ZF)

Sean φ1(x⃗), . . . , φn(x⃗) fórmulas. Para todo ordinal α, existe un ordinal
β ≥ α tal que Vβ refleja las fórmulas φ1(x⃗), . . . , φn(x⃗):

(∀a⃗∈Vβ)
(
φ
Vβ

i (⃗a) ⇔ φi(⃗a)
)

(i = 1..n)

Otra formulación [Jech 2002: Set Theory (3rd ed.)] es la siguiente:

Teorema (Principio de reflexión, variante) (en ZF)

Sean φ1(x⃗), . . . , φn(x⃗) fórmulas. Para todo conjunto M0, existe un conjunto
M ⊇M0 que refleja las fórmulas φ1(x⃗), . . . , φn(x⃗):

(∀a⃗∈M)
(
φM

i (⃗a) ⇔ φi(⃗a)
)

(i = 1..n)

Obs.: La primera formulación implica la segunda, ya que para todo
conjunto M0, tenemos que M0 ⊆ Vα para algún α ∈ On
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Demostración del principio de reflexión (1/4)

Recordatorio: X refleja φ(x⃗) :≡ (∀a⃗∈X)
(
φX (⃗a) ⇔ φ(⃗a)

)
Es claro que:

(1) Todo conjunto X refleja una fórmula φ(x⃗) sin cuantificadores

(2) Si X refleja fórmulas φ(x⃗) y ψ(x⃗), entonces X también refleja las
fórmulas ¬φ(x⃗), φ(x⃗) ∨ ψ(x⃗), φ(x⃗) ∧ ψ(x⃗) y φ(x⃗)⇒ ψ(x⃗)

Se dice que un conjunto X refleja fuertemente una fórmula φ(x⃗)
cuando refleja la fórmula φ(x⃗) aśı como todas sus subfórmulas

Lema 1 (en Z, sin reemplazo ni AF)

Sean φ(x) una fórmula y (Xn)n∈ω una sucesión creciente de conjuntos.
Si Xn refleja fuertemente la fórmula φ(x⃗) para todo n ∈ ω, entonces
la unión

⋃
n∈ωXn refleja fuertemente la fórmula φ(x⃗)

Obs.: El lema no se cumple con la noción de reflexión simple. ¿Contraejemplo?
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Demostración del principio de reflexión (2/4)

Demo del Lema 1. Sea X :=
⋃

n∈ω Xn. Se demuestra la implicación

((∀n∈ω) Xn refleja fuertemente φ(x⃗)) ⇒ X refleja fuertemente φ(x⃗)

por inducción externa sobre la fórmula φ(x⃗), distinguiendo los siguientes casos:

φ(x⃗) es sin cuantificadores. Obvio.

φ(x⃗) es de la forma φ(x⃗) ≡ φ1(x⃗) ∨ φ2(x⃗). Por hipótesis, Xn refleja fuertemente φ(x⃗)
para todo n ∈ ω, entonces Xn refleja fuertemente las subfórmulas φ1(x⃗) y φ2(x⃗) para
todo n ∈ ω. Por HI, se deduce que X refleja fuertemente las subfórmulas φ1(x⃗) y φ2(x⃗),
y por lo tanto, X refleja fuertemente la disyunción φ1(x⃗) ∨ φ2(x⃗) ≡ φ(x⃗).

El caso donde φ(x⃗) es una negación/conjunción/implicación se trata de modo análogo.

φ(x⃗) es de la forma φ(x⃗) ≡ ∃x0 φ0(x0, x⃗). Por hipótesis, Xn refleja fuertemente φ(x⃗)
para todo n ∈ ω, entonces Xn refleja fuertemente la subfórmula φ0(x0, x⃗) para todo
n ∈ ω, y por HI, se deduce que X refleja fuertemente la subfórmula φ0(x0, x⃗). Sólo nos
queda demostrar que X refleja la fórmula φ(x⃗) ≡ ∃x0 φ0(x0, x⃗). Fijado(s) parámetro(s)
a⃗ ∈ X, se considera un ı́ndice n ∈ ω tal que a⃗ ∈ Xn, y se observa que:

φ(a⃗) ⇔ ∃a0 φ0(a0, a⃗) (def. de φ(x⃗))

⇔ (∃a0 ∈Xn)φ
Xn
0 (a0, a⃗) (pues Xn refleja φ(x⃗))

⇔ (∃a0 ∈Xn)φ0(a0, a⃗) (pues Xn refleja φ0(x0, x⃗))
⇔ (∃a0 ∈X)φ0(a0, a⃗) (pues Xn ⊆ X)
⇔ (∃a0 ∈X)φX

0 (a0, a⃗) (pues X refleja φ0(x0, x⃗))
≡ φX(a⃗)

El caso donde φ(x⃗) es una cuantificación universal se trata de modo análogo.
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Demostración del principio de reflexión (3/4)

Lema 2 (en ZF)

Sea φ(x⃗) una fórmula. Para todo ordinal α, existe β ≥ α
tal que Vβ refleja fuertemente la fórmula φ(x⃗)

Demo del Lema 2. Por inducción sobre la fórmula φ(x⃗), distinguiendo los siguientes casos:

φ(x⃗) es sin cuantificadores. Cualquier ordinal β ≥ α funciona.

φ(x⃗) es de la forma φ(x⃗) ≡ φ1(x⃗) ∨ φ2(x⃗). Se considera la sucesión creciente de
ordinales (βn)n∈ω definida a partir de β0 := α, y donde para cada n ≥ 1:

βn es el ḿınimo ordinal ≥ βn−1 tal que Vβn refleja fuertemente

{
φ1(x⃗) si n impar

φ2(x⃗) si n par

Se nota β := supn∈ω βn (≥ α). Por el Lema 1, se deduce que:

Vβ =
⋃

n∈ω Vβ2n+ 1 refleja fuertemente la fórmula φ1(x),

Vβ =
⋃

n∈ω Vβ2n+ 2 refleja fuertemente la fórmula φ2(x),

y por lo tanto Vβ refleja fuertemente la disyunción φ1(x⃗) ∨ φ2(x⃗) (≡ φ(x⃗)).

El caso donde φ(x⃗) es una negación/conjunción/implicación se trata de modo análogo.

(casos ∃/∀: véase siguiente diapositiva)
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Demostración del principio de reflexión (4/4)

Demo del Lema 2 (continuación y fin).

φ(x⃗) es de la forma φ(x⃗) ≡ ∃x0 φ0(x0, x⃗). Para todos a⃗, se nota γ(a⃗) al ḿınimo
ordinal tal que: ∃a0 φ0(a0, a⃗) ⇔ (∃a0 ∈Vγ(a⃗))φ0(a0, a⃗).

Luego se considera la sucesión creciente de ordinales (βn)n∈ω definida aśı:

β0 es el ḿınimo ordinal ≥ α tal que Vβ0
refleja fuertemente φ0(x0, x⃗) (por HI)

Para todo n ∈ ω, se nota γn := sup{γ(a⃗) : a⃗ ∈ Vβn}) y se define βn+1 como
el ḿınimo ordinal ≥ max(βn, γn) tal que Vβn+1

refl. fuert. φ0(x0, x⃗) (por HI)

Sea β := supn∈ω βn. Por el Lema 1, Vβ =
⋃

n∈ω Vβn refleja fuertemente φ0(x0, x⃗).

Sólo nos queda probar que Vβ refleja φ(x⃗). Fijado(s) parámetro(s) a⃗ ∈ Vβ , se toma un
ı́ndice n ∈ ω tal que a⃗ ∈ Vβn , y se observa que:

φ(a⃗) ⇔ ∃a0 φ0(a0, a⃗) (def. de φ(x⃗))
⇔ (∃a0 ∈Vγ(a⃗))φ0(a0, a⃗) (por def. de γ(a⃗))
⇔ (∃a0 ∈Vβ)φ0(a0, a⃗) (pues γ(a⃗) ≤ βn+1 ≤ β)

⇔ (∃a0 ∈Vβ)φ
Vβ
0 (a0, a⃗) (pues Vβ refleja φ0(x0, x⃗))

≡ φVβ (a⃗) .

El caso donde φ(x⃗) es una cuantificación universal se trata de modo análogo.

Demo. del teorema. Aplicar el Lema 2 a la fórmula φ(x⃗) :≡ φ1(x⃗) ∨ · · · ∨ φn(x⃗).
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Observaciones (1/2)

Principio de reflexión (recordatorio)

Sean φ1(x⃗), . . . , φn(x⃗) fórmulas. Para todo ordinal α, existe un ordinal β ≥ α
tal que Vβ refleja las fórmulas φ1(x⃗), . . . , φn(x⃗):

(∀a⃗∈Vβ)
(
φ

Vβ

i (⃗a) ⇔ φi(⃗a)
)

(i = 1..n)

Siempre se puede exigir (además) que β sea ĺımite (Ejercicio)

Contrariamente a la prueba del teorema de Löwenheim-Skolem
(que no usa el esquema de reemplazo), la prueba del principio de reflexión
usa fuertemente el esquema de reemplazo en el caso ∃:

para construir el ordinal γn = sup{γ(a⃗) : a⃗ ∈ Vβn} a partir de la
funcional a⃗ 7→ γ(a⃗) (para cada n ∈ ω)

para construir la sucesión (βn)n∈ω a partir de la funcional βn 7→ βn+1

Por otro lado, la prueba del principio de reflexión no usa AC
(contrariamente a la prueba del teorema de Löwenheim-Skolem, que usa AC
para equipar el dominio inicial con una función de elección)
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Observaciones (2/2)

AF es crucial (en el caso ∃) para construir la funcional a⃗ 7→ γ(⃗a)
que asocia a cada a⃗ (∈ V ) el ḿınimo ordinal γ(⃗a) tal que

∃a0 φ0(a0, a⃗) ⇔ (∃a0 ∈Vγ(a⃗))φ0(a0, a⃗)

usando el hecho que V =
⋃
γ∈On Vγ

Sin embargo, se puede demostrar la siguiente generalización del
principo de reflexión sin AF, reemplazando la jerarqúıa acumulativa
por cualquier jerarqúıa (Wα)α∈On similar:

Teorema (Principio de reflexión generalizado) (en ZF−)

Sea (Wα)α∈On una sucesión transfinita de conjuntos, creciente y tal que
Wα =

⋃
β<αWβ para todo α ĺımite. Se escribe W :=

⋃
α∈On Wα.

Sean φ1(x⃗), . . . , φn(x⃗) fórmulas. Para todo α ∈ On, existe β ≥ α tal que:

(∀a⃗∈Wβ)
(
φ

Wβ

i (⃗a) ⇔ φ
W

i (⃗a)
)

(i = 1..n)

Demo. Ejercicio
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Aplicación (1/3)

Se recuerda que: Z := ZF− Reemplazo (teoŕıa de Zermelo)

Ya vimos que ZF ⊢ (V2ω,∈) |= Z, y por lo tanto: ZF ⊢ Cons(Z)

(donde Z ⊆ Form0 internaliza en ZF el conjunto de axiomas de Z)

Teorema

Si ψ es una fórmula cerrada consistente con Z (i.e. tal que: Z+ ψ ̸⊢ ⊥),
entonces existe una fórmula cerrada ψ′ tal que:

ZF+ ψ ⊢ ψ′ pero Z+ ψ ̸⊢ ψ′

En particular, las teoŕıas ZF+ ψ y Z+ ψ nunca son equivalentes

Corolario: ZF no es finitamente axiomatizable

Demo. Si ZF se pudiera axiomatizar con finitos axiomas ψ1, . . . , ψn, también se podŕıa
axiomatizar con el único axioma ψ := ψ1 ∧ · · · ∧ ψn. Por lo tanto, las tres teoŕıas ZF,
ZF + ψ y Z + ψ seŕıan equivalentes, lo que es imposible por el teorema anterior.
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Aplicación (2/3)

En Z, sólo se puede definir el conjunto Vα cuando α es finito
(ya se necesita el reemplazo para definir Vω :=

⋃
n∈ω Vn)

Sin embargo, se puede expresar en Z que “X = Vα”, escribiendo:

X = Vα :≡ ∃f
(
f función ∧ dom(f) = α+ 1 ∧
f(0) = ∅ ∧ f(α) = X ∧
(∀β <α) f(β + 1) = P(f(β)) ∧
(∀β≤α) (β ĺımite ⇒ f(β) =

⋃
γ<β f(γ)

)
(pero sólo se puede mostrar en Z que ∃X (X = Vα) cuando α es finito)

Fijada una fórmula cerrada ψ, se define:

ψ′ :≡ (∃α∈On) ∃X (α ĺımite > ω ∧ X = Vα ∧ ψX)

Se trata ahora de demostrar la:

Proposición

Si Z+ ψ es consistente, entonces: ZF+ ψ ⊢ ψ′ y Z+ ψ ̸⊢ ψ′
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Aplicación (3/3)

Recordatorio: En el principio de reflexión (Lema 2), siempre se puede
exigir que el ordinal β ≥ α sea un ordinal ĺımite (Ejercicio)

Demo de la Proposición.

Razonando en ZF + ψ:

Se observa que (∀α∈On) ∃!X X = Vα (por ZF) y se escribe α al ḿınimo ordinal

ĺımite > ω que refleja ψ, es decir: ψVα ⇔ ψ. Por lo tanto: ψVα (por ψ)

En conclusión: ZF + ψ ⊢ (∃α∈On) ∃X (α ĺımite > ω ∧ X = Vα ∧ ψX)
es decir: ZF + ψ ⊢ ψ′

Razonando en Z + ψ + ψ′:

Por ψ′, existe un ordinal ĺımite α > ω y un conjunto X tal que X = Vα y ψX .
Como X = Vα (con α ĺımite y > ω), tenemos que (X,∈) |= Z, donde Z es el conjunto

(internalizado) de los axiomas de Z. Y como ψX , tenemos que (X,∈) |= ⌈ψ⌉.
Entonces (X,∈) |= Z ∪ {⌈ψ⌉}, y por lo tanto Cons(Z ∪ {⌈ψ⌉}).

En conclusión: Z + ψ + ψ′ ⊢ Cons(Z ∪ {⌈ψ⌉})
es decir: Z + ψ ⊢ ψ′ ⇒ Cons(Z ∪ {⌈ψ⌉})
Pero como Z + ψ es consistente, tenemos que Z + ψ ̸⊢ Cons(Z ∪ {⌈ψ⌉})
(por el 2do teorema de incompletitud), y por lo tanto: Z + ψ ̸⊢ ψ′.
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Definición de los subconjuntos definibles

Definición (Subconjuntos definibles)

Sea X un conjunto. Un subconjunto Y ⊆ X es definible (en X) cuando
existe una fórmula interna f ∈ Formn+1 (para algún n ∈ ω) y parámetros
x1, . . . , xn ∈ X tales que para todo x ∈ X:

x ∈ Y sii (X,∈) |= f(x, x1, . . . , xn)

Se dice que Y es definible a partir de f y (x1, . . . , xn)

Cabe destacar que la noción de subconjunto definible está definida
por la siguiente fórmula (externa) de ZF:

Y subconjunto definible de X :≡
Y ⊆ X ∧ (∃n∈ω)(∃f ∈Formn+1)(∃(x1, . . . , xn)∈Xn)

(∀x∈X) (x ∈ Y ⇔ (X,∈) |= f(x, x1, . . . , xn))

Usando el esquema de comprensión, se define

Def(X) := {Y ∈ P(X) : Y subconjunto definible de X}
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Propiedades de los subconjuntos definibles (1/5)

Por construcción, el conjunto Def(X) es un subconjunto de P(X),
cuya propiedad principal es la siguiente:

Proposición

Para cada fórmula φ(x, x1, . . . , xn) y para todos x1, . . . , xn ∈ X:

{x ∈ X : φX(x, x1, . . . , xn)} ∈ Def(X)

Demo. Tenemos que

{x ∈ X : φX(x, x1, . . . , xn)} = {x ∈ X : (X,∈) |= ⌈φ⌉(x, x1, . . . , xn)} ∈ Def(X)

El conjunto Def(X) contiene más generalmente los subconjuntos
definidos a partir de todas las fórmulas internas, inclusive las que
no son estándar (si tales fórmulas internas existen)

Por otro lado, un conjunto de la forma {x ∈ X : φ(x, x1, . . . , xn)}
(i.e. sin relativización a X) no es definible en general
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Propiedades de los subconjuntos definibles (2/5)

Proposición (Subálgebra booleana)

El conjunto Def(X) es una subálgebra booleana de P(X):

(1) ∅, X ∈ Def(X)

(2) Si Y, Y ′ ∈ Def(X), entonces Y c, (Y ∩ Y ′), (Y ∪ Y ′) ∈ Def(X)

Demo.

X es definible a partir de la fórmula x0 =̇ x0 (sin parámetros).

∅ es definible a partir de la fórmula ¬̇(x0 =̇ x0) (sin parámetros).

Si Y ⊆ X es definible a partir de una fórmula f con n parámetros (x1, . . . , xn) ∈ Xn,
entonces su complemento Y c ⊆ X es definible a partir de la fórmula ¬̇ f con los mismos
n parámetros (x1, . . . , xn) ∈ Xn.

Si Y ⊆ X es definible a partir de una fórmula f con n parámetros (x1, . . . , xn) ∈ Xn,
e Y ′ ⊆ X definible a partir de otra fórmula f ′ con m parámetros (y1, . . . , ym) ∈ Xm,
entonces la unión Y ∪ Y ′ es definible a partir de la fórmula f ∨̇ f ′′ con los n+m
parámetros (x1, . . . , xn, y1, . . . , ym) ∈ Xn+m, donde f ′′ es la fórmula obtenida
reemplazando en f ′ cada ocurrencia de la variable xi (i ∈ [1..m]) por la variable xn+i.



Modelos conjuntistas Modelos de clase Principio de reflexión Conjuntos constructibles Consecuencias

Propiedades de los subconjuntos definibles (3/5)

Proposición

Def(X) contiene todos los subconjuntos finitos y cofinitos de X:

Pfin(X) ∪Pcofin(X) ⊆ Def(X)

Demo. Como Def(X) es una subálgebra booleana de P(X), basta con observar que
{x} ∈ Def(X) para todo x ∈ X, siendo el subconjunto {x} ⊆ X definible a partir de
la fórmula x0 =̇ x1 con el único parámetro x ∈ X (asociado a x1).

Corolario

Si X es finito, entonces Def(X) = P(X)

Sin embargo, cuando X es infinito, el conjunto Def(X) puede
contener conjuntos infinitos-coinfinitos, por ejemplo:

{{z1, z2} : z1, z2 ∈ Vω} = {x ∈ Vω : (X,∈) |= f(x)} ∈ Def(Vω)

con f = ∃̇ x1 ∃̇ x2 ∀̇ x3 (x3 ∈̇ x0 ⇔̇ x3 =̇ x1 ∨̇ x3 =̇ x2)
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Propiedades de los subconjuntos definibles (4/5)

Proposición (con AC)

Si X es infinito, entonces: |Def(X)| = |X|,

y por lo tanto: Def(X) ⊊ P(X)

(mismo cardinal)

(inclusión estricta)

Demo. El conjunto Def(X) es la imagen de la función

defX :
∑
n∈ω

(Formn+1 ×X
n
) → P(X)

(n, (f, (x1, . . . , xn))) 7→ {x ∈ X : X |= f(x, x1, . . . , xn)}

Por lo tanto, tenemos que |Def(X)| = |img(defX)| ≤ |
∑

n∈ω(Formn+1 ×Xn)| = |X|
(pues X infinito). La desigualdad |X| ≤ |Def(X)| sigue de que {x} ∈ Def(X) para todo
x ∈ X. Además |Def(X)| = |X| < |P(X)| (por Cantor), y luego Def(X) ⊊ P(X).
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Propiedades de los subconjuntos definibles (5/5)

Proposición (sin AC)

Si X es bien ordenable, entonces Def(X) también lo es.

Además existe (en ZF) una funcional ≤ 7→ ≤∗ que asocia a
cada buen orden ≤ sobre X otro buen orden ≤∗ sobre Def(X)

Demo. Se fija un buen orden ≤Form sobre el conjunto (numerable) Form.

Dado un buen orden ≤ sobre X, se equipa el conjunto DX :=
∑

n∈ω(Formn+1 ×Xn)
con el buen orden ≤† definido por:

(n, (f, x⃗)) ≤† (m, (g, y⃗)) :≡ n < m ∨
n = m ∧ f <Form g ∨
n = m ∧ f = g ∧ x⃗ ≤lexn y⃗

donde ≤lexn es el (buen) orden lexicográfico sobre Xn inducido por el (buen) orden ≤ sobre X.

Luego se transporta el buen orden ≤† (sobre DX ) en el conjunto Def(X) a través de la
sobreyección defX : DX ↠ Def(X), escribiendo:

Y ≤∗ Z :≡ min
(S,≤†)

(def−1
X (Y )) ≤† min

(S,≤†)
(def−1

X (Z))

para todos Y, Z ∈ Def(X).
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No monotonicidad de X 7→ Def(X) (1/2)

La correspondencia X 7→ Def(X) no es monótona en general:

X ⊆ Y ̸⇒ Def(X) ⊆ Def(Y )

Contraejemplo: Tomar Y conjunto infinito y X ⊆ Y no definible en Y .
Tenemos que X ∈ Def(X), X /∈ Def(Y ), luego: Def(X) ̸⊆ Def(Y )

Sin embargo:

Proposición

Si X ⊆ Y y X ∈ Y , entonces Def(X) ⊆ Def(Y )

Demostración basada en la internalización (en el conjunto Form)

de la noción (externa) de relativización: φ 7→ φZ

Formalmente, se define la relativización (interna) (f, z) 7→ f z por:

(x =̇ y)z := x =̇ y (x ∈̇ y)z := x ∈̇ y

(¬̇ f)z := ¬̇(f z) (f1 ∨̇ f2)z := f z1 ∨̇ f z2
((∃̇ x) f)z := (∃̇ x)(x ∈̇ z ∧̇ f z) (suponiendo que x ̸= z)
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No monotonicidad de X 7→ Def(X) (2/2)

Lema

Sean X,Y conjuntos tales que X ⊆ Y y X ∈ Y .
Para cada fórmula interna f = f(x1, . . . xn), para cada variable interna
z ̸= x1, . . . , xn y para todos (x1, . . . , xn) ∈ Xn, tenemos que:

(X,∈) |= f(x1, . . . , xn) ⇔ (Y,∈) |= (f z)(x1, . . . , xn, X)

(asociando la variable z al parámetro X en el lado derecho)

Demo. Por inducción (interna) sobre f .

Demo. de la Proposición. Sean X,Y tales que X ⊆ Y y X ∈ Y . Sea Z ∈ Def(X) un
subconjunto de X definido por una fórmula f con parámetros (x1, . . . , xn) ∈ X.
Para todo x ∈ Y , tenemos que:

x ∈ Z ⇔ x ∈ X ∧X |= f(x, x1, . . . , xn)
⇔ x ∈ X ∧ Y |= (fz)(x, x1, . . . , xn, X) (por el Lema)
⇔ Y |= f ′(x, x1, . . . , xn, X)

tomando z := xn+1 y f ′ := x0 ∈̇ z ∧̇ fz. Por lo tanto: Z ∈ Def(Y ).
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Construcción del universo constructible (1/2)

De modo análogo a la jerarqúıa acumulativa (Vα)α∈On , se define la
jerarqúıa constructible (Lα)α∈On por:

Lα :=
⋃
β<α

Def(Lβ) (α ∈ On)

Proposición (en ZF)

La sucesión transfinita (Lα)α∈On es estrictamente creciente (para ⊆),
y para todo α ∈ On:

(1) Lα ⊆ Vα
(2) Lα es un conjunto transitivo

(3) L0 = ∅, Lα+1 = Def(Lα) y Lα =
⋃
β<α

Lβ (si α ĺımite)

Demo. Ejercicio. Los ı́tems (2) y (3) se basan en el:

Lema: Si X es transitivo, entonces Def(X) es transitivo

Demo. Ejercicio.
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Construcción del universo constructible (2/2)

Definición (Universo constructible)

El universo constructible L es la unión transfinita de (Lα)α∈On :

x ∈ L sii (∃α∈On) x ∈ Lα
Sus elementos son los conjuntos constructibles

Proposición (Constructibilidad de los ordinales) (en ZF)

On ⊆ L ∧ (∀α, β ∈On) (β ∈ Lα ⇔ β < α) (es decir: Lα ∩On = α)

En particular, L es una clase propia

Demo. 1. Demostremos que (∀α∈On) α /∈ Lα. Por el absurdo, se considera el ḿınimo
α ∈ On tal que α ∈ Lα. Como Lα =

⋃
β<α Def(Lβ), existe β < α tal que α ∈ Def(Lβ), y

por lo tanto β ∈ α ⊆ Lβ : esto contradice la minimalidad de α. Entonces (∀α∈On) α /∈ Lα.

2. Por monotońıa se deduce que (∀β≥α) β /∈ Lα, y por lo tanto: Lα ∩ On ⊆ α.

3. Demostremos que α ∈ Lα+1 por inducción sobre α ∈ On. Supongamos que β ∈ Lβ+1

para todo β < α (HI). Entonces α ⊆ Lα, luego Lα ∩ On = α, y por lo tanto:

α = {x ∈ Lα : On(x)} = {x ∈ Lα : OnLα (x)} ∈ Def(Lα) = Lα+1

(pues la fórmula On(x) es ∆0).
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Axioma de constructibilidad

El axioma de constructibilidad (notación: V=L)

∀x (∃α∈On) x ∈ Lα
expresa (en ZF) que todo conjunto es constructible

En las siguientes diapositivas, vamos a demostrar el

Teorema

La clase L ⊆ V (equipada con ∈) es un modelo interno de ZF
que satisface el axioma de constructibilidad:

(ZF ⊢) (L,∈) |= ZF+ V=L

Es decir: (1) ZF ⊢ φL para cada axioma φ de ZF

(2) ZF ⊢ (V=L)L

y por lo tanto: ZF ⊢ φL para cada teorema de ZF+ V=L

Implica que: ZF+ V=L ≈ ZF
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(L,∈) es un modelo interno de ZF (1/3)

Empezamos por:

Proposición: (L,∈) |= ZF (en ZF)

Demo.

Axioma de extensionalidad Queremos demostrar que:

(∀a, b∈L)((∀x∈L)(x ∈ a ⇔ x ∈ b) ⇒ a = b)

Obvio, pues la clase L es transitiva.

Axioma de pares Queremos demostrar que:

(∀a, b∈L)(∃c∈L)(∀x∈L)(x ∈ c ⇔ x = a ∨ x = b).

Eso equivale a demostrar que para todos a, b ∈ L, el par c := {a, b} es constructible.
Para ello, se fija un ordinal α ∈ On tal que a, b ∈ Lα, y se observa que

c = {a, b} =
{
x ∈ Lα : (x = a ∨ x = b)Lα

}
∈ Def(Lα) ⊆ L.

Axioma de unión Queremos demostrar que:

(∀a∈L)(∃b∈L)(∀x∈L)(x ∈ b ⇔ (∃y∈L)(y ∈ a ∧ x ∈ y)).

Eso equivale a demostrar que para todo a ∈ L, el conjunto b :=
⋃
a es constructible.

Para ello, se fija un ordinal α ∈ On tal que a ∈ Lα, y se observa que:

b =
⋃
a =

{
x ∈ Lα :

(
∃y (y ∈ a ∧ x ∈ y)

)Lα
}

∈ Def(Lα) ⊆ L. (...)
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(L,∈) es un modelo interno de ZF (2/3)

Demo (continuación).

Axiomas de comprensión Para cada fórmula φ(x, z⃗), queremos demostrar que:

(∀z⃗ ∈L)(∀a∈L)(∃b∈L)(∀x∈L)(x ∈ b ⇔ x ∈ a ∧ φL(x, z⃗)).

Eso equivale a demostrar que para todos z⃗, a ∈ L, el conjunto b :=
{
x ∈ a : φL(x, z⃗)

}
es constructible. Para ello, se fija un ordinal α ∈ On tal que z⃗, a ∈ Lα. Por el principio
de reflexión (generalizado a la jerarqúıa (Lα)α∈On ), existe β ≥ α tal que

(∀x, z⃗ ∈Lβ)
(
φLβ (x, z⃗) ⇔ φL(x, z⃗)

)
.

Luego se observa que:

b =
{
x ∈ a : φL(x, z⃗)

}
=

{
x ∈ Lβ : (x ∈ a ∧ φ(x, z⃗))Lβ

}
∈ Def(Lβ) ⊆ L.

Axioma del conjunto potencia Queremos demostrar que

(∀a∈L)(∃b∈L)(∀x∈L)(x ∈ b ⇔ x ⊆ a)

(observando que (x ⊆ a)L ⇔ x ⊆ a para todos x, a ∈ L). Eso equivale a demostrar
que para todo a ∈ L, el conjunto b := P(a) ∩ L es constructible. Para ello, se fija un
ordinal α ∈ On tal que P(a) ∩ L ⊆ Lα. Luego se observa que:

b = P(a) ∩ L =
{
x ∈ Lα : (x ⊆ a)L

}
∈ Def(Lα) ⊆ L.

Axioma de infinitud Queremos mostrar que (∃x∈L)(x ordinal ĺımite)L. Basta con
observar que ω ∈ L, y que la fórmula “x ordinal ĺımite” es absoluta en L (pues ∆0). (...)
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(L,∈) es un modelo interno de ZF (3/3)

Demo (continuación y fin).

Axiomas de reemplazo Para cada fórmula ψ(x, y, z⃗), queremos demostrar que:

(∀z⃗, a∈L)
(
(∀x∈L)(x ∈ a ⇒ (∃!y∈L)ψL(x, y, z⃗)) ⇒

(∃b∈L)(∀x∈L)(x ∈ a ⇒ (∃y∈L)(y ∈ b ∧ ψL(x, y, z⃗)))
)

es decir: (∀z⃗, a∈L)
(
(∀x∈ a)(∃!y ∈L)ψL(x, y, z⃗) ⇒
(∃b∈L)(∀x∈ a)(∃y∈ b)ψL(x, y, z⃗)

)
.

Aplicando el esquema de reemplazo al conjunto a con la fórmula y ∈ L ∧ ψL(x, y, z⃗),

se obtiene un conjunto b0 ⊆ L tal que (∀x∈ a)(∃y∈ b0)ψL(x, y, z⃗). Se fija ahora un
ordinal α ∈ On tal que z⃗, a ∈ Lα y b0 ⊆ Lα. Por el principio de reflexión (generalizado
a la jerarqúıa (Lα)α∈On ), existe β ≥ α tal que:

(∀x, y, z⃗ ∈Lβ)
(
ψLβ (x, y, z⃗) ⇔ ψL(x, y, z⃗)

)
.

Luego se define b :=
{
y ∈ Lβ : (∃x∈ a)ψL(x, y, z⃗)

}
, y se concluye observando que

b =
{
y ∈ Lβ :

(
(∃x∈ a)ψ(x, y, z⃗)

)Lβ
}

∈ Def(Lβ) ⊆ L

mientras que (∀x∈ a)(∃y∈ b)ψL(x, y, z⃗).

Axioma de fundación Queremos demostrar (en ZF) que

(∀a∈L)((∃x∈L)(x ∈ a) ⇒ (∃x∈L)(x ∈ a ∧ (∀y∈L)(y ∈ a ⇒ y /∈ x))).

Obvio, pues la clase L es transitiva y L ⊆ V .
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(L,∈) satisface V=L (1/8)

Sólo nos queda demostrar que:

Proposición: (L,∈) |= V=L (en ZF)

La demostración consiste esencialmente en observar que todas las
fórmulas involucradas en la definición de la relación funcional
“Y = Lα” (inclusive la propia relación “Y = Lα”) son de clase Σ1

†

Para ello, se usará frecuentemente el siguiente lema:

Lema (Composición de relaciones/funcionales de clase Σ1)

Sean ψ(x⃗, y, z⃗) una fórmula Σ1 e y = F (x⃗) una relación funcional Σ1

(definida a partir de una fórmula φF (x⃗, y) : Σ1). Entonces la relación

ψ(x⃗, F (x⃗), z⃗) :≡ ∃y (φF (x⃗, y) ∧ ψ(x⃗, y, z⃗))
es de clase Σ1

Demo. Obvio

†Se considera aqúı la noción de fórmula Σ1 a menos de equivalencia lógica en ZF



Modelos conjuntistas Modelos de clase Principio de reflexión Conjuntos constructibles Consecuencias

(L,∈) satisface V=L (2/8)

Más generalmente, si y = F1(x⃗), ..., y = Fk(x⃗) y z = G(y⃗)
son relaciones funcionales de clase Σ1 (con y⃗ ≡ y1, . . . , yk),
entonces la relación funcional

z = G(F1(x⃗), . . . , Fk(x⃗))
es de clase Σ1

Por ejemplo, las relaciones funcionales y = 0, y = 1, y = 2,
y = 3, y = 4, y = ω, y = {x}, y = x1 × x2 e y = x1 ∪ x2
son ∆0 y luego Σ1. Entonces la relación compuesta

Y = Φ(X) :≡ Y = {0} × (ω × ω) ∪ {1} × (ω × ω) ∪
{2} ×X ∪ {3} × (X ×X) ∪ {4} × (ω ×X)

es de clase Σ1, y por lo tanto:

Lema: La fórmula Y = Form es de clase Σ1

Demo. Form es el único punto fijo de Φ (en ZF), luego: Y = Form ⇔ Y = Φ(Y ).
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(L,∈) satisface V=L (3/8)

Recordatorio: A cada fórmula interna f ∈ Form se asocia su
conjunto de variables libres FV (f) ⊆ Var (donde Var = ω)

Lema: La relación funcional Y = FV (f) es de clase Σ1

Demo. La función h : Form → Pfin(ω) que asocia a cada fórmula interna f ∈ Form
el conjunto h(f) = FV (f) de sus variables libres está definida por la fórmula Σ1:

φ(h) :≡ h función ∧ dom(h) = Form ∧
(∀v1, v2 ∈ω)h(v1 =̇ v2) = {v1, v2} ∧
(∀v1, v2 ∈ω)h(v1 ∈̇ v2) = {v1, v2} ∧
(∀f ∈Form)h(¬̇ f) = h(f) ∧
(∀f1, f2 ∈Form)h(f1 ∨̇ f2) = h(f1) ∪ h(f2) ∧
(∀v ∈ω) (∀f ∈Form)h((∃̇ v) f) = h(f) − {v}

(pues todas las fórmulas involucradas en la definición anterior son ∆0 o Σ1).

Se concluye, observando que: Y = FV (f) ⇔ ∃h [φ(h) ∧ Y = h(f)].
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(L,∈) satisface V=L (4/8)

Queremos demostrar ahora que el predicado (X,∈) |= f [ρ]
(“la fórmula f con parám. en ρ está satisfecha en (X,∈)”) es de clase Σ1

Dificultad: La relación Y = XVar (= Xω) no es de clase Σ1

▶ Reemplazar XVar por XFV (f) (conjunto de las valuaciones finitas)

Lema: La relación funcional Y = XFV (f) es de clase Σ1

Demo. Dados un conjunto finito V ⊆ Var y una variable v ∈ Var − V , se observa que

XV ∪{v} = distr(XV , v,X) :=
{
ρ ∪ {(v, x)} : ρ ∈ XV ∧ x ∈ X

}
,

donde la relación funcional Z = distr(Y, v,X) está definida por la fórmula Σ1

Z = distr(Y, v,X) :≡ (∀ρ∈Y )(∀x∈X) ρ ∪ {(v, x)} ∈ Z ∧
(∀ρ′ ∈Z)(∃ρ∈Y )(∃x∈X) ρ′ = ρ ∪ {(v, x)} .

Luego, se observa que:

Y = XFV (f) ⇔ ∃n ∃g ∃h [n ∈ ω ∧ g : n →̃ FV (f) ∧ h función ∧
dom(h) = n+ 1 ∧ h(0) = {∅} ∧ h(n) = Y ∧
(∀i <n)h(i+ 1) = distr(h(i), g(i), X)] .
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(L,∈) satisface V=L (5/8)

De modo análogo, la relación funcional Y = ValX(f) (⊆ XVar )
(“Y es el valor de verdad de f en X”) no es Σ1

▶ Reemplazar ValX(f) por el valor de verdad reducido

Val ′X(f) := {ρ ↾ FV (f) : ρ ∈ ValX(f)} (⊆ XFV (f))

Lema: La relación funcional Y = Val ′X(f) es de clase Σ1

Demo. Dado un conjunto X, la función h que asocia a cada fórmula f ∈ Form su valor de
verdad reducido h(f) = Val′X(f) está definido por la fórmula φ(X,h) : Σ1 definida por:

φ(X,h) ≡ h función ∧ dom(h) = Form ∧
(∀v1, v2 ∈ω)(∀ρ∈XFV (v1=̇v2)) [ρ ∈ h(v1 =̇ v2) ⇔ ρ(v1) = ρ(v2)] ∧
(∀v1, v2 ∈ω) (∀ρ∈XFV (v1∈̇v2)) [ρ ∈ h(v1 ∈̇ v2) ⇔ ρ(v1) ∈ ρ(v2)] ∧
(∀f ∈Form) (∀ρ∈XFV (¬̇ f))[ρ ∈ h(¬̇ f) ⇔ ρ ∈ h(f)] ∧
(∀f1, f2 ∈Form) (∀ρ∈XFV (f1∨̇f2))

[ρ ∈ h(f1 ∨̇ f2) ⇔ (ρ ↾ FV (f1)) ∈ h(f1) ∨ (ρ ↾ FV (f2)) ∈ h(f2)] ∧
(∀v ∈ω) (∀f ∈Form) (∀ρ∈XFV ((∃̇ v)f))

[ρ ∈ h((∃̇ v)f) ⇔ (∃x∈X) (ρ ∪ {(v, x)}) ∈ h(f)]

Luego, se observa que: Y = Val′X(f) ⇔ ∃h [φ(X,h) ∧ h(f) = Y ].
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(L,∈) satisface V=L (6/8)

Lema: La relación funcional Y = Def(X) es de clase Σ1

Demo. Escribiendo

Z = defX(f, ρ) :≡ Z ⊆ X ∧ (∀x∈X) [x ∈ Z ⇔ (ρ ∪ {(x0, x)}) ∈ Val′X(f)],

(“Z ⊆ X está definido por la fórmula f con parámetros ρ”), se observa que:

Y = Def(X) ≡ (∀f ∈Form) (∀ρ∈XFV ((∃̇ x0)f)) defX(f, ρ) ∈ Y ∧
(∀Z ∈Y ) (∃f ∈Form) (∃ρ∈XFV ((∃̇ x0)f))Z = defX(f, ρ) .

Lema: La relación funcional Y = Lα es de clase Σ1

Demo. Para cada ordinal α, la función h de dominio α que asocia a cada ordinal β < α el
conjunto h(β) = Lβ está definida por la Σ1-fórmula φ(α, h) dada por:

φ(α, h) ≡ h función ∧ dom(h) = α ∧
(∀β <α) (∀γ <β)Def(h(γ)) ⊆ h(β) ∧
(∀β <α) (∀x∈h(β)) (∃γ <β) x ∈ Def(h(γ)) .

Luego, se observa que: Y = Lα ⇔ On(α) ∧ ∃h [φ(α+ 1, h) ∧ Y = h(α)].
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(L,∈) satisface V=L (7/8)

Proposición (La operación α 7→ Lα es absoluta)

La operación α 7→ Lα es absoluta, en el sentido en que para todo
modelo interno M de ZF, tenemos que:

(∀α∈On) ∀Y
(
Y = Lα ⇔ Y ∈M ∧ (Y = Lα)

M
)
.

Es decir: Lα ∈M y Lα = LM
α (para todo α ∈ On)

Demo. En ZF, la relación Y = Lα es funcional con respecto a α ∈ On, es decir:

ZF ⊢ (∀α∈On) ∃!Y (Y = Lα).

Entonces para cualquier modelo interno M de ZF, tenemos que:

(∀α∈OnM ) (∃!Y ∈M) (Y = Lα)M .

Luego, para cada ordinal α ∈ On (= OnM ), existe un único conjunto Y (∈ V ) tal que Y = Lα

aśı como un único conjunto Y ′ ∈ M tal que (Y ′ = Lα)M . Pero como la fórmula “Y = Lα” es
de clase Σ1, también tenemos que Y ′ = Lα (en V ), y por lo tanto Y = Y ′ por unicidad.
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(L,∈) satisface V=L (8/8)

Ahora podemos demostrar la:

Proposición (recordatorio): (L,∈) |= V=L

Demo. La fórmula (V = L)L se cumple en ZF, pues:

(V=L)L ≡
(
∀x (∃α∈On) ∃Y (Y = Lα ∧ x ∈ Y )

)L
⇔ (∀x∈L)(∃α∈OnL)(∃Y ∈L) ((Y = Lα)L ∧ x ∈ Y )

⇔ (∀x∈L)(∃α∈On) ∃Y (Y = Lα ∧ x ∈ Y )

⇔ (∀x∈L) x ∈ L (tautoloǵıa).

Esto acaba la prueba de que L es un modelo interno de ZF que
cumple el axioma de constructibilidad:

(ZF ⊢) (L,∈) |= ZF+ V=L

Corolario: ZF+ V=L ≈ ZF (equiconsistencia)
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Minimalidad de L

Teorema (Minimalidad de L)

La clase L es el ḿınimo modelo interno de ZF, pues

(ZF ⊢) L ⊆M ∧ L = LM

para todo modelo interno M de ZF

Demo. Ya vimos que la relación funcional Y = Lα es absoluta en todo modelo interno M
de ZF, en el sentido en que Lα ∈ M y Lα = LM

α para todo α ∈ On, y por lo tanto:
L =

⋃
α∈On Lα ⊆ M . Además, para todo x, tenemos que:

x ∈ L ⇔ (∃α∈On) x ∈ Lα ⇔ (∃α∈OnM ) x ∈ LM
α

⇔
(
(∃α∈On) x ∈ Lα

)M ⇔ (x ∈ L)M .

Ejercicio: Demostrar que si M es un modelo transitivo de ZF tal que
On ̸⊆M , entonces M es un conjunto, y

M ⊆ Vα, OnM = On ∩M = α, LM = L ∩M = Lα,

donde α = min(On −M)

▶ Modelo estándar de ZF (= conjunto transitivo M |= ZF)
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Punto de vista de los modelos de Tarski (1/2)

Recordatorio: Un modelo de Tarski de ZF es un grafo‡ (M ,∈M )
que cumple todos los axiomas (y luego todos los teoremas) de ZF

Cuando la relación ∈M ⊆M 2 está bien fundada (en la metateoŕıa),
existe (por el teorema de colapso) un conjunto transitivo M tal que:

(M ,∈M ) ∼= (M,∈) (modelo estándar)

Sin embargo, el teorema de completitud no implica la existencia de
modelos bien fundados o estándar¶ (si ZF es consistente)

Dado un modelo M |= ZF (bien fundado o no), se escriben:

OnM := {a ∈M : (M ,∈M ) |= On(a)}
LM := {a ∈M : (M ,∈M ) |= L(a)} (etc.)

‡Donde M es un conjunto en el sentido de la metateoŕıa
¶Pero la existencia de cardinales grandes (en la metateoŕıa) implica la existencia de

modelos estándar de la forma M = Vκ (con κ grande)
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Punto de vista de los modelos de Tarski (2/2)

Sea M = (M ,∈M ) un modelo de Tarski de ZF. Un submodelo
de M es un subconjunto§ N ⊆M tal que (N ,∈M

↾N 2) |= ZF

� Un submodelo N ⊆M no tiene que ser definible en M
(por una fórmula de ZF con parámetros en M )

Un submodelo N ⊆M es transitivo cuando para todos a, a′ ∈M :
a ∈ N y a′ ∈M a implican a′ ∈ N

Teorema (Minimalidad de LM en M )

En cada modelo de Tarski M |= ZF, el subconjunto LM ⊆M es
el ḿınimo submodelo transitivo de M que contiene OnM :

(1) LM |= ZF (+ V=L) (con OnM ⊆ LM )

(2) Para todo submodelo transitivo N ⊆M tal que OnM ⊆ N ,
tenemos que: LM ⊆ N y LM = LN

Demo. Ejercicio

§En el sentido de la metateoŕıa
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V=L implica AC

Proposición (en ZF)

Todos los conjuntos Lα (α ∈ On) son bien ordenables,
aśı como la clase L =

⋃
α∈On Lα

Demo. Para todo x ∈ L, se nota ℓ(x) al ḿınimo ordinal tal que x ∈ Lℓ(x).

Ya construimos una funcional (≤) 7→ (≤∗) que asocia a cada buen orden ≤ sobre un
conjunto X un buen orden ≤∗ sobre el conjunto Def(X).

Por recursión sobre α se construye un buen orden ≤α sobre Lα del siguiente modo:

El buen orden ≤0 sobre L0 = ∅ es el orden vaćıo

Para todo ordinal α, el buen orden ≤α+1 sobre Lα+1 = Def(Lα) es el orden ≤∗
α

Para todo ordinal ĺımite α, el buen orden ≤α sobre Lα =
⋃

β<α Lβ está definido por:

x ≤α y :≡ ℓ(x) < ℓ(y) ∨ (ℓ(x) = ℓ(y) ∧ x ≤ℓ(x) y) (para todos x, y ∈ Lα)

Luego, se define el buen orden ≤L sobre la clase L =
⋃

α∈On Lα, escribiendo:

x ≤L y :≡ ℓ(x) < ℓ(y) ∨ (ℓ(x) = ℓ(y) ∧ x ≤ℓ(x) y) (para todos x, y ∈ L)

Corolario: ZF ⊢ V=L ⇒ AC
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Hipótesis generalizada del continuo (HGC)

Recordatorio: La jerarqúıa (ℵα)α∈On de los cardinales infinitos
está definida (en ZF) por:

ℵ0 := ω ℵα+1 := ℵ+α ℵλ := sup
α<λ
ℵα (λ ĺımite)

También se define (en ZFC) la jerarqúıa (ℶα)α∈On por:

ℶ0 := ω ℶα+1 := 2ℶα ℶλ := sup
α<λ

ℶα (λ ĺımite)

(Observar que |P(ω)| = |R| = ℶ1)

Con estas notaciones (en ZFC), se notan:

HC: 2ℵ0 = ℵ1 (hipótesis del continuo)

⇔ ℵ1 = ℶ1

HGC: (∀α∈On) 2ℵα = ℵα+1 (hip. gen. del continuo)

⇔ (∀α∈On) ℵα = ℶα
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Cardinal de las operaciones de clase Σ1 (1/2)

Proposición (Cardinal de las operaciones Σ1) (en ZFC)

Sea y = F (x) una funcional de clase Σ1, definida a partir de una
fórmula φ(x, y) de clase Σ1 (sin parámetros). Entonces:

|F (x)| ≤ max(|Cl(x)|, ℵ0) (para todo x ∈ dom(F ))

donde Cl(x) es la clausura transitiva de x

Demo. Sin pérdida de generalidad, se puede suponer que la fórmula φ(x, y) (“y = F (x)”)
es estrictamente Σ1 (es decir: φ(x, y) ≡ ∃z⃗ ψ(z⃗, x, y), donde ψ(z⃗, x, y) es ∆0).

En lo que sigue, se fija x ∈ dom(F ) aśı como un ordinal α tal que x ∈ Vα.

1. Reflexión. Por reflexión, existe β ≥ α tal que (∃y∈Vβ)φ
Vβ (x, y) ⇔ ∃y φ(x, y),

y como ∃y φ(x, y) (pues x ∈ dom(F )), se deduce que (∃y ∈Vβ)φ
Vβ (x, y).

2. Löwenheim-Skolem. Sea P := Cl({x}) = {x} ∪ Cl(x) (notar que |P | = |Cl(x)| + 1).
Por el teorema de Löwenheim-Skolem, existe Q ⊆ Vβ tal que P ⊆ Q, |Q| ≤ max(|P |,ℵ0)
= max(|Cl(x)|,ℵ0), y tal que (Q,∈) es elementalmente equivalente a (Vβ ,∈).

Y como (∃y∈Vβ)φ
Vβ (x, y), se deduce que (∃y∈Q)φQ(x, y). (...)
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Cardinal de las operaciones de clase Σ1 (2/2)

Demo (continuación y fin). Tenemos que (∃y∈Q)φQ(x, y).

3. Colapso de Mostowski. Como el conjunto Vβ es transitivo, el modelo (Vβ ,∈) cumple el
axioma de extensionalidad, aśı como el submodelo elemental (Q,∈). Entonces la relación ∈
restringida a Q es extensional, es decir: (∀z, z′ ∈Q)((z ∩Q) = (z′ ∩Q) ⇒ z = z′).
Por el teorema de Mostowski, existe un (único) conjunto Q′ transitivo equipado con un (único)
isomorfismo u : (Q,∈) →̃ (Q′,∈), definido por: u(z) = {u(z′) : z′ ∈ (z ∩Q)} (z ∈ Q).

Luego se demuestra que para toda fórmula interna f ∈ Formn (n ∈ ω), tenemos que:

(∀x1, . . . , xn ∈Q)
(
(Q,∈) |= f(x1, . . . , xn) ⇔ (Q′,∈) |= f(u(x1), . . . , u(xn))

)
(por inducción sobre la fórmula f ∈ Form). Además como el subconjunto P = Cl({x}) ⊆ Q
es transitivo, tenemos que u(z) = z para todo z ∈ P (por ∈-inducción), entonces P ⊆ Q′.
Por lo tanto, para cada fórmula interna f ∈ Formn, tenemos que:

(∀x1, . . . , xn ∈P )
(
(Q,∈) |= f(x1, . . . , xn) ⇔ (Q′,∈) |= f(x1, . . . , xn)

)
.

Considerando ahora la fórmula f := (∃̇ y)⌈φ⌉(x1, y) con el parámetro x1 := x ∈ P , se deduce

que (∃y∈Q)φQ(x, y) ⇔ (∃y∈Q′)φQ′
(x, y), y por lo tanto (∃y∈Q′)φQ′

(x, y).

4. Ascención Por lo anterior, existe y ∈ Q′ tal que φQ′
(x, y). Pero como (Q′,∈) es un

submodelo transitivo de (V,∈), y como la fórmula φ es Σ1, se deduce que φ(x, y) (por
ascensión). Por lo tanto, tenemos que y = F (x), y como y ⊆ Q′ (pues Q′ es transitivo),
se concluye que: |F (x)| = |y| ≤ |Q′| = |Q| ≤ max(|P |,ℵ0) = max(|Cl(x)|,ℵ0).
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Cardinal de los conjuntos Lα

Notación: Para todo x ∈ L, se nota ℓ(x) := min{α ∈ On : x ∈ Lα}

Lema

(1) Para todo α ≥ ω, tenemos que |Lα| = |α|
(2) Para todo x ∈ L, tenemos que |ℓ(x)| ≤ max(|Cl(x)|, ℵ0)

Demo. Para todo α ≥ ω, tenemos que |Lα| ≤ max(|Cl(α)|,ℵ0) = |α| por la Prop. anterior,
pues la funcional Y = Lα es Σ1. Y como α ⊆ Lα, se concluye que |Lα| = |α|.

(2) Se observa que la funcional α = ℓ(x) es Σ1, pues:

α = ℓ(x) ⇔ On(α) ∧ ∃Y (Y = Lα ∧ x ∈ Y ) ∧ (∀β <α) ∃Y (Y = Lα ∧ x /∈ Y ).

Por la Prop. anterior, se deduce que |ℓ(x)| ≤ max(|Cl(x)|,ℵ0) para todo x ∈ L.



Modelos conjuntistas Modelos de clase Principio de reflexión Conjuntos constructibles Consecuencias

V=L implica HGC

Ya vimos en la demostración de (L,∈) |= ZF que:

PL(x)︸ ︷︷ ︸
conjunto potencia en L

= P(x) ∩ L ∈ L (para todo x ∈ L)

Proposición (en ZFC)

Para todo ordinal α ∈ On:

(1) |PL(ℵα)| = |P(ℵα) ∩ L| ≤ ℵα+1

(2) Si además V=L, entonces |P(ℵα)| = ℵα+1

Demo. (1) Dado a ∈ P(ℵα) ∩ L, tenemos que |ℓ(a)| ≤ max(|Cl(a)|,ℵ0) ≤ ℵα, entonces
ℓ(a) < ℵα+1 y luego a ∈ Lℵα+1

. Acabos de mostrar que P(ℵα) ∩ L ⊆ Lℵα+1
, y por lo

tanto: |P(ℵα) ∩ L| ≤ |Lℵα+1
| = ℵα+1.

(2) Si además V=L, entonces |P(ℵα)| = |P(ℵα) ∩ L| ≤ ℵα+1, y como |P(ℵα)| > ℵα

(por el teorema de Cantor), se deduce que |P(ℵα)| = ℵα+1.

Corolario: ZF ⊢ V=L ⇒ HGC
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Absolutez de las fórmulas aritméticas

En ZF, se llama fórmula aritmética a toda fórmula φ(x⃗) cuyas
cuantificaciones son relativizadas a Vω, es decir tal que

(ZF ⊢) ∀x⃗
(
φ(x⃗) ⇔ ∃Y (Y = Vω ∧ φ0(Y, x⃗))

)
para cierta fórmula φ0(Y, x⃗) de clase ∆0

Proposición (Absolutez de las fórmulas aritméticas)

Toda fórmula aritmética φ(x⃗) es absoluta con respecto a cualquier
modelo interno M de ZF: (∀x⃗∈Vω) (φ(x⃗) ⇔ φM (x⃗))

Demo. Recordando que Vω = Lω , se observa que para todos x⃗ ∈ Vω , tenemos que:

φ(x⃗) ⇔ ∃Y (Y = Lω ∧ φ0(Y, x⃗))

⇔ (∃Y ∈M)
(
(Y = Lω)M ∧ φM

0 (Y, x⃗)
)

⇔ φM (x⃗).

Corolario: ZF, ZFC y ZF+ V=L (aśı como todas las teoŕıas intermedias)

demuestran exactamente las mismas fórmulas aritméticas



Modelos conjuntistas Modelos de clase Principio de reflexión Conjuntos constructibles Consecuencias

Conclusión

En lo anterior, definimos (adentro de ZF) el universo constructible

L :=
⋃

α∈On

Lα, con Lα :=
⋃
β<α

Def(Lβ)

y demostramos (en ZF) que:

(1) L es un modelo interno de ZF+ V=L

(2) L está incluido en todo modelo interno de ZF

(3) V=L ⇒ AC ∧ HGC

Por (1) es claro que ZF+ V=L es equiconsistente con ZF,
y por (3) tenemos las inclusiones:

ZF− ⊂ ZF ⊂ ZFC ⊂ ZFC+ HGC ⊂ ZF+ V=L

Por lo tanto, las 5 teoŕıas anteriores son equiconsistentes:

ZF− ≈ ZF ≈ ZFC ≈ ZFC+ HGC ≈ ZF+ V=L

Además, dichas teoŕıas demuestran las mismas fórmulas aritméticas
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