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Algebras booleanas

Definicién (Algebra booleana)

Un éalgebra booleana es un conjunto ordenado B = (B, <) tal que:
(1) B tiene minimo y maximo:
0 := min(B) y 1 := max(B)
(2) Cada dos elementos z,y € B tienen infimo y supremo:
x Ay = inf{z,y} y xVy = sup{z,y}
(3) A (resp. V) es distributiva con respecto a V (resp. A):

zA(yVz) (zAy)V(zA=z)
zV(yAz) = (xVy Az Vz)

(z,y,z € B)

(4) Cada elemento = € B tiene un complemento —z € B, tal que:

zA-x = 0 y zV-x =1

Algebra booleana = reticulo acotado, distributivo y complementado
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Observaciones (1/2)

Algebra booleana = reticulo acotado, distributivo y complementado

@ Las dos leyes de distributividad son equivalentes
xAyVz) = (xAy)V(zAz)

aV(ynz) = (aVy)V(zVz) (v,9,2 € B)

@ Dichas leyes implican que el complemento - (de cada z) es Unico.

Es decir: —x estd definido por tA—-x=0vy zV-a=1

@ La complementaciéon z — -z es una involucién antitona:

- = y (z <y sii ~y <—x)

o En particular, la complementacién intercambia A con V:

“(zAy)=-xV-y y (xVy) =-cA-y
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Observaciones (2/2)

@ Se definen la implicacién x — y vy la equivalencia z <>y por:
=y = xVy y ey = (—2y)A(y—a)
@ Tenemos que:

Se=y) =anyy (eey) = @A) V(YA
=zxzA Y  (diferencia simétrica)

@ Relaciones dtiles: -z +y = 2+ -y = =(z+y) = 2y
z Ay = DAy = (xldhy) = x4y

@ Se puede caracterizar el orden & < y mediante A, V y —:

z <y sii TANYy==1x
sii rVy=y
sii r—=y=1

Ademas: T=1y sii rry=1

sii zAy=0
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o1 = {0=1} (dlgebra booleana degenerada)
@2 := {0,1} con0<1 (4lgebra booleana trivial)
@ P(X) con C

(conjunto potencia)
» Observarque 1 ~ PB(D) y 2 =~ P({+})

Proposicién (Producto de dlgebras booleanas)

El producto [[ B; de una familia (B;);c; de algebras booleanas
el .
(equipado con el orden producto) también es un algebra booleana

> Observar que P(X) ~ 2% = H2
X

@ Sea  un conjunto. Toda o-dlgebra A C Q (equipada con C) es una
subdlgebra booleana del dlgebra PB(2) (con C).

Mas ain, A es una a—élgebra booleana (i.e. con todos inf./sup. numerables)
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Morfismos de algebras booleanas

Definicién (Morfismo de dlgebras booleanas)

Sean By B’ dos 4lgebras booleanas. Una funcién f : B — B’ es un
morfismo de dlgebras booleanas cuando:

foz) = —f(2)
flxny) = fl@)Afy) f(0p) =0 (z,y € B)
flavy) = f(@)V f(y) f(p) =1p

o Definicion: BA = categoria de las dlgebras booleanas

(Es una subcategoria no llena de Pos, la categoria de los conjuntos ordenados)

o Propiedades:
(1) Un mapa es un isomorfismo en BA sii es un isomorfismo en Pos
(2) Todo morfismo inyectivo f : B — B’ en BA es un encaje en Pos:
<y < [f(x) <fy) (z,y € B)
(3) Por lo tanto, todo morfismo biyectivo en BA es un isomorfismo
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Otras presentaciones equivalentes (1/2)

Se pueden definir las dlgebras booleanas de otras maneras equivalentes:

Algebras booleanas definidas a partir de sus operaciones

@ Un dlgebra booleana es un conjunto B dado con elementos 0,1 € B
y operaciones (=) : B — B y (A),(V): B2 — B tales que:

(xAYy)ANz = zA(YAz) (xVy)Vz = xV(yVz)

TNy = yAx rVy = yVuo
zA@yVae) = x zV(yAx) =
LA 0 V- =1

@ Con la definicién anterior, se deduce el orden por:
<y sii TANYy==zx
sii xVy=y
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Otras presentaciones equivalentes (2/2)

Se pueden definir las dlgebras booleanas de otras maneras equivalentes:

Algebras booleanas definidas como anillos  (conmutativos de caracteristica 2)

@ Cada dlgebra booleana B constituye un anillo conmutativo de
caracteristica 2, cuyas operaciones son definidas por:

0 := 0, 1:=1,
T4y = x ANy, Ty = TNy
@ Reciprocamente, cada anillo conmutativo de caracteristica 2 es un
algebra booleana, cuyas operaciones son definidas por:
0 := 0, 1= 1, -r = x+1,
TNy = xy, rVy = xy+x+y
@ Con esta presentacién (equivalente), la nocién de morfismo de

algebras booleanas coincide con la nocién de morfismo de anillos

(restringida a los anillos conmutativos de caracteristica 2)
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Filtros e ideales (1/2)

Sea B un algebra booleana
Definicién (Filtro / Ideal)
@ Un filtro de B es un subconjunto F C B tal que:

(1) 1eF (F no es vacio)
(2) Siz € Fey>uwz, entonces y € F (F esta cerrado superiormente)
(3) Siz,y € F, entonces c Ay € F (F estd cerrado por A)

Si ademds 0 ¢ F' (es decir: F # B), F es un filtro propio

@ Un ideal de B es un subconjunto I C B tal que:

(1) 0er (I no es vacio)
(2) Sizeley<u, entonces y € I (I esta cerrado inferiormente)
(3) Siz,y €I, entonces x Vy € I (I estd cerrado por V)

Si ademds 1 ¢ I (es decir: I # B), I es un ideal propio

Intuicién: — Filtro = criterio de verdad = “entorno” de 1
— |deal = criterio de falsedad = “entorno” de 0
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Filtros e ideales (2/2)

@ Filtros e ideales son duales, via complementacién:

F filtro sii —F ideal
I ideal sii =1 filtro

escribiendo =X := {-z:z € X} paratodo X C B

e Ademds, como el conjunto de los filtros (resp. de los ideales) de B
es estable por interseccién arbitraria...

. se puede definir el filtro (el ideal) generado por cualquier X C B

Proposicién (Preimagen de un filtro/ideal)

Dado un morfismo f : B — B’ de algebras booleanas, la preimagen de
cualquier filtro (resp. ideal) de B’ por f es un filtro (resp. ideal) de B

f~1({0p/}) es un ideal de B

@ En particular:
P {fl({lB/}) es un filtro de B
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Cocientes

Se puede cocientar un algebra booleana B por cualquier filtro FF C B
o por cualquier ideal I C B (por dualidad):

B/F := B/~p, con x~py = (xeoy) €F

B/I := B/~y, con x~ry = (e Ay el
Intuicién: B/F = colapsar F sobre 1 (cociente por un filtro)
uicion: B/I = colapsar I sobre 0 (cociente por un ideal)

Proposicién (Algebra booleana cociente)

El cociente B/F (resp. B/I) es un algebra booleana

Para todo = € B, tenemos que:
[2])p = & F [2],; = = A1

0, = 0 F ==F [0, =041 =1
Wp=10F =F M, =141 = I
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Fraccién de un algebra booleana

1{} es el filtro principal

Para tod € B:
¢ raratedo Mz} es el ideal principal

} generado por x

Obs.: |{z} y 1{z} son dlgebras booleanas (con el orden inducido),
pero en general no son subdlgebras booleanas de B

@ Se definen Bfoco i= B/Hz} =~ Haz}
sedefinen {0 T NN < L

1R

How}
o}

1

Para todo x € B, tenemos que:

B ~ B/y—oX B/-go
() B/x:O X B/x:l o T{.’lﬁ} X l,{l’}

Corolario (Algebras booleanas finitas)

Las dlgebra booleanas finitas son las de la forma B ~ 2™, con n € w
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Otros ejemplos de cocientes
@ Sea B := (P(X), <), con X infinito. Se definen:
Ix = {Y cCX:Y finito} (conjuntos finitos de X)
Fx = {Y cCX:Ye finito} = —Ix (conjuntos cofinitos de X')

El dlgebra cociente B(X)/Ix = P(X)/Fx no tiene dtomos*);
por lo tanto no es de la forma PB(Z) para ninglin Z  (a menos de iso)

@ Sea (9,4, 1) un espacio de medida. El conjunto
l=0] == {XeA:pu(X) =0}
es un o-ideal de A (i.e. con todos los supremos numerables).

El cociente A/[p = 0] también es una o-dlgebra booleana

Ejercicio (Algebra booleana numerable sin dtomos)

(1) Construir un algebra booleana numerable sin dtomos
(2) Demostrar que dicha &lgebra es tinica (a menos de iso)

(*)Atomo de B = elemento minimal de B — {0}
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Proposicién y definicién (Ultrafiltro)

Para todo filtro F' C B, las siguientes aserciones son equivalentes:
@ F' es un filtro propio (i.e. # B) maximal
@ F¢ (= B—F) es un ideal de B
@ F¢=-F
@ 1p: B — 2 (funcién indicatriz) es un morfismo
@ B/F ~2

Cuando es el caso, se dice que F' es un ultrafiltro

o El dual de un ultrafiltro es un ideal primo

Teorema del ultrafiltro

Todo filtro propio F' C B se puede extender en un ultrafiltro U O F

o El teorema del ultrafiltro es consecuencia del axioma de eleccion
(via el lema de Zorn), pero es estrictamente mas débil
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Algebras booleanas completas

Definicién (Algebras booleanas completas)
(1) Un élgebra booleana B es completa cuando todo conjunto X C B
tiene infimo y supremo. Notacién:
/\x /\X = inf(X) y \/33 = \/X = sup(X)
TeX rzeX

(2) Sean B, B’ algebras booleanas completas. Un mapa f: B — B’ es
un morfismo de dlgebras booleanas completas cuando conmuta con
la negacién y con todos los infimos y supremos:

femy == f(AX)=AfCO.  F(VX) =V

paratodoszx € By X C B

@ Ejercicio: Probar que T /\\/y,- = \/(ac ANyi) y T \//\yi = /\(z V y;)
i€l i€l i€l i€l

En lo siguiente, sélo consideraremos &lgebras booleanas completas
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Funciones totales y parciales en ZF (recordatorio)

e En ZF, las funciones son representadas por grafos funcionales:
(2.y) = {{a} {z.0}}
ffuncién = (Vze f)Izxy z= (z,y) A
Vevyvy' ((z,y) € fA(zy) €f=y=y)

dom(f) = {x cUU/S : Ty (z,9) € f}

img(f) = {yeUUS : 3z (z,y) € f}
f:A— B = ffuncién A dom(f)=A A img(f)C B

BA = {fCAxB : (f:A— B)}

@ También se pueden representar funciones parciales:
f:A—= B := ffuncién A dom(f) C A A img(f) C B

BSA = {fCAxB : (f:A=B)} = | JB*
A'CA
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Construccién del modelo booleano V2 (1/2)
En lo que sigue, se trabaja en ZF (o una extensién), y se fija un dlgebra
booleana completa B, que parametriza la construccién

@ De modo andlogo a la jerarquia acumulativa, se define la sucesién
transfinita (V2),ec 0, por:

vE = | BV (o € On)
B<a

e Es claro que la sucesién (V2),con es creciente. Ademds:

Proposicion

Para todo o € On, tenemos que:

VOB =, Va+1 = QVB y V(LB = U VéB (si a limite)
B<a

Demo. Sesiguedeque X CY = BEX - BEY . O

Recordatorio: X CY # BX CBY (razén para preferir funciones parciales)
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Construccién del modelo booleano V2 (2/2)

Definicién (Modelo booleano V)

El modelo booleano VB es la unién transfinita de (V2),con:
weV®  si (JaeOn)ueVE

Sus elementos son los B-nombres

Lema: Para todo u, tenemos que:

ueVB sii u funcién A dom(u) C VB A img(u) C B

. .7 B
@ Intuicién: VB = BEV = UIB%X
XCVB (X conjunto)

Principio de induccién en V®

Dada una férmula o(u) (sobre u € VE), tenemos que:
(Vue VE) ((Yv e dom(u)) p(v) = ¢(u)) = (YueV®)p(u)
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Encaje de V en VB

@ A cada conjunto z € V se asocia el B-nombre & € V® definido por:
z = {(g,1) : yex} (por €-recursién)
y se considera laclase V := {&:x €V} (C V)

» Los elementos de V son los B-nombres estandar

(1) Si z€V,, entonces & € VE (a€ On)
(2) La correspondencia z — @ es inyectiva

Corolario: Las clases VE y V (C VB) son clases propias J

o Intuicién: V = copia de V adentro de VB

> Permite ver V® como una “expansién” de V (2 V C VE)
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Intermezzo: Los conjuntos finitos como listas (1/2)

@ En programacién funcional, se pueden representar los conjuntos
finitos por listas finitas. Por ejemplo en Haskell:

type Set = [Int] -- conjuntos de enteros
forall_in :: Set -> (Int -> Bool) -> Bool -- combinador universal
exists_in :: Set -> (Int -> Bool) -> Bool -- combinador existencial

@ Como la representacién de un conjunto por una lista no es dnica,
se necesita trabajar a menos de igualdad extensional:

set_mem :: Int -> Set -> Bool —-- pertenencia directa
set_mem x u = exists_in u (\y -> y == x)
set_sub :: Set -> Set -> Bool -- inclusion

set_sub u v = forall_in u (\x -> set_mem x V)

set_eq :: Set -> Set -> Bool -- igualdad extensional
set_eq u v = set_sub u v && set_sub v u

@ iSélo funciona con listas bien fundadas!
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Intermezzo: Los conjuntos finitos como listas
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(2/2)

data Set = C [Set] -- conjuntos recursivos
forall_in :: Set -> (Set -> Bool) -> Bool -- combinator universal
exists_in :: Set -> (Set -> Bool) -> Bool -- combinator existencial

@ En este marco, la igualdad, la inclusién y la pertenencia tienen que

ser definidas por recursién mutua:

set_eq :: Set —-> Set -> Bool -- igualdad extensional

set_eq u v = set_sub u v && set_sub v u

set_sub :: Set -> Set -> Bool -- inclusion
set_sub u v = forall_in u (\x -> set_mem x v)

set_mem :: Set -> Set -> Bool -- pertenencia extensional

set_mem u v = exists_in v (\v’ -> set_eq u v’)

@ iSélo funciona con listas y conjuntos bien fundados!
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Interpretacion de las férmulas atémicas

Definicion

A cada u,v € VB se asocian valores [u =], [uCv], [ucv] € B
definidos por recursién mutua sobre los rangos de u y v en VE:

[u=v] = [uCv]AlfvCuyl

@ @ @y @y (e (e

[uCv] = /\(u(u’) — [u' €])

@ @ u/ €dom (u) <« «

[uev] = \/(v(v’) Afu =)

<a « v’ €dom(v) <a <«

v
@ Intuicién: [u=v] = [uCvAvCu]
[uCv] = [va' (2’ e u = 2’ €v)]

[uev] = 3 @ evAu=1y)]
donde x € y es la relacién de pertenencia fuerte (o intensional)

interpretada por [ue v] := {S(U) 2: :06 dom(v)
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Propiedades de [- =] y [- € ] (1/7)

Proposicién ([- = -] es una equivalencia en V®)

Para todos u, v, w € VE:

(1) [u=u] =1

) [u=v] =[v="1]

(3) [u=v] AJv=w] < [u=w]

Demo. (1) Se demuestra que [u = u] = 1 por induccién sobre u € VE.
Para ello, supongamos que [u’ = u’] = 1 para todo u’ € dom(w) (HI).
Para todo v € dom(u), tenemos que [v = v] = 1, luego
u(v) = u(w)Av=12v] < \/(u(u,) Alv=24"]) = [ven],
u/ €dom (u)
es decir: u(v) < [v € u]. Por lo tanto, tenemos que:

[u=u] = [uCu] = A >keu]) = A1 = L ()

vedom (u) vedom (u)
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Propiedades de [- =] y [- € ]

Demo (continuacién). (2) Tenemos que
[u=v] = [uCv] A[vCul = [pCul AfuCo] = [v=ul.
(3) Por induccién sobre u, v, w € VE. Supongamos que
[ = [ ALY = w'] < [u =]
para todos u’ € dom(u), v/ € dom(v), w’ € dom(w). Dado v’ € dom(u), tenemos que:

[vCw] = /\(v(v/) — [V €w])

v/ €dom(v)

= APe) = V@) Al =w1))

v/ €dom (v) w’ €dom (w)

< /\(U(’U/)/\IILL/ =] — \/(w(w/)/\ﬂv/ :'u/]]))

v/ €dom(v) w’ €dom (w)
< /\(v(v’) Ao =] =V (ww') A [u’ = w/]])) (por HI)
v/ €dom (v) w’ €dom (w)
= \/(v(v’) Al =2"]) — \/(w(w/) A =w'])
v/ €Edom (v) w’ €dom (w)

= [v €] = [v €w].

Mezclas Modelos inducidos
00000000000  00000000000000

(2/7)
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Propiedades de [- =] y [- € ] (3/7)

Demo (fin (3)). Yavimosque [vCw] < [uv €v] — [u' € w] (v € dom(w)). ()
Por lo tanto, tenemos que:

[u Co] Av Cw] N (u@) = [w €v]) A v Cw]
u’ €dom (u)
< /\((u(u/)—)[[uIEv]])/\ﬂ'ugw]])
u’ €dom (u)
< /\((u(u/) S ev]) A ([u €v] - [ € w]])) (por (%))
u/ €dom (u)
< /\(u(u/)—>[[u’€w]]) = [uCw].
u’ Edom (u)
Intercambiando u/u’ con w/w’ en el razonamiento anterior, también se deduce de HI que:
[wCv]AlvCul < [wCu]

y por lo tanto: [u=v] Aflv=w] < [u=uw]. O
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Propiedades de [- =] y [- € ] (4/7)

Proposicién ([- € -] es compatible con [- = -] en VB)

Para todos u, v, w,w € VEB:

(1) u(v) < veu] sivedom(u)
(2) [u=v] Afvew] <Juew]
(3) [uev] Afv=w] < [u € w]

@ Observacion: En légica de primer orden, las férmulas
Vez = (
VaVy (z =y =y ==x)
VeVyVz (e =yANy=z=x=2) (= transitiva)
VaVyVz(r =yAy € z=x € 2) (€ compat. con = por la izq.)
VaVyVz(r EyAy =2z =z € 2) (€ compat. con = por la der.)

= reflexiva)

(= simétrica)

permiten axiomatizar la igualidad(f) en cualquier sistema de deduccién clasica
(NK, LK) sin reglas para la igualdad

()Para el lenguaje de ZF, cuyo tinico simbolo no légico es €
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Propiedades de [- =] y [- € ] (5/7)

Demo. (1) u(v) = u(w)Av=v] < \(u@)A[ =2]) = [veu].
w/ €dom (u)

(2 =vAvew] = [u=v] A \/(w@w)A[w =v])
w’Edom (w)
= \/(w(w/) Aw =v] Av= u])
w’ edom (w)
< \/(u}(w/) Aw =u]) = [uew].

w’ €dom (w)

B) [uevAaw=w] = \/(@) A =u])Av=uw]
v/ Edom (v)
= \/([[u =v] Av@) A [v=w])
v/ €dom(v)
< V([w=2TAv0") A @) = [v' €wl))
v/ €dom(v)
< V([u=vTA €w]) < [ucw]. (por(2)) O

v/ Edom (v)
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Propiedades de [- =] y [- € ] (6/7)

e Recordatorio: Cada conjunto z (usual) estd representado en V2
por el B-nombre & definido por:

o= {(y,1) : yea) (e V)

o Notacién: V = {z:2¢cV} C VB (imagen de = — &)

Proposicion

Para todos =,y € V e u € VE:

(1) wez] = \/[u=4]

yeT
) [Eeg] = 1 sizey & = 4] 1 six=y
Y= Y0 sino =9 = Y0 sino
V.

., . vV — VB “ s B
Intuicion: La correspondencia T o & es un “encaje”’ de V en V'
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Propiedades de [- =] y [- € ] (7/7)

Demo. (1) Tenemos que:

[uez]l = \/E@Au=2]) = \VQAlu=3]) = \/[uv=14].

vEdom (&) yEx yEx

1siz=y

. or €-induccién sobre x e y.
0 sino por € rey

(2) Primero se demuestra que [z = g] = {

Suponiendo que la propiedad se cumple para todos z’ € =, y’ € y (HI), se observa que:

[cal = NG@) > ed) = Al#'ed 5 A V=

u/ €dom (&) z/ex z'ex y' ey
/\ \/ 1sia’=y  [lsiaCy
0 sino ~ 10 sino
z'ex y €y
A2 1 C
De modo simétrico, tenemos que [y C &] { sty C @ y por lo tanto:
0 si no
1 siz=y

i =] = [£C g y C ] = ,
=9l = ecalalica = {; 3o, (21)

N(

Luego, tenemos que: [ € §] = [&

\/ 1siz=z _ 1 sizey 0
B 0 si no ~ 10 sino
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El simbolo de predicado V/

e Recordatorio: V = {z:zcV} C VB

@ En lo siguiente, es cémodo trabajar en el lenguaje de ZF extendido
con un predicado unario “z € V" interpretado en V® por:

[ueV] = \/[u:i]] (uEVIB)J

zeV

> Lenguaje £ (2 Le = L)

Proposicién ([- € V] es compatible con [- = -] en VB)

Para todos u,v € VB:  [u=v]Av e V] < [ueV]

Demo. Para todos u,v € V, tenemos que

[u=v]AweV] = [u=v] A\ [v=4]

zeV

= V(u=vlAlo=4]) < VIu=0] = ueV]. O

zeV zeEV




o Algebras booleanas

© Construccién del modelo booleano V®

© Interpretacién de las férmulas
@ Mezclas y principio del maximo

© Transformacién de VB en un modelo de Tarski
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Interpretacion del lenguaje £

A partir de ahora, se trabaja en el lenguaje . y, (2 ZzF)

@ Se interpreta cada férmula ¢(z1,...,z,) por una funcional
b=[lp(ut,...,u,)] = (VE)" =B

Definicién (Interpretacion del lenguaje .Z, y)

@ Ya definimos los valores de verdad [u =v], [u €], [u € V] € B
asociadas a las férmulas atémicas (por induccién interna sobre u y v)

o Se completa la definicién por recursion externa sobre o(7):
[=p(@)] = ~[e(@)] [e(@) = ¢(@)] = [e(@)] — [¥(@)]
[e(@) Ayp(@)] == [e(@)] A [ (@)] [e(@) vV y(@)] = [e(@)] V [¥(@)]
Vy oy, @)] == A [p(v, @] By )] = \/ (v, 3]

veVE veVB

e Notacion: VB = o(uy,...,u,) = [e(ur,...,u,)] =1
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Correccion légica

Proposicién (Regla de Leibniz)

Sea ¢(x, Z) una férmula. Para todos u, v, € VB, tenemos que:

[u= o] Allp(u, D)) < [p(v, @)]

Demo. Por induccién externa sobre la férmula ¢(x, Z), usando las propiedades de - = -],
[- € 1yl € V] en el caso donde ¢(z, Z) es una férmula atémica. DJ

@ Dado un contexto I'(Z) = ¢1(Z),...,pn(Z), se escribe:
[C@] = le @] A---Alpn(@)]

Teorema (Correccién)

Si un secuente T'(Z) - ¢(Z) es derivable en el sistema NK, entonces:
ZF - (Vae V) [D(@)] < [(@)]

Demo. Por induccién externa sobre la derivacién de I'(Z) - ¢ (&), usando la identidad
[u = u] =1 para la regla =-intro y la Prop. anterior para la regla =-elim. DJ
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Cuantificaciones relativizadas

Mezclas
00000000000

Proposicion (Cuantificaciones relativizadas)
Sea ¢(x, Z) una férmula. Para todos u, @ € VB, tenemos que:

[Bzew)p(z,@)] = \/(u(®) A Lo(u, )])

vedom (u)

[(Vz e w) p(z, @] = A (u(v) = [o(v,D)])

vedom (u)

Modelos inducidos
00000000000000

Demo. Dados u,w € VZ, tenemos que:

[(Gzew) p(e,@)] = [Fz(ecunp@d)] = V(v e ul Alp(, D))
veVvB

= \/( V (@) Av=u']) A [ILp(v,*u'j)]])

veVB u/ €dom(u)

— \/(u(u’) A V(=] Aﬂcp(v,u?)ﬂ))

u’ €dom (u) vevB

= V@) Az (@ = Ap@a)]) = \/(u@) A e, D).

u’ €dom (u) u/ €dom (u)

La otra identidad se deduce por dualidad.

O

V



Modelos inducidos

Mezclas
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Axioma de extensionalidad

@ Por la Prop. anterior, se observa que para todos a,b € VE:

[Vzea)zeb] = /\(a(u)—>[[ueb]]) = [a C 0]
—— ~—~—

. L; u€dom(a) . L L
inclusién usual inclusién primitiva

@ Luego por la def. de [- = -], se deduce que:

[a=0] = /\(a(u) — [ued]) A /\(b(u) — [u € a])
u€dom(a) u€dom(b)

= [(Vzea) zeb] AN[(Vxeb) x € d]

[Vz(x € a <z €b)]

@ Por lo tanto:

Proposicién (Validez del axioma de extensionalidad)

VE = VaVb (Vz(z€aszedb) = a=b)
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Axioma del par

Proposicién (Validez del axioma del par)

VB &= VavVb3eVr (r€c & x=aVz=D0)

Demo. Dados a,b € V2, se define ¢ € VE por
dom(c) := {a,b} y c(a) = c¢(b) = 1.
Luego, para todo u € VE se observa que
[uec = \/(cw)Av=ul) = (c(a)Aa=u])V (c(b)Ab=u])
vedom(c)
= [a=u]Vb=u] = [u=aVu=0>]. O
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Esquema de comprensién

Proposicién (Validez de los axiomas de comprensién)

VB EVZVa3bVr (z€c & x€any(z,?))
para cada férmula ¢(z, Z) del lenguaje .Z v,
)
Demo. Dados @,a € V2, se define b € VE por
dom(b) := dom(a) y b(u) = a(u) A [¢(u, )] (u € dom(b))
Luego, para todo u € VE se observa que
[uet] = /@ Alv=ul) = V(a@) A [e(v, D)] A [v = u])
vEdom(b) vEdom(a)
= [Byea)(py, D) Ay =u)] = [u€anp(u,d)]. O
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Axioma de unidn
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Proposicién (Validez del axioma de unién)

VB = Va3bVe (z€b & (Jyca) x €y)

Demo. Dado a € VE, se define b € V' por

dom(b) : Udom v) y b(u) := [(By€a)u € y]

(u € dom(b))
vEdom(a)

Luego, para todo u € VE se observa que

[ueb] = \/ (@) A[u=uT)

u/ €dom (b)
= \/([[(ﬂy&'a) W eyl Alu=v]) < [(Fyea)ucyl
mientras que: u/ €dom(b)
[wed] = V(I3 €a) v’ €y Afu=1u])

u/ Edom(b)

>V V(G eaw eyInfu=u])

vedom(a) u’€dom(v)

> \/(a@) AV (v(@) A (I3 €a) ' € Y] A [u=uT)))
vedom(a) wu’ecdom(v)

[Buea)3z' €y)((By €a)z’ €y’ Au=2a")]

= [Gy€a)uecy]. O
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Axioma del conjunto potencia (1/2)

Proposicién (Validez del axioma del conjunto potencia)

VB EVa3bvr (z€b & zCa)

Demo. Seaa € V. A cada u € VE se asocia el nombre alu € V2 definido par

dom(alu) := dom(a) y (alu)(v) = a(v) A v € u] (v € dom(a))

Se observa que  [u C alu)] = /\(u(v) — [v € alu])
vedom (u)

- /\(u(v) =\ (a@W) A €ul A = 'u]]))
vEdom(u) v/€dom(a)
= [(vweuw) @By €a) (v cuny =y)] = [uCad]

mientras [alu Cu] = /\((‘IT“)(”) — [v € u])

vEdom(alu)

= /\(a(v)/\[[veu]]—>[[1)€u]]) =1

vEdom(a)

y por lo tanto [u=atu] = [uCalu] Aflalu Cu] = [uCa]. (...)
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Axioma del conjunto potencia

Modelos inducidos
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(2/2)

Demo (continuacién). Ademds, se observa que

[alu Ca] = /\((a[u)(v)—)[[véa]]) = /\(a(v)/\[[véu]] —[vea]) =1

vedom(alu) vedom(a)

Ahora se considera el nombre b € V2 definido por

dom(b) := plom(e) y b(u) = [u Ca]

(u € dom(b))
Luego, para todo u € VE se observa que

[uet] = \/e@)Alv=u]l) = \/([vCal Alv=u])

< [uCa
) Dedom(D)
mientras [ueb] = \/(b(v) Av=u]) > batu) A [alu = u]

vepdom(@) — [aluCalAfuCa] = [uCal
y por lo tanto: [uebd] = [uCa]. D)
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Axioma de infinitud

Proposicién (Validez del axioma de infinitud)

VE E Ja(Breca)Vzz ¢z A
(Vze€a)(Tyc€a)Vz (z€y e z€xV2=1))

Demo. Se considera el B-nombre a := @ = {(#,1) : n € w},
donde 7 = {(p,1) : p < n} paratodon € w.
Para todos n € wy u € VB, se observa que:

[ued] = o0
[u € (n+1)7]

[uenVvu=mn]
y por lo tanto:

[Gzea)Vzz¢a] = \[[Vez¢a] > [Vz2¢0] = 1

n<w
y [(Vz€a)(FyEa)Vz (z Ey 2zE€xV2z=n1)]
= /\ \/|IVz(z€1v7<:>z€ﬁVz:FL)]]
n<w p<w
> ANlVz(ze(n+1) ®zenve=n)] = L 0
n<w
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Esquema de coleccién

Proposicién (Validez de los axiomas de coleccién)

VE &= VZ Va ((Vz€a) Ty o(z,y,2) =
b (Vo € a)(Ty€d) p(z,y, 7))

para cada férmula ¢(z,y, Z) del lenguaje Z_ y-

Demo. Dados ,a € VB, se escribe
U = {(u,h) € dom(a) x B : (Jv€ VE) [p(u,v,w)] = h}.
Por construccién, tenemos que (¥(u, h) € U)(Fv € VB) [p(u, v, @)] = h, luego por el esquema
de coleccién, existe un conjunto W C VP tal que (V(u, h) € U)(Fv € W) [¢(u,v)] = h.
Ahora se considera el nombre b € V® definido por
dom(b) = W y b(v) := 1 (v € dom(d))

Sea u € dom(a). Por construccién de U y W, tenemos que:

[By o(w, v, )] = V le(u,v, )] = \/ [y, v, )]

vevB veEW
= V() Al v, @) = [By€b) p(u,y, )]
vEedom(b)
Por lo tanto, tenemos que [(Vz € a) Jy o(z,y,w)] = [(Vx €a)(Tyeb) o(z,y,w)]. O

v
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Principio de €-induccién

o Recordatorio: En ZF ™, el axioma de fundacién es equivalente al
principio de €-induccién

Proposicién (Validez del principio de €-induccién)

VE E VZVz (Vyea)o(y, 2) = o(z,2) = Vz o(z,2)

para cada férmula ¢(z, Z) del lenguaje L v

Demo. Dados @ € VB senota h := [Vz ((Vy€x) p(y, @) = ¢(z,@))] (€ B).
Se demuestra por induccién sobre u € V® que [¢(u,@)] > h.

Para ello, consideremos u € V% tal que [¢(v, @)] > h para todo v € dom(u) (HI).

Por (HI), se deduce que [(Vy € u) p(y, W)] > h, ycomo [(Vy € u) p(y, W) = @(u,w))] > h
(por la def. de h), se concluye que [¢(u,w)] > h. Entonces tenemos que [Vz p(z, )] > h,
y por lo tanto [Vz ((Yy € ) ¢(y, W) = ¢(z, @) = Yz o(z,¥)] =1. O

Corolario (Validez del axioma de fundacién)

VB = Va(a#92 = (3wx€a) vNa=02)
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Satisfaccién de los teoremas de ZF

@ En resumen: Fijada un dlgebra booleana completa B, construimos
una clase V® (C V) de los B-nombres asi como una interpretacién

Z

o(@1,. . yxn) = Je(ur,. .. un)]

de las férmulas del lenguaje JG,V (con pardmetros en VE) tal que:

7‘7—>B

(1) Todas las reglas de deduccién clasicas (NK) son vélidas en V®

(2) (ZFF) V® = ¢ para todo axioma ¢ de ZF (ie. VB = ZF)
N——
[e] =1p

@ Por lo tanto:

Teorema: (ZFF) VB = para todo teorema ¢ de ZF J

@ Pero la interpretacién también incluye el nuevo predicado = € V'
(que representa el universo inicial V adentro del universo booleano VB)

o ;Cuiles son las propiedades de la clase V adentro de VB?
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Propiedades de la clase V en VB (1/3)

Lema (Cuantificaciones relativizadas a V)

Sea ¢(w, Z) una férmula de .Z ;. Para todo w € VB, tenemos que:
[BzeV) o, @)] = \ o )]

[(Vz € V) p(z, )]

I
>
—
5
\.R(
&

zeV
y
Demo. Tenemos que:
[(Gze V) e @] = \/([ue VA Le(u, @)])
uevB
= V((VIu=2l) A le(u, @)
ueVvB zev
=V V(=3 Alew,d)])
wecVvB z€EV
= VByw=2zr0@w)] = \le@& o).
z€eV z€V
La otra identidad se deduce por dualidad. O
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Propiedades de la clase V en VB (2/3)

Proposicién (Estructura de la clase V en VE

(1) % = EeV para todo z € V

(2) VB E (Vze V) tCV (i.e. V es una clase transitiva)
3) p@1,...,2n) & VBEV(E,..., %)
para toda férmula ¢(z1,...,zn) de ZF y para todos z1,...,2n €V )

Demo. (1) Paratodo z € V/, tenemos que

[zev]l = VIg=4] > [=4] = 1.
yeV

(2) Tenemos que:

[(VzeV)zcV] = Aliwea)yev] = A A GEW - eV])

zEV zeVvedom(z)
A Aa-lzev) =1
€V y€Ex
(3) Por induccién externa sobre la férmula (21, ..., xy), usando el lema de relativizacién
en el caso donde la férmula es una cuantificacién existencial o universal. O
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Propiedades de la clase V en VB (3/3)

@ La equivalencia

o(z1,...,Tn) & & E @V(fl,...,fn) (1,...,2n € V)J

expresa que (en V®) la clase V' cumple las mismas propiedades
que el universo inicial V' (mediante la relativizacién ¢ — ")

o En particular, V es (adentro de VE) un modelo transitivo de ZF:

Proposicién: (ZF F) VB = ¢V para todo teorema ¢ de ZF J

Es decir: (ZF ) VB = (V,€) = ZF

@ Mas generalmente, en toda extensiéon 7 DO ZF (con Lo = %),
la clase V' cumple todos los teoremas de 7 relativizados a V:

Proposicién: 7 F VB <p‘7 para todo teorema ¢ de . J

Esdecir 7 F VB £ (V,e) T
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Los ordinales en V2 (1/2)

Lema (Ordinales en VE))

Para todo u € VE: [On(u)] = \/ [u=d]

acOn

Demo. Para todo oo € On, tenemos que [On(&)] = [[On(/(&)]] =1 (pues On(z) es Ag),
entonces [u = @] = [u = &] A [On(&)] < [On(w)], y por lo tanto \/ [u=a] < [On(u)].
a€On

Para todo v € V, se considera la clase D, := {a € On : [v = &] # 0}, y se observa que
para todos a1 # az € D, tenemos que [u = &@1] A [u = @z] < [[é&1 = @2] =0, y por lo
tanto [u = &1] # [u = &2]. Acabamos de mostrar que la correspondencia

(= [u=a]) : D, — (B— {0})
es inyectiva, lo que implica que la clase D, es un conjunto para todo v € VE. Entonces existe
un ordinal 8 ¢ U, cqom(u)Dv. es decir tal que [v = 5] = 0 para todo v € dom(u). Luego

tenemos que [§ € u] = Vo cdom(uy (@) A [v = B]) = 0, y por lo tanto:
[On(w)] < [uep]V[u=28]VI[BE€u]
= ueplViu=p8l = VIu=a] < \VIu=4]. U

a<p a€On
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Los ordinales en V2 (2/2)

Proposicion

VB = OnCV
Demo. Por el lema anterior, tenemos que:
[on@w] = VIu=a] < \/[u=4] = [ucV] (para todo u € V)
acon zEV
y por lo tanto [On C V] = [Vz (On(z) = = € V)] = 1. O

@ Y como la férmula On(z) es Ay, se deduce que:

Corolario

VE = Va (On(a) & aeVA OHV(Q»

e Conclusién: (ZFF) V® |= V es un modelo interno de ZF

y mds adn: T+ VB E V esun modelo interno de .7
en toda extension J DO ZF (con Lo = )
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El axioma de eleccién en VE (1/3)

VE = VX (Y eV) (3f: Y — X) f sobreyectiva

Demo. Dado un B-nombre A, se trata de construir dos B-nombres C'y f tales que:
[CeV]=1 y [f:C — A sobreyectiva] = 1.

Para ello, se recuerda que en el modelo booleano V]E, los pares (no ordenado y ordenado)
formados a partir de dos B-nombres w y v son representados por los B-nombres

{u,0}? = {(u, 1), (v, D} (€V®) vy (u,0)" = {{u}? {u,0}"}"
Sean C := (dom(A))” y f:= {((a, u)]B,A(u)) : u € dom(A)}.
Tenemos que [C' € V] = 1 (por def. de C). Luego, se observa que:
[(Vz€ f)(Fz e C)(By € A) 2 = (z,9)]

= A(f® = V(©) A A@) ATt = (' w)]))
tedom(f) o’edom(C)
wedom(A)

= /\(A(u) = V(1A A@W) A (@) = (3, w)]]))
u€edom(A) vEdom(A)
wedom(A)

> AA@) = (A(w) A [(@,w) = (@,w)])) = 1. (..)

u€dom(A)
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El axioma de eleccién en VE (2/3)

Demo (continuacién y fin). Para todos u,v € dom(A), se observa que

[(@0) € f1 = VO AL@ ) =t]) = \/(Aw) A [(@v) = (@, w)])

tedom(f) wedom(A)
= VA A[a=u0] Alv=w]) = A(u) A [v=1u],
wedom (A)

y por lo tanto:
[(Vz € C)(Vy1,y2 € A) ((z,91) € f A (z,92) € f) = y1 = y2]
= A(A@) = A@2) > (I(@,v1) € F1 Al(@, v2) € f] = [o1 = v2]))
u,v;,v,€dom(A)
= A(A@1) AA(w2) AA@) AJor =u] Aoz =u] = [vr =v2]) = 1,
u,v;,v,Edom(A)
lo que acaba de demostrar que [f : C — A] = 1. Por fin, tenemos que:
[(vy€ A)E€C) (z,9) € f1 = A(AW) =\ (C@w) A LW, v) € 1)
vEA w/dom(C)
= /\(A(v) =\ (LAL)€ f]]))
vedom(A) ucdom(A)
> A(Aw@) = [(3,v) € £])
vEdom(A)
= ANA@) = A@)Av=10]) = 1. O

vedom(A)
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El axioma de eleccién en VE (3/3)

e En las diapositivas anteriores, demostramos en ZF que V2 = ¢
para todo axioma/teorema ¢ de ZF. Ademds, en ZFC:

Proposicién (Validez del axioma de eleccién)

ZFC + VB = AC

Demo (en ZFC). Como AC < VB |=ACY, se deduce (en ZFC) que VE = ACY.
A partir de ahora, se trabaja en la teorfa inducida por el modelo booleano V2:
Como ACY, tenemos que (VY € V)(Y es bien ordenable)v. Pero como la férmula
“Y es bien ordenable”, equivalente a Ja3f (On(a) A f:a=Y),

es de clase 21, se deduce que todo conjunto Y € V es bien ordenable (por ascensién).
Ahora se considera un conjunto X cualquiera (i.e. en V). Por el lema anterior, existe
un conjunto Y € V y una sobreyeccién f : Y — X. Sea < un buen orden sobre Y.
La relacién =< sobre X definida por

e 2@’ = min(f7(2)) 2o min(f ()
es un buen orden sobre X, lo que demuestra que X también es bien ordenable. O
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Teorfa inducida por VE (1/2)

o En la metateoria, la construccién del modelo booleano V' (en ZF)
es una traduccion ldgica de ZFV(i) en ZF:

(VB : ZFy — ZF
p = VPEy

(Traduccién parametrizada por un dlgebra booleana completa B de ZF)

e Como toda traduccién légica, la traduccién légica V® = induce
mas generalmente una transformacién de teorias:

» Input: Una extension .7 D ZF con simb. de constante B tal que:

7 F "B es un algebra booleana completa”

» Output: La teoria T sobre el lenguaje Z v definida por:
TE - o i T FVEEe )

Intuicién: 7B := preimagen de 7 por VB =

(i)ZFV = ZF con comprensién y reemplazo extendidos al lenguaje fe,\?
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Teorfa inducida por VE (2/2)

@ Recordatorio: Dada una extensién 7 D ZF tal que
7 F "B es un algebra booleana completa”

construimos una teoria .7® sobre el lenguaje £y por:
;

TB - o sii T FVBEp J

@ Es claro que TBE L implica S +FB=1 (consistencia relativa)
@ En las diapositivas anteriores, mostramos que:

(1
(2

) ?E F oo para todo axioma/teorema ¢ de ZFy;

) T F(VweV)xQV/\OnQV

(3) g8 F ¥ para todo axioma/teorema ¢ de J (en Z%F)
(4) Si T FAC, entonces T° - AC

e ;Cuiles son las otras propiedades de .7%? ; Axiomatizacién?



o Algebras booleanas

© Construccién del modelo booleano V®
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© Transformacién de VB en un modelo de Tarski
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Anticadenas y particiones de la unidad

Sea B un algebra booleana

Definicién (Anticadenas y particiones de la unidad)

Un conjunto A C B es una anticadena cuando
(Va,a’ € A)(a#d = aNna =0).

Cuando ademas \/A =1, se dice que A es una particién de la unidad

Definicién alternativa (con familias)

Una familia A = (a;);er € B’ es una anticadena cuando
(V’L,jEI)(Z#] = a; Naj :0)

Cuando ademds \/ai =1, se dice que A es una particién de la unidad
iel
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Mezclas (1/4)

Sea B un &lgebra booleana completa

Definicién (Mezcla)

Dadas dos familias (ai)iej c B! (los “coeficientes”) Yy (Ui>iel € (VIB)I
(los B-nombres), se define la mezcla >, ;a;-u; (€ VE) por:

dOm(Eielai'uz) = Udom(ui)

i€l
(Ziel a; ~ui) (v) = \/(ai A v € ug]) (v € | dom(uy))
i€l i€l

@ Intuiciéon: mezcla = combinacién booleana

@ Se puede formar una mezcla con cualquier familia de “coeficientes”
(a;)icr € B!, pero en la mayoria de los casos, uno se restringe a

anticadenas (o particiones de 1) ) ) o
= Razédn en la diapo siguiente
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Mezclas (2/4)

Lema de la mezcla

Sea w:=) . a;i-u; con (a;)icr € By (u;)ier € (VB)L

Si a; ANaj < [u; =wu;] para todos i, j € I, entonces

a; <[u=w;] paratodoie€l

@ Obs.: La condicién “a; Aaj < [u; =wu;] (i,5 € I)" se cumple
automéaticamente cuando la familia (a:):cr es una anticadena

Demo. Dado i € I, probemos que a; < [u C w;] y a; < [u; Cuf.
@ Para todo v € dom(u), tenemos que
a; Nu(v) = \/(ai ANaj A v € us]) < \/([[uI =u;] A v € u;]) < [v € ]
jel JEI
y por lo tanto: a; < /\(u(v) — [vew]) = [uCu].
vedom (u)
@ Para todo v € dom(u;), tenemos que
a; Aui(v) < a; Av€w;] < ulw) < [veEu]
y por lo tanto: a; < /\(ul(v) = [vewu]) = [us Cul. O
vEdom (u;)
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Mezclas (3/4)

@ El lema de la mezcla implica que cada clase de la forma
{ucVE : VB = p(u,w)} C VB
estd cerrada bajo cualquier mezcla con una particién de 1:

Corolario (Mezcla de testigos)

Sea <p(:L‘,u_f) una férmula (con pardmetros @ € VB). Si (ui)iej € (V]B)I
es una familia tal que V® |= o(u;,w) para todo i € I, entonces:

VE Sp(zz‘el @ - U, “7)

para toda particién de la unidad (a;);c; € Bf

Demo: Supongamos que V2 = ¢(u;, W) paratodo i € I. Fijada una particién de la unidad

(ai)ier, escribamos u := Ziel a; - u;. Para todo i € I, tenemos que
a; < [u=w] = [u=w] Ale(ui,®)] < [e(u, )]
y por lo tanto: 1 = \/ai < [e(u, )] (es decir: V® |= o(u, @)). O
i€l
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Mezclas (4/4)

@ Otra consecuencia del lema de la mezcla:

Lema (Validez de una implicacién)

Sean ¢(x, W) y ¥ (z,w) dos férmulas (con pardmetros @ € VB) tales que:
(1) Existe ug € VE tal que VB = p(ug, )

(2) VB = p(u,w) implica V® = 4(u,w) para todo u € VE.
Entonces: VB = Vz (p(z, @) = ¢(z, ¥))

Demo: Fijemos ug € V® tal que V® |= ¢(ug, @) (por (1)).

Dado u € V¥, se trata de mostrar que [ (u, )] < [ (u,@)]. Para ello, se escribe
b := [¢(u,w)] y se considera la mezcla u’ :=b-u + —b-ug. Se observa que:

@ b<[u =u]y [p(u,@)] =0, luego b < [u' = u] A [p(u,d)] < [e,d)].
@ b < [u' =wuo] vy [p(uo, @)] = 1, luego =b < [u’ = uo] A [¢(uo, @)] < [p(u’,d)].

Por lo tanto, tenemos que 1 =bV —b < [e(u’,@)], y luego [ (u’,w)] =1 por (2).
Se concluye observando que [¢(u, )] = b < [u' = u] A [¢ (v, D)] < [¢(u,D)]. O
b
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Ejemplos de mezclas (1/3)

o Recordatorio: [ucV] = \/ [u =] (ue VB)
zeV

Tenemos que VE =7 € V para todo z € V, y més generalmente:
VIB ): Zai -T; € V
xel

para toda familia (x;)ier € v y para toda particién (a;)icr de 1

Proposicién (B-nombres u tales que VB = u € V)

Para todo u € VB, tenemos que:

-~ oo o (ai)ie[ pP. de 1
VBEE=weV si [[u = a; - x]] =1 para ciertos
- S (e . o

o Conclusién: Los B-nombres u € VB tales que VB |E=u eV son
exactamente las mezclas de B-nombres estandar (con part. de 1)
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Ejemplos de mezclas (2/3)

Demo. (Implicacién directa) Sea u € V® tal que [u € V] = \/ [u=2] = 1.

zeV
Se considera la clase [ :={z € V : [u = &] # 0}. Dados z1 # z2 € I, se observa que
[u=a1] Afu=d] < [#1 =] = 0, ()

y por lo tanto [u = #1] # [u = Z2]. Acabamos de mostrar que la correspondencia
(x—[[u=&]) : I — B
es inyectiva, lo que implica que la clase I es un conjunto. Ademas, es claro por () que la familia

(az)zer := ([u = ] )zer es una anticadena, y mas adn una particién de 1, ya que
\/ ay = \/ [u=2z] = \/ [u=2] = 1. (por hipétesis)
zel zel zeV

Sea v := 3 ay -&. Paratodo x € I, tenemos que a, = [u = &] y ay < [v = Z] (por el
lema de la mezcla), y por lo tanto: a, < [u = v]. Pasando al supremo, se concluye que:

1 = \/am < [u=n1].
xzel
(Implicacién reciproca) Sea u € VE tal que [[u = Ziel a; - ozi]] = 1 para cierta particién de la
unidad (az)icr y para cierta familia (z;),c1 € VI, Por mezcla de testigos, se concluye que:
1=[(Zicrai-#:) €V] = [(Zicrai- @) €V Au=%,crai -] <[ue V],
y por lo tanto: V% Eue V. O

v
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Ejemplos de mezclas (3/3)

@ De modo analogo, los ordinales de VB son exactamente
las mezclas de ordinales estandar (con particiones de 1):

Proposicién (Ordinales de VB)

Para todo u € V2, tenemos que:

VB & On(u)  sii [[u = Zai -di]] =1 para ciertos {(ai)iel > 5 5

A c 0 I
iel (ai)ier n

Demo. Ejercicio
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Principio del maximo (1/2)

Recordatorio: [Jz p(z,w)] := \/[[go(u,ﬁ)]] (supremo)

ueVB

Teorema (Principio del maximo) (con AC)

Para cada férmula ¢(x, ) (con parametros ), existe u* € VE tal que:

[Bz o(x,W)] = [p(u*,d)] (méximo)

En particular si VB |= 3z ¢(x, %), entonces VB = o(u*,w) para algin u* € VB
)

Demo. Como B, g := {[e(u,@)] : u € VB} (C B) es un conjunto, existe por Col. + AC
un ordinal o y una familia (ug)e<a € (V) tal que {[p(ue, @)] : € < a} = B, -

Para todo £ < a, se define ag = [p(ue, W)] — \/ [ (wry, w)] (por recursién sobre &),
ysenota u” =37, ag-ue. n<¢

Por construccién, la familia (a¢)¢ <o es una anticadena. Para todo £ < «, tenemos que
ag < [u* = wug] (lema de la mezcla) y ag < [p(ug,w)] (def. de ag), entonces:

ae < [u* = uel A lp(ue, @] < [ou®, D).

Por lo tanto:  [3z (e, @) = \/ [¢(ue, D)] = Vae < [ep(u”, D)] (< Br (@ @)]). O
(<a E<a

v




Algebras booleanas Construccién de V' Interpretacién de las férmulas Mezclas Modelos inducidos
000000000000000  0000000000000000  000000000000000000000000 00000000008 0000000000000

Principio del maximo (2/2)

@ Por dualidad, también tenemos el principio del minimo:

Bz, w)] = \/le(wd)] = [pu*,d)] para algin u* € VE
ueVE

N\ [e(u, @)]

ueVE

[p(us, W)] para algin u. € V*

[Va o (2, w)]

@ Dicho de otro modo, la funcional
(u = [p(u,@)]) : VE—-B

alcanza su méximo y su minimo para cualquier férmula o(z, ) con
pardmetros @ € V2. Se dice que el modelo booleano V2 est4 lleno

@ jCuidado! El principio del maximo es consecuencia de AC (en V).

Ejercicio: Mostrar que el principio del maximo implica AC en V'
(bajo la hipétesis que |B| > 2)
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Modelo booleano inducido .#Z® C .# (1/3)

Sea un modelo de Tarski .# |= ZF con un par (B,<g) € .#? t.q.:
M = (B,<p) es un dlgebra booleana completa

e En la metateorfa, el dlgebra booleana interna (B, <p) € .#? induce
un dlgebra booleana externa (B, <g) definida por:

B = {ac# : #EacB} (C.#)
a<pa = M Ea<p a’ (para todos a,a’ € B)
Proposicién: (B, <g) es un &lgebra booleana )

Razén: La férmula “(B, <) es un algebra booleana” es Ag

@ En general el dlgebra booleana (B, <z) no es completa

»  Pueden existir subconjuntos externos X C B sin infimo/supremo

(i.e. la férmula “(B, <) es un &lgebra booleana completa” es II;)
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Modelo booleano inducido .#Z® C .# (2/3)

Sea un modelo de Tarski .# |= ZF con un par (B,<g) € .#? t.q.:
M = (B,<p) es un dlgebra booleana completa

e La construccién de la clase V® (en ZF) induce un subconjunto

M = {ue M . ME=ucVE} (C )
y para cada férmula (externa) ¢(z1,...,zy,) del lenguaje Z v/,
la funcional “b = [p(uy,...,un)]*" (en ZF) induce una funcién:
(F)" - B
(ur,...,up) +—  [Jo(u,... ,un)]]B

» /B es un modelo booleano de ZF adentro de .#

e Ademds, la funcional = — & (en ZF) induce una inyeccién:

(s a) : M — M°
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Modelo booleano inducido .#Z® C .# (3/3)

o Para todas férmulas ¢, 1) con parametros en .#®, tenemos que:

[=¢]® = -[e]® e =41® = [¢]® — [¥]°
levyl® = [Pl VvI¥l®  [eavl® = [#1° A[w]°
[Bz ()] ® \/ le]l?  [Vzo(z)]” N le(uw)]®

we MP we MP

Obs.: Aunque el dlgebra booleana B pueda ser incompleta (afuera de .#Z),
los supremos/infimos que interpretan 3z p(z) / VY p(z) en B siempre existen

» Notacién: MO = p(@) = [e@)]® =15 (@ € .4®)

@ Por lo anterior, es claro que:

Proposicién (Propiedades del modelo booleano .#®)

(1) .#® |= ¢ para todo axioma/teorema ¢ de ZF
(2 AP (NVreV)z CVAORCY
(3) M® = (an,. .. an) sii M= plar,.. . an)
para toda férmula ¢(21, ..., x,) con pardmetros a1, ...,an € A®

(4) Si .4 = AC, entonces .4 = AC
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Cociente de .#® por un ultrafiltro (1/3)

@ Suponiendo que .# =ZFC y .# =B # 1, se considera un
ultrafiltro U C B, que puede venir:

o o bien de la metateoria (ultrafiltro externo)

e o bien de un punto U € .# tal que .# = U C B ultrafiltro,
notando U :={a € .# : # = a € U} (ultrafiltro interno)

o El ultrafiltro U« C B (interno o externo) induce una relacién de
equivalencia ~ en el subconjunto M® C A, definida por:

u~v = [u=v]feu (u,v € A®)
y se nota U] = H®/~y

@ Se equipa . [U] con las relaciones e ”Ul C .4 [U]* y A4 C U
definidas por:

[u] €M [v] = [uev]®eu (u,v € A®)
ul e #4 = [[UGV]]BGL{ (ue.#®)
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Cociente de .#® por un ultrafiltro (2/3)

o Interpretando los simbolos € (binario) y V (unario) del lenguaje fe,f/
por las relaciones € ?M y 7 in .4 U], se demuestra que:

Proposicion

Para toda férmula ¢ (1, ..., ,) del lenguaje £ y; con pardmetros
U, ..., U, €.4%, tenemos que:

MU E o([ul, . [un])  sit [e(ur,. .., ua)]Pe U

Demo. Por induccién sobre la férmula ¢(z1, ...,z ), distinguiendo los siguientes casos:

@ Si p(z1,x2) = x1 = w2, entonces para todos ui, uz € A
AMU] E [ur] = [ue]  sit [ur] = [uz]  sii uwp ~us osii Jur = uQHB ceu
@(x1,x2) = 1 € T2, entonces para todos w1, us € A

MU = [u1] € [us] sii [u1] €™ [us] sii [ur € ua]®e u

@ Si

@ Si p(z1)=z1 € V: anélogo.
@ Si ¢(Z) = —p1(Z), entonces para todos @ € .#®, tenemos que:

AU = (@) si AU FEei([@)  si [ea(@]® ¢ U (por HI)
si —slen(@]Peu si [e@]Pe u ()

v
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Cociente de .#® por un ultrafiltro (3/3)

Demo (continuacién).
@ Si ¢(T) = ¢1(&) V 2(Z), entonces para todos @ € 4%, tenemos que:
AU = o([a])  si AU = ea([a]) o AU E pa([4])
si [ei(@]Pe U o [p2(@)]P€ U (por HI)
si [pr(@]° Ve [p2(D)]° € U
si [e@]® eu
@ Si (&) = Jwo po(wo, T), entonces para todos i € 4%, tenemos que:

AU (@) s AU po([uo], [@]) para algin ug € #°

sii leo(uo, @)]2 € U para algin uo € #° (por HI)
sii \/ [o(uo, @))% € U (por el principio del méaximo)
uaE//l]E
si [e(@]Beu O
4

@ Obs.: El caso de las conectivas se basa en las propiedades de los
ultrafiltros, mientras que el caso de las cuantificaciones se basa en
el caracter lleno del modelo booleano (interno) .#® C .4

» Razdn por la que tomamos .# ): ZFC (= principio del méaximo)
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Estructura de .Z U] (1/7)

Dado un modelo (de Tarski) .# = ZFC con B, <p € .# tales que

M E (B,<g) es un algebrea booleana completa
y escribiendo B = {a € A : M = a € B}:

Teorema

Para todo ultrafiltro & C B (interno o externo):

(1) El cociente .#[U] := .#® |~ equipado con las relaciones €]
y A (inducidas por i) es un modelo de ZFCy: . Z[U] | ZFCy,

(2) Ademds: #U] = (VzeV)z CV A OnCV

(3) La funcién h : A — .#[U] definida por h(a):
es un encaje de (#, %) en (A[U], e#M)

[a] (ac)

(4) Tenemos la inclusién h(.#) C .4, y a través de ésta,
h(A) (~ #) es un submodelo elemental de .Z




Resumen: M~ WA) C M C MU
m extensién m
ZFC elemental ZFCy
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Estructura de .Z U] (3/7)

Demo. (1) Si ZFCy ¢, entonces [p]®=15 € U, yluego A[U] |= .
(2) Vimos que: V® |= (Vza€V)za CV AOnCV (enZF).
Entonces: [(VzeV)a CV AOnC V]]B =1 € U
y por lo tanto: . AZ[U] = Vz€EV)z CVAORCV
(3) Para todos a1, as € #, tenemos que:
a1 =ay si [a1 =a2]P=15 si [a1=a2]Pe U si [a1] = [as]

a1 € ay sii [ar € as]® =1 si [ar € ax]Pe U si [a1] €M [ag]

(4) Paratoda a € ., tenemos que [a € V]]B: 1 € U, entonces h(a) = [a] € A . Ademés,

para toda férmula ¢(z1,...,z,) de ZF con pardmetros a1, ..., a, € .#, tenemos que:
M, an) & [0V, ... an)]" = 15
& [ea,...,an)] U
& U] (@), [an)
& M= p(la], ..., [an]). O
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Estructura de .Z U] (4/7)

Resumen: M~ WA) C A C MU
m extensién m
ZFC elemental ZFCy,

i Condicién para que h(.#)
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Estructura de .Z U] (5/7)

Definicion: Un ultrafiltro U C B es .#/-genérico cuando
para todo X C U tal que X € .#, tenemos que AX € U J
Proposicién: h(.#)= .4 sii U CB es .#-genérico )

Demo: Ejercicio

@ Recordatorio: El ultrafiltro &«/ C B puede ser:
— externo (i.e. definido en la metateoria), o
— interno (i.e. inducido por algin U € # t.q. # = U C B ultrafiltro)

Proposicién (Ultrafiltros genéricos internos)

Para todo ultrafiltro .#-genérico U C B:
U esinterno  sii A4 = (Ja€B)(a dtomo A U = 1{a})

(i.e. U es un ultrafiltro principal)

sii - h(A) = M = AU (colapso)

Demo: Ejercicio
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Estructura de .Z U] (6/7)

o El lo siguiente, consideraremos ultrafiltros &/ C B tales que:

(1) U es .#-genérico (para asegurarnos que .4 = h(.#) ~ )
(2) U es externo (para evitar el colapso A [U] = M ~ &)

i Existen tales ultrafiltros?

Si el modelo de base .# = ZFC es numerable, entonces:

(1) Existe un ultrafiltro & C B que es .#-genérico

(2) Si ademds U no es un ultrafiltro principal (interno),
entonces h(#) = .# C MA[U] (ultrafiltro externo)

Demo. Ejercicio

@ Obs.: En (2), la condicién que “U no es un ultrafiltro principal”
se cumple automaticamente cuando .# | B no tiene dtomos
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Estructura de .Z U] (7/7)

Conclusion: Cuando el modelo de base .# es numerable, siempre
existe un ultrafiltro .#-genérico U C B, de tal modo que:

M~ M C MU
T (h) T
zFC zFC,

» Se dice que .Z[U] es la extensién genérica de .# por U C B

Ademés cuando U es externo, tenemos que .# C .4|U]
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