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4 Mezclas y principio del máximo
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1 Álgebras booleanas

2 Construcción del modelo booleano V B

3 Interpretación de las fórmulas
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Álgebras booleanas

Definición (Álgebra booleana)

Un álgebra booleana es un conjunto ordenado B = (B,≤) tal que:

(1) B tiene ḿınimo y máximo:

0 := min(B) y 1 := max(B)

(2) Cada dos elementos x, y ∈ B tienen ı́nfimo y supremo:

x ∧ y := inf{x, y} y x ∨ y := sup{x, y}

(3) ∧ (resp. ∨) es distributiva con respecto a ∨ (resp. ∧):

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

(x, y, z ∈ B)

(4) Cada elemento x ∈ B tiene un complemento ¬x ∈ B, tal que:

x ∧ ¬x = 0 y x ∨ ¬x = 1

Álgebra booleana = ret́ıculo acotado, distributivo y complementado
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Observaciones (1/2)

Álgebra booleana = ret́ıculo acotado, distributivo y complementado

Las dos leyes de distributividad son equivalentes

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
x ∨ (y ∧ z) = (x ∨ y) ∨ (x ∨ z)

(x, y, z ∈ B)

Dichas leyes implican que el complemento ¬x (de cada x) es único.

Es decir: ¬x está definido por x ∧ ¬x = 0 y x ∨ ¬x = 1

La complementación x 7→ ¬x es una involución ant́ıtona:

¬¬x = x y (x ≤ y sii ¬y ≤ ¬x)

En particular, la complementación intercambia ∧ con ∨:

¬(x ∧ y) = ¬x ∨ ¬y y ¬(x ∨ y) = ¬x ∧ ¬y
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Observaciones (2/2)

Se definen la implicación x→ y y la equivalencia x↔ y por:

x→ y := ¬x ∨ y y x↔ y := (x→ y) ∧ (y → x)

Tenemos que:

¬(x→ y) = x ∧ ¬y y ¬(x↔ y) = (x ∧ ¬y) ∨ (y ∧ ¬x)
= x △ y (diferencia simétrica)

Relaciones útiles: ¬x↔ y = x↔ ¬y = ¬(x↔ y) = x △ y
¬x △ y = x △ ¬y = ¬(x △ y) = x↔ y

Se puede caracterizar el orden x ≤ y mediante ∧, ∨ y →:

Además:

x ≤ y sii x ∧ y = x
sii x ∨ y = y
sii x→ y = 1

x = y sii x↔ y = 1
sii x △ y = 0
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Ejemplos

1 := {0 = 1} (álgebra booleana degenerada)

2 := {0, 1} con 0 < 1 (álgebra booleana trivial)

P(X) con ⊆ (conjunto potencia)

▶ Observar que 1 ≃ P(∅) y 2 ≃ P({∗})

Proposición (Producto de álgebras booleanas)

El producto
∏
i∈I

Bi de una familia (Bi)i∈I de álgebras booleanas

(equipado con el orden producto) también es un álgebra booleana

▶ Observar que P(X) ≃ 2X =
∏
∈X

2

Sea Ω un conjunto. Toda σ-álgebra A ⊆ Ω (equipada con ⊆) es una
subálgebra booleana del álgebra P(Ω) (con ⊆).

Más aún, A es una σ-álgebra booleana (i.e. con todos ı́nf./sup. numerables)
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Morfismos de álgebras booleanas

Definición (Morfismo de álgebras booleanas)

Sean B y B′ dos álgebras booleanas. Una función f : B → B′ es un
morfismo de álgebras booleanas cuando:

f(¬x) = ¬f(x)
f(x ∧ y) = f(x) ∧ f(y) f(0B) = 0B′

f(x ∨ y) = f(x) ∨ f(y) f(1B) = 1B′

(x, y ∈ B)

Definición: BA = categoŕıa de las álgebras booleanas
(Es una subcategoŕıa no llena de Pos, la categoŕıa de los conjuntos ordenados)

Propiedades:

(1) Un mapa es un isomorfismo en BA sii es un isomorfismo en Pos

(2) Todo morfismo inyectivo f : B → B′ en BA es un encaje en Pos:

x ≤ y ⇔ f(x) ≤ f(y) (x, y ∈ B)

(3) Por lo tanto, todo morfismo biyectivo en BA es un isomorfismo
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Otras presentaciones equivalentes (1/2)

Se pueden definir las álgebras booleanas de otras maneras equivalentes:

Álgebras booleanas definidas a partir de sus operaciones

Un álgebra booleana es un conjunto B dado con elementos 0, 1 ∈ B
y operaciones (¬) : B → B y (∧), (∨) : B2 → B tales que:

(x ∧ y) ∧ z = x ∧ (y ∧ z) (x ∨ y) ∨ z = x ∨ (y ∨ z)
x ∧ y = y ∧ x x ∨ y = y ∨ x

x ∧ (y ∨ x) = x x ∨ (y ∧ x) = x

x ∧ ¬x = 0 x ∨ ¬x = 1

Con la definición anterior, se deduce el orden por:

x ≤ y sii x ∧ y = x

sii x ∨ y = y
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Otras presentaciones equivalentes (2/2)

Se pueden definir las álgebras booleanas de otras maneras equivalentes:

Álgebras booleanas definidas como anillos (conmutativos de caracteŕıstica 2)

Cada álgebra booleana B constituye un anillo conmutativo de
caracteŕıstica 2, cuyas operaciones son definidas por:

0 := 0, 1 := 1,

x+ y := x △ y, xy := x ∧ y

Rećıprocamente, cada anillo conmutativo de caracteŕıstica 2 es un
álgebra booleana, cuyas operaciones son definidas por:

0 := 0, 1 := 1, ¬x := x+ 1,

x ∧ y := xy, x ∨ y := xy + x+ y

Con esta presentación (equivalente), la noción de morfismo de
álgebras booleanas coincide con la noción de morfismo de anillos
(restringida a los anillos conmutativos de caracteŕıstica 2)
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Filtros e ideales (1/2)

Sea B un álgebra booleana

Definición (Filtro / Ideal)

Un filtro de B es un subconjunto F ⊆ B tal que:

(1) 1 ∈ F (F no es vaćıo)

(2) Si x ∈ F e y ≥ x, entonces y ∈ F (F está cerrado superiormente)

(3) Si x, y ∈ F , entonces x ∧ y ∈ F (F está cerrado por ∧)

Si además 0 /∈ F (es decir: F ̸= B), F es un filtro propio

Un ideal de B es un subconjunto I ⊆ B tal que:

(1) 0 ∈ I (I no es vaćıo)

(2) Si x ∈ I e y ≤ x, entonces y ∈ I (I está cerrado inferiormente)

(3) Si x, y ∈ I, entonces x ∨ y ∈ I (I está cerrado por ∨)

Si además 1 /∈ I (es decir: I ̸= B), I es un ideal propio

Intuición: – Filtro = criterio de verdad = “entorno” de 1
– Ideal = criterio de falsedad = “entorno” de 0
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Filtros e ideales (2/2)

Filtros e ideales son duales, v́ıa complementación:

F filtro sii ¬F ideal

I ideal sii ¬I filtro

escribiendo ¬X := {¬x : x ∈ X} para todo X ⊆ B

Además, como el conjunto de los filtros (resp. de los ideales) de B
es estable por intersección arbitraria...

... se puede definir el filtro (el ideal) generado por cualquier X ⊆ B

Proposición (Preimagen de un filtro/ideal)

Dado un morfismo f : B → B′ de álgebras booleanas, la preimagen de
cualquier filtro (resp. ideal) de B′ por f es un filtro (resp. ideal) de B

En particular:

{
f−1({0B′}) es un ideal de B

f−1({1B′}) es un filtro de B
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Cocientes

Se puede cocientar un álgebra booleana B por cualquier filtro F ⊆ B
o por cualquier ideal I ⊆ B (por dualidad):

B/F := B/∼F , con x ∼F y :≡ (x↔ y) ∈ F

B/I := B/∼I , con x ∼I y :≡ (x △ y) ∈ I

Intuición:

{
B/F = colapsar F sobre 1 (cociente por un filtro)

B/I = colapsar I sobre 0 (cociente por un ideal)

Proposición (Álgebra booleana cociente)

El cociente B/F (resp. B/I) es un álgebra booleana

Para todo x ∈ B, tenemos que:

[x]/F = x↔ F [x]/I = x △ I

[0]/F = 0 ↔ F = ¬F [0]/I = 0 △ I = I

[1]/F = 1 ↔ F = F [1]/I = 1 △ I = ¬I
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Fracción de un álgebra booleana

Para todo x ∈ B:
↑{x} es el filtro principal

↓{x} es el ideal principal

}
generado por x

Obs.: ↓{x} y ↑{x} son álgebras booleanas (con el orden inducido),
pero en general no son subálgebras booleanas de B

Se definen

{
B/x=0 := B/↓{x} ≃ ↑{x} ≃ ↓{¬x}
B/x=1 := B/↑{x} ≃ ↓{x} ≃ ↑{¬x}

Proposición (Fracción con respecto a un elemento)

Para todo x ∈ B, tenemos que:

B ≃ B/x=0 ×B/¬x=0

≃ B/x=0 ×B/x=1 ≃ ↑{x} × ↓{x}

Corolario (Álgebras booleanas finitas)

Las álgebra booleanas finitas son las de la forma B ≃ 2n, con n ∈ ω
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Otros ejemplos de cocientes

Sea B := (P(X),⊆), con X infinito. Se definen:

IX := {Y ⊆ X : Y finito} (conjuntos finitos de X)

FX := {Y ⊆ X : Y c finito} = ¬IX (conjuntos cofinitos de X)

El álgebra cociente P(X)/IX = P(X)/FX no tiene átomos(∗);
por lo tanto no es de la forma P(Z) para ningún Z (a menos de iso)

Sea (Ω,A, µ) un espacio de medida. El conjunto

[µ = 0] := {X ∈ A : µ(X) = 0}
es un σ-ideal de A (i.e. con todos los supremos numerables).

El cociente A/[µ = 0] también es una σ-álgebra booleana

Ejercicio (Álgebra booleana numerable sin átomos)

(1) Construir un álgebra booleana numerable sin átomos

(2) Demostrar que dicha álgebra es única (a menos de iso)

(∗)Átomo de B = elemento minimal de B − {0}
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Ultrafiltros

Proposición y definición (Ultrafiltro)

Para todo filtro F ⊆ B, las siguientes aserciones son equivalentes:

F es un filtro propio (i.e. ̸= B) maximal

F c (= B − F ) es un ideal de B

F c = ¬F
1F : B → 2 (función indicatriz) es un morfismo

B/F ≃ 2

Cuando es el caso, se dice que F es un ultrafiltro

El dual de un ultrafiltro es un ideal primo

Teorema del ultrafiltro

Todo filtro propio F ⊊ B se puede extender en un ultrafiltro U ⊇ F

El teorema del ultrafiltro es consecuencia del axioma de elección
(v́ıa el lema de Zorn), pero es estrictamente más débil
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Álgebras booleanas completas

Definición (Álgebras booleanas completas)

(1) Un álgebra booleana B es completa cuando todo conjunto X ⊆ B
tiene ı́nfimo y supremo. Notación:∧
x∈X

x =
∧
X := inf(X) y

∨
x∈X

x =
∨
X := sup(X)

(2) Sean B, B′ álgebras booleanas completas. Un mapa f : B → B′ es
un morfismo de álgebras booleanas completas cuando conmuta con
la negación y con todos los ı́nfimos y supremos:

f(¬x) = x, f
(∧

X
)
=

∧
f(X), f

(∨
X
)
=

∨
f(X)

para todos x ∈ B y X ⊆ B

Ejercicio: Probar que x ∧
∨
i∈I

yi =
∨
i∈I

(x ∧ yi) y x ∨
∧
i∈I

yi =
∧
i∈I

(x ∨ yi)

En lo siguiente, sólo consideraremos álgebras booleanas completas
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1 Álgebras booleanas

2 Construcción del modelo booleano V B

3 Interpretación de las fórmulas
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Funciones totales y parciales en ZF (recordatorio)

En ZF, las funciones son representadas por grafos funcionales:

(x, y) := {{x}, {x, y}}
f función :≡ (∀z ∈ f)∃x∃y z = (x, y) ∧

∀x∀y ∀y′ ((x, y) ∈ f ∧ (x, y′) ∈ f ⇒ y = y′)

dom(f) := {x ∈
⋃⋃

f : ∃y (x, y) ∈ f}
img(f) := {y ∈

⋃⋃
f : ∃x (x, y) ∈ f}

f : A→ B :≡ f función ∧ dom(f) = A ∧ img(f) ⊆ B

BA := {f ⊆ A×B : (f : A→ B)}

También se pueden representar funciones parciales:

f : A ⇀ B :≡ f función ∧ dom(f) ⊆ A ∧ img(f) ⊆ B

B⊆A := {f ⊆ A×B : (f : A ⇀ B)} =
⋃
A′⊆A

BA
′
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Construcción del modelo booleano V B (1/2)

En lo que sigue, se trabaja en ZF (o una extensión), y se fija un álgebra
booleana completa B, que parametriza la construcción

De modo análogo a la jerarqúıa acumulativa, se define la sucesión
transfinita (V B

α )α∈On por:

V B
α :=

⋃
β<α

B⊆V B
β (α ∈ On)

Es claro que la sucesión (V B
α )α∈On es creciente. Además:

Proposición

Para todo α ∈ On, tenemos que:

V B
0 = ∅, V B

α+1 = B⊆V B
α y V B

α =
⋃
β<α

V B
β (si α ĺımite)

Demo. Se sigue de que X ⊆ Y ⇒ B⊆X ⊆ B⊆Y .

Recordatorio: X ⊆ Y ̸⇒ BX ⊆ BY (razón para preferir funciones parciales)
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Construcción del modelo booleano V B (2/2)

Definición (Modelo booleano V B)

El modelo booleano V B es la unión transfinita de (V B
α )α∈On :

u ∈ V B sii (∃α∈On) u ∈ V B
α

Sus elementos son los B-nombres

Lema: Para todo u, tenemos que:

u ∈ V B sii u función ∧ dom(u) ⊆ V B ∧ img(u) ⊆ B

Intuición: V B = B⊆V B
=

⋃
X⊆V B (X conjunto)

BX

Principio de inducción en V B

Dada una fórmula φ(u) (sobre u ∈ V B), tenemos que:

(∀u∈V B)
(
(∀v ∈dom(u))φ(v) ⇒ φ(u)

)
⇒ (∀u∈V B)φ(u)
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Encaje de V en V B

A cada conjunto x ∈ V se asocia el B-nombre x̌ ∈ V B definido por:

x̌ := {(y̌, 1) : y ∈ x} (por ∈-recursión)

y se considera la clase V̌ := {x̌ : x ∈ V } (⊆ V B)

▶ Los elementos de V̌ son los B-nombres estándar

Lema

(1) Si x ∈ Vα, entonces x̌ ∈ V B
α (α ∈ On)

(2) La correspondencia x 7→ x̌ es inyectiva

Corolario: Las clases V B y V̌ (⊆ V B) son clases propias

Intuición: V̌ = copia de V adentro de V B

▶ Permite ver V B como una “expansión” de V (∼= V̌ ⊆ V B)
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Intermezzo: Los conjuntos finitos como listas (1/2)

En programación funcional, se pueden representar los conjuntos
finitos por listas finitas. Por ejemplo en Haskell:

type Set = [Int] -- conjuntos de enteros

forall_in :: Set -> (Int -> Bool) -> Bool -- combinador universal
...

exists_in :: Set -> (Int -> Bool) -> Bool -- combinador existencial
...

Como la representación de un conjunto por una lista no es única,
se necesita trabajar a menos de igualdad extensional:

set_mem :: Int -> Set -> Bool -- pertenencia directa
set_mem x u = exists_in u (\y -> y == x)

set_sub :: Set -> Set -> Bool -- inclusion
set_sub u v = forall_in u (\x -> set_mem x v)

set_eq :: Set -> Set -> Bool -- igualdad extensional
set_eq u v = set_sub u v && set_sub v u

�
¡Sólo funciona con listas bien fundadas!
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Intermezzo: Los conjuntos finitos como listas (2/2)

¿Qué pasa si queremos trabajar con conjuntos de conjuntos?
En Haskell, tenemos que introducir un tipo recursivo:

data Set = C [Set] -- conjuntos recursivos

forall_in :: Set -> (Set -> Bool) -> Bool -- combinator universal
...

exists_in :: Set -> (Set -> Bool) -> Bool -- combinator existencial
...

En este marco, la igualdad, la inclusión y la pertenencia tienen que
ser definidas por recursión mutua:

set_eq :: Set -> Set -> Bool -- igualdad extensional
set_eq u v = set_sub u v && set_sub v u

set_sub :: Set -> Set -> Bool -- inclusion
set_sub u v = forall_in u (\x -> set_mem x v)

set_mem :: Set -> Set -> Bool -- pertenencia extensional
set_mem u v = exists_in v (\v’ -> set_eq u v’)

�
¡Sólo funciona con listas y conjuntos bien fundados!
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Interpretación de las fórmulas atómicas

Definición

A cada u, v ∈ V B se asocian valores Ju = vK, Ju ⊆ vK, Ju ∈ vK ∈ B
definidos por recursión mutua sobre los rangos de u y v en V B:

Ju
α

= v
α

K := Ju
α

⊆ v
α

K ∧ Jv
α

⊆ u
α

K

Ju
α

⊆ v
α

K :=
∧

u′∈dom(u)

(
u(u′) → Ju′

<α

∈ v
α

K
)

Ju
<α

∈ v
α

K :=
∨

v′∈dom(v)

(
v(v′) ∧ Ju

<α

= v′

<α

K
)

Intuición: Ju = vK = Ju ⊆ v ∧ v ⊆ uK
Ju ⊆ vK = J∀x′ (x′ ε u⇒ x′ ∈ v)K
Ju ∈ vK = J∃y′ (y′ ε v ∧ u = y′)K

donde x ε y es la relación de pertenencia fuerte (o intensional)

interpretada por Ju ε vK :=

{
v(u) si u ∈ dom(v)
0 si no
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Propiedades de J· = ·K y J· ∈ ·K (1/7)

Proposición (J· = ·K es una equivalencia en V B)

Para todos u, v, w ∈ V B:

(1) Ju = uK = 1

(2) Ju = vK = Jv = uK

(3) Ju = vK ∧ Jv = wK ≤ Ju = wK

Demo. (1) Se demuestra que Ju = uK = 1 por inducción sobre u ∈ V B.

Para ello, supongamos que Ju′ = u′K = 1 para todo u′ ∈ dom(u) (HI).

Para todo v ∈ dom(u), tenemos que Jv = vK = 1, luego

u(v) = u(v) ∧ Jv = vK ≤
∨

u′∈dom(u)

(
u(u

′
) ∧ Jv = u

′K
)

= Jv ∈ uK,

es decir: u(v) ≤ Jv ∈ uK. Por lo tanto, tenemos que:

Ju = uK = Ju ⊆ uK =
∧

v∈dom(u)

(
u(v) → Jv ∈ uK

)
=

∧
v∈dom(u)

1 = 1. (...)
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Propiedades de J· = ·K y J· ∈ ·K (2/7)

Demo (continuación). (2) Tenemos que

Ju = vK = Ju ⊆ vK ∧ Jv ⊆ uK = Jv ⊆ uK ∧ Ju ⊆ vK = Jv = uK.

(3) Por inducción sobre u, v, w ∈ V B. Supongamos que

Ju′ = v′K ∧ Jv′ = w′K ≤ Ju′ = w′K

para todos u′ ∈ dom(u), v′ ∈ dom(v), w′ ∈ dom(w). Dado u′ ∈ dom(u), tenemos que:

Jv ⊆ wK =
∧

v′∈dom(v)

(
v(v

′
) → Jv′ ∈ wK

)
=

∧
v′∈dom(v)

(
v(v

′
) →

∨
w′∈dom(w)

(
w(w

′
) ∧ Jv′ = w

′K
))

≤
∧

v′∈dom(v)

(
v(v

′
) ∧ Ju′

= v
′K →

∨
w′∈dom(w)

(
w(w

′
) ∧ Jv′ = w

′K
))

≤
∧

v′∈dom(v)

(
v(v

′
) ∧ Ju′

= v
′K →

∨
w′∈dom(w)

(
w(w

′
) ∧ Ju′

= w
′K
))

(por HI)

=
∨

v′∈dom(v)

(
v(v

′
) ∧ Ju′

= v
′K
)

→
∨

w′∈dom(w)

(
w(w

′
) ∧ Ju′

= w
′K
)

= Ju′ ∈ vK → Ju′ ∈ wK . (∗)
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Propiedades de J· = ·K y J· ∈ ·K (3/7)

Demo (fin (3)). Ya vimos que Jv ⊆ wK ≤ Ju′ ∈ vK → Ju′ ∈ wK (u′ ∈ dom(u)). (∗)
Por lo tanto, tenemos que:

Ju ⊆ vK ∧ Jv ⊆ wK =
∧

u′∈dom(u)

(
u(u

′
) → Ju′ ∈ vK

)
∧ Jv ⊆ wK

≤
∧

u′∈dom(u)

((
u(u

′
) → Ju′ ∈ vK

)
∧ Jv ⊆ wK

)
≤

∧
u′∈dom(u)

((
u(u

′
) → Ju′ ∈ vK

)
∧

(
Ju′ ∈ vK → Ju′ ∈ wK

))
(por (∗))

≤
∧

u′∈dom(u)

(
u(u

′
) → Ju′ ∈ wK

)
= Ju ⊆ wK .

Intercambiando u/u′ con w/w′ en el razonamiento anterior, también se deduce de HI que:

y por lo tanto:

Jw ⊆ vK ∧ Jv ⊆ uK ≤ Jw ⊆ uK

Ju = vK ∧ Jv = wK ≤ Ju = wK.
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Propiedades de J· = ·K y J· ∈ ·K (4/7)

Proposición (J· ∈ ·K es compatible con J· = ·K en V B)

Para todos u, v, w, w⃗ ∈ V B:

(1) u(v) ≤ Jv ∈ uK si v ∈ dom(u)

(2) Ju = vK ∧ Jv ∈ wK ≤ Ju ∈ wK

(3) Ju ∈ vK ∧ Jv = wK ≤ Ju ∈ wK

Observación: En lógica de primer orden, las fórmulas

∀xx = x

∀x∀y (x = y ⇒ y = x)

∀x∀y ∀z (x = y ∧ y = z ⇒ x = z)

∀x∀y ∀z (x = y ∧ y ∈ z ⇒ x ∈ z)

∀x∀y ∀z (x ∈ y ∧ y = z ⇒ x ∈ z)

(= reflexiva)

(= simétrica)

(= transitiva)

(∈ compat. con = por la izq.)

(∈ compat. con = por la der.)

permiten axiomatizar la igualidad(†) en cualquier sistema de deducción clásica
(NK, LK) sin reglas para la igualdad

(†)Para el lenguaje de ZF, cuyo único śımbolo no lógico es ∈
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Propiedades de J· = ·K y J· ∈ ·K (5/7)

Demo. (1) u(v) = u(v) ∧ Jv = vK ≤
∨

u′∈dom(u)

(
u(u

′
) ∧ Ju′

= vK
)

= Jv ∈ uK.

(2) Ju = vK ∧ Jv ∈ wK = Ju = vK ∧
∨

w′∈dom(w)

(
w(w

′
) ∧ Jw′

= vK
)

=
∨

w′∈dom(w)

(
w(w

′
) ∧ Jw′

= vK ∧ Jv = uK
)

≤
∨

w′∈dom(w)

(
w(w

′
) ∧ Jw′

= uK
)

= Ju ∈ wK .

(3) Ju ∈ vK ∧ Jv = wK =
∨

v′∈dom(v)

(
v(v

′
) ∧ Jv′ = uK

)
∧ Jv = wK

=
∨

v′∈dom(v)

(
Ju = v

′K ∧ v(v′) ∧ Jv = wK
)

≤
∨

v′∈dom(v)

(
Ju = v

′K ∧ v(v′) ∧ (v(v
′
) → Jv′ ∈ wK)

)
≤

∨
v′∈dom(v)

(
Ju = v

′K ∧ Jv′ ∈ wK
)

≤ Ju ∈ wK . (por (2))
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Propiedades de J· = ·K y J· ∈ ·K (6/7)

Recordatorio: Cada conjunto x (usual) está representado en V B

por el B-nombre x̌ definido por:

x̌ := {(y̌, 1) : y ∈ x} (∈ V B)

Notación: V̌ := {x̌ : x ∈ V } ⊆ V B (imagen de x 7→ x̌)

Proposición

Para todos x, y ∈ V e u ∈ V B:

(1) Ju ∈ x̌K =
∨
y∈x

Ju = y̌K

(2) Jx̌ ∈ y̌K =

{
1 si x ∈ y

0 si no
Jx̌ = y̌K =

{
1 si x = y

0 si no

Intuición: La correspondencia

{
V → V B

x 7→ x̌
es un “encaje” de V en V B
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Propiedades de J· = ·K y J· ∈ ·K (7/7)

Demo. (1) Tenemos que:

Ju ∈ x̌K =
∨

v∈dom(x̌)

(
x̌(v) ∧ Ju = vK

)
=

∨
y∈x

(
1 ∧ Ju = y̌K

)
=

∨
y∈x

Ju = y̌K.

(2) Primero se demuestra que Jx̌ = y̌K =

{
1 si x = y

0 si no
por ∈-inducción sobre x e y.

Suponiendo que la propiedad se cumple para todos x′ ∈ x, y′ ∈ y (HI), se observa que:

Jx̌ ⊆ y̌K =
∧

u′∈dom(x̌)

(
x̌(u

′
) → Ju′ ∈ y̌K

)
=

∧
x′∈x

Jx̌′ ∈ y̌K =
(1)

∧
x′∈x

∨
y′∈y

Jx̌′
= y̌

′K

=
(HI)

∧
x′∈x

∨
y′∈y

{
1 si x′ = y′

0 si no
=

{
1 si x ⊆ y

0 si no

De modo simétrico, tenemos que Jy̌ ⊆ x̌K =

{
1 si y ⊆ x

0 si no
y por lo tanto:

Jx̌ = y̌K = Jx̌ ⊆ y̌K ∧ Jy̌ ⊆ x̌K =

{
1 si x = y

0 si no
(2.1)

Luego, tenemos que: Jx̌ ∈ y̌K =
(1)

∨
z∈y

Jx̌ = žK =
(2.1)

∨
z∈y

{
1 si x = z

0 si no
=

{
1 si x ∈ y

0 si no
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El śımbolo de predicado V̌

Recordatorio: V̌ := {x̌ : x ∈ V } ⊆ V B

En lo siguiente, es cómodo trabajar en el lenguaje de ZF extendido
con un predicado unario “x ∈ V̌ ” interpretado en V B por:

Ju ∈ V̌ K :=
∨
x∈V

Ju = x̌K (u ∈ V B)

▶ Lenguaje L∈,V̌ (⊋ L∈ = LZF)

Proposición (J· ∈ V̌ K es compatible con J· = ·K en V B)

Para todos u, v ∈ V B: Ju = vK ∧ Jv ∈ V̌ K ≤ Ju ∈ V̌ K

Demo. Para todos u, v ∈ V̌ , tenemos que

Ju = vK ∧ Jv ∈ V̌ K = Ju = vK ∧
∨

x∈V

Jv = x̌K

=
∨

x∈V

(
Ju = vK ∧ Jv = x̌K

)
≤

∨
x∈V

Ju = x̌K = Ju ∈ V̌ K .
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Plan
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3 Interpretación de las fórmulas

4 Mezclas y principio del máximo

5 Transformación de V B en un modelo de Tarski
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Interpretación del lenguaje L∈,V̌

A partir de ahora, se trabaja en el lenguaje L∈,V̌ (⊋ LZF)

Se interpreta cada fórmula φ(x1, . . . , xn) por una funcional

b = Jφ(u1, . . . , un)K :
(
V B)n → B

Definición (Interpretación del lenguaje L∈,V̌ )

Ya definimos los valores de verdad Ju = vK, Ju ∈ vK, Ju ∈ V̌ K ∈ B
asociadas a las fórmulas atómicas (por inducción interna sobre u y v)

Se completa la definición por recursión externa sobre φ(x⃗):

J¬φ(u⃗)K := ¬Jφ(u⃗)K Jφ(u⃗) ⇒ ψ(u⃗)K := Jφ(u⃗)K → Jψ(u⃗)K

Jφ(u⃗) ∧ ψ(u⃗)K := Jφ(u⃗)K ∧ Jψ(u⃗)K Jφ(u⃗) ∨ ψ(u⃗)K := Jφ(u⃗)K ∨ Jψ(u⃗)K

J∀y φ(y, u⃗)K :=
∧

v∈V B

Jφ(v, u⃗)K J∃y φ(y, u⃗)K :=
∨

v∈V B

Jφ(v, u⃗)K

Notación: V B |= φ(u1, . . . , un) :≡ Jφ(u1, . . . , un)K = 1
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Corrección lógica

Proposición (Regla de Leibniz)

Sea φ(x, z⃗) una fórmula. Para todos u, v, w⃗ ∈ V B, tenemos que:

Ju = vK ∧ Jφ(u, w⃗)K ≤ Jφ(v, w⃗)K

Demo. Por inducción externa sobre la fórmula φ(x, z⃗), usando las propiedades de J· = ·K,
J· ∈ ·K y J· ∈ V̌ K en el caso donde φ(x, z⃗) es una fórmula atómica.

Dado un contexto Γ(x⃗) ≡ φ1(x⃗), . . . , φn(x⃗), se escribe:

JΓ(u⃗)K := Jφ1(u⃗)K ∧ · · · ∧ Jφn(u⃗)K

Teorema (Corrección)

Si un secuente Γ(x⃗) ⊢ φ(x⃗) es derivable en el sistema NK, entonces:

ZF ⊢ (∀u⃗∈V B) JΓ(u⃗)K ≤ Jφ(u⃗)K

Demo. Por inducción externa sobre la derivación de Γ(x⃗) ⊢ φ(x⃗), usando la identidad
Ju = uK = 1 para la regla =-intro y la Prop. anterior para la regla =-elim.
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Cuantificaciones relativizadas

Proposićıon (Cuantificaciones relativizadas)

Sea φ(x, z⃗) una fórmula. Para todos u, w⃗ ∈ V B, tenemos que:

J(∃x∈u)φ(x, w⃗)K =
∨

v∈dom(u)

(
u(v) ∧ Jφ(u, w⃗)K

)
J(∀x∈u)φ(x, w⃗)K =

∧
v∈dom(u)

(
u(v) → Jφ(v, w⃗)K

)

Demo. Dados u, w⃗ ∈ V B, tenemos que:

J(∃x∈u)φ(x, w⃗)K = J∃x (x ∈ u ∧ φ(x, w⃗))K =
∨

v∈V B

(
Jv ∈ uK ∧ Jφ(v, w⃗)K

)
=

∨
v∈V B

( ∨
u′∈dom(u)

(
u(u

′
) ∧ Jv = u

′K
)

∧ Jφ(v, w⃗)K
)

=
∨

u′∈dom(u)

(
u(u

′
) ∧

∨
v∈V B

(
Jv = u

′K ∧ Jφ(v, w⃗)K
))

=
∨

u′∈dom(u)

(
u(u

′
) ∧ J∃x (x = u

′ ∧ φ(x, w⃗))K
)

=
∨

u′∈dom(u)

(u(u
′
) ∧ Jφ(u′

, w⃗)K) .

La otra identidad se deduce por dualidad.
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Axioma de extensionalidad

Por la Prop. anterior, se observa que para todos a, b ∈ V B:

J(∀x∈ a) x ∈ b︸ ︷︷ ︸
inclusión usual

K =
∧

u∈dom(a)

(
a(u) → Ju ∈ bK

)
= Ja ⊆ b︸ ︷︷ ︸
inclusión primitiva

K

Luego por la def. de J· = ·K, se deduce que:

Ja = bK =
∧

u∈dom(a)

(
a(u) → Ju ∈ bK

)
∧

∧
u∈dom(b)

(
b(u) → Ju ∈ aK

)
= J(∀x∈ a) x ∈ bK ∧ J(∀x∈ b) x ∈ aK

= J∀x (x ∈ a⇔ x ∈ b)K

Por lo tanto:

Proposición (Validez del axioma de extensionalidad)

V B |= ∀a ∀b
(
∀x (x ∈ a⇔ x ∈ b) ⇒ a = b

)
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Axioma del par

Proposición (Validez del axioma del par)

V B |= ∀a ∀b ∃c ∀x (x ∈ c ⇔ x = a ∨ x = b)

Demo. Dados a, b ∈ V B, se define c ∈ V B por

dom(c) := {a, b} y c(a) = c(b) := 1.

Luego, para todo u ∈ V B se observa que

Ju ∈ cK =
∨

v∈dom(c)

(
c(v) ∧ Jv = uK

)
=

(
c(a) ∧ Ja = uK

)
∨

(
c(b) ∧ Jb = uK

)
= Ja = uK ∨ Jb = uK = Ju = a ∨ u = bK.
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Esquema de comprensión

Proposición (Validez de los axiomas de comprensión)

V B |= ∀z⃗ ∀a ∃b ∀x (x ∈ c ⇔ x ∈ a ∧ φ(x, z⃗))
para cada fórmula φ(x, z⃗) del lenguaje L∈,V̌

Demo. Dados w⃗, a ∈ V B, se define b ∈ V B por

dom(b) := dom(a) y b(u) := a(u) ∧ Jφ(u, w⃗)K (u ∈ dom(b))

Luego, para todo u ∈ V B se observa que

Ju ∈ bK =
∨

v∈dom(b)

(
b(v) ∧ Jv = uK

)
=

∨
v∈dom(a)

(
a(v) ∧ Jφ(v, w⃗)K ∧ Jv = uK

)
= J(∃y ∈ a) (φ(y, w⃗) ∧ y = u)K = Ju ∈ a ∧ φ(u, w⃗)K.
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Axioma de unión

Proposición (Validez del axioma de unión)

V B |= ∀a ∃b ∀x (x ∈ b ⇔ (∃y ∈ a) x ∈ y)

Demo. Dado a ∈ V B, se define b ∈ V B por

dom(b) :=
⋃

v∈dom(a)

dom(v) y b(u) := J(∃y∈ a)u ∈ yK (u ∈ dom(b))

Luego, para todo u ∈ V B se observa que

Ju ∈ bK =
∨

u′∈dom(b)

(
b(u

′
) ∧ Ju = u

′K
)

=
∨

u′∈dom(b)

(
J(∃y∈ a) u′ ∈ yK ∧ Ju = u

′K
)

≤ J(∃y ∈ a) u ∈ yK

mientras que:

Ju ∈ bK =
∨

u′∈dom(b)

(
J(∃y′ ∈ a) u′ ∈ y

′K ∧ Ju = u
′K
)

≥
∨

v∈dom(a)

∨
u′∈dom(v)

(
J(∃y′ ∈ a) u′ ∈ y

′K ∧ Ju = u
′K
)

≥
∨

v∈dom(a)

(
a(v) ∧

∨
u′∈dom(v)

(
v(u

′
) ∧

(
J(∃y′ ∈ a) u′ ∈ y

′K ∧ Ju = u
′K
)))

= J(∃y ∈ a)(∃x′ ∈ y)((∃y′ ∈ a) x′ ∈ y′ ∧ u = x′)K = J(∃y ∈ a) u ∈ yK .
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Axioma del conjunto potencia (1/2)

Proposición (Validez del axioma del conjunto potencia)

V B |= ∀a ∃b ∀x (x ∈ b ⇔ x ⊆ a)

Demo. Sea a ∈ V B. A cada u ∈ V B se asocia el nombre a↾u ∈ V B definido par

dom(a↾u) := dom(a) y (a↾u)(v) := a(v) ∧ Jv ∈ uK (v ∈ dom(a))

Se observa que

mientras

y por lo tanto

Ju ⊆ a↾u)K =
∧

v∈dom(u)

(
u(v) → Jv ∈ a↾uK

)
=

∧
v∈dom(u)

(
u(v) →

∨
v′∈dom(a)

(
a(v

′
) ∧ Jv′ ∈ uK ∧ Jv′ = vK

))
= J(∀y ∈u)(∃y′ ∈ a) (y′ ∈ u ∧ y′ = y)K = Ju ⊆ aK

Ja↾u ⊆ uK =
∧

v∈dom(a↾u)

(
(a↾u)(v) → Jv ∈ uK

)
=

∧
v∈dom(a)

(
a(v) ∧ Jv ∈ uK → Jv ∈ uK

)
= 1

Ju = a↾uK = Ju ⊆ a↾uK ∧ Ja↾u ⊆ uK = Ju ⊆ aK . (...)
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Axioma del conjunto potencia (2/2)

Demo (continuación). Además, se observa que

Ja↾u ⊆ aK =
∧

v∈dom(a↾u)

(
(a↾u)(v) → Jv ∈ aK

)
=

∧
v∈dom(a)

(
a(v) ∧ Jv ∈ uK → Jv ∈ aK

)
= 1.

Ahora se considera el nombre b ∈ V B definido por

dom(b) := Bdom(a) y b(u) := Ju ⊆ aK (u ∈ dom(b))

Luego, para todo u ∈ V B se observa que

mientras

y por lo tanto:

Ju ∈ bK =
∨

v∈dom(b)

(
b(v) ∧ Jv = uK

)
=

∨
v∈dom(b)

(
Jv ⊆ aK ∧ Jv = uK

)
≤ Ju ⊆ aK

Ju ∈ bK =
∨

v∈Bdom(a)

(
b(v) ∧ Jv = uK

)
≥ b(a↾u) ∧ Ja↾u = uK

= Ja↾u ⊆ aK ∧ Ju ⊆ aK = Ju ⊆ aK

Ju ∈ bK = Ju ⊆ aK.
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Axioma de infinitud

Proposición (Validez del axioma de infinitud)

V B |= ∃a
(
(∃x∈ a) ∀z z /∈ x ∧
(∀x∈ a)(∃y ∈ a) ∀z (z ∈ y ⇔ z ∈ x ∨ z = x)

)
Demo. Se considera el B-nombre a := ω̌ = {(ň, 1) : n ∈ ω},
donde ň = {(p̌, 1) : p < n} para todo n ∈ ω.

Para todos n ∈ ω y u ∈ V B, se observa que:

Ju ∈ q0K = 0

Ju ∈ (n+ 1)qK = Ju ∈ qn ∨ u = qnK

y por lo tanto:

J(∃x∈ a) ∀z z /∈ xK =
∨

n<ω

J∀z z /∈ xK ≥ J∀z z /∈ q0K = 1

y J(∀x∈ a)(∃y∈ a) ∀z (z ∈ y ⇔ z ∈ x ∨ z = x)K

=
∧

n<ω

∨
p<ω

J∀z (z ∈ qp ⇔ z ∈ qn ∨ z = qn)K

≥
∧

n<ω

J∀z (z ∈ (n+ 1)q ⇔ z ∈ qn ∨ z = qn)K = 1.
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Esquema de colección

Proposición (Validez de los axiomas de colección)

V B |= ∀z⃗ ∀a
(
(∀x∈ a) ∃y φ(x, y, z⃗) ⇒
∃b (∀x∈ a)(∃y ∈ b) φ(x, y, z⃗)

)
para cada fórmula φ(x, y, z⃗) del lenguaje L∈,V̌

Demo. Dados w⃗, a ∈ V B, se escribe

U :=
{
(u, h) ∈ dom(a) × B : (∃v ∈V B) Jφ(u, v, w⃗)K = h

}
.

Por construcción, tenemos que (∀(u, h)∈U)(∃v ∈V B) Jφ(u, v, w⃗)K = h, luego por el esquema

de colección, existe un conjunto W ⊆ V B tal que (∀(u, h)∈U)(∃v ∈W ) Jφ(u, v)K = h.

Ahora se considera el nombre b ∈ V B definido por

dom(b) := W y b(v) := 1 (v ∈ dom(b))

Sea u ∈ dom(a). Por construcción de U y W , tenemos que:

J∃y φ(u, y, w⃗)K =
∨

v∈V B
Jφ(u, v, w⃗)K =

∨
v∈W

Jφ(u, v, w⃗)K

=
∨

v∈dom(b)

(
b(v) ∧ Jφ(u, v, w⃗)K

)
= J(∃y∈ b) φ(u, y, w⃗)K

Por lo tanto, tenemos que J(∀x∈ a) ∃y φ(x, y, w⃗)K = J(∀x∈ a)(∃y∈ b) φ(x, y, w⃗)K.
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Principio de ∈-inducción

Recordatorio: En ZF−, el axioma de fundación es equivalente al
principio de ∈-inducción

Proposición (Validez del principio de ∈-inducción)

V B |= ∀z⃗ ∀x
(
(∀y ∈x)φ(y, z⃗) ⇒ φ(x, z⃗)

)
⇒ ∀x φ(x, z⃗)

para cada fórmula φ(x, z⃗) del lenguaje L∈,V̌

Demo. Dados w⃗ ∈ V B, se nota h :=
q
∀x

(
(∀y∈ x)φ(y, w⃗) ⇒ φ(x, w⃗)

)y
(∈ B).

Se demuestra por inducción sobre u ∈ V B que Jφ(u, w⃗)K ≥ h.

Para ello, consideremos u ∈ V B tal que Jφ(v, w⃗)K ≥ h para todo v ∈ dom(u) (HI).
Por (HI), se deduce que J(∀y∈u)φ(y, w⃗)K ≥ h, y como J(∀y∈u)φ(y, w⃗) ⇒ φ(u, w⃗))K ≥ h
(por la def. de h), se concluye que Jφ(u, w⃗)K ≥ h. Entonces tenemos que J∀x φ(x, w⃗)K ≥ h,
y por lo tanto J∀x ((∀y ∈ x)φ(y, w⃗) ⇒ φ(x, w⃗)) ⇒ ∀x φ(x, w⃗)K = 1.

Corolario (Validez del axioma de fundación)

V B |= ∀a (a ̸= ∅ ⇒ (∃x∈ a) x ∩ a = ∅)
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Satisfacción de los teoremas de ZF

En resumen: Fijada un álgebra booleana completa B, construimos
una clase V B (⊆ V ) de los B-nombres aśı como una interpretación

L∈,V̌ → B
φ(x1, . . . , xn) 7→ Jφ(u1, . . . , un)K

de las fórmulas del lenguaje L∈,V̌ (con parámetros en V B) tal que:

(1) Todas las reglas de deducción clásicas (NK) son válidas en V B

(2) (ZF ⊢) V B |= φ︸ ︷︷ ︸
JφK =1B

para todo axioma φ de ZF (i.e. V B |= ZF)

Por lo tanto:

Teorema: (ZF ⊢) V B |= φ para todo teorema φ de ZF

Pero la interpretación también incluye el nuevo predicado x ∈ V̌
(que representa el universo inicial V adentro del universo booleano V B)

¿Cuáles son las propiedades de la clase V̌ adentro de V B?
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Propiedades de la clase V̌ en V B (1/3)

Lema (Cuantificaciones relativizadas a V̌ )

Sea φ(x, z⃗) una fórmula de L∈,V̌ . Para todo w⃗ ∈ V B, tenemos que:

J(∃x∈ V̌ )φ(x, w⃗)K =
∨
x∈V

Jφ(x̌, w⃗)K

J(∀x∈ V̌ )φ(x, w⃗)K =
∧
x∈V

Jφ(x̌, w⃗)K

Demo. Tenemos que:

J(∃x∈ V̌ )φ(x, w⃗)K =
∨

u∈V B

(
Ju ∈ V̌ K ∧ Jφ(u, w⃗)K

)
=

∨
u∈V B

((∨
x∈V̌

Ju = x̌K
)
∧ Jφ(u, w⃗)K

)
=

∨
u∈V B

∨
x∈V

(
Ju = x̌K ∧ Jφ(u, w⃗)K

)
=

∨
x∈V

J∃y (y = x̌ ∧ φ(y, w⃗))K =
∨

x∈V

Jφ(x̌, w⃗)K .

La otra identidad se deduce por dualidad.
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Propiedades de la clase V̌ en V B (2/3)

Proposición (Estructura de la clase V̌ en V B)

(1) V B |= x̌ ∈ V̌ para todo x ∈ V

(2) V B |= (∀x∈ V̌ ) x ⊆ V̌ (i.e. V̌ es una clase transitiva)

(3) φ(x1, . . . , xn) ⇔ V B |= φV̌(x̌1, . . . , x̌n)

para toda fórmula φ(x1, . . . , xn) de ZF y para todos x1, . . . , xn ∈ V

Demo. (1) Para todo x ∈ V , tenemos que

Jx̌ ∈ V̌ K =
∨

y∈V

Jx̌ = y̌K ≥ Jx̌ = x̌K = 1 .

(2) Tenemos que:

J(∀x∈ V̌ ) x ⊆ V̌ K =
∧

x∈V

J(∀y ∈ x̌) y ∈ V̌ K =
∧

x∈V

∧
v∈dom(x̌)

(
x̌(v) → Jv ∈ V̌ K

)
=

∧
x∈V

∧
y∈x

(
1 → Jy̌ ∈ V̌ K

)
= 1.

(3) Por inducción externa sobre la fórmula φ(x1, . . . , xn), usando el lema de relativización
en el caso donde la fórmula es una cuantificación existencial o universal.
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Propiedades de la clase V̌ en V B (3/3)

La equivalencia

φ(x1, . . . , xn) ⇔ V B |= φV̌(x̌1, . . . , x̌n) (x1, . . . , xn ∈ V )

expresa que (en V B) la clase V̌ cumple las mismas propiedades
que el universo inicial V (mediante la relativización φ 7→ φV̌ )

En particular, V̌ es (adentro de V B) un modelo transitivo de ZF:

Proposición: (ZF ⊢) V B |= φV̌ para todo teorema φ de ZF

Es decir: (ZF ⊢) V B |= (V̌ ,∈) |= ZF

Más generalmente, en toda extensión T ⊇ ZF (con LT = LZF),
la clase V̌ cumple todos los teoremas de T relativizados a V̌ :

Proposición: T ⊢ V B |= φV̌ para todo teorema φ de T

Es decir: T ⊢ V B |= (V̌ ,∈) |= T
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Los ordinales en V B (1/2)

Lema (Ordinales en V B))

Para todo u ∈ V B: JOn(u)K =
∨

α∈On

Ju = α̌K

Demo. Para todo α ∈ On, tenemos que JOn(α̌)K = JOnV̌(α̌)K = 1 (pues On(x) es ∆0),

entonces Ju = α̌K = Ju = α̌K ∧ JOn(α̌)K ≤ JOn(u)K, y por lo tanto
∨

α∈On

Ju = α̌K ≤ JOn(u)K.

Para todo v ∈ V B, se considera la clase Dv := {α ∈ On : Jv = α̌K ̸= 0}, y se observa que
para todos α1 ̸= α2 ∈ Dv , tenemos que Ju = α̌1K ∧ Ju = α̌2K ≤ Jα̌1 = α̌2K = 0, y por lo
tanto Ju = α̌1K ̸= Ju = α̌2K. Acabamos de mostrar que la correspondencia

(α 7→ Ju = α̌K) : Dv → (B − {0})
es inyectiva, lo que implica que la clase Dv es un conjunto para todo v ∈ V B. Entonces existe
un ordinal β /∈

⋃
v∈dom(u)Dv , es decir tal que Jv = β̌K = 0 para todo v ∈ dom(u). Luego

tenemos que Jβ̌ ∈ uK =
∨

v∈dom(u)

(
u(v) ∧ Jv = β̌K

)
= 0, y por lo tanto:

JOn(u)K ≤ Ju ∈ β̌K ∨ Ju = β̌K ∨ Jβ̌ ∈ uK

= Ju ∈ β̌K ∨ Ju = β̌K =
∨

α≤β

Ju = α̌K ≤
∨

α∈On

Ju = α̌K .
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Los ordinales en V B (2/2)

Proposición

V B |= On ⊆ V̌

Demo. Por el lema anterior, tenemos que:

JOn(u)K =
∨

α∈On

Ju = α̌K ≤
∨

x∈V

Ju = x̌K = Ju ∈ V̌ K (para todo u ∈ V B)

y por lo tanto JOn ⊆ V̌ K = J∀x (On(x) ⇒ x ∈ V̌ )K = 1.

Y como la fórmula On(x) es ∆0, se deduce que:

Corolario

V B |= ∀α
(
On(α) ⇔ α ∈ V̌ ∧On V̌(α)

)
Conclusión: (ZF ⊢) V B |= V̌ es un modelo interno de ZF

y más aún: T ⊢ V B |= V̌ es un modelo interno de T

en toda extensión T ⊇ ZF (con LT = LZF)
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El axioma de elección en V B (1/3)

Lema (en ZF)

V B |= ∀X (∃Y ∈ V̌ ) (∃f : Y → X) f sobreyectiva

Demo. Dado un B-nombre A, se trata de construir dos B-nombres C y f tales que:

JC ∈ V̌ K = 1 y Jf : C → A sobreyectivaK = 1.

Para ello, se recuerda que en el modelo booleano V B, los pares (no ordenado y ordenado)
formados a partir de dos B-nombres u y v son representados por los B-nombres

{u, v}B := {(u, 1), (v, 1)} (∈ V B) y (u, v)B := {{u}B, {u, v}B}B.

Sean C :=
(
dom(A)

)
q y f :=

{(
(ǔ, u)B, A(u)

)
: u ∈ dom(A)

}
.

Tenemos que JC ∈ V̌ K = 1 (por def. de C). Luego, se observa que:

J(∀z ∈ f)(∃x∈C)(∃y ∈A) z = (x, y)K

=
∧

t∈dom(f)

(
f(t) →

∨
v′∈dom(C)
w∈dom(A)

(
C(v

′
) ∧ A(w) ∧ Jt = (v

′
, w)K

))

=
∧

u∈dom(A)

(
A(u) →

∨
v∈dom(A)
w∈dom(A)

(
1 ∧ A(w) ∧ J(ǔ, u) = (v̌, w)K

))
≥

∧
u∈dom(A)

(
A(u) →

(
A(u) ∧ J(ǔ, u) = (ǔ, u)K

))
= 1 . (...)
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El axioma de elección en V B (2/3)

Demo (continuación y fin). Para todos u, v ∈ dom(A), se observa que

J(ǔ, v) ∈ fK =
∨

t∈dom(f)

(
f(t) ∧ J(ǔ, v) = tK

)
=

∨
w∈dom(A)

(
A(w) ∧ J(ǔ, v) = (w̌, w)K

)
=

∨
w∈dom(A)

(
A(w) ∧ Jǔ = w̌K ∧ Jv = wK

)
= A(u) ∧ Jv = uK,

y por lo tanto:

J(∀x∈C)(∀y1, y2 ∈A) ((x, y1) ∈ f ∧ (x, y2) ∈ f) ⇒ y1 = y2K

=
∧

u,v1,v2∈dom(A)

(
A(v1) → A(v2) →

(
J(ǔ, v1) ∈ fK ∧ J(ǔ, v2) ∈ fK → Jv1 = v2K

))
=

∧
u,v1,v2∈dom(A)

(
A(v1) ∧ A(v2) ∧ A(u) ∧ Jv1 = uK ∧ Jv2 = uK → Jv1 = v2K

)
= 1 ,

lo que acaba de demostrar que Jf : C → AK = 1. Por fin, tenemos que:

J(∀y∈A)(∃x∈C) (x, y) ∈ fK =
∧
v∈A

(
A(v) →

∨
u′dom(C)

(C(u) ∧ J(u′
, v) ∈ fK

)
=

∧
v∈dom(A)

(
A(v) →

∨
u∈dom(A)

(
1 ∧ J(ǔ, v) ∈ fK

))
≥

∧
v∈dom(A)

(
A(v) → J(v̌, v) ∈ fK

)
=

∧
v∈dom(A)

(
A(v) → A(v) ∧ Jv = vK

)
= 1 .
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El axioma de elección en V B (3/3)

En las diapositivas anteriores, demostramos en ZF que V B |= φ
para todo axioma/teorema φ de ZF. Además, en ZFC:

Proposición (Validez del axioma de elección)

ZFC ⊢ V B |= AC

Demo (en ZFC). Como AC ⇔ V B |= ACV̌ , se deduce (en ZFC) que V B |= ACV̌ .

A partir de ahora, se trabaja en la teoŕıa inducida por el modelo booleano V B:

Como ACV̌ , tenemos que (∀Y ∈ V̌ )(Y es bien ordenable)V̌ . Pero como la fórmula

“Y es bien ordenable”, equivalente a ∃α ∃f (On(α) ∧ f : α →̃ Y ),

es de clase Σ1, se deduce que todo conjunto Y ∈ V̌ es bien ordenable (por ascensión).
Ahora se considera un conjunto X cualquiera (i.e. en V ). Por el lema anterior, existe
un conjunto Y ∈ V̌ y una sobreyección f : Y ↠ X. Sea ⪯0 un buen orden sobre Y .
La relación ⪯ sobre X definida por

x ⪯ x′ :≡ min(f−1(x)) ⪯0 min(f−1(x′))

es un buen orden sobre X, lo que demuestra que X también es bien ordenable.
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Teoŕıa inducida por V B (1/2)

En la metateoŕıa, la construcción del modelo booleano V B (en ZF)
es una traducción lógica de ZFV̌

(‡) en ZF:

(V B |= ·) : ZFV̌ → ZF

φ 7→ V B |= φ

(Traducción parametrizada por un álgebra booleana completa B de ZF)

Como toda traducción lógica, la traducción lógica V B |= · induce
más generalmente una transformación de teoŕıas:

▶ Input: Una extensión T ⊇ ZF con śımb. de constante B tal que:

T ⊢ “B es un álgebra booleana completa”

▶ Output: La teoŕıa T B sobre el lenguaje L∈,V̌ definida por:

T B ⊢ φ sii T ⊢ V B |= φ

Intuición: T B := preimagen de T por V B |= ·

(‡)ZFV̌ = ZF con comprensión y reemplazo extendidos al lenguaje L∈,V̌
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Teoŕıa inducida por V B (2/2)

Recordatorio: Dada una extensión T ⊇ ZF tal que

T ⊢ “B es un álgebra booleana completa”

construimos una teoŕıa T B sobre el lenguaje L∈,V̌ por:

T B ⊢ φ sii T ⊢ V B |= φ

Es claro que T B ⊢ ⊥ implica T ⊢ B = 1 (consistencia relativa)

En las diapositivas anteriores, mostramos que:

(1) T B ⊢ φ para todo axioma/teorema φ de ZFV̌

(2) T B ⊢ (∀x∈ V̌ )x ⊆ V̌ ∧ On ⊆ V̌

(3) T B ⊢ φV̌ para todo axioma/teorema φ de T (en LZF)

(4) Si T ⊢ AC, entonces T B ⊢ AC

¿Cuáles son las otras propiedades de T B? ¿Axiomatización?
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Plan

1 Álgebras booleanas

2 Construcción del modelo booleano V B

3 Interpretación de las fórmulas

4 Mezclas y principio del máximo

5 Transformación de V B en un modelo de Tarski
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Anticadenas y particiones de la unidad

Sea B un álgebra booleana

Definición (Anticadenas y particiones de la unidad)

Un conjunto A ⊆ B es una anticadena cuando

(∀a, a′ ∈A) (a ̸= a′ ⇒ a ∧ a′ = 0).

Cuando además
∨
A = 1, se dice que A es una partición de la unidad

Definición alternativa (con familias)

Una familia A = (ai)i∈I ∈ BI es una anticadena cuando

(∀i, j ∈ I) (i ̸= j ⇒ ai ∧ aj = 0).

Cuando además
∨
i∈I
ai = 1, se dice que A es una partición de la unidad
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Mezclas (1/4)

Sea B un álgebra booleana completa

Definición (Mezcla)

Dadas dos familias (ai)i∈I ∈ BI (los “coeficientes”) y (ui)i∈I ∈ (V B)I

(los B-nombres), se define la mezcla
∑
i∈I ai · ui (∈ V B) por:

dom
(∑

i∈I ai · ui
)

:=
⋃
i∈I

dom(ui)(∑
i∈I ai · ui

)
(v) :=

∨
i∈I

(ai ∧ Jv ∈ uiK) (v ∈
⋃
i∈I

dom(ui))

Intuición: mezcla = combinación booleana

Se puede formar una mezcla con cualquier familia de “coeficientes”
(ai)i∈I ∈ BI , pero en la mayoŕıa de los casos, uno se restringe a
anticadenas (o particiones de 1)

⇒ Razón en la diapo siguiente
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Mezclas (2/4)

Lema de la mezcla

Sea u :=
∑
i∈I ai · ui, con (ai)i∈I ∈ BI y (ui)i∈I ∈ (V B)I .

Si ai ∧ aj ≤ Jui = ujK para todos i, j ∈ I, entonces

ai ≤ Ju = uiK para todo i ∈ I

Obs.: La condición “ai ∧ aj ≤ Jui = ujK (i, j ∈ I)” se cumple
automáticamente cuando la familia (ai)i∈I es una anticadena

Demo. Dado i ∈ I, probemos que ai ≤ Ju ⊆ uiK y ai ≤ Jui ⊆ uK.

Para todo v ∈ dom(u), tenemos que

ai ∧ u(v) =
∨
j∈I

(
ai ∧ aj ∧ Jv ∈ ujK

)
≤

∨
j∈I

(
Jui = ujK ∧ Jv ∈ ujK

)
≤ Jv ∈ uiK

y por lo tanto: ai ≤
∧

v∈dom(u)

(
u(v) → Jv ∈ uiK

)
= Ju ⊆ uiK.

Para todo v ∈ dom(ui), tenemos que

ai ∧ ui(v) ≤ ai ∧ Jv ∈ uiK ≤ u(v) ≤ Jv ∈ uK

y por lo tanto: ai ≤
∧

v∈dom(ui)

(
ui(v) → Jv ∈ uK

)
= Jui ⊆ uK.
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Mezclas (3/4)

El lema de la mezcla implica que cada clase de la forma

{u ∈ V B : V B |= φ(u, w⃗)} ⊆ V B

está cerrada bajo cualquier mezcla con una partición de 1:

Corolario (Mezcla de testigos)

Sea φ(x, w⃗) una fórmula (con parámetros w⃗ ∈ V B). Si (ui)i∈I ∈ (V B)I

es una familia tal que V B |= φ(ui, w⃗) para todo i ∈ I, entonces:

V B |= φ
(∑

i∈I ai · ui, w⃗
)

para toda partición de la unidad (ai)i∈I ∈ BI

Demo: Supongamos que V B |= φ(ui, w⃗) para todo i ∈ I. Fijada una partición de la unidad
(ai)i∈I , escribamos u :=

∑
i∈I ai · ui. Para todo i ∈ I, tenemos que

ai ≤ Ju = uiK = Ju = uiK ∧ Jφ(ui, w⃗)K ≤ Jφ(u, w⃗)K

y por lo tanto: 1 =
∨
i∈I

ai ≤ Jφ(u, w⃗)K (es decir: V B |= φ(u, w⃗)).
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Mezclas (4/4)

Otra consecuencia del lema de la mezcla:

Lema (Validez de una implicación)

Sean φ(x, w⃗) y ψ(x, w⃗) dos fórmulas (con parámetros w⃗ ∈ V B) tales que:

(1) Existe u0 ∈ V B tal que V B |= φ(u0, w⃗)

(2) V B |= φ(u, w⃗) implica V B |= ψ(u, w⃗) para todo u ∈ V B.

Entonces: V B |= ∀x
(
φ(x, w⃗) ⇒ ψ(x, w⃗)

)
Demo: Fijemos u0 ∈ V B tal que V B |= φ(u0, w⃗) (por (1)).

Dado u ∈ V B, se trata de mostrar que Jφ(u, w⃗)K ≤ Jψ(u, w⃗)K. Para ello, se escribe
b := Jφ(u, w⃗)K y se considera la mezcla u′ := b · u+ ¬b · u0. Se observa que:

b ≤ Ju′ = uK y Jφ(u, w⃗)K = b, luego b ≤ Ju′ = uK ∧ Jφ(u, w⃗)K ≤ Jφ(u′, w⃗)K.

¬b ≤ Ju′ = u0K y Jφ(u0, w⃗)K = 1, luego ¬b ≤ Ju′ = u0K ∧ Jφ(u0, w⃗)K ≤ Jφ(u′, w⃗)K.

Por lo tanto, tenemos que 1 = b ∨ ¬b ≤ Jφ(u′, w⃗)K, y luego Jψ(u′, w⃗)K = 1 por (2).
Se concluye observando que Jφ(u, w⃗)K = b ≤ Ju′ = uK ∧ Jψ(u′, w⃗)K ≤ Jψ(u, w⃗)K.
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Ejemplos de mezclas (1/3)

Recordatorio: Ju ∈ V̌ K :=
∨
x∈V

Ju = x̌K (u ∈ V B)

Tenemos que V B |= x̌ ∈ V̌ para todo x ∈ V , y más generalmente:

V B |=
∑
x∈I

ai · x̌i ∈ V̌

para toda familia (xi)i∈I ∈ V I y para toda partición (ai)i∈I de 1

Proposición (B-nombres u tales que V B |= u ∈ V̌ )

Para todo u ∈ V B, tenemos que:

V B |= u ∈ V̌ sii
r
u =

∑
i∈I

ai · x̌i
z
= 1 para ciertos

{
(ai)i∈I p. de 1

(xi)i∈I ∈ V I

Conclusión: Los B-nombres u ∈ V B tales que V B |= u ∈ V̌ son
exactamente las mezclas de B-nombres estándar (con part. de 1)
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Ejemplos de mezclas (2/3)

Demo. (Implicación directa) Sea u ∈ V B tal que Ju ∈ V̌ K =
∨

x∈V

Ju = x̌K = 1.

Se considera la clase I := {x ∈ V : Ju = x̌K ̸= 0}. Dados x1 ̸= x2 ∈ I, se observa que

Ju = x̌1K ∧ Ju = x̌2K ≤ Jx̌1 = x̌2K = 0, (∗)
y por lo tanto Ju = x̌1K ̸= Ju = x̌2K. Acabamos de mostrar que la correspondencia

(x 7→ Ju = x̌K) : I → B∗

es inyectiva, lo que implica que la clase I es un conjunto. Además, es claro por (∗) que la familia
(ax)x∈I := (Ju = x̌K)x∈I es una anticadena, y más aún una partición de 1, ya que∨

x∈I

ax =
∨
x∈I

Ju = x̌K =
∨

x∈V

Ju = x̌K = 1. (por hipótesis)

Sea v :=
∑

x∈I ax · x̌. Para todo x ∈ I, tenemos que ax = Ju = x̌K y ax ≤ Jv = x̌K (por el

lema de la mezcla), y por lo tanto: ax ≤ Ju = vK. Pasando al supremo, se concluye que:

1 =
∨
x∈I

ax ≤ Ju = vK.

(Implicación rećıproca) Sea u ∈ V B tal que
q
u =

∑
i∈I ai · αi

y
= 1 para cierta partición de la

unidad (ax)i∈I y para cierta familia (xi)i∈I ∈ V I . Por mezcla de testigos, se concluye que:

1 =
q(∑

i∈I ai · x̌i

)
∈ V̌

y
=

q(∑
i∈I ai · x̌i

)
∈ V̌

y
∧

q
u =

∑
i∈I ai · x̌i

y
≤ Ju ∈ V̌ K,

y por lo tanto: V B |= u ∈ V̌ .
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Ejemplos de mezclas (3/3)

De modo ánalogo, los ordinales de V B son exactamente
las mezclas de ordinales estándar (con particiones de 1):

Proposición (Ordinales de V B)

Para todo u ∈ V B, tenemos que:

V B |= On(u) sii
r
u =

∑
i∈I

ai · α̌i
z
= 1 para ciertos

{
(ai)i∈I p. de 1

(αi)i∈I ∈ OnI

Demo. Ejercicio
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Principio del máximo (1/2)

Recordatorio: J∃xφ(x, w⃗)K :=
∨

u∈V B

Jφ(u, w⃗)K (supremo)

Teorema (Principio del máximo) (con AC)

Para cada fórmula φ(x, w⃗) (con parámetros w⃗), existe u∗ ∈ V B tal que:

J∃xφ(x, w⃗)K = Jφ(u∗, w⃗)K (máximo)

En particular si V B |= ∃xφ(x, w⃗), entonces V B |= φ(u∗, w⃗) para algún u∗ ∈ V B

Demo. Como Bφ,w⃗ := {Jφ(u, w⃗)K : u ∈ V B} (⊆ B) es un conjunto, existe por Col. + AC

un ordinal α y una familia (uξ)ξ<α ∈ (V B)α tal que {Jφ(uξ, w⃗)K : ξ < α} = Bφ,w⃗ .

Para todo ξ < α, se define aξ := Jφ(uξ, w⃗)K −
∨
η<ξ

Jφ(uη, w⃗)K (por recursión sobre ξ),

y se nota u∗ :=
∑

ξ<α aξ · uξ.

Por construcción, la familia (aξ)ξ<α es una anticadena. Para todo ξ < α, tenemos que
aξ ≤ Ju∗ = uξK (lema de la mezcla) y aξ ≤ Jφ(uξ, w⃗)K (def. de aξ), entonces:

aξ ≤ Ju∗ = uξK ∧ Jφ(uξ, w⃗)K ≤ Jφ(u∗, w⃗)K.

Por lo tanto: J∃xφ(x, w⃗)K =
∨
ξ<α

Jφ(uξ, w⃗)K =
∨
ξ<α

aξ ≤ Jφ(u∗
, w⃗)K (≤ J∃xφ(x, w⃗)K).
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Principio del máximo (2/2)

Por dualidad, también tenemos el principio del ḿınimo:

J∃xφ(x, w⃗)K =
∨
u∈V B

Jφ(u, w⃗)K = Jφ(u∗, w⃗)K para algún u∗ ∈ V B

J∀xφ(x, w⃗)K =
∧
u∈V B

Jφ(u, w⃗)K = Jφ(u∗, w⃗)K para algún u∗ ∈ V B

Dicho de otro modo, la funcional

(u 7→ Jφ(u, w⃗)K) : V B → B

alcanza su máximo y su ḿınimo para cualquier fórmula φ(x, w⃗) con
parámetros w⃗ ∈ V B. Se dice que el modelo booleano V B está lleno

¡Cuidado! El principio del máximo es consecuencia de AC (en V ).

Ejercicio: Mostrar que el principio del máximo implica AC en V
(bajo la hipótesis que |B| ≥ 2)
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Plan

1 Álgebras booleanas
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3 Interpretación de las fórmulas

4 Mezclas y principio del máximo

5 Transformación de V B en un modelo de Tarski
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Modelo booleano inducido M B ⊆ M (1/3)

Sea un modelo de Tarski M |= ZF con un par (B,≤B) ∈ M 2 t.q.:

M |= (B,≤B) es un álgebra booleana completa

En la metateoŕıa, el álgebra booleana interna (B,≤B) ∈ M 2 induce
un álgebra booleana externa (B,≤B) definida por:

B := {a ∈ M : M |= a ∈ B} (⊆ M )

a ≤B a
′ :≡ M |= a ≤B a

′ (para todos a, a′ ∈ B)

Proposición: (B,≤B) es un álgebra booleana

Razón: La fórmula “(B,≤) es un álgebra booleana” es ∆0

En general el álgebra booleana (B,≤B) no es completa

▶ Pueden existir subconjuntos externos X ⊆ B sin ı́nfimo/supremo

(i.e. la fórmula “(B,≤) es un álgebra booleana completa” es Π1)
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Modelo booleano inducido M B ⊆ M (2/3)

Sea un modelo de Tarski M |= ZF con un par (B,≤B) ∈ M 2 t.q.:

M |= (B,≤B) es un álgebra booleana completa

La construcción de la clase V B (en ZF) induce un subconjunto

M B := {u ∈ M : M |= u ∈ V B} (⊆ M )

y para cada fórmula (externa) φ(x1, . . . , xn) del lenguaje L∈,V̌ ,

la funcional “b = Jφ(u1, . . . , un)K
B” (en ZF) induce una función:(

M B)n → B
(u1, . . . , un) 7→ Jφ(u1, . . . , un)K

B

▶ M B es un modelo booleano de ZF adentro de M

Además, la funcional x 7→ x̌ (en ZF) induce una inyección:

(u 7→ ǔ) : M ↪→ M B
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Modelo booleano inducido M B ⊆ M (3/3)

Para todas fórmulas φ,ψ con parámetros en M B, tenemos que:

J¬φKB = ¬JφKB Jφ⇒ ψKB = JφKB → JψKB

Jφ ∨ ψKB = JφKB ∨ JψKB Jφ ∧ ψKB = JφKB ∧ JψKB

J∃xφ(x)KB =
∨

u∈MB

Jφ(u)KB J∀xφ(x)KB =
∧

u∈MB

Jφ(u)KB

Obs.: Aunque el álgebra booleana B pueda ser incompleta (afuera de M ),
los supremos/́ınfimos que interpretan ∃xφ(x) / ∀xφ(x) en B siempre existen

▶ Notación: M B |= φ(u⃗) :≡ Jφ(u⃗)KB = 1B (u⃗ ∈ M B)

Por lo anterior, es claro que:

Proposición (Propiedades del modelo booleano M B)

(1) M B |= φ para todo axioma/teorema φ de ZFV̌

(2) M B |= (∀x∈ V̌ )x ⊆ V̌ ∧On ⊆ V̌

(3) M B |= φV̌(ǎ1, . . . , ǎn) sii M |= φ(a1, . . . , an)

para toda fórmula φ(x1, . . . , xn) con parámetros a1, . . . , an ∈ M B

(4) Si M |= AC, entonces M B |= AC
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Cociente de M B por un ultrafiltro (1/3)

Suponiendo que M |= ZFC y M |= B ̸= 1, se considera un
ultrafiltro U ⊆ B, que puede venir:

o bien de la metateoŕıa (ultrafiltro externo)

o bien de un punto U ∈ M tal que M |= U ⊆ B ultrafiltro,
notando U := {a ∈ M : M |= a ∈ U} (ultrafiltro interno)

El ultrafiltro U ⊆ B (interno o externo) induce una relación de
equivalencia ∼ en el subconjunto M B ⊆ M , definida por:

u ∼ v :≡ Ju = vKB∈ U (u, v ∈ M B)

y se nota M [U ] := M B/∼U

Se equipa M [U ] con las relaciones ∈M [U ] ⊆ M [U ]2 y M̌ ⊆ M [U ]
definidas por:

[u] ∈M [U ] [v] :≡ Ju ∈ vKB∈ U (u, v ∈ M B)

[u] ∈ M̌ :≡ Ju ∈ V̌ K
B∈ U (u ∈ M B)
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Cociente de M B por un ultrafiltro (2/3)

Interpretando los śımbolos ∈ (binario) y V̌ (unario) del lenguaje L∈,V̌
por las relaciones ∈M [U ] y M̌ in M [U ], se demuestra que:

Proposición

Para toda fórmula φ(x1, . . . , xn) del lenguaje L∈,V̌ con parámetros

u1, . . . , un ∈ M B, tenemos que:

M [U ] |= φ([u1], . . . , [un]) sii Jφ(u1, . . . , un)K
B∈ U

Demo. Por inducción sobre la fórmula φ(x1, . . . , xn), distinguiendo los siguientes casos:

Si φ(x1, x2) ≡ x1 = x2, entonces para todos u1, u2 ∈ MB:

M [U ] |= [u1] = [u2] sii [u1] = [u2] sii u1 ∼ u2 sii Ju1 = u2KB∈ U

Si φ(x1, x2) ≡ x1 ∈ x2, entonces para todos u1, u2 ∈ MB:

M [U ] |= [u1] ∈ [u2] sii [u1] ∈M[U] [u2] sii Ju1 ∈ u2KB∈ U

Si φ(x1) ≡ x1 ∈ V̌ : análogo.

Si φ(x⃗) ≡ ¬φ1(x⃗), entonces para todos u⃗ ∈ MB, tenemos que:

M [U ] |= φ([u⃗]) sii M [U ] ̸|= φ1([u⃗]) sii Jφ1(u⃗)KB /∈ U (por HI)

sii ¬BJφ1(u⃗)KB∈ U sii Jφ(u⃗)KB∈ U (...)
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Cociente de M B por un ultrafiltro (3/3)

Demo (continuación).

Si φ(x⃗) ≡ φ1(x⃗) ∨ φ2(x⃗), entonces para todos u⃗ ∈ MB, tenemos que:

M [U ] |= φ([u⃗]) sii M [U ] |= φ1([u⃗]) o M [U ] |= φ2([u⃗])

sii Jφ1(u⃗)KB∈ U o Jφ2(u⃗)KB∈ U (por HI)

sii Jφ1(u⃗)KB ∨B Jφ2(u⃗)KB ∈ U
sii Jφ(u⃗)KB ∈ U

Si φ(x⃗) ≡ ∃x0 φ0(x0, x⃗), entonces para todos u⃗ ∈ MB, tenemos que:

M [U ] |= φ([u⃗]) sii M [U ] |= φ0([u0], [u⃗]) para algún u0 ∈ MB

sii Jφ0(u0, u⃗)KB∈ U para algún u0 ∈ MB (por HI)

sii
∨

u0∈MB
Jφ0(u0, u⃗)K

B∈ U (por el principio del máximo)

sii Jφ(u⃗)KB∈ U

Obs.: El caso de las conectivas se basa en las propiedades de los
ultrafiltros, mientras que el caso de las cuantificaciones se basa en
el carácter lleno del modelo booleano (interno) M B ⊆ M

▶ Razón por la que tomamos M |= ZFC (⇒ principio del máximo)
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Estructura de M [U ] (1/7)

Dado un modelo (de Tarski) M |= ZFC con B,≤B ∈ M tales que

M |= (B,≤B) es un álgebrea booleana completa

y escribiendo B := {a ∈ M : M |= a ∈ B}:

Teorema

Para todo ultrafiltro U ⊆ B (interno o externo):

(1) El cociente M [U ] := M B/∼ equipado con las relaciones ∈M [U ]

y M̌ (inducidas por U) es un modelo de ZFCV̌ : M [U ] |= ZFCV̌

(2) Además: M [U ] |= (∀x∈ V̌ )x ⊆ V̌ ∧ On ⊆ V̌

(3) La función h : M → M [U ] definida por h(a) := [ǎ] (a ∈ M )
es un encaje de (M ,∈M ) en (M [U ],∈M [U ])

(4) Tenemos la inclusión h(M ) ⊆ M̌ , y a través de ésta,
h(M ) (≃ M ) es un submodelo elemental de M̌
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Estructura de M [U ] (2/7)

Resumen: M
⊤⊤
ZFC

≃ h(M ) ⊆
extensión
elemental

M̌ ⊆ M [U ]
⊤⊤

ZFCV̌

h

M

M̌ M [U ]

B h(B)
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Estructura de M [U ] (3/7)

Demo. (1) Si ZFCV̌ ⊢ φ, entonces JφKB= 1B ∈ U , y luego M [U ] |= φ.

(2) Vimos que: V B |= (∀x∈ V̌ ) x ⊆ V̌ ∧ On ⊆ V̌ (en ZF).

Entonces: J(∀x∈ V̌ ) x ⊆ V̌ ∧ On ⊆ V̌ KB
= 1B ∈ U

y por lo tanto: M [U ] |= (∀x∈ V̌ ) x ⊆ V̌ ∧ On ⊆ V̌

(3) Para todos a1, a2 ∈ M , tenemos que:

a1 = a2 sii Jǎ1 = ǎ2KB= 1B sii Jǎ1 = ǎ2KB∈ U sii [ǎ1] = [ǎ2]

a1 ∈M a2 sii Jǎ1 ∈ ǎ2KB = 1B sii Jǎ1 ∈ ǎ2KB∈ U sii [ǎ1] ∈M[U] [ǎ2]

(4) Para toda a ∈ M , tenemos que Jǎ ∈ V̌ KB
= 1B ∈ U , entonces h(a) = [ǎ] ∈ M̌ . Además,

para toda fórmula φ(x1, . . . , xn) de ZF con parámetros a1, . . . , an ∈ M , tenemos que:

M |= φ(a1, . . . , an) ⇔ JφV̌(ǎ1, . . . , ǎn)K
B
= 1B

⇔ JφV̌(ǎ1, . . . , ǎn)K
B
∈ U

⇔ M [U ] |= φV̌([ǎ1], . . . , [ǎn])

⇔ M̌ |= φ([ǎ1], . . . , [ǎn]).
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Estructura de M [U ] (4/7)

Resumen: M
⊤⊤
ZFC

≃ h(M ) ⊆
extensión
elemental

M̌ ⊆ M [U ]
⊤⊤

ZFCV̌

h

M

M̌ M [U ]

B h(B)

¿Condición para que h(M ) = M̌ ?
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Estructura de M [U ] (5/7)

Definición: Un ultrafiltro U ⊆ B es M -genérico cuando
para todo X ⊆ U tal que X ∈ M , tenemos que

∧
X ∈ U

Proposición: h(M ) = M̌ sii U ⊆ B es M -genérico

Demo: Ejercicio

Recordatorio: El ultrafiltro U ⊆ B puede ser:

– externo (i.e. definido en la metateoŕıa), o

– interno (i.e. inducido por algún U ∈ M t.q. M |= U ⊆ B ultrafiltro)

Proposición (Ultrafiltros genéricos internos)

Para todo ultrafiltro M -genérico U ⊆ B:

U es interno sii M |= (∃a∈B) (a átomo ∧ U = ↑{a})
(i.e. U es un ultrafiltro principal)

sii h(M ) = M̌ = M [U ] (colapso)

Demo: Ejercicio
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Estructura de M [U ] (6/7)

El lo siguiente, consideraremos ultrafiltros U ⊆ B tales que:

(1) U es M -genérico (para asegurarnos que M̌ = h(M ) ≃ M )

(2) U es externo (para evitar el colapso M [U ] = M̌ ≃ M )

¿Existen tales ultrafiltros?

Lema (con DC)

Si el modelo de base M |= ZFC es numerable, entonces:

(1) Existe un ultrafiltro U ⊆ B que es M -genérico

(2) Si además U no es un ultrafiltro principal (interno),
entonces h(M ) = M̌ ⊊ M [U ] (ultrafiltro externo)

Demo. Ejercicio

Obs.: En (2), la condición que “U no es un ultrafiltro principal”
se cumple automaticamente cuando M |= B no tiene átomos



Álgebras booleanas Construcción de V B Interpretación de las fórmulas Mezclas Modelos inducidos

Estructura de M [U ] (7/7)

Conclusión: Cuando el modelo de base M es numerable, siempre
existe un ultrafiltro M -genérico U ⊆ B, de tal modo que:

M
⊤⊤
ZFC

≃
(h)

M̌ ⊆ M [U ]
⊤⊤

ZFCV̌

h

M M [U ]

B h(B)

M̌

▶ Se dice que M [U ] es la extensión genérica de M por U ⊆ B
Además cuando U es externo, tenemos que M̌ ⊊ M [U ]
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