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Lenguajes y estructuras (recordatorio)

Definicién (Lenguaje de 1°" orden)

@ Un lenguaje (de 1 orden) esta definido a partir de:

e un conjunto de simbolos de funcién (notacién: f, g, h, etc.)
@ un conjunto de simbolos de predicado (notacién: p, g, 7, etc.)

en que cada simbolo s (funcién/predicado) viene con su aridad s (€ IN)

@ Dichos simbolos definen los términos (notacién: ¢, u, v, etc.) y
las férmulas (notacién: ¢, 1, x, etc.) del lenguaje considerado

Dado un lenguaje de 1°" orden .Z:

Definicién (.Z-estructura)

Una Z-estructura es un conjunto .# # @ equipado con:
@ una funcién f% . #* — .4 para cada simbolo de funcién f  (4f = k)

@ una relacién p? C .#" para cada simbolo de predicado p (fp = k)
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Interpretacién del lenguaje (recordatorio)

Dados un lenguaje .Z y una Z-estructura .#, se interpretan:

@ cada término (%) con pardmetros @ € . por un elemento [t(a)]” € .4:

[f(t:(@), ... te@)]7 = f([L@]7,. ... [t(@])

[[a]]“ﬂ = a (a € A pardmetro) J

@ cada férmula ¢(&) con pardmetros @ € .# por una relacién Z = ¢(a):

M= 1(@) = u(@) = W] = [w@]”
M= pta (@), (@) = (@17, ... [(@]7) e p™®
M= (@) = M (@)
M@ NP@) = M@ y A =P(a)
M =@ Vvy@) = M@ o A =ip(a)
M (@) = (@) = M (@) implica A = 1p(a)
M ENTo(x,d) = M = ¢(ao,d) paratodo ap € A
M Exp(x,d) = M= p(ao,d) paraalgin ag € A
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Teorias y modelos (recordatorio)

Definicién (Teoria de 1°" orden)

@ Una teoria 7 (de 1°" orden) estd definida a partir de:

o su lenguaje £ (de 1* orden)
e sus axiomas (= férmulas cerradas de %)

@ Una férmula ¢ de .Z es un teorema de .7 cuando es derivable a partir de
los axiomas de .. Notacién: 7+ ¢ ("7 demuestra ¢")

Dada una teoria de 1" orden 7 sobre un lenguaje .Z":
Definicién (Modelo de Tarski de .77)

Un modelo de Tarski de 7 es una Z-estructura .# tal que
A = ¢ para todo axioma ¢ de 7. Notacién: A = T

Mds generalmente, tenemos que .# = ¢ para todo teorema ¢ de J (correccién)
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Los principales teoremas (recordatorio)

Dada una teoria de 1°" orden .7 sobre un lenguaje .Z:

@ Completitud: 7 es consistente sii Z tiene un modelo
Corolario: Tk sii M =@ paratodo A =T
@ Compacidad:  tiene un modelo sii

cada conjunto finito de axiomas de .7 tiene un modelo

© Lowenheim-Skolem: Si .7 tiene un modelo infinito .Z,
entonces .7 tiene un modelo .#Z,, de cardinal x para cada cardinal
infinito k > Card(.Z)*. Ademds, se puede construir .#,; tal que:

o ., es elementalmente equivalente a .Z,
o M. C .My, cuando r < Card(.4y)
o M. O Mo, cuando k > Card(.#)

*Aqui: Card(Z) = Card({férmulas de #}) = max(Card({simbolos de .£}), Rg)



Modelos conjuntistas Modelos de clase Principio de reflexién Conjuntos constructibles Consecuencias
0000080000000000 0000000000000000 000000000000 00000000000000000000000000 000000000

El conjunto de las férmulas (internas) (1/2)
Para formalizar la teoria de modelos en ZF, se internaliza el lenguaje de
ZF adentro de ZF, con un conjunto Form de las férmulas (internas)

@ Las variables son representadas por ordinales finitos: Var := w.
Notacién: x,y,z,... € Var (variables internas)

@ Sélo se consideran férmulas construidas a partir de =, €, =, V y 3,
usando la codificacién:

=x' = / af o= (2’f)
e emy  AVE = G0LR)
: » (X, @x)f = (4 (xf))

(donde =, &, =, V, 3 son los simbolos internos)

@ Las otras construcciones se deducen por la leyes de De Morgan:
fihfo = (Vo) = (2,302 4),(2 f2)
fi=fo = 21V = (3.2, /) f2))

(V) f == 23Fx)f = (2,4, (x,(2,/))))
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El conjunto de las férmulas (internas) (2/2)

@ Se considera la funcién @ : P(V,,) — P(V,,) definida por:

O(X) = ({0} x (Var x Var)) U ({1} x (Var x Var)) U
{2} x X) U ({3} x (X x X)) U ({4} x (Var x X))

y se define el conjunto Form de las férmulas (internas) como el
menor punto fijo de la funcién &:

Form = U " (@) (C V)

(donde ®™ () es el conjunto de las férmulas de altura < n)

o Para cada férmula (interna) f € Form, se escribe FV(f) (C Var) a
su conjunto de variables libres, y para todo n € w se define

Form,, := {f € Form : FV(f) Cn}
conn={0,...,n—1} ={x0,...,Xn_1}

@ Formy es el conjunto de las férmulas (internas) cerradas



Modelos conjuntistas Modelos de clase Principio de reflexién Conjuntos constructibles Consecuencias
0000000@00000000  0000000000000000 000000000000 00000000000000000000000000 000000000

Codificacién de las férmulas (externas)

@ A cada férmula ¢ (externa) se asocia su cédigo [¢] € Form,
usando la correspondencia descrita en las diapositivas anteriores

@ Por ejemplo, la férmula Vz (2 € x = z = y) estd representada en
el conjunto Form por el cédigo

Vz(z€exz=2z=y)] = Vz.(zéX:}ziy)
= SdzA(hzExVz=y)

= (27 4, (=, (27 3, (2, (17 (Z’ X)))7 (07 (2, y)))))))

o Para toda férmula ¢ tenemos que: ZF F [¢] € Form

o La correspondencia ¢ +— [@] no es inyectiva (pues A, =, V definidos a
partir de =, v, 3), pero sélo identifica férmulas equivalentes:

[¢] = [¢] implica ¢ =1k

@ No es posible expresar en ZF que ¢ — [¢] es sobreyectiva, y
existen extensiones (conservativas) de ZF en que no lo es
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Evaluacidén de una férmula

Dado un conjunto M con una relacién binaria E C M?:
@ Una valuacién en M es una funcién p € M Vor
@ Dados pe MV%" xec Var y a € M, se define:
(pxa) = (prvar—(x}) U{(x,a)}

Definicién (Funcién de verdad)

Se define la funcién de verdad Val(ps, gy : Form — P(M Vo) por
recursion bien fundada sobre el tamaiio de f € Form, escribiendo:

Vali,py(x =y) = {pe MY : p(x) = p(y)}

Valiv,my(x €y) = {pe M"™ : E(p(x),p(y))}
Val(M,E)(% f) = Val<M’E)(f)C
Val(v,m) (f1 V f2) = Val(u,g) (f1) U Val(u, g (f2)
Val(M7E)((E.Ix) f) = {peM" :(3acM)(p,x+a) € Val () (f)}

v
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Predicado de satisfaccién

Para todos f € Form y p,p’ € M V" tales que ppy(s) = P rv(s):
p € Valiu,p)(f) & p' € Vali,g)(f)

@ En particular, para todo f € Formy:

o o bien Val(a, g (f) =9 (“f es falsa en (M, E)"
e o bien Val(ar,g)(f) = P(M ") (“f es verdadera en (M, E)"

~— —

Definicién (Predicado de satisfaccién)

Dada una férmula f = f(x1,...,%,) con variables libres x1,...,x,
y dados pardmetros ai,...,a, € M, se escribe:

(M7E) ':f(al,'“aan) =
Fpe M) (p(x1) = a1 A+ A p(xs) = an A p € Val(ar,m)(f))

& (Ppe MV (p(x1) = a1 A~ Aplxn) = an = p € Val(ay (/)
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Teorema de Lowenheim-Skolem (1/3)

Teorema de Lowenheim-Skolem descendente

Sea M un conjunto equipado con una relacién binaria E C M?2.
Para todo P C M, existe Q C M tal que:

(1) Q2P y |Q| <max(|P[,Ro)

(2) Para toda férmula f = f(X) € Form con variables libres X:

(VicQ)(Q,E) = f(@) & (M,E)[ f(a)

Observaciones:

@ El teorema expresa que cada subconjunto P C M se puede extender en
un subconjunto @ C M de mismo cardinal que P (si P infinito) tal que
(Q, E) es una subestructura elemental de (M, E)

@ Aqui, AC sélo sirve para construir una funcién de eleccién sobre M.
En ZF (sin AC), se necesita agregar la hipdtesis que el conjunto M
tiene una funcién de eleccidén (o equivalentemente que M es bien ordenable)



Modelos conjuntistas Modelos de clase Principio de reflexién Conjuntos constructibles Consecuencias
0000000000080000  0000000000000000 000000000000 00000000000000000000000000 000000000

Teorema de Lowenheim-Skolem (2/3)

Demo. Sea una funcién de eleccién h : P* (M) — M.

Se define una sucesién (Qk)rew de subconjuntos de M a partir de Qg := P.
Para todo k € w, se define Q1 como el conjunto de todos los elementos de M de la forma

h({a € M : (M,E) = f(a,a1,...,an)})

donde n € N, f € Formp4+1yai,...,a, € Qj son tales que
{a€M: (M,E)E f(a,a1,...,an)} # &
Tenemos que Qi C Q1. En efecto, dado a € Qy, y escribiendo f(xp,x1) = %o = x1

(€ Formy), se observa que {ag € M : (M, E) |= f(ao,a)} = {a}, y por lo tanto:
a = h({ao € M : (M, E) = f(ao,a)}) € Qrt1-

También se observa que

|Qes1l < D |Formni1 x Qi < max(|Qxl, Ro).
neN

Ahora se escribe Q := UkEW Q. (unién creciente). Es claro que @ D P, y por induccién sobre
k € w, se verifica que |Qx| < max(|P|,Rg). Por lo tanto: |Q| < max(|P[, o). (...)
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Teorema de Lowenheim-Skolem (3/3)

Demo (continuacién y fin). Ahora se trata de demostrar que
(vaeQ)(@, B) E f(@) < (M, E)k f(@)]

para toda férmula f = f(&@) € Form con variables libres %.
Para ello, se razona por induccién sobre la estructura de f. Se supone que la equivalencia ya se
cumple para las subférmulas de f (HI) y se distinguen los siguientes casos:

@ Si f es de la forma x; = x2 0 x1 € %2, la equivalencia es obvia.

@ Si f es una negacién o una disyuncidn, la equivalencia se deduce directamente de HI.

@ Se supone ahora que f(¥) = (3x0)fo(x0, ¥), y se consideran pardmetros @ € Q.

Implicacién directa Supongamos que (Q, E) |= f(a), es decir: (Q, E) = fo(ao, @) para
algtin ag € Q. Por HI tenemos que (M, E) = fo(ao, @), y luego (M, E) |= f(a) (pues
ap € Q C M).

Implicacién reciproca Supongamos que (M, E) |= f(@), es decir: (M, E) = fo(ao, @)

para algin ag € M. Como @ € Q = ¢, @k (unién creciente), existe un indice k € w

tal que @ € Qy, (i.e. todos los pardmetros estdn en el mismo Q).

Por lo anterior, es claro que ag € {a € M : (M, E) = fo(a,a)} # 0, lo que permite

considerar el elemento ag := h({a € M : (M, E) E fo(a,@)}) € Qrt1.

Por construccién, tenemos que a(, @ € Q y (M, E) = f(ag, @). Por HI se deduce que
€ Q).

(Q.E) = folah, a), y luego (Q. E) [= (@) (pues af O
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Modelos y consistencia

Definicién (Modelo)

Sea F' C Formg un conjunto de férmulas cerradas.

Un modelo de F' es un par (M, E) formado por un conjunto M # &
y una relacién E C M? que satisfacen todas las férmulas de F:

(M,EY=F = M#@ A ECM? A (Vf€F)(M,E) = f

@ También se puede definir en ZF (ejercicio) un predicado F F f
que expresa que una férmula f € Formg es derivable (en LK) a
partir de un conjunto de férmulas F' C Formg

o Se escribe Cons(F) := (3f € Formo) Ft/ f  (“F es consistente”)

Proposicion
Todo conjunto de férmulas que tiene un modelo es consistente:
(VF C Formg)[(3M 3E (M,E) = F) = Cons(F)]
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Pruebas de consistencia absoluta

@ Una prueba de la férmula Cons(F) en ZF es una prueba de
consistencia absoluta de la teoria F' (C Formg) adentro de ZF.

Notacion: F < ZF

o Ejemplo: Sea Z C Formg el conjunto de (las codificaciones de) los
axiomas de la teoria de Zermelo (= ZF — reemplazo). Tenemos que:

Proposicion (Z < ZF): (Va,,€) = Z, y por lo tanto:  Cons(Z) J

Demo. Se recuerda que Va, = U‘,B"(Vw), con V, = U‘B"(@), y se observa que:

new new
(Vaw, €) cumple el axioma de extensionalidad, pues Va,, es un conjunto transitivo.
(Vaw, €) cumple el axioma de pares, pues (Va,b € Va,,) {a,b} € Va.
(Vaw, €) cumple todos los axiomas de comprensién, pues (Va € Va,,)(VbCa) b € Va.
(Vaw, €) cumple el axioma de unién, pues (Va € Vo) Ja € Va,.
(Vaw, €) cumple el axioma de potencia, pues (Va € Va,,) B(a) € Va.
(Vaw, €) cumple el axioma de infinito, pues w € V41 C Va,.

(Vaw, €) cumple el axioma de fundacién, pues € estd bien fundada en Va,,. O
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Limites de los modelos conjuntistas

e El 29 teorema de incompletitud de Godel expresa que una teoria .7
que es recursiva y aritmética (como PA, Z o ZF) no puede demostrar
su propia consistencia, salvo si 7 es inconsistente:

T Cons(T) implica T+ L

@ Por lo tanto, si ZF es consistente, es imposible de hallar (en ZF)
un conjunto M # @ equipado con una relacién binaria E C M?
tales que (M, E) | ZF

@ Por esta razdén, vamos a considerar en lo que sigue una nocién de
modelo (M, E) mas general, en que M puede ser una clase propia

@ Veremos que dicha nocién de modelo es mas adecuada para obtener
pruebas de consistencia relativa (entre varios sistemas)

» Necesidad de introducir la nocién de relativizacion
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Relativizacion de una féormula

@ Sea M una clase equipada con una relacién binaria E C M?

@ Se asocia a cada férmula ¢ (externa) otra férmula escrita ¥ y
llamada férmula ¢ relativizada al conjunto M y a la relacién E

e Formalmente, la férmula o™'F esta definida por recursién (externa)

sobre la férmula ¢, usando las siguientes ecuaciones:

@=9)"" = o=y
(zey)? = E(zy)
(P = M
(va)M’E = (,OM’E\/'I,[JM’E
@re@)F = (GweM)eMF()
(y de modo similar para A, = y V)

Obs.: Las variables libres de la férmula ¢-F son las de la férmula ¢,

mas (cuando existen) los pardmetros de las clases M y E

@ Cuando E es € (pertenencia), se escribe o™ en lugar de @€
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Relativizacién y satisfaccion

M,E

@ Cuando M es un conjunto, la operacién ¢ — ¢ estad vinculada

con el predicado (M, FE) | f(@) del modo siguiente:

Lema (Relativizacién y satisfaccién)

Sea M un conjunto equipado con una relacién binaria £ C M?2.
Para toda férmula ¢(z1,...,z,), tenemos que:

(Vai,...,an € M)(pE(ar,...,an) & (M,E) = [p](a1,...,a,))

Demo. Por induccién externa sobre ¢. O

@ Obs.: En la equivalencia
" F(ar,. . an) & (ME) E Tel(ar, ... an)

se observa que el lado izquierdo no estd definido cuando ¢ € Form,
mientras el lado derecho no lo estd cuando M es una clase propia

@ En conclusién, sélo tenemos dos opciones:

(1) Evaluar una férmula interna en un conjunto = satisfaccién
(2) Evaluar una férmula externa en una clase = relativizacién
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La verdad no es definible

@ La imposibilidad de evaluar una férmula interna en una clase propia
estd vinculada con un teorema famoso de Tarski, que expresa que la
verdad (de un sistema formal) no es definible (en el mismo sistema formal)

@ En ZF, se llama predicado de verdad a toda férmula T'(x) tal que

T([e]) & ¢ (para toda férmula cerrada )

Teorema (Tarski)

No existe ningtn predicado de verdad en el lenguaje de ZF

Demo. Supongamos dado un predicado de verdad T'(z) en el lenguaje de ZF.

Internalizando la codificacién ¢ +— [¢] adentro de ZF, se puede definir en ZF una funcién
6 : Formy — Formg tal que §([¢(z)]) = [@([@(x)])] para toda férmula externa ().

Ahora se considera la férmula i (z) := —T(5(z)), y se observa que
(Y@ < -TO([¢(@)]) < T[N & —P([P()])

jContradiccién!
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Modelos de clases (1/2)

@ Sea M una clase equipada con una relacién binaria E C M?2.

Dada una férmula ¢(z1,...,x,) con pardmetros as,...,a, € M,
se usa la notacion:
— ,ME
(M,E) Eplar,...,an) = ¢ (at,...,ap)
Obs.: Coincide con (M, E) = [¢](a1,...,an) cuando M es un conjunto.

Definicién (Modelo de clase)

(1) Un modelo (de clase) es un par (M, E) (intuitivo) formado por una
clase M # @ (posiblemente propia) y una relacién binaria E C M?

(2) Dada una teorfa .7 sobre el lenguaje de ZF, se llama modelo de 7 a
todo modelo (M, E) tal que (M, E) |= ¢ para cada axioma de 7.

Notacién: (M,FE) = T (= esquema de hipétesis en ZF)
)

e Ejemplos triviales: (V,€) = ZF (en ZF)
(V,€) = ZFC (en ZFCQ)
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Modelos de clases (2/2)

Lema (Correccién de las reglas de deduccién)

Sea M una clase equipada con una relacién binaria E C M?.
Para todo secuente I'(Z) F ¢(Z) derivable en NK, el secuente

M # @, € M, TME(Z) - oM ()

también es derivable en NK

Demo. Por induccién (externa) sobre la derivacién del secuente I'(Z) F (). O

Teorema (Correccién)

Sean .7 una teoria de 1*" orden sobre el lenguaje de ZF,
M una clase no vaciay E C M?2 una relacién binaria sobre M.

Si (M,E) 7, entonces (M,FE) = ¢ para todo teorema ¢ de
—_————

esquema de hip. en ZF(C) esquema de conclusién en ZF(C)
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Pruebas de consistencia relativa

e Un modelo (M, E) de una teoria .7 (sobre el lenguaje de ZF) definido
adentro de ZF permite transformar cualquier inconsistencia de 7
en una inconsistencia de ZF

@ En efecto, si:  J F Iz (x #x) (inconsistencia en .7)
entonces: (ZF ) (M, E) E 3z (z # z) (teorema de correccién)
es decir: (ZFFH) (GzeM)z #x (inconsistencia en ZF)

@ Tal razonamiento constituye una prueba de consistencia relativa de
la teoria 7 con respecto a ZF. Notacion: 7 < ZF

@ Obs.: En lo anterior, se puede reemplazar ZF por cualquier teoria
de conjuntos en que se puede definir el modelo (M, E)
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Ejemplo: consistencia relativa del axioma de fundacién

e Sea ZF :=7F — AF (ZF sin fundacidn)

@ En ZF™, se define la jerarquia acumulativa (V,,)acon de modo
usual, observando que su unién V :=J,c 0, Va no coincide
necesariamente con la clase universal % = {z : x = a}:

IF- V=%
@ Sin embargo, tenemos que:

Proposicion: (V,€) = ZF (en ZF_)J

Demo. Ejercicio

@ En conclusién: ZF < ZF~ (consistencia relativa)
y como: ZF~ < ZF (por inclusién)

se deduce que: ZF ~ ZF~ (equiconsistencia)
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Modelos transitivos

Definicion

Se dice que un modelo (M, E) es:

» Extensional cuando (Vz,2’' € M)(E *(z) = E'(z)) = z=2)

equivalente a: (M, E) = “axioma de extensionalidad”

» Bien fundado cuando la relacién E C M?2 esta bien fundada

implica (M,E) | “axioma de fundacién”, pero no equivalente

» Transitivo cuando M es una clase transitiva y F es € (restringida a M)

@ Todo modelo transitivo (M, €) es extensional y bien fundado

@ Y por el teorema de colapso de Mostowski, tenemos que:

Proposicion

Todo modelo extensional y bien fundado (M, E) es isomorfo
a un (dnico) modelo transitivo (M’, €)
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Formulas Ay

Definicién (Férmulas A)

Una férmula ¢ de ZF es A, cuando todas sus cuantificaciones son
restringidas, es decir: de la forma (Vz€y)¥(x) o (Fxe€y)v(x).

Formalmente, las férmulas Ay son generadas por la gramatica:

Y = z=y | x€yY | ¢ | p=
| oAy | oVY | Vz(zey=¢) | Tx(rcyny)

Si (M, €) es un modelo transitivo, entonces para toda férmula Ay
o(x1,...,2y), tenemos que

(Val,...,anGM)(cpM(al,...,an) & w(al,...,an))

Demo. Por induccién externa sobre ¢. O

» Intuicidn: Las férmulas Ag son absolutas (para cualquier M transitivo)
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Ejemplos de férmulas A (1/2)

Muchas férmulas de ZF son Ag:

@ Nociones basicas:

xCy = (Vzex)(z€y)
r=0 = (zex)(z¢u)
y={z} = zey A Vzey)(z=2)
y={z1,22} = x1€y AN aaey AN (Vzey)(z=x1V2z=u12)
y =(z1,22) = (J21,22€9) (21 = {a1} Az2 = {z1, 22} Ay = {21, 22})
=(z1,-) = (Fo1,22€y) (3r2 €22) (21 = {71} A 22 = {21, 22} Ny = {21, 22})
=(Lz2) = (Bz1,22€y) Bz €22) (21 = {@1} A z2 = {z1, 22} Ay = {21, 22})
y—(ﬂ ) = (Fa,z€y) Brr, w2 €22) (21 = {z1} A2z = {z1, 22 Ay = {21, 22})

@ Operaciones sobre los conjuntos

C=AUB = ACC ANBCC A (Vz€C)(z€ AVzE B)
C=ANB = CCAANCCBA (Vz€A)(z€eB=2€0C)
C=A—-B = (MrecA)(x¢B=>z2zcC) N VeeC)(rc AN ¢ B)
CCAxB = (Vze(C)(FzxcA)(FyeB)(z=(z,y))

C=AxB = CCAxB AN (VxeA)(MyeB)(3z€C)(z = (z,9))
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Ejemplos de férmulas A (2/2)

@ Funciones:

ffuncion = (Vzef)z=(,-) A
(Vz1,22 € f) (Vu1 € z1) (Vuz € 22) (Vz,y1 € u1)(Vy2 € uz)
(21 = (z,91) A z2 = (z,y2) = y1 = y2)

y=f(z) = ((Fzef)(z=(z,9)
A_dom(f) = (VzeA)(3zef)(z=(z,2) N (Vzef)(FzeA)(z=(z,-))
=img(f) = (WEB)@Fze/f)(2=(,y) N (Vz€f)FyEB) (2= (-y))
f»AAB = ngxB A (Ve eA)(Vy,y' €B)(y= f(x) Ay’ = flx) = y=1y)
f:A=B = (f:A—=B) A (Vz€A)(3FyeB)(y=f(z))
f:A—=B = f:A—=B A Vz,2’ € A)(VyeB)(y=f(x)Ay=f(z') =z =2a')
fiA>B = f:A—- B AN (YyeB)(3zecA)(y= f(x))
fiAS>B = fA<—>B/\f A —- B
g=f1X = gCfAMVMzeX)Vzef)(z=(z,.) = 2z€E€yg)
@ Ordinales
y=x+1 zCy ANzey N Vzey)(z€axVz=nrx)
T transitivo (Vyex)(Vzey) (z € x)
« ordinal o transitivo A (Vz,y€a)(z €yVae=yVyEx)

« ordinal limite
« ordinal sucesor
« ordinal infinito

a e w
a=w

aordinal A a# & N (Vzea)(Fyea)(z €y)
aordinal A (I€a)(Veea)(z € BVa =p)
o ordinal limite vV (38 € «) (B ordinal limite)

a ordinal A —(a ordinal infinito)

o ordinal limite A (V8 € o) =(8 ordinal limite)
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Férmulas >, y 14

Por otro lado, muchas nociones importantes de teoria de conjuntos no se
pueden expresar mediante férmulas A, por ejemplo:

Y =9B(X), C=B" «aesuncardinal, etc.

X e Y son equipotentes, X es numerable, etc.

Definicién (Férmulas X; y IT;)

Una férmula ¢ de ZF es:
@ ¥ siesdelaforma ¢ = J¥¢y,
o I, siesdelaforma ¢ = VZyy,

donde g es una férmula Ay
donde g es una férmula Ay

Si (M, €) es un modelo transitivo, entonces:
° si (&) es una férmula 2

(vae M)(eM(@) = (@)
(Vae M)(eM(@) < (@)

si ©(Z) es una férmula II;

A

Demo. Ejercicio
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Jerarquia de Lévy (1/2)

Definicién (Jerarquia de Lévy)

Una férmula ¢ de ZF es:
@ Y oIl sies Ag (= férmula con cuantificaciones acotadas)
@ Y, siesdelaforma ¢ = 37, donde ¢ es 11,
@ I, 1 siesdelaforma o = VZy, donde ¢ es X,

@ Mis generalmente, se dice que una propiedad es:

e 3, si se puede expresar por una férmula X,
o II,, si se puede expresar por una férmula II,
e A, si se puede expresar por una férmula X,, y por otra férmula II,,

(Nociones definidas a menos de equivalencia Iégica en ZF)
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Jerarquia de Lévy (2/2)

Proposicién (Complejidad de las férmulas compuestas)

Se determina la complejidad™®) de una férmula compuesta a partir de
la de su(s) subférmula(s) directas como indicado el la siguiente tabla:
[ o [ A, [ 3 [, |
VY A, Xn I,
(Fzey)ep Ay dn IL,,
(Vzey) e A, DY I,
Az Ty Yn | Tata
Yz o I, | I, | 1L,
(*) A menos de equivalencia légica en ZF

Demo. Ejercicio. (Sugerencia: usar el esquema de coleccién para las cuantificaciones acotadas)
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Modelos internos

e Como la férmula On(a) es de clase Ag, tenemos que:

Proposiciéon

Si (M, €) es un modelo transitivo de ZF, entonces:
(VaEM)(OnM(a) & On(a))
Es decir: on™ = OnnM

@ Sin embargo, pueden existir ordinales afuera de la clase M,
lo que motiva la siguiente definicién:

Definicién (Modelo interno)

Un modelo interno de ZF es un modelo transitivo (M, €) de ZF
que contiene todos los ordinales de V: On C M

En tal modelo, siempre tenemos que:  On™ = On
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Motivacion

e Dada una €-estructura (M, E), el teorema de Loéwenheim-Skolem
expresa que existe una subestructura elemental (Q, E) C (M, E)
de cardinal |Q| = k para cada cardinal k entre g y |M]| :

Teorema de Lowenheim-Skolem descendente (con AC)

Sea M un conjunto equipado con una relacién binaria E C M?.
Para todo P C M, existe @ C M tal que:

(1) Q2P y |Q| <max(|P[,No)

(2) Para toda férmula f = f(X) € Form con variables libres X:

(VaeQUQ, E) = f(@ < (M, E) = f(a@)]

@ Por otro lado, el teorema de Tarski (inexistencia de un pred. de verdad)
implica que no existe ninglin conjunto X tal que la €-estructura
(X, €) sea elementalmente equivalente al universo (V, €)

@ Sin embargo, siempre se puede hallar un conjunto X equivalente a V'
con respecto a finitas férmulas fijadas =- principio de reflexién
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El principio de reflexion

@ Se dice que un conjunto X refleja una férmula ¢(Z) cuando
(Ve X)(¢*(@) < »(@))

Teorema (Principio de reflexién)

Sean ©1(%),...,en(Z) férmulas. Para todo ordinal «, existe un ordinal
B > « tal que Vj refleja las férmulas @1 (Z), . . ., on(Z):
(vaeVs) (¢ (@) & ¢i(@) (i = 1.n)

@ Otra formulacidn [Jech 2002: Set Theory (3rd ed.)] es la siguiente:

Teorema (Principio de reflexién, variante)

Sean ¢1(Z), ..., ¢n(Z) férmulas. Para todo conjunto My, existe un conjunto
M D My que refleja las férmulas ¢1 (%), . .., on(Z):
(vae M)(p¥ (@) © (@) (i = 1.n)

@ Obs.: La primera formulacién implica la segunda, ya que para todo
conjunto My, tenemos que My C V,, para algin a € On
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Demostracién del principio de reflexién (1/4)

o Recordatorio: X refleja o(Z) = (Vi€ X)(¢* (@) & ¢(a))

o Es claro que:
(1) Todo conjunto X refleja una férmula (&) sin cuantificadores
(2) Si X refleja férmulas ¢(Z) y ¥ (&), entonces X también refleja las
formulas —p(Z), (Z) V(T), @(@) A P(F) y @(@) = ()

@ Se dice que un conjunto X refleja fuertemente una férmula ¢(Z)
cuando refleja la férmula (&) asi como todas sus subférmulas

(en Z, sin reemplazo ni AF)

Sean p(z) una férmula y (X, )new uUna sucesién creciente de conjuntos.
Si X, refleja fuertemente la férmula ¢(Z) para todo n € w, entonces

la unién U, ., Xn refleja fuertemente la férmula ¢(Z)

@ Obs.: El lema no se cumple con la nocién de reflexién simple. j Contraejemplo?
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Demostracién del principio de reflexién (2/4)

Demo del Lema 1. Sea X :=J X,,. Se demuestra la implicacién

nEw
((Vn € w) X, refleja fuertemente p(Z)) = X refleja fuertemente (&)
por induccién externa sobre la férmula (&), distinguiendo los siguientes casos:
@ (&) es sin cuantificadores. Obvio.

@ (&) es de la forma p(Z) = p1(Z) V p2(Z). Por hipdtesis, X, refleja fuertemente ¢ (Z)
para todo n € w, entonces X, refleja fuertemente las subférmulas 1 (%) y @2 (&) para
todo n € w. Por HI, se deduce que X refleja fuertemente las subférmulas 1 (Z) y p2(Z),
y por lo tanto, X refleja fuertemente la disyuncién @1 (&) V @2(&) = ¢(&).

@ El caso donde ¢ (Z) es una negacién/conjuncién/implicacién se trata de modo analogo.

@ (&) es de la forma ¢(Z) = Tz @o(xo, ). Por hipétesis, X,, refleja fuertemente ¢ ()
para todo n € w, entonces X, refleja fuertemente la subférmula ¢ (zo, ) para todo
n € w, y por HI, se deduce que X refleja fuertemente la subférmula g (zo, Z). Sélo nos
queda demostrar que X refleja la férmula (&) = 3zg o (zo, ). Fijado(s) pardmetro(s)
a € X, se considera un indice n € w tal que @ € X,,, y se observa que:

(@ < Fao po(ao, @) (def. de o (Z))
& (Jao € Xn) gaé(" (ao, @) (pues X,, refleja ¢(T))
< (3ao € Xin) wo(ao, @) (pues X, refleja @o(zo, T))
< (3ao € X) go(ao, @) (pues X,, C X)
& (Jao € X) ¢ (ao, @) (pues X refleja @o(zo, T))
— X (=
= ¢ (@)
@ El caso donde (&) es una cuantificacidén universal se trata de modo analogo. O
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Demostracién del principio de reflexion (3/4)

Sea (&) una férmula. Para todo ordinal «, existe 5 > «
tal que Vg refleja fuertemente la férmula (%)

Demo del Lema 2. Por induccién sobre la férmula (&), distinguiendo los siguientes casos:
@ (&) es sin cuantificadores.  Cualquier ordinal 3 > « funciona.

@ ©(F) es de la forma p(Z) = p1(Z) V p2(F). Se considera la sucesién creciente de
ordinales (3, )necw definida a partir de By := «, y donde para cada n > 1:
Bn es el minimo ordinal > 3,,_1 tal que Vj,, refleja fuertemente wl(ﬂi) s! T 1mpar
' @2(Z) sin par
Se nota f3 := sup,,c,, Bn (> ). Por el Lema 1, se deduce que:
® Vi =U,cw VBsn s refleja fuertemente la férmula ¢4 (z),
® Vi =U,cw VB, refleja fuertemente la férmula o2 (z),

y por lo tanto Vj refleja fuertemente la disyuncién o1 (%) V 2 (%) (= ¢(2)).

@ El caso donde ¢(Z) es una negacién/conjuncién/implicacién se trata de modo andlogo.

@ (casos 3/V: véase siguiente diapositiva)
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Demostracién del principio de reflexién (4/4)

Demo del Lema 2 (continuacién y fin).
@ () es de la forma ¢(Z) = Jzo @o(xo,T). Para todos @, se nota v(a@) al minimo
ordinal tal que: 3ao ¢o(ao, @) < (Jao € V4 (a)) pol(ao, @).

Luego se considera la sucesién creciente de ordinales (3,,)nc. definida asi:

@ fo es el minimo ordinal > « tal que Vj, refleja fuertemente ¢o(zo, Z) (por HI)
@ Para todo n € w, se nota v, := sup{v(@) : @ € Vj,, }) y se define 3,11 como
el minimo ordinal > max(8n, v») tal que Vg, ,, refl. fuert. o (zo, %) (por HI)

Sea 8 := sup,, ¢, Bn. Porel Lema 1, Vg = U, ¢, V3, refleja fuertemente o (o, Z).
Sélo nos queda probar que Vi refleja ¢(Z). Fijado(s) pardmetro(s) @ € V3, se toma un
indice n € w tal que @ € Vj,,, y se observa que:

0@ < 3aopolac,d) (def. de ()

< (3ao0 € Vy(a)) wol(ao, @) (por def. de v(a))

< (Jao € Vp) W(‘J/(am a) (pues ¥(@) < Bnt1 < B)

& (Jag € Vp) Lpoﬁ (ap, @) (pues V3 refleja @o(zo, T))

= ©8(a).
@ El caso donde ¢(Z) es una cuantificacidén universal se trata de modo andlogo.

4

Demo. del teorema. Aplicar el Lema 2 a la férmula (&) = @1(Z) V- - V pnp(Z). O
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Observaciones (1/2)

Principio de reflexién (recordatorio)

Sean p1(%),...,¢n(Z) férmulas. Para todo ordinal «, existe un ordinal 8 > «
tal que Vjp refleja las férmulas 1 (Z), . . ., on(Z):
_ T _ .
(vaeVs)(v" @) & (@) (i = 1.n)
@ Siempre se puede exigir (ademds) que 3 sea limite (Ejercicio)

@ Contrariamente a la prueba del teorema de Lowenheim-Skolem
(que no usa el esquema de reemplazo), la prueba del principio de reflexién
usa fuertemente el esquema de reemplazo en el caso 3:

@ para construir el ordinal ~, =sup{y(@) :a@ € V3, } a partirde la
funcional @ — ~(a) (para cada n € w)

@ para construir la sucesidén (8n)necw a partir de la funcional 8y, — Bp41

@ Por otro lado, la prueba del principio de reflexién no usa AC

(contrariamente a la prueba del teorema de Léwenheim-Skolem, que usa AC
para equipar el dominio inicial con una funcién de eleccién)
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Observaciones (2/2)

@ AF es crucial (en el caso 3) para construir la funcional @ +— ()
que asocia a cada @ (€ V) el minimo ordinal v(a) tal que

dag Qﬁo(ao, (3:) 54 (3(10 € Vw(&)) ©o (CLQ, CT)

usando el hecho que V' =, ., V-

@ Sin embargo, se puede demostrar la siguiente generalizacién del
principo de reflexién sin AF, reemplazando la jerarquia acumulativa
por cualquier jerarquia (W4 )aeon similar:

Teorema (Principio de reflexién generalizado)

Sea (Wa)acon una sucesién transfinita de conjuntos, creciente y tal que

Wa =g, Ws para todo « limite. Se escribe W :={J o, Wa.
Sean p1(%),...,on(Z) férmulas. Para todo « € On, existe 8 > « tal que:
(vaeWs) (¢ (@ © ¢!'(@) (i=1.n)

Demo. Ejercicio
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Aplicacién (1/3)

o Se recuerda que: Z := ZF — Reemplazo (teoria de Zermelo)

@ Ya vimos que ZF - (Va,,€) = Z, y por lo tanto:  ZF F Cons(Z)

(donde Z C Formg internaliza en ZF el conjunto de axiomas de Z)

Teorema

Si 1) es una férmula cerrada consistente con Z  (i.e. tal que: Z+1 I 1),
entonces existe una férmula cerrada v’ tal que:

ZFE+4 = o pero Z+y

En particular, las teorias ZF 4+ y Z 41 nunca son equivalentes

Corolario: ZF no es finitamente axiomatizable

axiomatizar con el tnico axioma % := 11 A --- A ,. Por lo tanto, las tres teorias ZF,

Demo. Si ZF se pudiera axiomatizar con finitos axiomas 1, . . ., ¥, también se podria
ZF + 1 y Z + 1) serian equivalentes, lo que es imposible por el teorema anterior. DJ
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Aplicacién

@ En Z, sélo se puede definir el conjunto V,, cuando « es finito

(ya se necesita el reemplazo para definir V,, := Une“ V)

@ Sin embargo, se puede expresar en Z que “X = V", escribiendo:

X=Vo = 3f(ffuncién A dom(f)=a+1 A
f0)=2 A fla) =X A
(VB<a) f(B+1)=P(f(B)) A

(VB<a) (B limite = f(B)=U,5f(7))
(pero sélo se puede mostrar en Z que 3X (X = Vi) cuando « es finito)

e Fijada una férmula cerrada v, se define:
Y = (Fac On) X (alimite >w A X =V, A ¥)

@ Se trata ahora de demostrar la:

Proposicién
Si Z + 1) es consistente, entonces: ZF +1¢ F 4

y Z+9 i/ o
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Aplicacién (3/3)

@ Recordatorio: En el principio de reflexién (Lema 2), siempre se puede
exigir que el ordinal 8 > « sea un ordinal limite (Ejercicio)

Demo de la Proposicién.

@ Razonando en ZF + :
Se observa que (Va€ On) 31X X = V, (por ZF) y se escribe a al minimo ordinal
limite > w que refleja v, es decir: 1Y < 1. Por lo tanto: ¥ (por v)

En conclusién: ZF 4+ F (3a€ On) 3X (alimite > w A X =V, A %)
es decir: ZF + 4 F o’

@ Razonandoen Z 4 +':

Por 1)/, existe un ordinal limite & > w y un conjunto X tal que X = V,, y wx.
Como X = V,, (con « limite y > w), tenemos que (X, €) |= Z, donde Z es el conjunto
(internalizado) de los axiomas de Z. Y como %%, tenemos que (X, €) = [+4].

Entonces (X, €) = Z U {[4]}, y por lo tanto Cons(Z U {[¢]}).

En conclusién: Z + v + ' = Cons(Z U {[v¥]})
es decir: Z+y F ' = Cons(ZU{[v¥]})

Pero como Z + 1) es consistente, tenemos que Z + ¢ I/ Cons(Z U {[¢]})
(por el 2% teorema de incompletitud), y por lo tanto: Z + v 1’ O
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Definicion de los subconjuntos definibles

Definicién (Subconjuntos definibles)

Sea X un conjunto. Un subconjunto Y C X es definible (en X) cuando
existe una férmula interna f € Form, 1 (para algin n € w) y parametros
T1,...,T, € X tales que para todo x € X:

zeY si (X,€)FE f(x,x1,...,20)

Se dice que Y es definible a partir de fy (21,...,2,)

@ Cabe destacar que la nocién de subconjunto definible esta definida
por la siguiente férmula (externa) de ZF:

Y subconjunto definible de X :=

YCX A (Gnew)3f € Formut1)3(z1,...,20) €X™)
VzeX)(z €Y & (X,€) E flz,z1,...,2n))

@ Usando el esquema de comprensién, se define

Def(X) := {Y € P(X) : Y subconjunto definible de X'}
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Propiedades de los subconjuntos definibles (1/5)

@ Por construccidn, el conjunto Def(X) es un subconjunto de B(X),
cuya propiedad principal es la siguiente:

Proposicion

Para cada férmula ¢(x, z1,...,z,) y para todos 1, ..., =, € X:

{xre X : oX(z,21,...,2,)} € Def(X)

Demo. Tenemos que
(eX : X(@a1,....,20)} = {w€X : (X,€) | [@l(@,21,...,2)} € Def(X) DJ

@ El conjunto Def(X) contiene mds generalmente los subconjuntos
definidos a partir de todas las férmulas internas, inclusive las que
no son estandar (si tales férmulas internas existen)

@ Por otro lado, un conjunto de la forma {z € X : p(z,z1,...,2,)}
(i.e. sin relativizacién a X) no es definible en general
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Propiedades de los subconjuntos definibles (2/5)

Proposicién (Subélgebra booleana)

El conjunto Def(X) es una subélgebra booleana de B(X):

(1) @, X € Def(X)

(2) SiY,Y’ € Def(X), entonces Y¢, (Y NY’), (YUY’) € Def(X)

4

Demo.
@ X es definible a partir de la férmula xg = x¢ (sin pardmetros).

@ O es definible a partir de la férmula - (xg = xo) (sin pardmetros).

@ SiY C X es definible a partir de una férmula f con n pardmetros (z1,...,z,) € X7,
entonces su complemento Y C X es definible a partir de la férmula = f con los mismos
n parametros (x1,...,Zn) € X™.

@ SiY C X es definible a partir de una férmula f con n pardmetros (z1,...,z,) € X",
e Y’ C X definible a partir de otra férmula f’ con m pardmetros (yi,...,Ym) € X™,
entonces la unién Y U Y’ es definible a partir de la férmula f VV f’* con los n 4+ m
pardmetros (T1,...,Tn,Y1,---,Ym) € X™T™, donde £’ es la férmula obtenida

reemplazando en f’ cada ocurrencia de la variable x; (i € [1..m]) por la variable x5, ;. [
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Propiedades de los subconjuntos definibles (3/5)

Proposicion

Def (X)) contiene todos los subconjuntos finitos y cofinitos de X:

mfin (X) U mcofin (X) C Def(X)

v
Demo. Como Def(X) es una subdlgebra booleana de 3(X), basta con observar que
{z} € Def(X) para todo z € X, siendo el subconjunto {z} C X definible a partir de
la férmula xo = x1 con el tinico parametro © € X (asociado a x1). D)

Corolario

Si X es finito, entonces Def(X) = P(X)

@ Sin embargo, cuando X es infinito, el conjunto Def(X) puede
contener conjuntos infinitos-coinfinitos, por ejemplo:

{{z1,22} : 21,22 €V} = {z eV, : (X,€) = f(z)} € Def(V,)

con f = Ix; 3}{29X3(X3éxo & x3 =% VX3 =X2)
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Propiedades de los subconjuntos definibles (4/5)

Proposicién (con AC)

Si X es infinito, entonces: |Def(X)| = | X], (mismo cardinal)

y por lo tanto: Def(X) C PB(X) (inclusién estricta)
V.

Demo. El conjunto Def(X) es la imagen de la funcién

defx : Z(Fonn+1 x X™) — P(X)
new

(n, (fy(z1,...,20))) = {z€X: X E f(z,z1,...,2n)}

Por lo tanto, tenemos que |Def(X)| = |img(defx)| < |37, ¢ (Formu+1 x X™)| = [X]|
(pues X infinito). La desigualdad | X | < |Def(X)| sigue de que {z} € Def(X) para todo
z € X. Ademis |Def(X)| = |X| < |B(X)| (por Cantor), y luego Def(X) C P(X). O
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Propiedades de los subconjuntos definibles (5/5)

Proposicién (sin AC)

Si X es bien ordenable, entonces Def(X) también lo es.

Ademds existe (en ZF) una funcional < — <* que asocia a
cada buen orden < sobre X otro buen orden <* sobre Def(X)

Demo. Se fija un buen orden <, sobre el conjunto (numerable) Form.

Dado un buen orden < sobre X, se equipa el conjunto Dx := >3 . (Formpy1 x X™)
con el buen orden g* definido por:
(n, (f,3) <T (m,(9,9) = n<m \
n=m A f <rorm g \Y

n=m A f=g N T <jex,, ¥

donde <, es el (buen) orden lexicografico sobre X™ inducido por el (buen) orden < sobre X.

Luego se transporta el buen orden <! (sobre Dx) en el conjunto Def(X) a través de la
sobreyeccién defx : Dx — Def(X), escribiendo:

Y <*Z = min(SYgf)(def;{l(Y)) <f min(sygf)(def}l(Z))

para todos Y, Z € Def(X). O




Conjuntos constructibles Consecuencias
000000000

Principio de reflexién
00000008000000000000000000

Modelos de clase
000000000000

Modelos conjuntistas
0000000000000000

0000000000000000

No monotonicidad de X — Def(X) (1/2)

@ La correspondencia X — Def(X) no es mondtona en general:

XCY # Def(X)C Def(Y)

@ Contraejemplo: Tomar Y conjunto infinito y X C Y no definible en Y.
Tenemos que X € Def(X), X ¢ Def(Y'), luego: Def(X) € Def(Y')

@ Sin embargo:

Proposicion
Si XCY y X eV, entonces Def(X) C Def(Y)

@ Demostracién basada en la internalizacién  (en el conjunto Form)

de la nocién (externa) de relativizacién: ¢+ p?

@ Formalmente, se define la relativizacién (interna) (f,z) — f* por:

(x=y) = x=y (xe€y)*
(=7 = =07 (V) = iV S5
(3x)f)? = Ax)(x&€zA f?) (suponiendo que x # z)

= x€y
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No monotonicidad de X — Def(X) (2/2)

Sean X,Y conjuntos talesque X CY y X €Y.
Para cada férmula interna f = f(x1,...xy), para cada variable interna
z # X1,...,%, y para todos (z1,...,2,) € X", tenemos que:

(X7€) ':f(x1>"‘7xn) < (Y,E) ': (fz)(xla“'vxan)

(asociando la variable z al pardmetro X en el lado derecho)

Demo. Por induccién (interna) sobre f. O

Demo. de la Proposicién. Sean X,Y talesque X CY y X € Y. Sea Z € Def(X) un
subconjunto de X definido por una férmula f con pardmetros (z1,...,z,) € X.
Para todo « € Y, tenemos que:

r€Z & z€XANXE f(z,z1,...,2n)
&S 2 E€XAY E(f)(z,z1,...,Tn, X) (por el Lema)
< YEfi(z,21, . 2T, X)

tomando z:=x,41 y f := %0 €z A f* Porlotanto: Z € Def(Y). O
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Construccién del universo constructible (1/2)

e De modo andlogo a la jerarquia acumulativa (V,,)acon, se define la
jerarquia constructible (Ly)acon por:

Lo = | Def(Lp) (o € On)
B<a

Proposicién (en ZF)

La sucesidn transfinita (La)acon €S estrictamente creciente (para C),
y para todo o € On:

(1) Lo € Va
(2) L, es un conjunto transitivo

(3) Ly=9, Lat1=Def(Ls) y La=|JLs (sialimite)
B<a

Demo. Ejercicio. Los items (2) y (3) se basan en el:

Lema: Si X es transitivo, entonces Def (X)) es transitivo )

Demo. Ejercicio.
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Construccién del universo constructible (2/2)

Definicién (Universo constructible)

El universo constructible L es la unién transfinita de (Ly)acon:
x €L sii (3a€On) z € L,

Sus elementos son los conjuntos constructibles

Proposicién (Constructibilidad de los ordinales)

OnCL AN Va,B€0n) (e Ly & B<a) (es decir: Lo N On = «)

En particular, L es una clase propia

Demo. 1. Demostremos que (Vo€ On) oo ¢ L. Por el absurdo, se considera el minimo
a € On tal que & € Lo. Como Lo = Uy, Def(Lp), existe B < o tal que a € Def(Lg), y
por lo tanto 8 € a C Lg: esto contradice la minimalidad de . Entonces (Va € On) a ¢ Lq.
2. Por monotonia se deduce que (VB> «) B & L, y porlotanto: Lo N On C a.
3. Demostremos que v € L1 por induccién sobre oo € On. Supongamos que 3 € Lgy1
para todo 8 < « (HI). Entonces o C L, luego Lo N On = a, y por lo tanto:

a = {x €Ly:On(z)} = {x €Ly :Ont(z)} € Def(Ly) = La+t1

(pues la férmula On(x) es Ag). O
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Axioma de constructibilidad

@ El axioma de constructibilidad (notacién: V=1)

Vo (Ja € On) x € L, |

expresa (en ZF) que todo conjunto es constructible

o En las siguientes diapositivas, vamos a demostrar el

Teorema

La clase L CV (equipada con €) es un modelo interno de ZF
que satisface el axioma de constructibilidad:

(ZF 1) (L,€) = ZF+ V=1L

o Es decir: (1) ZF - o para cada axioma ¢ de ZF
(2) ZFF(V=L)%
y por lo tanto: ZF - ¢ para cada teorema de ZF + V=1L

o Implica que: /F+V=L =~ ZF
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(L, €) es un modelo interno de ZF (1/3)

@ Empezamos por:

Proposicién: (L, €) = ZF (en ZF)J

Demo.

@ Axioma de extensionalidad Queremos demostrar que:
(Va,beL)(VzeL)(x €Ea< x €b) = a=0b)

Obvio, pues la clase L es transitiva.

@ Axioma de pares Queremos demostrar que:
(Va,be L)(3ceL)(VxeL)(x €c x=aVa=bh).

Eso equivale a demostrar que para todos a,b € L, el par ¢ := {a, b} es constructible.
Para ello, se fija un ordinal @ € On tal que a,b € L, y se observa que

c = {a,b} = {x€La:(z=avae=b)la} € Def(L.) C L.
@ Axioma de unién Queremos demostrar que:
(VaeL)(FbeL)VzeL)(zx €eb< (JyeL)(y € anz €y)).

Eso equivale a demostrar que para todo a € L, el conjunto b :=|Ja es constructible.
Para ello, se fija un ordinal @ € On tal que a € L, y se observa que:

b= Ua ={z€la:By(y€anzcy)™} € Def(La) C L. (..)
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(L, €) es un modelo interno de ZF (2/3)

Demo (continuacién).
@ Axiomas de comprensién Para cada férmula ¢(z, Z), queremos demostrar que:
(VZeL)(Va€ L)(Fbe L)(Vz € L)(z €b & z € a A p”(z, 2)).

Eso equivale a demostrar que para todos Z,a € L, el conjunto b := {ZE €a: ol (x, 2’)}
es constructible. Para ello, se fija un ordinal & € On tal que Z,a € L. Por el principio
de reflexién (generalizado a la jerarquia (Lo )acon), existe 8 > « tal que

(Va,2€ Lg) ("8 (z,2) & oF(,2)).
Luego se observa que:
b= {zca: LpL(a:,Z)} = {zelpg:(ze a/\go(x72))L5} € Def(Lg) C L.

@ Axioma del conjunto potencia Queremos demostrar que
(VaeL)(3beL)(VzeL)(zx€b & x Ca)

(observando que (z C a)L & z C a para todos z,a € L). Eso equivale a demostrar
que para todo a € L, el conjunto b := PB(a) N L es constructible. Para ello, se fija un
ordinal & € On tal que B(a) N L C L. Luego se observa que:

b=PNnNL = {z€La:(xCa)l} € Def(La) C L.

@ Axioma de infinitud Queremos mostrar que (3z € L)(z ordinal limite)”. Basta con
observar que w € L, y que la férmula “z ordinal limite” es absoluta en L (pues Ag). (...)
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(L, €) es un modelo interno de ZF (3/3)

Demo (continuacién y fin).
@ Axiomas de reemplazo Para cada férmula ¢ (x, y, Z), queremos demostrar que:
(VZ,a€L)((Va€L)(z € a = (Aye L)y (2, y,2) =
(IbeL)(VzeL)(z €a= (FyeL)(y€bApr(z,y, 7))
es decir:  (VZ,a € L)((Vz €a)(3ly € L) v (z,y,2) =
(Ibe L)(Vz € a)(3y € b) E (z, y, 2)).

Aplicando el esquema de reemplazo al conjunto a con la férmula y € L A z,ZjL(z, Y, Z),
se obtiene un conjunto by C L tal que (Vz € a)(3y € by) wL(x, y, Z). Se fija ahora un
ordinal o € On tal que Z,a € Lo y bg C L. Por el principio de reflexién (generalizado
a la jerarquia (Lo )acon), existe B > « tal que:

(Va,y, 2€ Lp) (78 (2,4, 8) & $%(z,y,9).
Luego se define b := {y € Lg: (3z€a) W (z,y, Z)}, y se concluye observando que
b= {yecLs:((Fzca)y(z,y,2) 8} € Def(Lg) C L
mientras que (Vz € a)(3y € b) vE (2, vy, 2).

@ Axioma de fundacién Queremos demostrar (en ZF) que
(VaeL)((3zeL)(z €a)= (FzeLl)(xc€an(VyeLl)(y€a=y¢ux))).
Obvio, pues la clase L es transitivay L C V. O
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(L, €) satisface V=L (1/8)

@ Sdlo nos queda demostrar que:

Proposicion: (L,€) V=L (en ZF)J

@ La demostracién consiste esencialmente en observar que todas las
férmulas involucradas en la definicién de la relacién funcional
“Y = L," (inclusive la propia relacién “Y = L,") son de clase ¥;f

@ Para ello, se usara frecuentemente el siguiente lema:

Lema (Composicién de relaciones/funcionales de clase X1)

Sean ¥(&,y, Z) una férmula X1 e y = F(Z) una relacién funcional 3
(definida a partir de una férmula ¢ (Z,y) : X1). Entonces la relacién

¢(57F(f)73) = Hy(@F(fvy)A¢(fvy72))

es de clase X1

Demo. Obvio

TSe considera aqui la nocién de férmula ¥; a menos de equivalencia légica en ZF
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(L, €) satisface V=L (2/8)

o Mais generalmente, si y = Fy(Z), ..., y=F(Z) v z2=G(Y)
son relaciones funcionales de clase X1 (con ¥ =y1,...,yx),
entonces la relacién funcional

2 =GR @),..., Fk(@)
es de clase ¥;

@ Por ejemplo, las relaciones funcionales y =0, y=1, y =2,
y=3 y=4, y=w, y={a}, y=z1xa2 € y=11 U9
son A y luego ;. Entonces la relacién compuesta

Y=¢(X) = Y={0} X (wXxw) U {1} x(wxw) U
{2} xX U 3} x (X xX) U {4} x (wx X)

es de clase X1, y por lo tanto:

Lema: La férmula Y = Form es de clase 3, )

Demo. Form es el dnico punto fijo de ® (en ZF), luego: Y = Form < Y = ®(Y). ]
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(L, €) satisface V=L (3/8)

@ Recordatorio: A cada férmula interna f € Form se asocia su
conjunto de variables libres FV(f) C Var (donde Var = w)

Lema: La relacién funcional Y = FV(f) es de clase ¥ )

Demo. La funcién h : Form — Bsn(w) que asocia a cada férmula interna f € Form
el conjunto h(f) = FV (f) de sus variables libres estd definida por la férmula 3 :

p(h) := h funciéSn A dom(h) = Form
(Vv1,v2 €Ew) h(v1 = v2) = {v1,v2}
(Vv1,v2 €Ew) h(vy € va) = {v1,v2}
(¥f € Form) h(= f) = h(f)
(Vf1, f2 € Form) h(f1 V f2) = h(f1) U h(f2)
(Vv €w) (Vf € Form) h((3v) f) = h(f) — {v}

(pues todas las férmulas involucradas en la definicién anterior son Ag o 7).
Se concluye, observando que: Y = FV(f) < 3h[e(h) AY = h(f)]. O

>>>>>
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(L, €) satisface V=L (4/8)

@ Queremos demostrar ahora que el predicado (X, €) = fp]
(“la férmula f con pardm. en p esta satisfecha en (X, €)") es de clase ¥

e Dificultad: La relacién Y = X V4" (= X“) no es de clase ¥;

» Reemplazar X Var por XFV() (conjunto de las valuaciones finitas)

Lema: La relacién funcional Y = XFV() es de clase 3 J

Demo. Dados un conjunto finito V' C Var y una variable v € Var — V, se observa que

XYYl = distr(XY,0,X) == {pU{(v,2)} : p€ XY Az € X},
donde la relacién funcional Z = distr(Y, v, X) ests definida por la férmula 31
Z =distr(Y,v,X) = (VpeY)VzeX)pU{(v,z)} €Z A

(Vo' €Z2)(3peY)Fz € X) p' = pU{(v,2)}.
Luego, se observa que:

Y =XV o 3n3g3hnew A g:n>FV(f) A hfuncién A
dom(h) =n+1 A h(0)={@} A h(n)=Y A
(Vi <n)h(i+ 1) = distr(h(i), g(i), X)] . O
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(L, €) satisface V=L (5/8)

e De modo andlogo, la relacién funcional Y = Valx(f) (C X "er)
("Y es el valor de verdad de f en X"”) no es X

» Reemplazar Valx(f) por el valor de verdad reducido
Val'y (f) == {p | FV(f) : pe Valx(f)}  (CXV)

Lema: La relacién funcional Y = Val'y(f) es de clase ¥ )

Demo. Dado un conjunto X, la funcién h que asocia a cada férmula f € Form su valor de
verdad reducido h(f) = Val’y (f) esta definido por la férmula ¢ (X, h) : £ definida por:
@(X,h) = hfunciéSn A dom(h) = Form
(Yo1,v2 €w)(Vp € X7V (1592 [ € h(vy = v3) & p(v1) = p(v2)]
(V1,02 €w) (Vp € XV (*1€%2)) [5 € h(vy € v2) & p(v1) € p(v2)]
(Vf € Form) (Vp € X"V M)[p € h(= f) & p € h(f)]
(Vf1, f2 € Form) (Vp € XFV(flvf?))
[p€n(f1V f2) & (pI FV(f1)) € h(f1)V (p | FV(f2)) € h(f2)]
(Vv € w) (Vf € Form) (Vp e XFV(E )
[p € R((FV)f) & (FzeX)(pU{(v,2)}) € h(f)]

Luego, se observa que: Y = Val'yx (f) < 3h[p(X,h) Ah(f) =Y]. O

> > > >

>
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(L, €) satisface V=L (6/8)

Lema: La relacién funcional Y = Def(X) es de clase 3 J

Demo. Escribiendo
Z =defx(f,p) = ZCX A (VzeX)[z€Z & (pU{(x0,2)}) € Val'x (f)],

(“Z C X estd definido por la férmula f con pardmetros p"), se observa que:

Y =Def(X) = (Vf€Form)(Vpe X V(Gx0N)defx(f,p) €Y A
(YZ €Y) (3f € Form) (3p e XFV(Ex0))y 7 = defx (f, p) - O
Lema: La relacién funcional Y = L, es de clase ¥ }

Demo. Para cada ordinal «, la funcién h de dominio @ que asocia a cada ordinal 8 < « el
conjunto h() = Lg esta definida por la X1-férmula ¢(«, h) dada por:

@(a,h) = hfuncién A dom(h) =a A
(VB < a) (Vy <B) Def(h(y)) C h(B) A
(VB<a) (o € h(B)) (37 < Bz € Def(h(7)) -

Luego, se observa que: Y = Lo < On(a) AJh[p(a+1,h) AY = h(a)]. O
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(L, €) satisface V=L (7/8)

Proposicién (La operacién a+— L, es absoluta)

La operacién « +— L, es absoluta, en el sentido en que para todo
modelo interno M de ZF, tenemos que:

YacOn) VY (Y=L, & YeM A (Y =Ly)M).

Es decir: Lo €M y Lo=1LM (para todo a € On)

Demo. En ZF, la relacién Y = L, es funcional con respecto a « € On, es decir:
ZF - (YVa€ On)3Y (Y = L,).
Entonces para cualquier modelo interno M de ZF, tenemos que:
(Vo€ On™M) (3Y € M) (Y = Lo)™.

Luego, para cada ordinal a € On (= On™), existe un tnico conjunto Y (€ V) tal que Y = L,

asi como un tnico conjunto Y’ € M tal que (Y’ = LQ)M. Pero como la férmula “Y = L," es

de clase 1, también tenemos que Y’ = L, (en V'), y por lo tanto Y = Y’ por unicidad. O
).
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(L, €) satisface V=L (8/8)

@ Ahora podemos demostrar la:

Proposicién (recordatorio): (L,€) E V=L J

Demo. La férmula (V = L)L se cumple en ZF, pues:
(V=LD)* = (Vz(3a€0n)3Y (Y = La Az €Y))"
& (VeeL)BacOon) @Y eL)(Y = La) Az eY)
& (VzeL)(B3a€eOn)dY (Y =Loa Az €Y)
& (Vze€L)xz € L (tautologia). O

@ Esto acaba la prueba de que L es un modelo interno de ZF que
cumple el axioma de constructibilidad:

(ZF 1) (L,€) = ZF+V=L

Corolario: ZF + V=L = ZF (equiconsistencia) J
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Minimalidad de L

Teorema (Minimalidad de L)

La clase L es el minimo modelo interno de ZF, pues

(ZF 1) LCM A L=ILM

para todo modelo interno M de ZF
v

Demo. Ya vimos que la relacién funcional Y = L, es absoluta en todo modelo interno M

de ZF, en el sentidoenque Lo, € M y L, = Lg/l para todo o € On, y por lo tanto:

L= UaEOn L, C M. Ademds, para todo x, tenemos que:

z€L & (3acOn)z €Ly, & (Bacon™)zcLM
& (Bacon)zeL )™ o (@eLl)M. O

by,

@ Ejercicio: Demostrar que si M es un modelo transitivo de ZF tal que
On ¢ M, entonces M es un conjunto, y

Mgvay OnM:O’I'LmM:Oé, LJWZLQM:LO“
donde @ = min(On — M)
» Modelo estiandar de ZF (= conjunto transitivo M = ZF)
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Punto de vista de los modelos de Tarski (1/2)

o Recordatorio: Un modelo de Tarski de ZF es un grafot (.4, %)
que cumple todos los axiomas (y luego todos los teoremas) de ZF

o Cuando la relacién €% C .#? esta bien fundada (en la metateoria),
existe (por el teorema de colapso) un conjunto transitivo M tal que:
(M, e = (M,€) (modelo estandar)
@ Sin embargo, el teorema de completitud no implica la existencia de
modelos bien fundados o estandar¥ (si ZF es consistente)
@ Dado un modelo .# |=ZF (bien fundado o no), se escriben:

on® = {ac. : (M,e”) = On(a)}
L” = {ac : (M, e = L(a)} (etc.)

tDonde . es un conjunto en el sentido de la metateoria
YPero la existencia de cardinales grandes (en la metateoria) implica la existencia de
modelos estdndar de la forma M =V, (con k grande)
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Punto de vista de los modelos de Tarski (2/2)

o Sea .# = (.#,c”) un modelo de Tarski de ZF. Un submodelo
de .# es un subconjunto’ A4 C . tal que (JV,E‘{{VQ) = ZF

% Un submodelo .#* C .# no tiene que ser definible en .#

(por una férmula de ZF con pardmetros en %)

@ Un submodelo .4 C .# es transitivo cuando para todos a,a’ € .-
ac.N y a e a implican o' € N

Teorema (Minimalidad de L% en .#)

En cada modelo de Tarski .# |=ZF, el subconjunto L7” C . # es
el minimo submodelo transitivo de .# que contiene on” .

(1) g EZF (+ V=L) (con On# C L)

(2) Para todo submodelo transitivo .4 C .# tal que on? c .,
tenemos que: L4 C ¥ y L7 =L"

Demo. Ejercicio

8En el sentido de la metateoria
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V=L implica AC

Proposicién (en ZF)

Consecuencias
0@80000000

Todos los conjuntos L, (« € On) son bien ordenables,
asi como la clase L = ,co, La )
Demo. Para todo = € L, se nota £(z) al minimo ordinal tal que € Ly(a).
Ya construimos una funcional (<) +— (<*) que asocia a cada buen orden < sobre un
conjunto X un buen orden <* sobre el conjunto Def(X).
Por recursién sobre a se construye un buen orden <, sobre L del siguiente modo:
@ El buen orden < sobre Ly = O es el orden vacio
@ Para todo ordinal «, el buen orden <. sobre L1 = Def(L,) es el orden <7
@ Para todo ordinal limite «, el buen orden <, sobre L, = U;3<a Lg esta definido por:
T<ay = U2) <ly) V (@) =Ly) A o <e)y) (paratodos z,y € La)
Luego, se define el buen orden <, sobre la clase L = ¢, La, escribiendo:
e<iy = L@) <Ly V () =£y) A @ <ew y)  (paratodos z,y € L) O
y

Corolario: ZF F V=L = AC
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Hipdtesis generalizada del continuo (HGC)

o Recordatorio: La jerarquia (R, )acon de los cardinales infinitos
estd definida (en ZF) por:

Ry = w Nop1 = NI Ny = supN, (X limite)
a<A

@ También se define (en ZFC) la jerarquia (34)aecon por:
Jy = w Jog1 = 27 Jy = supd, (X limite)

a<A
(Observar que |B(w)] = |R| = 1)

o Con estas notaciones (en ZFC), se notan:

HC: 2% =1y, (hipdtesis del continuo)
< N, = :1

HGC: (Va € On) MNa = Not1 (hip. gen. del continuo)
< (VaeOn) N, =3,
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Cardinal de las operaciones de clase ¥; (1/2)
Proposicién (Cardinal de las operaciones X) (en ZFC)
Sea y = F(z) una funcional de clase 1, definida a partir de una
férmula o(z,y) de clase X1 (sin pardmetros). Entonces:

|F(z)] < max(|Cl(z)|, No) (para todo z € dom(F))
donde Cl(z) es la clausura transitiva de

/

Demo. Sin pérdida de generalidad, se puede suponer que la férmula ¢(z,y) (“y = F(z)")
es estrictamente X1 (es decir: ¢(z,y) = 3ZY(Z, z,y), donde ¢ (Z, z,y) es Ag).
En lo que sigue, se fija x € dom(F') asi como un ordinal « tal que z € V.
1. Reflexién. Por reflexién, existe 8 > « tal que (Jy € Vi) OVB(z,y) < Tyo(z,y),
y como Jy ¢(z,y) (pues z € dom(F')), se deduce que (Jy € Vi) 0B (z, Y).
2. Lowenheim-Skolem. Sea P := Cl({z}) = {z} U Cl(z) (notar que |P| = |Cl(z)| + 1).
Por el teorema de Lowenheim-Skolem, existe Q@ C Vj tal que P C Q, |Q| < max(|P|,Ro)
= max(|Cl(z)|, Ro), y tal que (Q, €) es elementalmente equivalente a (Vj3, €).
Y como (Jy € V) ©"B (z,y), se deduce que (Fy € Q) % (z, y). (..)
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Cardinal de las operaciones de clase (2/2)

Demo (continuacién y fin). Tenemos que (Jy € Q) v (z, ).

3. Colapso de Mostowski. Como el conjunto V3 es transitivo, el modelo (V, €) cumple el
axioma de extensionalidad, asi como el submodelo elemental (Q, €). Entonces la relacién €
restringida a @ es extensional, es decir: (Vz,2' €Q)((2NQ) = (' NQ) = z = 2').

Por el teorema de Mostowski, existe un (dnico) conjunto @’ transitivo equipado con un (tinico)
isomorfismo u : (Q, €) = (Q’, €), definido por: u(z) = {u(2’) : 2’ € (zNQ)} (2 € Q).
Luego se demuestra que para toda férmula interna f € Form,, (n € w), tenemos que:

Vo1, ..., 20 €Q)((Q,€) E f(z1,...,20) & (Q,€) F flu(@r), ..., u(zn)))

(por induccién sobre la férmula f € Form). Ademds como el subconjunto P = Cl({z}) C Q
es transitivo, tenemos que u(z) = z para todo z € P (por €-induccién), entonces P C Q’.
Por lo tanto, para cada férmula interna f € Form,,, tenemos que:

(le,...,rnEP)((Q,E) E flz1,...20) & (Q,€) ':f(Tlava))

Considerando ahora la férmula f := (3y)[¢](x1,y) con el pardmetro z; := x € P, se deduce
7 7
que (FyeQ)p%(z,y) & (ByeQ’) ¢ (x,y), yporlotanto (Fye Q') p?(z,y).

4. Ascencién Por lo anterior, existe y € Q' tal que L,DQ/(I, y). Pero como (Q’, €) es un
submodelo transitivo de (V, €), y como la férmula ¢ es X1, se deduce que ¢(z,y) (por
ascensién). Por lo tanto, tenemos que y = F(z), y como y C Q' (pues Q’ es transitivo),

se concluye que: | F(z)] = |y] < 1Q'] = |Q| < max(|P], Ro) = max(ICI(x)], Ro). =




Modelos conjuntistas Modelos de clase Principio de reflexién Conjuntos constructibles Consecuencias
0000000000000000  0000000000000000  0OOO00000000 00000000000000000000000000 000008000

Cardinal de los conjuntos L,

@ Notacién: Para todo z € L, se nota {(z) :=min{a € On : = € L.}

(1) Para todo o > w, tenemos que |L,| = |cf
(2) Para todo x € L, tenemos que |{(z)| < max(|Cl(z)|, o)

Demo. Para todo a@ > w, tenemos que |Lq| < max(|Cl(a)|,Ro) = || por la Prop. anterior,
pues la funcional Y = L, es £;.Y como a C L, se concluye que |L,| = |a].

(2) Se observa que la funcional « = £(z) es X, pues:

a=¥Lz) & On(a) ANIY (Y =LoAz€eY) AN (V8<a)dY (Y =LAz ¢Y).

Por la Prop. anterior, se deduce que |£(z)| < max(|Cl(z)|, Rg) para todo z € L. O
£
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V=L implica HGC

Consecuencias
00000000000000000000000000 000000800

@ Ya vimos en la demostracién de (L, €) = ZF que:

‘J3L($) = Pxz)NL € L (para todo z € L)
——

conjunto potencia en L

Proposicién (en ZFC)
Para todo ordinal oo € On:

(1) [BERa)| = [BRa) NL| < Rays

(2) Si ademds V=L, entonces | BRy)| = Nat1

Demo. (1) Dado a € P(Ry) N L, tenemos que [£(a)| < max(|Cl(a)|,Ng) < Ry, entonces
l(a) < Ro41 yluego a € LNaJrl. Acabos de mostrar que P(R,)NL C LRaJrl, y por lo
tanto: |[P(Ra) N L| < [Ln, | = Naga.
(2) Si ademds V=L, entonces |P(Na)| = [PRa) N L| < Rgp1, ycomo [P(R,)|[ > Ng
(por el teorema de Cantor), se deduce que |[P(Ry)| = Nat1.

Corolario: ZF - V=L = HGC
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Absolutez de las férmulas aritméticas

@ En ZF, se llama férmula aritmética a toda férmula ¢(Z) cuyas
cuantificaciones son relativizadas a V,, es decir tal que

(ZF ) VE (p(F) & Y (Y =V, AoV, )))
para cierta férmula (Y, ) de clase Ay

Proposicién (Absolutez de las férmulas aritméticas)

Toda férmula aritmética ¢(Z) es absoluta con respecto a cualquier
modelo interno M de ZF: (VZeV,) (p(Z) & oM(Z))

Demo. Recordando que V,, = L,,, se observa que para todos & € V,,, tenemos que:
(@) < Y (Y =L, Apo(Y,T))
& AYeM) (Y = L)M Aol (v,7) & oM (@) O

Corolario: ZF, ZFC y ZF 4+ V=L (asi como todas las teorias intermedias)
demuestran exactamente las mismas férmulas aritméticas J
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Conclusién

@ En lo anterior, definimos (adentro de ZF) el universo constructible

L= |JLa, con Lo := |JDef(Ly) J

aceOn B<a

y demostramos (en ZF) que:
(1) L es un modelo interno de ZF + V=1L

(2) L estad incluido en todo modelo interno de ZF
(3) V=L = AC A HGC

@ Por (1) es claro que ZF 4+ V=L es equiconsistente con ZF,
y por (3) tenemos las inclusiones:

/F- Cc ZF ¢ ZFC ¢ ZFC+HGC C ZF+V=L
@ Por lo tanto, las 5 teorias anteriores son equiconsistentes:

ZF~ ~ ZF ~ ZFC ~ ZFC+HGC ~ ZF+ V=1L |

Ademas, dichas teorias demuestran las mismas férmulas aritméticas
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