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i Qué es el forcing?

e Un método inventado por Paul Cohen ('63) para demostrar la
independencia de la hipétesis del continuo (HC) en ZFC

Hipétesis del continuo (HC), 1° problema de Hilbert

Para todo subconjunto infinito X C RR:
o O bien X es numerable (i.e. en biyeccién con IN)

o O bien X tiene la potencia del continuo (i.e. en biyeccién con IR)

En simbolos: 280 — N,
o Godel ('38) mostré que ZFC 1/ —=HC  (con los conjuntos constructibles)
@ Cohen (’63) mostré que ZFCt/ HC (con el método de forcing)
@ Relacionado con los modelos booleanos [Scott, Solovay, Vopénka]

@ Permite demostrar muchos resultados de consistencia relativa /
independencia en teoria de conjuntos [Solovay, Shelah, Woodin, etc.]
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Una analogia con el algebra

Teoria de conjuntos
Empezar con un  modelo de base M

Queremos afiadir un nuevo conjunto
aproximado por los elementos de un

conjunto de forcing (P, <) € M

Esto define un ficticio

filtro genérico G C P (afuera de M)

que genera alrededor de M una
extensién genérica M[G]

Construccién:

M[G] = MBE®/~
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Algebra
Empezar con un cuerpo de base K

Queremos afiadir un nuevo punto
que deberia ser una raiz de un

polinomio P € K[X]

Esto define una ficticia

raiz o« de P (afuera de K)

que genera alrededor de K una
extensién de cuerpo K[«

Construccién:

Kla] = K[X]/P K[X]
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Ejemplo: cémo forzar —-HC

o Objetivo: Forzar la existencia de una inyecciéon h : Ng — P(w).

La construiremos como funcién indicatriz g : No X w — 2

o El objeto ideal g estd aproximado en el modelo de base M por
elementos de (P, <) = (Fin(Ny X w,2), D) (conjunto de forcing)

o Invocacién de forcing: Sea M|[G] la extensién genérica generada
por un filtro genérico G C P

e En M[G], senota: ¢ := limG = UG (: Ny xw—2).
Usando el caracter M-genérico del filtro G C PP, se demuestra que:

o La funcién parcial g : N X w — 2 es total

o La funcién h : No — P(w) correspondiente es inyectiva

Detalles técnicos (i.e. condicién de cadena numerable) bajo la alfombra
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@ Recordatorio: En ZF (o cualquier extensién), un modelo transitivo
de ZF es una clase M no vacia y transitiva tal que:

M |= ¢ para todo axioma/teorema de ZF
——

oM

Caracterizacion

Una clase transitiva M es un modelo transitivo de ZF si y sélo si:

(1) weM

(2) a,be M = {a,b}eM A (Ua) eM A (Bla)NM)e M
—_———
= PM(a)
(3) a,ZeM = {zca: Mz )} eM
para cada férmula ¢(z, Z) del lenguaje
(4) a,7e M N (Vzca)Bye M) oM(z,y,2) =
(Fbe M) (Vz €a)(Ty €b) oM (2,v, 7)

para cada férmula ¢(z,y, Z) del lenguaje
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@ En cualquier modelo transitivo M = ZF, tenemos que

on™ = Onn M y
(On(a) = férmula Ap)

on™ OCnnNM
(Cn(a) = férmula I1;)

Caso no transitivo
000000000000

(2/3)

@ En M, las operaciones A tienen el mismo significado que en V:
fa.b}" =

dom™ (f)
(AuB)M
(AN B)’V

M

)

iel

{a, 0} (a,b)" =
dom(f) img" (f)
AUB (A+B)M
ANB (Ax B)M
Ua  (Xa)
i€l iel

(suponiendo que a,b, f, A, B,I,A; € M)

(a,b)

img(f)
A+ B
AxB

>4

iel

@ Pero las operaciones II; tienen que ser restringidas a M:

P (4)
(BA);\I

P(A) N M
= B*nM

()" =

[T4)nm

iel
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Modelos transitivos (3/3)

o Cada modelo transitivo M |= ZF tiene su jerarquia acumulativa
interna (My)aconm (= (VM) yconn), definida por:

[e3%

My = |JPMMp) = |JPBMp) N M) (ac0nnm)

B<a B<a
@ Por lo tanto, sélo hay dos posibilidades:

(1) O bien On C M, vy luego: On™ = On.

» M es un modelo interno de ZF

(2) O bien On & M, yluego On™ =y, donde p = min(On — M).

Entonces: M = UM = UMQ es un conjunto
BeonM a<p
» M es un modelo transitivo conjuntista de ZF



Plan

© Introduccién

© Extensiones genéricas

© Ejemplos: reales de Cohen

@ Extensién genérica de un modelo cualquiera



@ Introduccién

@ Extensiones genéricas

© Ejemplos: reales de Cohen

@ Extensién genérica de un modelo cualquiera



Introduccién Extensiones genéricas Ejemplos Caso no transitivo
00000000 0@0000000000000000000000000 0000000000000000000000 000000000000

Condiciones de forcing

@ Un conjunto de forcing es un conjunto ordenado (IP, <) no vacio.
Sus elementos se llaman condiciones (de forcing), y la relacién

p<q selee: “pesmas fuerte que ¢’

@ Intuicidon: Los elementos de [P representan aproximaciones potenciales
de alglin “objeto ideal” que queremos anadir al universo. En este marco:

p<qg = "pesmas fuerte que q"

“p es una mejor aproximacién que ¢”

“p contiene mas informacién que ¢"

= “pimplica ¢"

@ En la mayoria de los casos, la relacién p < q estad definida como p D ¢
(inclusién inversa); por eso algunos autores [Shelah] escriben p > ¢ antes
que p < q. Aqui se usara la notacién usual p < ¢q, que captura la idea
de una implicacién légica
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Elementos compatibles, incompatibles

@ Para todo subconjunto X C P, se notan:
X = {p cP: (Elq I X) q> p} (clausura inferior de X)
X = {p cP: (Hq c X) q < p} (clausura superior de X)

@ Dos condiciones p, q € P son compatibles (notacién: p T ¢) cuando
tienen una cota inferior comun:

pTq sii GreP)(r<pAr<gq)
Si no, se dice que p y g son incompatibles (notacién: p L q):

plg sii (FreP)(r<pAr<g)

@ Un subconjunto A C P es una anticadena cuando cada dos
elementos distintos de A son incompatibles:

A anticadena sii (Vp1,p2 €P)(p1 # p2 = p1 L p2)
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Subconjuntos densos y predensos

@ Un subconjunto D C P es denso cuando todo elemento de PP estd
acotado inferiormente (“implicado”) por un elemento de D:
D CPdenso  sii (VpeP)(3¢eD)(q <p)
si tD="P
@ Obs.: Dicha nocién de densidad corresponde a la nocién usual de densidad para
la topologia cuyos abiertos son los subconjuntos de P cerrados inferiormente:
U C P abierto sii WU =U

@ Mais generalmente: un subconjunto D C PP es predenso cuando todo
elemento de IP es compatible con un elemento de D:

D C P predenso sii (VpeP)(3geD)(¢ T p)
si (WeP)(FrelD)r <p)
sii 1D denso
si fID=P
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Filtros genéricos (1/2)

@ Un subconjunto F' C P es un filtro cuando:

(i) F#2 (no vacio)
(ii) (Vp,qeP)(pe FAp<qg=q€F) (clausura superior)
(#i7) (Vp,qe F)(FreF)(r<pAr<gq) (compatibilidad interna)

@ A partir de ahora, se supone que (P,<) € M, donde M es un
modelo transitivo de ZF (M puede ser un conjunto o una clase propia)

@ Se observa que las férmulas
“< es un orden sobre P", Y =|X", Y =1X",
“pTq", "plgqg', "“ACTP anticadena”,
"D C Pdenso’, "D CP predenso’, "F C P filtro”

son Ay, y luego tienen mismo significado en M y en V
(bajo la hipétesis que los subconjuntos X,Y, A, D, F C P estdn en M)
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Filtros genéricos (2/2)

e Dado un modelo transitivo M = ZF tal que (P,<) € M:

Definicién (Filtro genérico)

Un filtro G C P es M-genérico cuando interseca todo subconjunto
denso de P en M:

G es M-genérico sii (VDeM)(D CPdenso = DNG # )

@ Obs.: Sdlo se consideran los subconjuntos densos en M

Proposicion

Para todo filtro G C P, las siguientes condiciones son equivalentes:
(1) G es M-genérico

(2) G interseca todo subconjunto abierto denso D C P tal que D € M

(3) G interseca todo subconjunto predenso D C P tal que D € M

(4) G interseca toda anticadena maximal A C P tal que A € M (con AC)
v

Demo: Ejercicio
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Filtros genéricos triviales (1/2)

@ Un elemento p € P es un dtomo (en el sentido del forcing*))
cuando todas sus cotas inferiores son compatibles entre si:

p dtomo sii Va1, 2 <p)(1 T ¢2)

@ Dado un dtomo py € P, se escribe G, = {g€P :qT po}.
Por construccién, es claro que G, € M. Ademds:

Proposicién

Para todo dtomo pg € IP, el conjunto G, es un filtro V-genérico

Demo. 1. G, es un filtro. Es claro que G, es no vacio y cerrado superiormente. Dados
q1,q2 € Gp,, tenemos que g1 T po y g2 T po, luego existen r1,r> € P tales que r1 < q1,
ro < g2y r1,72 < po. Pero como po es un dtomo, tenemos que 71 T 72, y existe r € P

tal que » < 71 y r < ra. Por lo tanto, tenemos que r € G, r < q1 y 7 < ga.

2. Gy, es V-genérico. Sea un subconjunto D C PP denso (en V). Por densidad, existe ¢ € D

tal que ¢ < po. Entonces q T po, es decir ¢ € G, N D. O

@ Los filtros genéricos de la forma G, (con po € P 4tomo) son llamados
filtros genéricos triviales. Estdn todos en M

(*)Veremos mas adelante el vinculo con los dtomos de las slgebras booleanas
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Filtros genéricos triviales (2/2)

e Mds alin, los filtros genéricos triviales G, C P (con po € P 4tomo)
son los Unicos filtros M-genéricos que estan en M:

Proposiciéon
Para todo filtro M-genérico G C P:
GeM sii (3po €P)(po dtomo A G = Gp,)

Demo. (=): Supongamos que G € M. Tenemos que G°(:=P — G) € M, y como G° no
interseca G, el conjunto G¢ no es predenso. Luego existe pg € P tal que (Vg€ G°)(q L po). Por
contrarreciproco, tenemos que g T po => ¢ € G para todo g € P, es decir: G, C G.

Por otro lado, como G es un filtro y pg € G, tenemos que g € G = q T po para todo g,

es decir G C Gy, y al final G = G, . Sélo queda mostrar que po es un dtomo. Para ello,

dados g1, g2 < po, se observa que g1,q2 € Gp, = G, y como G es un filtro, existe r € G

tal que r < g1 y r < g2, lo que demuestra que g1 T g2. (<=): Obvio. O
y.

Corolario: Si el conjunto de forcing (P, <) no tiene dtomos, entonces
todo filtro M-genérico G C IP estd afuera de M: G ¢ M

» En la prictica, se usardn conjuntos de forcing sin dtomos
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El lema de Rasiowa-Sikorski

@ Problema: jExisten filtros M-genéricos no triviales?

Lema (Rasiowa-Sikorski) (con DC)

Si los subconjuntos densos de P que estan en M forman un conjunto
numerable (en V'), entonces existe un filtro M-genérico G C P (en V).

Ademas, fijada una condicién po € P, se puede imponer que po € G

Demo. Sea (D,,)ne.w una enumeracién de los subconjuntos densos de P en M. Fijada una
condicién pg € PP, se construye con DC una sucesién decreciente (py, )new € P, eligiendo

para cada n € w la condicién p,+1 € P tal que prr1 € Dy Y Prt1 < P (por la densidad

de D,,). Luego, es obvio que G := 1{p, : n € w} es un filtro M-genérico. O

V

@ Obs.: La hipétesis se cumple automdticamente cuando M es un
modelo transitivo numerable de ZF. En este caso, ni siquiera se
necesita DC para construir G (pues P es bien ordenable en V)

@ En forcing, se suele empezar a partir de un modelo de base M = ZF
numerable, lo que garantiza la existencia de un filtro M-genérico G
(en general afuera de M) para cualquier conjunto de forcing (P, <) € M
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Teorema de la extension genérica

Teorema (Extensién genérica)

Sean un modelo transitivo M |= ZF y un conjunto de forcing (P, <) € M.
Para todo filtro M-genérico G C P, existe una clase M[G] tal que:

(1) M|G] es un modelo transitivo de ZF
(2) MCMG] y GeM[G]

(3) Para todo modelo transitivo N |=ZF talque M C N y G € N,
tenemos que M[G] C N (i.e. M[G] esta generado por M y G)

Ademds, tenemos que:
(4) onMIE = opM
(5) Si M E AC, entonces MI[G] = AC

» La clase M[G] se llama extensién genérica de M por G

@ Obs.: La condicién de minimalidad (3) implica que la clase M[G] es
dnica. En particular, cuando G € M, tenemos que M[G] = M
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Preliminares: ortogonal de un subconjunto de P

@ Dado un conjunto X C P, se define su ortogonal Xtcp por:

Xt = {peP: (VgeX)plgqg}
= {peP: (VWr<p)(Vg>r)q ¢ X}
= {peP: (VWr<p)r¢lX}
= {pelP: {p}nlX =0}

Para todos X,Y C P, tenemos que:
(1) X CY implica X+* DY+
(2) X c x++
(3) =Xt
(4) Xt esta cerrado inferiormente
(5) Xn XL =9

)

(6 es predenso

Caso no transitivo
000000000000

(1/2)

Demo: Ejercicio
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Preliminares: ortogonal de un subconjunto de PP (2/2)

o Adem3s para toda familia (X;);c; € B(P)!, se observa que:
€
_ 1
(Ux) = Nx
iel i€l
(No hay propiedad andloga para el ortogonal de una interseccién)

Para todos X,Y C PP cerrados inferiormente, tenemos que:
(1) X+ = {peP: (Vq<p)q ¢ X}

(2) Xt = {peP: (Vg<p)(F<qgre X}

3) (Xny)*t = xttnytt

Demo. (1) Tenemosque X~ ={p€P:(Vg<p)qglX}={p€cP: (Vg<p)q¢ X},
yluego (2) X+ ={peP:(Vg<p)q¢ X"} ={peP:(Vg<p)@r<q)re X}

(3) Lainclusién (X NY)+L € X+LnyLL es obvia. Reciprocamente, sea p € Xt+tny++,
Queremos probar que p € (X NY)LL, es decir: (Vg<p)(3r<q)r € XNY (por (2)).

Sea g < p. Como p € X+, existe r < g tal que r € X. Y como p € Y11, existe s < r(<q)
tal que s € Y. Pero como X = | X, tenemos que s € X, y luego s € X NY. O

V
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Preliminares: algebra booleana generada por P (1/2)

o Sea: B := {XePP) : X+ =X}

Proposicién (Algebra booleana B)
El conjunto B := {X € B(P) : X+ = X} (equipado con C)

es un dlgebra booleana completa no degenerada, en la cual:
(1) O)p=9 y 1lg=P
11
(2) /\Xl = m Xz y \/AXVZ = (U Xz) (para todo (Xi)ie[ (S BI)
il iel il il
(3) X = X+ (para todo X € B)
v

Demo. (1) Tenemos que @ = @1 € B (minimo) y P =Pt € B (maximo).
(2) Dada una familia (X;)ser € BY, tenemos que: ;c; Xs = Ny Xitt = (Uier X5 "
= (Ukzs xHtHt = (Nier xtHytt = (Mezn X,;)**, lo que demuestra que

.7 Xi €B, y luego que 1 Xi = \,c; Xi. ParatodoY € B, se observa que:

i€l i€l i€l

VieD)X; CY  si Uje; Xi CY  si (Uper Xo)"H CY
(pues Y = Y1), lo que demuestra que (Uiel Xi)J‘J‘ = Vier Xi- (...)
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Preliminares: algebra booleana generada por P (2/2)

Demo (continuacién y fin). Acabos de mostrar que (B, C) es un reticulo completo, en el cual:
11
/\Xi: ﬂXi y \/Xi: (U Xi) (para todo (X;)ier GBI)
i€l i€l i€l iel
(Distributividad) Para todos X, Y, Z € B, tenemos que X A (Y V Z) = X+t+n (v uz)*tt
= (XN (Y UZ))*L (pues X e Y U Z son cerrados inferiormente), y por lo tanto:
XANYVZ)=XnYuz)tHt=(XnY)uXn2z2)tt =(XAY)V (XA Z).
(3) Paratodo X € B, tenemos que X € B, y ademds: X A X+~ = X N X+ = & = 0z,
mientras que X V X+ = (XuUXH)*tt = (XtnxthHt =gt =P=1; ]

@ Obs.: Desde el punto de vista de la topologia sobre P (cuyos abiertos
son los subconjuntos U C P cerrados inferiormente), se observa que B
es el conjunto de los abiertos regulares de P:

Lema: B={UCP:U=U"} |

Demo: Ejercicio

@ Mas generalmente: En cualquier espacio topolégico FE, el conjunto H formado
por los abiertos de E es un algebra de Heyting completa, en que la negacién estd
dada por =U = (U€)°. En este marco, los abiertos regulares de E son precisa-

mente los elementos U € H tales que U = -—U (=U") (Ejercicio)
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Preliminares: “encaje” de P en B

@ Se considera la funcién e : P — B* (=B — {0}) definida por:
e(p) == {p}tt = {¢eP: (Vr<q)r T p} (peP)

(Funcién mondtona, pero no necesariamente inyectiva)

@ Ejercicio: Probar que p dtomoenP < e(p) dtomo en B
(sentido del forcing) (sentido de las &lg. bool.)

@ Se dice que el conjunto de forcing (P, <) es separativo cuando:
(Vp,qeP)(p £ q = (' <p)(p’ L4q))

Proposicion

Si (P, <) es separativo, entonces e(p) = [{p} para todo p € P,
y por lo tanto la funcién e : P — B* es un encaje:

p<q < e(p) Ce(q) (para todos p,q € P)

Demo. Ejercicio

» En la prictica, se usardn conjuntos de forcing separativos
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Preliminares: B adentro de un modelo transitivo

@ En lo siguiente, se efectuard la construcciéon del dlgebra booleana B
adentro de un modelo transitivo M = ZF tal que (P,<) € M:

B = {XecPpM(P) : X+ =X} (e M)
(Observar que la férmula “X1+ = X" es absoluta)
o En el modelo transitivo M |= ZF, el conjunto B (equipado con C)
es un algebra booleana completa:
(ZF F) (B es un algebra booleana completa)’’
@ Pero en el universo V, el conjunto B (equipado con C) sélo es un
algebra booleana M-completa:

(ZFH) B es un dlgebra booleana A
(VS € BM(B))(S tiene infimo y supremo)

(Observar que las férmulas “B es un &lgebra booleana”, “S C B tiene infimo”
y “S C B tiene supremo” son absolutas)
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Preliminares: filtros y ultrafiltros genéricos (1/3)

e Dado un modelo transitivo M |= ZF tal que (P, <), se define:
B = {XePMP) : X=X} (e M)
e Cada filtro F' C PP induce un filtro (propio) F C B, definido por:
F={XeB: XNF+#g}

(Ejercicio: Verificar que F es un filtro propio de B)

o Ademas:

Proposicién (Ultrafiltro AM-genérico)

Si G C P es un filtro M-genérico, entonces G C B es un ultrafiltro
M-genérico, es decir: un ultrafiltro de B tal que:

(viel) X;eG = N\Xi € G
el

para toda familia (X;)ic; € (Bf N M)
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Preliminares: filtros y ultrafiltros genéricos (2/3)

Demo. Sea G C P un filtro M-genérico. Es claro que el conjunto G := {XeB: XNG # 2}

es un filtro propio de B. Ademas, para cada X € B, el conjunto X U Xt es predenso, y por lo
tanto e><|5te p € G tal que p € X U X', Entonces o bien p € XNG,yluego X € G, o bien
p€ XtNG,yluego X+ € G. Esto acaba de mostrar que G es un ultrafiltro de B.

(M -genericidad) Dada una familia (X;);cr € B! N M tal que X; € ¢ para todo ¢ € I, se nota
X = N;e; Xi (tenemos que X € B pues B es M-completa). Queremos probar que X. € G.

Para ello, se observa que el conjunto (UzieI Xj‘) 0] (Uie[ ) (€ M) es predenso, y luego
interseca G. Se distinguen dos casos:

@ O bien Ui,eI Xil interseca G. En este caso, Xf interseca G y luego Xf EC
para algtlin ¢ € I: absurdo, pues X; € G para todo ¢ € I (por hipétesis).
@ Entonces (U

el XiJ‘)J‘ = ﬂieIXﬁ‘J‘ = X, interseca G, es decir: X, € G. O

@ Dado un filtro M-genérico G C P, se demuestra que:

Lema: p€G < e(p)€G paratodopeP  (es decir: G = e_l(é))J

Demo: Ejercicio

@ Y por lo tanto: GeM < G’GMJ
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Preliminares: filtros y ultrafiltros genéricos (3/3)

e Como para cualquier ultrafiltro, la pertenencia asociada con el
ultrafiltro G C B conmuta con todas las operaciones booleanas:
-X € s X¢@
XAY € & XeG AYed
XVY e G & XeGVYed

G
G

(donde =X =X, XAY:=XNY y XVY:=(XUY)*+!)

@ Debido al caracter M-genérico, las dltimas dos propiedades de
comutacién se extienden a toda familia (X;);c; € B! N M:
N\Xi € G & (Viel) X, e G
i€l
VXi e G & (@iel)XieC
el
@ Por lo tanto, la funcién indicatriz 15 : B — 2 es un morfismo de
algebras booleanas M-completas
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Teorema de la extension genérica (recordatorio)

Caso no transitivo
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Teorema (Extensién genérica) (recordatorio)

Sean un modelo transitivo M = ZF y un conjunto de forcing (P, <) € M.
Para todo filtro M-genérico G C P, existe una clase M|[G] tal que:

(1) M|G] es un modelo transitivo de ZF
(2) MC M[G] y G e M[G]

(3) Para todo modelo transitivo N = ZF talque M C N y G € N,
tenemos que M[G] C N

Ademds, tenemos que:

(4) onMIE = opM

(i.e. M[G] esta generado por M y G)

(5) Si M E AC, entonces MI[G] = AC
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Teorema de la extension genérica: demostracion

Demo. Dados un modelo transitivo M |= ZF, un conjunto de forcing (P, <) € M
y un filtro M-genérico G C P, se escribe:

@ B:={X € EBM(]P’) XL — X} (€ M) al élgebra booleana inducida por P;
@ c¢:P — B* alafuncién definida por e(p) = {p}*~* para todo p € P;
@ G:={X€EB:XNG#Z}CB al ultrafiltro M-genérico inducido por G;

o ME .= (V]B)M (C M) alaclase de los B-nombres inducidos por B en el modelo M;

@ z +— & a la funcional que asocia a cada conjunto € M el B-nombre & € M®
definido por recursién sobre € M por: & := {(7,1s) : y € =}.

Mediante el ultrafiltro G C B, se asocia a cada B-nombre v € M® su reificacién uw® eV,

la cual estd definida por recursién sobre u € ME por:
u® = {v¢ : v € dom(u) A u(v) € G}
Esto permite construir la clase M[G] = {u®:u e M®} (C V).

Por €-induccién sobre x € M, se demuestra que ¢ ==z para todo = € M. Para ello,

se observa que si yG =y para todo y € x (HI), entonces:

iG:{vG:vedom(i)/\i(v)eé}:{gc:y€z}:(H|){y:y€x}:z.

Esto implica que z = € € M |[G] para todo z € M, y por lo tanto M C M[G].

También se define el nombre genérico g := {(p,e(p)) : p € P} € M. Se observa que

¢ = {(p°:pePre(p)eG} = {p:pePApeG} = G,
y por lo tanto G = g& € M[G], lo que acaba de probar (2).

(u € M®)

Caso no transitivo
000000000000

(1/3)
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Teorema de la extensién genérica: demostracién (2/3)
Demo (continuacién). En el modelo booleano M® (C M), cada férmula @(z1, . .. ,x,) de ZF
induce una funcional  ((w1,...,un) — [e(u1,...,u.)]®) : (MB)n — B.
Lema: W =9 o [u=0v]®Bed para todos u,v € M®

uwCev® o [uev]®Ped para todos u,v € M®

Demo. del Lema. Se demuestra la primera equivalencia por induccién mutua sobre u y v.
Supongamos que u'¢ = vV & [u' = v']® € G para todos v/ €dom(u), v'Edom(v) (HI).
Dado u’ € dom(u), se observa que:
[w ev]Ped@ < \/(v(v')/\[[u’:v’]]M) € G
v/ €dom(v) 5 5
& (3’ €dom(v))(v(v') € G A [u' =0']® € Q)
Smy  (F €dom(v) (v € vC AW =0v'9) & W/ ev® (¥
y por lo tanto
[ucv]Bed & /\(u(u’) = [u € v]]B) € G
u/ Edom (u)
& (Yo' €dom(w)) (u(u’) € G = [ €v]® € Q)
& (Vo €dom(u)) (uw'€ € u® = w/'? €v°) & u® CoC.
De modo andlogo se demuestra que [v C u]]JB cG & ¢ C u®, y por lo tanto tenemos que

[u=v]% € G o u® =v%. La segunda equivalencia se deduce de la primera con la misma

técnica de prueba que para (x). O (..)
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Teorema de la extensién genérica: demostracién (3/3)

Demo (continuacién y fin).

Proposicién: Para toda férmula ¢(z1, ..., x,) con pardmetros uy, ..., U, € ME:
MG, ul) e e, un)]® € )
Demo. de la Prop. Por induccién externa sobre ¢(z1,...,Zy), usando el Lema anterior para
las férmulas atémicas. Por ejemplo, cuando @ (z1,...,Zy,) = 3o wo(z0, T1,...,Tyn):
- T -
[e(ui, ..., un)]® e G < \/[[WO(“Oaulv"'vun)]] € G
uoel\lB 5
< (Fuo € M®) [@o(uo,u1,-..,un)]® € G
y MG
S (HI) (HuoEMB)z,aO [ ](ug;,u?,“.,ug
M[G
& (HQTEM[G])LPO[ ](x,uf,...,uf
& oMOA@E, ).

Los otros casos se tratan de modo analogo. O

Por construccién, es claro que M[G] es una clase transitiva. Ademds, tenemos que M® |= ¢ para
cada teorema ¢ de ZF, luego [¢]® = 15 € G, y por lo tanto ™[] Es decir: M[G] |= ZF (1).
Dado un modelo transitivo N = ZF tal que M C N y G € N, se verifica que

u® = {v€ : vedom(u) Au(v) € G} € N
para todo u € M® (por induccién sobre u € MP?), lo que implica que M[G] C N (3).
(4) De la minimalidad de M[G] se deduce ficilmente (ejercicio) que On (Gl = OnM

(5) Si M = AC, entonces [AC]® = 15 (= ACMIC]) y por lo tanto M[G] |= AC. O
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La relacién de forcing (1/4)

@ La demostracion del teorema de la extensidn genérica se basa en:

(1) La construccién adentro de M del dlgebra booleana B (€ M)
inducida por P asi como del modelo booleano M® (C M)

(2) La definicién de una funcional u — u® que reifica cada nombre
u € M® en un conjunto u% € M[G] (:= imagen de (-)¢)
(3) La observacién que oM (7% o [e@)]" €@

para cada férmula ¢(Z) de ZF con pardmetros @ € M®

e Tradicionalmente, el vinculo entre el modelo booleano M® (C M)
y la extensién genérica M[G] 2 M se expresa por medio de una
relacién de forcing  p Ik @(u1, ..., uy,) (“p fuerza @(u1,...,un)")
definida adentro de M por:

plkour,. .. ,un) = elp) < [o(u,. .. un)]"
= p € [olu, ... u)]"

(conp€Pyu,... u, € M®)
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La relacién de forcing (2/4)

o La relacién de forcing “p I ¢(uq,...,u,)" permite deducir
las propiedades de la extensién generica M[G] a partir de las
propiedades del modelo booleano M® (C M):

Teorema de forcing

Para toda férmula ¢(z1,...,x,) con pardmetros uy, ..., u, € M®:

oMAWG, .. uG) o (@peq)plkolu,...,u,)

n

(Reformulacién obvia de la equivalencia (3) de la diapositiva anterior)
e Como M®B |=ZF (en M), se deduce que M|G] |= ZF

@ Por otro lado, la relacién de forcing estd definida por completo adentro
de M (sin ninguna referencia a G). De tal modo que:
M
plFp(ur,...,un) <  (plko(ul,...,un))
» Permite construir conjuntos en M (y nombres en M®) usando el
predicado de forcing en los axiomas de comprensién/reemplazo
relativizados a M



Introduccién Extensiones genéricas Ejemplos
00000000 000000000000000000000000080 0000000000000000000000

La relacién de forcing

e Recordatorio: dados p € Py uy,...,u, € MB:
plEo(ur,...,un) = elp) < [e(u,... ,un)ﬂB
= pefp(ur,. .. ,un)]"
Proposicién (Propiedades de la relacién de forcing)

Para todas férmulas ¢ y 1) con pardmetros en ME:

opl-p ANg<p = qlFyp

o «(IpeP)(plk v A plk—p)

o (VpeP)(F¢<p)glFe V qlF—p)

° plE-¢p & (Vg<p)qlfe

o pllFoAy & plkp A plEy

o pltpvy & Mg<p)@r<q)(rite VvV rl-1)

o pl-Vryp(z) & (YueMB) pl-o(u)

e plkdzp(x) & (Vg<p)@r<q)BFue M®) ri- o(u)

Caso no transitivo
000000000000

(3/4)

Demo: Ejercicio
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La relacién de forcing (4/4)

@ Observacion. Vimos en el capitulo anterior que la funcional
((uty - un) = [p(ur, . un)]®) o (MB)" - B

estd definida mas generalmente para cualquier férmula ¢ € Z v/,
lo que permite extender la relacién de forcing a ese lenguaje

e Cuando se trabaja en una extensién generica M[G], es natural

extender la operacién de relativizacién ¢ — @Ml a todas las
férmulas del lenguaje fe,‘v/, anadiendo la cldusula:
(xe VMGl = zeM
@ En este nuevo lenguaje, se mantiene el
Teorema de forcing: Para cada férmula ¢(21, ..., xn) del lenguaje Z, v
@M[C](u?,...,ug) < (Bpe@)plko(ul, ..., un) J

asi como las propiedades de la relacién p -  (véase diapo. anterior)

@ Conclusion: M[G] ': ZF‘j, (i.e. con comprensién y reemplazo en fe,\’/)
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© Extensiones genéricas

© Ejemplos: reales de Cohen

@ Extensién genérica de un modelo cualquiera
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El conjunto Fin(FE, 2) (1/3)

@ En esta seccidn, se consideran conjuntos de forcing de la forma
(P,<) = (Fin(E,2), D)
donde Fin(E,2) es el conjunto de las funciones finitas de E a 2
Fin(E) := {f: E — 2 : dom(f) finito}

equipado aqui conelorden f<g := fDg (inclusién inversa)

Proposicién (Absolutez)
La férmula Y = Fin(FE,2)" es absoluta, en el sentido en que

(VE € M) Fin"(E,2) = Fin(E, 2)

para cualquier modelo transitivo M = ZF

Demo. Primero se observa que la férmula “f : E — 2 A dom(FE) finito” es 31, y por lo tanto
Fin™ (E,2) C Fin(E, 2). Reciprocamente, se demuestra por induccién sobre el cardinal (finito)
de dom(f) que f € Fin(E, 2) implica f € Fin™ (E, 2). O

v
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El conjunto Fin(FE, 2) (2/3)
@ Obs.: Para todos f, g € Fin(FE,2) (equipado con D), tenemos que:
fTg < fUgfuncién
& (Vzedom(f) Ndom(g)) f(x) =g
flg & (Fredom(f)ndom(g)) f(z) # g(x)

Proposicién (Propiedades de (Fin(E,2), D))

Dado un conjunto E cualquiera:
(1) El conjunto ordenado (Fin(E,2), D) es separativo
(2) Si E es infinito, entonces (Fin(E), D) no tiene dtomos

(3) Toda anticadena de (Fin(FE,2), D) es finita o numerable

Demo. (1) Dados f, g € Fin(E, 2) tales que f 2 g, se trata de hallar f' D f tal que f' L g.

Si f L g, basta con tomar f’ := f. Si f T g, entonces dom(f) 2 dom(g), y existe
x € dom(g) tal que = ¢ dom(f). En este caso, basta con tomar f’ := f U {(z,1 — g(z))}.

(2) Sea f € Fin(E, 2). Como E es infinito, existe z € E — dom(f). Sean fo := f U {(=, O)}
y f1 := f U {(z,1)}. Por construccién, tenemos que fo, f1 2 fy fo L f1.
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El conjunto Fin(FE, 2) (3/3)

Demo (continuacién y fin). (3) Primero, se demuestra par induccién sobre n € w que toda
anticadena A C Fin(FE, 2) tal que [dom(f)| = n para todo f € A es finita

@ Paso de base. Obvio, pues si [dom(f)| = 0 para todo f € A, entonces A C {&}.

@ Paso inductivo. Se supone que la propiedad se cumple para alglin n € w, y se considera
una anticadena A C Fin(FE, 2) tal que |[dom(f)| = n + 1 para todo f € A.

Si A = @, entonces A es obviamente finita.

Si A # @, se fija una funcién fo € A, con dom(fo) = {e1,...,ent1}, y para cada
i € [1..n+1], se escribe A; := {f € A: f(e;) # fo(e:)}. Como A es una anticadena,
tenemos que A = {fo} U Ay U---U Ay,41. Fijemos un indice i € [1..n 4 1]. Como
f(ei) =1 — fo(e;) para todo f € A;, todas las funciones f € A; coinciden sobre ¢e;.
Por lo tanto, el conjunto A,'i = {frdc,m(f),{ci} : f € A;} sigue siendo una anticadena
de Fin(E, 2), pero tal que |dom(f)| = n para todo f € A’. Por HI, la anticadena A/,
es finita, asi como la anticadena A;, que es equipotente a A; Por lo tanto la anticadena A,
igual a {fo} UAL U---U A, 11, es finita.

Luego se observa que toda anticadena A C Fin(E, 2) se puede descomponer en la forma

A =U,e, An, donde A,, = {f € A: [dom(f)| = n} para cada n € w. Por lo anterior,

A,, es una anticadena finita para todo n € w, y por lo tanto A es a lo sumo numerable. O

Observaciones: Si (P, <) = Fin(FE, D) (con E € M infinito), entonces:
@ (1) implica que la funcién e: (P,<) — (B,C) es un encaje
@ (2) implica que todo filtro genérico G C P estd afuera de M: G ¢ M

@ Veremos mds adelante el impacto de (3) sobre los cardinales de M[G]
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Ejemplo 1: afiadidura de un real de Cohen (1/3)

Objetivo: Afadir al universo un nuevo subconjunto ¢ C w,
o de modo equivalente: una nueva funcién indicatriz g :w — 2

(1) Para ello, se considera un modelo transitivo M |= ZF asi como
el conjunto de forcing (P, <) € M definido por P := Fin(w,2)
y f<g sii f2Og paratodos f,g e P

(Intuicién: los elementos de Fin(w, 2) son aproximaciones potenciales
de la funcidn indicatriz g que queremos construir)

(2) Dado un filtro M-genérico G C P(), se trabaja a partir de ahora en
la extensién genérica M[G] inducida por G, observando que G ¢ M
y luego M[G] 2 M  (pues P = Fin(w,2) no tiene dtomos)

(3) Como G C P es un filtro, sus elementos son compatibles de a dos,
y la unién ¢ :=JG es una funcién (: w — 2). Ademss:

Proposicion: La funcién ¢g:w — 2 es total )

(t)Sabemos que tal filtro existe al menos cuando M es numerable



Introduccién Extensiones genéricas Ejemplos Caso no transitivo
00000000 000000000000000000000000000 0000080000000000000000 000000000000

Ejemplo 1: afiadidura de un real de Cohen (2/3)

Demo. Para cadan € w, se nota D,, := {f € Fin(w, 2) : n € dom(f)}, y se observa que:
@ D, € M, pues Fin(w,2) € M y la férmula “n € dom(f)" es Ag.
@ D, es denso en Fin(w, 2), pues para todo f € Fin(w, 2):
» obienn € dom(f)y f € D,,
» o bien n ¢ dom(f) y la funcién f’ € Fin(w, 2) definida por ' := f U {(n,0)}
estalque f' < fy f' € Dy.
Por lo tanto D,, N G # O, y existe f,, € G tal que f,, € D,,, es decir: tal que n € dom(fy,).
Por lo tanto n € dom(g) (2 dom(f,)) para todo n € w, es decir: dom(g) = w.

(4) Como g:=|JG y como G estd cerrado superiormente, tenemos
que G={fe€P:fCyg}, yporlotantog¢ M (pues G ¢ M)

(5) Sea c:={n€w:gn) =1} (Cw) (real de Cohen).
Como g =1., tenemos que ¢ ¢ M (pues g ¢ M)

Conclusién: Conseguimos construir una extensién genérica M[G] del
modelo de base M que tiene mds niimeros reales que M:

PV (w) & FYNw) (3¢
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Ejemplo 1: afiadidura de un real de Cohen (3/3)

Construimos un real de Cohen: ¢ € PMICl(w), ¢ ¢ PM(w)
i Cuéles son las propiedades de ¢ en M[G]?

@ ¢ no es constructible (pues L C M # ¢), y por lo tanto:

@ c es infinito y coinfinito

@ La funcién indicatriz 1.:w — 2 no es computable

e Para todo r € M (w), tenemos que: c Ar ¢ PM(w).
En particular, tenemos una inyeccién:

P (w) = P (w) — P (w)

r = cAr
o A través de la biyeccién usual h : PMIET(w) = RMIC],
el nimero h(c) € RMIG! es transcendente (etc.)

Obs.: Las prop. anteriores se cumplen para todo ¢ € PMICE(w) — PM (w)
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Ejemplo 2: afiadidura de N, reales de Cohen (1/3)

Objetivo: Afiadir al universo Xy nuevos subconjuntos ¢, C w (a < Ry),
o de modo equivalente: una nueva funcién indicatriz g : No X w — 2

(1) Para ello, se considera un modelo transitivo M |= ZFC asi como
el conjunto de forcing (P, <) := (Fin(R) x w, 2), D) (€ M)

(2) Dado un filtro M-genérico G C P, se trabaja a partir de ahora en la
extensién genérica M[G] inducida por G, observando que G ¢ M
y luego M[G] 2 M (pues P = Fin(®}! x w, 2) no tiene dtomos)

(3) Como G C P es un filtro, sus elementos son compatibles de a dos,
y launién g:=|JG es una funcién (: R} x w — 2). Adem4s:

Proposicién: La funcién g : R x w — 2 es total )

Demo: Misma técnica que para el Ejemplo 1 (Ejercicio)

(4) Se considera la funcién h : R — PMICl(w) definida por:

hMa) == {new: gla,n) =1} (a0 < R
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Ejemplo 2: afiadidura de N, reales de Cohen (2/3)

Resumen: A partir del filtro genérico G C P, construimos una funcién

indicatriz g := (JG : N xw — 2, a partir de la cual construimos
una funcién h : R — PMICl(w) por:
ha) = {n€w: gla,n) =1} (o < RAT)

Proposicién

La funcién h : R — PMICl(w) es inyectiva

Demo. Dados a # 8 < NQ/I, senota Dy g :={f €P: (In€w) f(a,n) # f(B,n)} € M.
El conjunto D, g C IP es denso, pues para todo f € P, existe n € w tal que (o, n) ¢ dom(f) y
(,8, n) ¢ dom(f) lo que permite construir f’ := f U {((a,n), 0), ((8,n), 1)} € P, tal que
f'<fyf €Dgp. ComoG CPes M-genérico, existe f € Do g N G. Sea n € w tal que
$(ar ) # F(B, n). Entonces glan) # 98, ) (pues g 2 £), y liego hia) £ A(). O

(5) Por lo tanto: M[G] E ZFC + NY < B(w)

(3 inyeccién)

M(G],
Problema: ;Cémo se relacionan N3/ y N, [
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La condicién de cadena numerable (c.c.c.) (1/5)

En cualquier extensién genérica M[G], tenemos que:

Lema: CnMI¢ C opM J

Demo. Se sigue de que On™ = On™I[Cl y de que la férmula “Cn (k)" es de clase II;. O

@ Por otro lado, un cardinal k en M puede perder su estatus de cardinal en
M|[G], si éste introduce una biyeccién f : k = « para algin a < k

Corolario: (Yo e On™) RM < A1 )

Demo. Ejercicio

Definicién (Condicién de cadena numerable)

Se dice que (P, <) cumple la condicién de cadena numerable (c.c.c.)
cuando toda anticadena de IP es finita o numerable

@ jCuidado! La férmula “(P, <) cumple la c.c.c.” no es absoluta,
y tiene sentidos distintos en M y en M[G]. En lo siguiente, siempre
se considerara dicha férmula en el modelo de base M
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La condicién de cadena numerable (c.c.c.) (2/5)

Teorema (Preservacién de los cardinales por c.c.c)

Si M= (AC A (P, <) cumple la c.c.c.), entonces CnMICl = cpM

La demostracién del teorema de preservacién de los cardinales por c.c.c.
se basa en las nociones de cofinalidad y de cardinal regular:

@ Dados ordinales v y 3, se dice que « es cofinal a 3y se escribe
« < [ cuando existe una funcién estrictamente creciente f : a« — (8

tal que (Vn<pB)(F<a)f(&) >n

Proposicion: < es un orden sobre On, tal que: a<f = a<f J

Demo. Ejercicio. Observar que el orden < no es total: 0 g1y 140

@ Dado un ordinal «, se llama cofinalidad de « y se escribe cof () al
minimo ordinal cofinal a . Tenemos que cof(a) < «

» Ejemplos: cof(0) =0, cof(n)=1 paratodon €w*, cof(w)=w,
cof(w+1)=1, etc
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La condicién de cadena numerable (c.c.c.)

Proposicion: cof(cof(a)) = cof(a) para todo a € On

Caso no transitivo
000000000000

(3/5)

Demo. Ejercicio
@ Se dice que un ordinal « es regular cuando cof(a) = «

Proposiciéon: Todo ordinal regular es un cardinal

Demo. Por contrarreciproco, se demuestra (ejercicio) que si a no es un
cardinal, entonces no es regular, usando el siguiente lema técnico:

Lema: Sean ordinales vy 3. Si existe una funcién f: 8 — «
tal que (Vn<a)(FE<B) f(§) >n, entonces cof(a) <

Proposicién: El cardinal R, es regular para todo o € On

Demo. Ejercicio
@ Obs.: La férmula "« es un cardinal regular” es II;

@ Un cardinal es singular (férmula 1) cuando no es regular

» El primer cardinal singular infinito es R, (pues cof(R.) = No)
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La condicién de cadena numerable (c.c.c.) (4/5)

Proposicién (Caracterizacién de los cardinales singulares infinitos)

Un cardinal infinito x es singular si y sélo si existe una familia (u¢)e<x de
cardinales < r indexada por un cardinal A <k y tal que kK = sup, e

Demo. Ejercicio

@ Ahora tenemos las herramientas para demostrar el

Teorema (Preservacién de los cardinales por c.c.c) (recordatorio)

Si M= (AC A (P, <) cumple la c.c.c.), entonces CnME = cnM

Demo. Supongamos que M |=AC y M |= (P, <) cumple la c.c.c.. Basta con mostrar que
k € Cn™ implica k € Cn™M (G , por induccién sobre k € M. Se distinguen tres casos:

1. k es finito en M. Obvio, pues los ordinales finitos coinciden en M y en M[G].

2. k es infinito y singular en M. En este caso, existe en M una familia (p¢)e<x de cardinales
menores a r indexada por un cardinal A < k, tal que supg ., peg = k. Pero como pe < K

para todo £ < A, el ordinal pi¢ también es un cardinal en M[G] para todo & < A (por (HI)),
y por lo tanto el supremo K = sup, . p¢ también es un cardinal en MI[G].
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La condicién de cadena numerable (c.c.c.) (5/5)

Demo (continuacién y fin).

3. k es infinito y regular en M. Queremos mostrar que x también es un ordinal regular en
M |[G]. Basta con mostrar que para todo cardinal A < x (en M y en M[G]), toda funcién
f: X — k (€ M[G]) estd acotada. Para ello, se considera una funcién f : A\ — x (€ M[G])

y un nombre f € M® tal que f¢ = f. Como M[G] = f : A = K, existe p € G tal que
p I f X — &. A partir de ahora, se trabaja en M con el nombre f
Para cada a < A, se escribe
a={B<r:(3q<p) qlF f(&) =B}
y para cada 8 € By, se elige go,3 < p tal que g IF f(&) = B (por AC). Ahora se
observa que para todos 31 # B2 < K, no existe ningtin r € P tal que r I+ f(d) =5
y r Ik f(&) = B2. Por lo tanto, la funcién (8 + gu ) : Ba — P es inyectiva y su
imagen Qo := {qa,3 : B € Ba} es una anticadena de P. Por la c.c.c., el conjunto Qo
y luego B, (que es equipotente con B, ) es a lo sumo numerable para todo o < A.
Entonces | U, oy Bal < AXRg = A < &,y por lo tanto el conjunto J,, ., Ba esta
acotado por algin By < k, de tal modo que para todos &« < Ay 8 > Bo (8 < k),
tenemos que 3 ¢ B, . Acabos de mostrar que
(Va<p) gl f(&) =B, esdecir plt f(&) # B
para todos a« < Ay 8> Bo (B < k).

Volviendo a M[G], se deduce (por el teorema de forcing) que f(a) < Bo para todo o < A.
Esto demuestra que la funcién f : A — K estd acotada por el ordinal 8y < k. O
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Ejemplo 2: afiadidura de N, reales de Cohen (3/3)

Volviendo a la extensién genérica M|[G] inducida por un modelo
transitivo M = ZFC y un filtro M-genérico G C Fin(R} x w, 2):

(5) Vimos que: M[G] | ZFC + N <P(w)

(6) Pero como (P,<) := (Fin(R)! x w, 2), D) cumple la c.c.c.
(en M), tenemos que N) = NQ’J[G], y por lo tanto:
Teorema: M[G] = ZFC+ —HC )

iFelicidades! Acabamos de refutar la hipétesis del continuo

IR| = 8,

1878-1963

Q.E.P.D.
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i Consistencia relativa de ZFC + —HC?

(1) Supongamos que ZF (y luego ZFC) es consistente

(2) Entonces ZF tiene un modelo numerable
(por completitud + Léwenheim-Skolem descendiente)

(3) Sea M un modelo transitivo numerable de ZF
(supone implicitamente que la metateoria es ZF)

(4) Se define (P, <) := (Fin(R)! x w, 2), D) € M

(5) Sea un filtro M-genérico G C P (por el Lema de Rasiowa-Sikorski)
y M[G] la extension genérica correspondiente a M y G
(por el teorema de la extensién genérica)

(6) Vimos que M|[G] = ZFC + —HC

(7) Y por lo tanto ZFC + —HC es consistente

Problema: (2) no necesariamente implica (3)
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Ejemplo 3: fijado n > 1, forzar 2% =R, (1/3)

Fijado un entero n > 1, queremos forzar el axioma 2% =R,

(1) Para ello, se considera un modelo transitivo M = ZFC + HGC
con el conjunto de forcing (P, <) := (Fin(RM x w, 2), D) (€ M)

(2) Dado un filtro M-genérico G C P, se trabaja a partir de ahora en la
extension genérica M[G] inducida por G, observando que G ¢ M
y luego M[G] 2 M (pues P = Fin(R} x w, 2) no tiene dtomos)

(3) Como G C P es un filtro, sus elementos son compatibles de a dos,
y la unién g:=|JG es una funcién (: R x w — 2). Ademis:

Proposicién: La funcién g : RM x w — 2 es total J

Demo: Misma técnica que para los Ejemplos 1 y 2 (Ejercicio)
(4) Se considera la funcién h : RM — pMICl(y) definida por:

ha) = {kew: gla, k) =1} (o < RM)
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Ejemplo 3: fijado n > 1, forzar 2% =R, (2/3)

Proposicion

La funcién h : RM — pMIGl(4) es inyectiva

Demo: Misma técnica que para el Ejemplo 2 (Ejercicio)
(5) Ademds: M[G] = R, =RM (pues P cumple la c.c.c. en M)

(6) Por lo tanto:  M[G] E 2% >N,
(Observar que M [= 280 = X1 mientras que M[G] = 2%0 > R,,)

Queda demostrar que M[G] | 2% <R,
Para ello, vamos a:
(a) Determinar los cardinales de Py B en M

(b) Mostrar que para todo X € M, el cardinal de PB(X) en M[G]
estd acotado por el cardinal de BX en M
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Cardinales de Py de B (1/2)

Lema (Cardinal de Fin(E, 2))

Para todo conjunto infinito E:  |Fin(£,2)| = |E|

Demo. Ejercicio

A partir de ahora, se considera un conjunto de forcing (P, <) (en ZFC),
ysenota B = {X e P(P): X+ =X}

Todo elemento X € B esta completamente determinado por cualquier
anticadena maximal A C X, pues: X = A+

Demo. Sea A una anticadena maximal de X. Como X (€ B) esta cerrado inferiormente en P,
A también es una anticadena de P. Basta con probar que A~ = X La inclusién X+ C A+ es
obvia, pues A C X. Para demostrar la inclusién reciproca, se razona por el absurdo, suponiendo
que existe p € A+ tal que p ¢ X 1. Como p ¢ X, existe ¢ € X tal que ¢ T p, y luego, existe
r € P tal que » < p, g. Pero como los conjuntos A (3 p) y X (3 q) son cerrados inferiormente,
se deduce que 7 € A~ N X. Por lo tanto, el conjunto A’ := A U {r} es una anticadena de P
(pues r € AL) tal que A’ C X (pues » € X), lo que contradice la maximalidad de A en X. D)
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Cardinales de Py de B (2/2)

e Sea A (C P(P)) el conjunto de todas las anticadenas de P.
El lema anterior implica (en ZFC) que la funcién

(A= AL 0 A= B
es sobreyectiva, y por lo tanto:  |B| < |A|. Luego:

Proposicion

Si (P, <) cumple la c.c.c., entonces [B*| < |P|*0 (notando B* := B — {&})

Demo. Como (P, <) cumple la c.c.c. tenemos que |[A*| < [P|™ (notando A* := A — {&}).
Y por lo anterior, se concluye que |[B*| < |A*| < [P|%0. DJ

Corolario

Si P = Fin(E,?2) con E infinito, entonces |B| < |E[M

Demo. Si E es infinito, entonces: |B| = |[B*| < |IP’|No — |Fin(E’2)|No = |E|No' DJ
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Acotacién del cardinal de B(X) en M|G]

Proposicion

|

En toda extensién genérica M[G], tenemos que:
M[G] E (VX eM) 3Ih (h: (BX)M — P(X) sobreyectiva)

(escribiendo (BX)M := BX N M al conjunto de las funciones f : X — B en M)

Demo. Sea la funcién h : (BX N M) — PB(X) definida por h(f) := {z € X : f(z) € G}
para todo f € B*X N M. Para mostrar que la funcién h es sobreyectlva se considera un
subconjunto Y C X in M[G]. Fijado un nombre ¥ € MP tal que Y& =Y, se considera la

funcién f € BX N M definida por f(z) ={p €EP:pl-3 € Y} (€ B) paratodoz € X.
(Observar que f := {(z,S) € X xB : (VpEP)(pe S plkzeY)} € M)

Luego, se concluye por el teorema de forcing que

h(f)={z€X:f(x) €EG}={z€X:(IJpE@)plrzeY}={zeX:z€Y}=Y. O

Corolario: Si ademds M = AC (y luego M[G] = AC), entonces:
M[G] | (VX €M) [B(X)| < [BX n M|
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Ejemplo 3: fijado n > 1, forzar 2% =R, (3/3)

Volviendo a la extensién genérica M[G] inducida por un modelo transitivo
M = ZFC + HGC 'y un filtro M-genérico G C Fin(RM x w, 2):

(6) Vimos que: M[G] | 2% >N,

Proposicién: M[G] E 2% <R, J
Demo. En el modelo de base M se observa que P = Fin(X,, X w, 2), entonces

R R R, 1)\ R R, 1 XN R, _
(ME) B < Raxw® = Ry = (2%n-1)% = 2%n-12% = g1 =,
(usando que M |= HGC), y luego: M |= |B¥| < RN =R,,. Entonces M |= BY < R,
y como RM = Nfzv[[G] (pues P cumple la c.c.c. en M), se deduce que M[G] EB“ N M <X R,
(pues la relacién < es £1), y por lo tanto: M[G] = 2% < [BY N M| < R,. O

(8) Por lo tanto: M[G] | 2% =N,

Ejercicio: ;Que pasa si uno remplaza X, por X, 11?7 jpor N,?
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Limites del enfoque de Cohen

Idea fundamental del forcing (segiin Cohen):

@ Todo modelo transitivo M (el modelo de base) puede ser extendido en
un modelo transitivo M [G] 2 M (la extensién genérica) mediante un
nuevo conjunto G (el filtro M-genérico) aproximado por los elementos
de un conjunto ordenado no vacio (P, <) € M (el conjunto de forcing)

@ Para asegurar la existencia de un filtro M-genérico G C PP (en general
afuera de M), Cohen supone que el modelo de base M es numerable
Problema: jNo se sabe si tal modelo existe!

@ La hipdtesis de la consistencia de ZF implica la existencia de un modelo
numerable (por completitud + Lowenheim-Skolem), pero no necesariamente
de un modelo numerable bien fundado (de modo externo)

@ Ademis, el enfoque de Cohen presupone que la metateoria también es la
teoria de conjuntos (colapso de Mostowski, construccién de M[G], etc.)

» ;Cémo construir .#[G] a partir de un modelo .# cualquiera?
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Convenciones de escritura

Dado un modelo de Tarski .# = ZF:

@ A cada punto A € . se asocia el conjunto externo
A= {aed: M=ac A} (C2)

@ Dados puntos A, <, € . tales que .# |= “< 4 orden sobre A",
se escribe <4 a la relacién de orden (externa) sobre A definida por:
a<ad si MEa<pd (a,a’ € A)

@ Dados puntos A, B, f € .# tales que .# = "f funcién de A en B",
se escribe f a la funcién (externa) de A en B definida por:

fa) = (f(a))” (a € A)

@ Se dice que un subconjunto externo X C .# viene de .Z
cuando X = X para algin punto X € .#
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La nocidn de filtro .#-genérico

Sea un modelo de Tarski .# = ZF con puntos P, <p € .# t.q..
A [ (P,<p) es un conjunto ordenado no vacio

@ En la metateoria, los puntos P, <p € .# que definen el conjunto de
forcing inducen un conjunto ordenado externo (P, <p)

@ Se dice que un subconjunto externo G C P es un filtro .#/-genérico

cuando:

(1) GCPesunfiltroo G£T AN G=1G A
(Vp,q€G)Freg)(r<ppAr<pq)

(2) G interseca todo subconjunto denso D C P que viene de .#

Lema (Rasiowa-Sikorski, variante)
Si ./ es numerable, entonces existe un filtro .#Z-genérico G C P

Ademds, fijada una condicién po € P, se puede imponer que py € G

Demo. Misma demostracién que para la formulacidn usual (ejercicio)
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Extension genérica de un modelo cualquiera

Dado un modelo de Tarski .# |=ZF con puntos P, <p € .# t.q.:

M = (P,<p) es un conjunto ordenado no vacio

Teorema (Extensién genérica, generalizacién)

Para todo filtro .Z-genérico G C P, existe una extensién Z[G] O A
con un punto G € .Z[G] tales que:

(1) A#[G] = ZFy (interpretando V' por . C .#[G])
() 1G] = (VeV)aCV

(3) G=G (i.e. G viene del punto G € .Z[G])

(4)

4) Si A C ]G] es un submodelo transitivo definible en .Z_ y
tal que ZU{G} C A y A |=ZF, entonces A = /{[g]

(5) on?19 = Oop#
(6) Si # = AC, entonces Z[G] = AC
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Extension genérica de un modelo cualquiera (2/6)

Demo. Se escriben:
@ B al punto de . definido por # =YX (X €B< X CPAXtL=X)
@ ¢ al punto de . definido por 4 =e:P — BA (YpEP)e(p) = {p}+
@ .#® := (VB C .4 al modelo booleano interno inducido por B
@ G (€ #"®) al B-nombre estandar (en .#) asociado a cada punto a € &

o

(w1, .o un) = [eu, - .., un)]]B) : (.//]B)n — B a la funcién de interpretacién
externa asociada a cada férmula ¢(z1, ...,y ) del lenguaje Z v,

@ Gal subconjunto de B definido por G = {XeB:XNG#o}

Lema: El subconjunto G C B es un ultrafiltro .- -genérico, es decir:
un ultrafiltro de B tal que para todo H € M, si H C G, entonces (ANH)% ¢ J

Demo del Lema. Ejercicio.
Se define el conjunto .#[G] por #[G) := .#®/~, donde ~ es la relacién de equivalencia sobre
A" definida por U~ v sii [u = v]]B eg (u,v € %B)
y se dota .#Z[G] de la estructura de modelo del lenguaje “Zc v en que los simbolos *- € "y
“. € V" estan interpretados por las relaciones (&) C .#[G)? y .4 C .#|G] definidas por:
[u] € [v] sii [uecv]Beg (u,v € M®)
we.d si [ueV]Ped (we.#% (.)
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Extension genérica de un modelo cualquiera (3/6)

Demo (continuacién). Sea h : .# — #[G] la funcién definida por h(a) := [a] (a € ).
Dicha funcién es un encaje de (%, e“”) en (A[G], E“”[g]), pues para todos a1, as € A :
a1 =ay sii [ar =a2]Beg  si [a1] = [ao] si h(a1) = h(az)
a1 € ay si [ar €ax]B e si [ai] €?19 [as] si h(a1) €%19) h(as)
Ademds tenemos que h(.#) = A, pues para todo u € .#>:
wled si [uevi®ed si \[u=al®eg
sii [u=al® eg para algS:‘fe VA (por .#-genericidad)
sii [u] = h(a) paraalgina € # sii [u] € h(A).
En lo siguiente, se identifica .# con .4 = h(AM) (~ M).

Proposicién: Para toda férmula ¢o(z1,...,z,) de 367‘7 CON pardmetros w1, . . ., Uy € AM:

MG = o(uals -y un])  sii [o(ui,. .. un)]BEG

y
Demo. Por induccién sobre la férmula ¢(z1, ..., x,), distinguiendo los siguientes casos:
@ Si p(z1,z2) = 1 = w2, entonces para todos w1, us € A
MG = [ur] = [ug] st [u] = [uz] si up ~up si [ur =ux]Beg
@ Si p(x1,x2) = x1 € 2, entonces para todos uy, uz € B
MG = [ur] € [uz] st [ui] € [ue] st [ui € us]BeG ()
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Extension genérica de un modelo cualquiera (4/6)

Demo de la Proposicién (continuacién).
@ Si p(z1)=z1 € V', entonces para todo u; € .#°%:
MG E ] €V si [ui] €A si [ur € V]Be S
@ Si ©(Z) = —p1(Z), entonces para todos @ € .#®, tenemos que:
A9 = e([d]) st ]G] sal([U]) si [ei(@]%¢ 6 (por HI)
si —ele@]Ped s [p@]Ped ()
@ Si ¢(Z) = ¢1(F) V @2(Z), entonces para todos @ € .4, tenemos que:

HG] Ee(lu])  si AG] E wl([y}) o [G] = p2([d])
sii [[sol(ﬁ)]]B o [p2(@)]%€ G (por HI)
sic [p1(@]® Ve [[soz(u)]]B g
si [e@]B ed

@ Si (&) = Iz po(wo, F), entonces para todos @ € 4%, tenemos que:

A6 E e(la]) st AG] E wo([UO] [@]) para algin ug € 4"
sii leo(uo, @)]B € G para algin ug € #* (por HI)
sii \/ [po(uo, W] € G (por . -genericidad)
uoE. B .
si [e(@)]Beg O

Obs.: Aqui se trata el caso de 3/V, usando el cardcter .#-genérico del ultrafiltro g CB.
No se necesita suponer que .# |= AC o que el modelo booleano W4 (C ) ests lleno.
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Extension genérica de un modelo cualquiera (5/6)

Demo del Teorema (continuacién). Usando la Prop. anterior:
(1) Para cada teorema ¢ de ZFy,, tenemos que [¢]® = 1g € G, luego .Z[G] |= .
(2) Tenemos que [(Vz€V)x C V]]B =1 € G, entonces A[G] = (Vz€V)z C V.
(3) Sea G :=[g], con g := {(p, e(p)) : p € P}** € .#® (nombre genérico). Para todo
u € A", tenemos que:
MG EMeG si ueglPed i \(eAlu=p]") €
pEP

sii (e(p) A [u= ﬁﬂB) € G paraalginp € G (por .#-genericidad)

si e(p) €G y [u=p]B €G paraalginp € G

si peG y [u]l =h(p) paraalginp € G sii  [u] € h(G)
y por lo tanto G = h(G) = G (a través de la identificacién .# = ).

Obs.: Combinando la igualdad anterior (i.e. G = G) con las propiedades del filtro .#-genérico
(externo) G C P, se deduce que: #Z[G] = G C P filtro V-genérico.

(4) Véase siguiente diapositiva.

(5) Tenemos que [On C V]® =15 € G, y luego #[G] |= On C V, es decir On"?191 C .z
(a través de la identificacién .# = .#), y por lo tanto On#19] = On# .

(6) Si .# |= AC entonces [AC]B = 1g € G, y luego .#[G] = AC. (..)
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Extension genérica de un modelo cualquiera (6/6)

Demo del Teorema (continuacién y fin). Sélo queda probar el cardcter minimal de .Z[G] (4).
Para ello, se considera la teorfa .7 sobre el lenguaje Z¢ v p <, (donde P, <p y G son nuevos

simbolos de constantes) cuyos axiomas son los axiomas de ZF,, mas las tres férmulas:
p1 = V transitiva A On C V
P, <p) € V conjunto ordenado no vacio

AS)
I\
|

w3 = G C P filtro V-genérico
En la teoria 7 se construye a partir de (P, <p) el dlgebra booleana B € V asi como el modelo
booleano interno V® C V del modo usual, y se considera la funcional (u +— u®) : V® 5 Vv
definida por recursién sobre u € VB por: u€ := {v€ : v € dom(u) A u(v) N G # &}.
Es claro por (1)—(3) que .Z[G] es un modelo de la teoria .7 (interpretando los simbolos P, <p
y G por los puntos G, P, <p € .#[G]). El el préximo capitulo (Forcing axiomatico), probaremos
ademis que: #Z[G] = Vz (FueVE)z =u® (%) (admitido aqui).
(4) Se considera ahora un submodelo 4" C .#[G] definido a partir de una clase C; = C(z, p)
(de Z¢ y/) con pardmetros 7 € .#[G], en el sentido en que a € A sii A[G] Fa € Cp
para todo a € .#[G], y se supone que .#[G] |= Cj transitiva, . #Z[G] =V C CzAG € Cy
y M[G] |= ¢ para cada teorema de ZF.
A partir de las hipétesis anteriores, se demuestra que .Z[G] = (Yu € VE) (u€ € Cp)
(razonando por induccién sobre u € VB en la teoria de .#[G]), y por (*), se deduce que

MG = Vo (z € Cp), esdecir: N = #[G]. O
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Conclusién

El teorema de la extensidén genérica se extiende a un modelo de base
A = ZF cualquiera (no necesariamente transitivo o bien fundado)

@ Como en el caso transitivo, el filtro .#Z-genérico G C P existe
al menos cuando .# es numerable (Rasiowa-Sikorski)

@ Construccién de la extensién genérica .Z[G]| 2 .# por cociente
(en la metateoria) y no por reificaciéon (por €-recursién)
» Necesita una metateoria mds débil (comprensién + cociente)
e Como en el caso transitivo, la extensién genérica A [G] 2 .#

es lnica, pero sélo a menos de isomorfismo
(Consecuencia de que .Z[G] = Vz (Fu € VB) (x = u) — Ejercicio)

Al final, siempre se razona de mismo modo en .#[G], cuyas propiedades
se derivan de las de .# mediante la relacién de forcing p I ¢

» Observar que adentro de .Z[G], el modelo de base .# (escrito V)
sigue siendo un modelo transitivo de ZF (de modo interno)
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Estatus de .#

M conjunto o clase propia
en ZF(C) (= metateoria)

M conjunto en el
sentido de la metateoria

i/ bien fundado?

Si (pues transitivo)

No necesariamente

i Existencia de G?

Al menos cuando .# es numerable (Rasiowa-Sikorski)

iG] bien fundado?

Si (pues transitivo)

No necesariamente

iUnicidad de .Z[G]?

Si

Si, a menos de iso

Construccién de .Z[G]

Imagen de la funcional
(wsu®): a® =V

Cociente de .#® por
ultrafiltro .#-genérico

En ambos casos, las propiedades de .Z[G] se deducen de las de .# por:
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