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¿Qué es el forcing?

Un método inventado por Paul Cohen (’63) para demostrar la
independencia de la hipótesis del continuo (HC) en ZFC

Hipótesis del continuo (HC), 1er problema de Hilbert

Para todo subconjunto infinito X ⊆ R:

O bien X es numerable (i.e. en biyección con N)

O bien X tiene la potencia del continuo (i.e. en biyección con R)

En śımbolos: 2ℵ0 = ℵ1

Gödel (’38) mostró que ZFC ̸⊢ ¬HC (con los conjuntos constructibles)

Cohen (’63) mostró que ZFC ̸⊢ HC (con el método de forcing)

Relacionado con los modelos booleanos [Scott, Solovay, Vopěnka]

Permite demostrar muchos resultados de consistencia relativa /
independencia en teoŕıa de conjuntos [Solovay, Shelah, Woodin, etc.]
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¿Cómo funciona el forcing?

g=limG

PM [G](P)

PM (P)

(P,≤) ⊇ G

On

ω = ℵ0

α = ℵM
1

β = ℵM
2

f

M [G] M
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Una analoǵıa con el álgebra

Teoŕıa de conjuntos Álgebra

Empezar con un modelo de base M Empezar con un cuerpo de base K

Queremos añadir un nuevo conjunto

aproximado por los elementos de un

conjunto de forcing (P,≤) ∈M

Queremos añadir un nuevo punto

que debeŕıa ser una ráız de un

polinomio P ∈ K[X]

Esto define un ficticio

filtro genérico G ⊆ P (afuera de M)

Esto define una ficticia

ráız α de P (afuera de K)

que genera alrededor de M una

extensión genérica M [G]
que genera alrededor de K una

extensión de cuerpo K[α]

Construcción:

M [G] := MB(P)/∼
Construcción:

K[α] := K[X]/P K[X]
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Ejemplo: cómo forzar ¬HC

Objetivo: Forzar la existencia de una inyección h : ℵ2 → P(ω).

La construiremos como función indicatriz g : ℵ2 × ω → 2

El objeto ideal g está aproximado en el modelo de base M por
elementos de (P,≤) = (Fin(ℵ2 × ω, 2), ⊇) (conjunto de forcing)

Invocación de forcing: Sea M [G] la extensión genérica generada
por un filtro genérico G ⊆ P

En M [G], se nota: g := limG =
⋃
G (: ℵ2 × ω ⇀ 2).

Usando el carácter M -genérico del filtro G ⊆ P, se demuestra que:

La función parcial g : ℵ2 × ω ⇀ 2 es total

La función h : ℵ2 → P(ω) correspondiente es inyectiva

Detalles técnicos (i.e. condición de cadena numerable) bajo la alfombra
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Modelos transitivos (1/3)

Recordatorio: En ZF (o cualquier extensión), un modelo transitivo
de ZF es una clase M no vaćıa y transitiva tal que:

M |= φ para todo axioma/teorema de ZF︸ ︷︷ ︸
φM

Caracterización

Una clase transitiva M es un modelo transitivo de ZF si y sólo si:

(1) ω ∈M

(2) a, b ∈M ⇒ {a, b} ∈M ∧
(⋃

a
)
∈M ∧ (P(a) ∩M︸ ︷︷ ︸

= PM (a)

) ∈M

(3) a, z⃗ ∈M ⇒
{
x ∈ a : φM (x, z⃗)

}
∈M

para cada fórmula φ(x, z⃗) del lenguaje

(4) a, z⃗ ∈M ∧ (∀x∈ a)(∃!y ∈M)φM (x, y, z⃗) ⇒
(∃b∈M)(∀x∈ a)(∃y ∈ b)φM (x, y, z⃗)

para cada fórmula φ(x, y, z⃗) del lenguaje
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Modelos transitivos (2/3)

En cualquier modelo transitivo M |= ZF, tenemos que

OnM = On ∩M
(On(α) = fórmula ∆0)

y CnM ⊇ Cn ∩M
(Cn(α) = fórmula Π1)

En M , las operaciones ∆0 tienen el mismo significado que en V :

{a, b}M = {a, b} (a, b)M = (a, b)

domM (f) = dom(f) imgM (f) = img(f)

(A ∪B)M = A ∪B (A+B)M = A+B

(A ∩B)M = A ∩B (A×B)M = A×B(⋃
i∈I

Ai

)M

=
⋃
i∈I

Ai

(∑
i∈I

Ai

)M

=
∑
i∈I

Ai

(suponiendo que a, b, f, A,B, I, Ai ∈ M)

Pero las operaciones Π1 tienen que ser restringidas a M :

PM (A) = P(A) ∩M

(BA)M = BA ∩M

(∏
i∈I

Ai

)M

=
(∏
i∈I

Ai

)
∩M
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Modelos transitivos (3/3)

Cada modelo transitivo M |= ZF tiene su jerarqúıa acumulativa
interna (Mα)α∈OnM (= (VM

α )α∈OnM ), definida por:

Mα :=
⋃
β<α

PM (Mβ) =
⋃
β<α

(P(Mβ) ∩M) (α ∈ On ∩M)

Por lo tanto, sólo hay dos posibilidades:

(1) O bien On ⊆ M , y luego: OnM = On.

▶ M es un modelo interno de ZF

(2) O bien On ̸⊆ M , y luego OnM = µ, donde µ = min(On −M).

Entonces: M =
⋃

β∈OnM

Mα =
⋃
α<µ

Mα es un conjunto

▶ M es un modelo transitivo conjuntista de ZF
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Plan

1 Introducción

2 Extensiones genéricas

3 Ejemplos: reales de Cohen

4 Extensión genérica de un modelo cualquiera
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Condiciones de forcing

Un conjunto de forcing es un conjunto ordenado (P,≤) no vaćıo.
Sus elementos se llaman condiciones (de forcing), y la relación

p ≤ q se lee: “p es más fuerte que q”

Intuición: Los elementos de P representan aproximaciones potenciales
de algún “objeto ideal” que queremos añadir al universo. En este marco:

p ≤ q ≡ “p es más fuerte que q”

≡ “p es una mejor aproximación que q”

≡ “p contiene más información que q”

≡ “p implica q”

En la mayoŕıa de los casos, la relación p ≤ q está definida como p ⊇ q
(inclusión inversa); por eso algunos autores [Shelah] escriben p ≥ q antes
que p ≤ q. Aqúı se usará la notación usual p ≤ q, que captura la idea
de una implicación lógica



Introducción Extensiones genéricas Ejemplos Caso no transitivo

Elementos compatibles, incompatibles

Para todo subconjunto X ⊆ P, se notan:

↓X := {p ∈ P : (∃q ∈X) q ≥ p} (clausura inferior de X)

↑X := {p ∈ P : (∃q ∈X) q ≤ p} (clausura superior de X)

Dos condiciones p, q ∈ P son compatibles (notación: p ⊤ q) cuando
tienen una cota inferior común:

p ⊤ q sii (∃r∈P) (r ≤ p ∧ r ≤ q)

Si no, se dice que p y q son incompatibles (notación: p ⊥ q):

p ⊥ q sii ¬(∃r∈P) (r ≤ p ∧ r ≤ q)

Un subconjunto A ⊆ P es una anticadena cuando cada dos
elementos distintos de A son incompatibles:

A anticadena sii (∀p1, p2 ∈P)(p1 ̸= p2 ⇒ p1 ⊥ p2)
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Subconjuntos densos y predensos

Un subconjunto D ⊆ P es denso cuando todo elemento de P está
acotado inferiormente (“implicado”) por un elemento de D:

D ⊆ P denso sii (∀p∈P)(∃q ∈D)(q ≤ p)

sii ↑D = P

Obs.: Dicha noción de densidad corresponde a la noción usual de densidad para
la topoloǵıa cuyos abiertos son los subconjuntos de P cerrados inferiormente:

U ⊆ P abierto sii ↓U = U

Más generalmente: un subconjunto D ⊆ P es predenso cuando todo
elemento de P es compatible con un elemento de D:

D ⊆ P predenso sii (∀p∈P)(∃q ∈D)(q ⊤ p)

sii (∀p∈P)(∃r∈↓D)(r ≤ p)

sii ↓D denso

sii ↑↓D = P
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Filtros genéricos (1/2)

Un subconjunto F ⊆ P es un filtro cuando:

(i) F ̸= ∅ (no vaćıo)

(ii) (∀p, q ∈P) (p ∈ F ∧ p ≤ q ⇒ q ∈ F ) (clausura superior)

(iii) (∀p, q ∈F )(∃r∈F ) (r ≤ p ∧ r ≤ q) (compatibilidad interna)

A partir de ahora, se supone que (P,≤) ∈M , donde M es un
modelo transitivo de ZF (M puede ser un conjunto o una clase propia)

Se observa que las fórmulas

“≤ es un orden sobre P”, “Y = ↓X”, “Y = ↑X”,

“p ⊤ q”, “p ⊥ q”, “A ⊆ P anticadena”,

“D ⊆ P denso”, “D ⊆ P predenso”, “F ⊆ P filtro”

son ∆0, y luego tienen mismo significado en M y en V
(bajo la hipótesis que los subconjuntos X,Y,A,D, F ⊆ P están en M)
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Filtros genéricos (2/2)

Dado un modelo transitivo M |= ZF tal que (P,≤) ∈M :

Definición (Filtro genérico)

Un filtro G ⊆ P es M -genérico cuando interseca todo subconjunto
denso de P en M :

G es M -genérico sii (∀D∈M)(D ⊆ P denso ⇒ D ∩G ̸= ∅)

Obs.: Sólo se consideran los subconjuntos densos en M

Proposición

Para todo filtro G ⊆ P, las siguientes condiciones son equivalentes:

(1) G es M -genérico

(2) G interseca todo subconjunto abierto denso D ⊆ P tal que D ∈ M

(3) G interseca todo subconjunto predenso D ⊆ P tal que D ∈ M

(4) G interseca toda anticadena maximal A ⊆ P tal que A ∈ M (con AC)

Demo: Ejercicio



Introducción Extensiones genéricas Ejemplos Caso no transitivo

Filtros genéricos triviales (1/2)

Un elemento p ∈ P es un átomo (en el sentido del forcing(∗))

cuando todas sus cotas inferiores son compatibles entre śı:

p átomo sii (∀q1, q2 ≤ p)(q1 ⊤ q2)

Dado un átomo p0 ∈ P, se escribe Gp0
:= {q ∈ P : q ⊤ p0}.

Por construcción, es claro que Gp0
∈M . Además:

Proposición

Para todo átomo p0 ∈ P, el conjunto Gp0
es un filtro V -genérico

Demo. 1. Gp0
es un filtro. Es claro que Gp0

es no vaćıo y cerrado superiormente. Dados
q1, q2 ∈ Gp0

, tenemos que q1 ⊤ p0 y q2 ⊤ p0, luego existen r1, r2 ∈ P tales que r1 ≤ q1,
r2 ≤ q2 y r1, r2 ≤ p0. Pero como p0 es un átomo, tenemos que r1 ⊤ r2, y existe r ∈ P
tal que r ≤ r1 y r ≤ r2. Por lo tanto, tenemos que r ∈ Gp0

, r ≤ q1 y r ≤ q2.

2. Gp0
es V -genérico. Sea un subconjunto D ⊆ P denso (en V ). Por densidad, existe q ∈ D

tal que q ≤ p0. Entonces q ⊤ p0, es decir q ∈ Gp0
∩ D.

Los filtros genéricos de la forma Gp0
(con p0 ∈ P átomo) son llamados

filtros genéricos triviales. Están todos en M

(∗)Veremos más adelante el v́ınculo con los átomos de las álgebras booleanas
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Filtros genéricos triviales (2/2)

Más aún, los filtros genéricos triviales Gp0 ⊆ P (con p0 ∈ P átomo)

son los únicos filtros M -genéricos que están en M :

Proposición

Para todo filtro M -genérico G ⊆ P:

G ∈M sii (∃p0 ∈P)(p0 átomo ∧ G = Gp0
)

Demo. (⇒): Supongamos que G ∈ M . Tenemos que Gc(:= P − G) ∈ M , y como Gc no
interseca G, el conjunto Gc no es predenso. Luego existe p0 ∈ P tal que (∀q∈Gc)(q ⊥ p0). Por
contrarrećıproco, tenemos que q ⊤ p0 ⇒ q ∈ G para todo q ∈ P, es decir: Gp0 ⊆ G.
Por otro lado, como G es un filtro y p0 ∈ G, tenemos que q ∈ G ⇒ q ⊤ p0 para todo q,
es decir G ⊆ Gp0

, y al final G = Gp0
. Sólo queda mostrar que p0 es un átomo. Para ello,

dados q1, q2 ≤ p0, se observa que q1, q2 ∈ Gp0
= G, y como G es un filtro, existe r ∈ G

tal que r ≤ q1 y r ≤ q2, lo que demuestra que q1 ⊤ q2. (⇐): Obvio.

Corolario: Si el conjunto de forcing (P,≤) no tiene átomos, entonces
todo filtro M -genérico G ⊆ P está afuera de M : G /∈M

▶ En la práctica, se usarán conjuntos de forcing sin átomos
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El lema de Rasiowa-Sikorski

Problema: ¿Existen filtros M -genéricos no triviales?

Lema (Rasiowa-Sikorski) (con DC)

Si los subconjuntos densos de P que están en M forman un conjunto
numerable (en V ), entonces existe un filtro M -genérico G ⊆ P (en V ).

Además, fijada una condición p0 ∈ P, se puede imponer que p0 ∈ G

Demo. Sea (Dn)n∈ω una enumeración de los subconjuntos densos de P en M . Fijada una
condición p0 ∈ P, se construye con DC una sucesión decreciente (pn)n∈ω ∈ Pω , eligiendo
para cada n ∈ ω la condición pn+1 ∈ P tal que pn+1 ∈ Dn y pn+1 ≤ pn (por la densidad
de Dn). Luego, es obvio que G := ↑{pn : n ∈ ω} es un filtro M -genérico.

Obs.: La hipótesis se cumple automáticamente cuando M es un
modelo transitivo numerable de ZF. En este caso, ni siquiera se
necesita DC para construir G (pues P es bien ordenable en V )

En forcing, se suele empezar a partir de un modelo de base M |= ZF
numerable, lo que garantiza la existencia de un filtro M -genérico G
(en general afuera de M) para cualquier conjunto de forcing (P,≤) ∈ M
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Teorema de la extensión genérica

Teorema (Extensión genérica)

Sean un modelo transitivo M |= ZF y un conjunto de forcing (P,≤) ∈M .
Para todo filtro M -genérico G ⊆ P, existe una clase M [G] tal que:

(1) M [G] es un modelo transitivo de ZF

(2) M ⊆M [G] y G ∈M [G]

(3) Para todo modelo transitivo N |= ZF tal que M ⊆ N y G ∈ N ,
tenemos que M [G] ⊆ N (i.e. M [G] está generado por M y G)

Además, tenemos que:

(4) OnM [G] = OnM

(5) Si M |= AC, entonces M [G] |= AC

▶ La clase M [G] se llama extensión genérica de M por G

Obs.: La condición de minimalidad (3) implica que la clase M [G] es
única. En particular, cuando G ∈ M , tenemos que M [G] = M
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Preliminares: ortogonal de un subconjunto de P (1/2)

Dado un conjunto X ⊆ P, se define su ortogonal X⊥ ⊆ P por:

X⊥ := {p ∈ P : (∀q ∈X) p ⊥ q}
= {p ∈ P : (∀r≤ p)(∀q≥ r) q /∈ X}
= {p ∈ P : (∀r≤ p) r /∈ ↓X}
= {p ∈ P : ↓{p} ∩ ↓X = ∅}

Lema

Para todos X,Y ⊆ P, tenemos que:

(1) X ⊆ Y implica X⊥ ⊇ Y ⊥

(2) X ⊆ X⊥⊥

(3) X⊥⊥⊥ = X⊥

(4) X⊥ está cerrado inferiormente

(5) X ∩X⊥ = ∅
(6) X ∪X⊥ es predenso

Demo: Ejercicio
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Preliminares: ortogonal de un subconjunto de P (2/2)

Además para toda familia (Xi)i∈I ∈ P(P)I , se observa que:(⋃
i∈I

Xi

)⊥
=

⋂
i∈I

X⊥
i

(No hay propiedad análoga para el ortogonal de una intersección)

Lema

Para todos X,Y ⊆ P cerrados inferiormente, tenemos que:

(1) X⊥ = {p ∈ P : (∀q≤ p) q /∈ X}
(2) X⊥⊥ = {p ∈ P : (∀q≤ p)(∃r≤ q) r ∈ X}
(3) (X ∩ Y )⊥⊥ = X⊥⊥ ∩ Y ⊥⊥

Demo. (1) Tenemos que X⊥ = {p ∈ P : (∀q≤ p) q /∈ ↓X} = {p ∈ P : (∀q≤ p) q /∈ X},
y luego (2) X⊥⊥ = {p ∈ P : (∀q≤ p) q /∈ X⊥} = {p ∈ P : (∀q≤ p)(∃r≤ q) r ∈ X}.
(3) La inclusión (X ∩ Y )⊥⊥ ⊆ X⊥⊥∩ Y ⊥⊥ es obvia. Rećıprocamente, sea p ∈ X⊥⊥∩ Y ⊥⊥.

Queremos probar que p ∈ (X ∩ Y )⊥⊥, es decir: (∀q≤ p)(∃r≤ q) r ∈ X ∩ Y (por (2)).

Sea q ≤ p. Como p ∈ X⊥⊥, existe r ≤ q tal que r ∈ X. Y como p ∈ Y ⊥⊥, existe s ≤ r (≤ q)
tal que s ∈ Y . Pero como X = ↓X, tenemos que s ∈ X, y luego s ∈ X ∩ Y .
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Preliminares: álgebra booleana generada por P (1/2)

Sea: B := {X ∈ P(P) : X⊥⊥ = X}

Proposición (Álgebra booleana B)

El conjunto B := {X ∈ P(P) : X⊥⊥ = X} (equipado con ⊆)

es un álgebra booleana completa no degenerada, en la cual:

(1) 0B = ∅ y 1B = P

(2)
∧
i∈I

Xi =
⋂
i∈I

Xi y
∨
i∈I

Xi =
(⋃
i∈I

Xi

)⊥⊥
(para todo (Xi)i∈I ∈ BI)

(3) ¬X = X⊥ (para todo X ∈ B)

Demo. (1) Tenemos que ∅ = ∅⊥⊥ ∈ B (ḿınimo) y P = P⊥⊥ ∈ B (máximo).

(2) Dada una familia (Xi)i∈I ∈ BI , tenemos que:
⋂

i∈I Xi =
⋂

i∈I X⊥⊥
i =

(⋃
i∈IX

⊥
i

)⊥
=

(⋃
i∈I X⊥

i

)⊥⊥⊥ =
(⋂

i∈I X⊥⊥
i

)⊥⊥ =
(⋂

i∈I Xi

)⊥⊥, lo que demuestra que⋂
i∈I Xi ∈ B, y luego que

⋂
i∈I Xi =

∧
i∈I Xi. Para todo Y ∈ B, se observa que:

(∀i∈ I)Xi ⊆ Y sii
⋃

i∈I Xi ⊆ Y sii
(⋃

i∈I Xi

)⊥⊥ ⊆ Y

(pues Y = Y ⊥⊥), lo que demuestra que
(⋃

i∈I Xi

)⊥⊥ =
∨

i∈I Xi. (...)
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Preliminares: álgebra booleana generada por P (2/2)

Demo (continuación y fin). Acabos de mostrar que (B,⊆) es un ret́ıculo completo, en el cual:∧
i∈I

Xi =
⋂
i∈I

Xi y
∨
i∈I

Xi =
(⋃
i∈I

Xi

)⊥⊥
(para todo (Xi)i∈I ∈ BI )

(Distributividad) Para todos X,Y, Z ∈ B, tenemos que X ∧ (Y ∨ Z) = X⊥⊥ ∩ (Y ∪ Z)⊥⊥

= (X ∩ (Y ∪ Z))⊥⊥ (pues X e Y ∪ Z son cerrados inferiormente), y por lo tanto:

X ∧ (Y ∨ Z) = (X ∩ (Y ∪ Z))⊥⊥ = ((X ∩ Y ) ∪ (X ∩ Z))⊥⊥ = (X ∧ Y ) ∨ (X ∧ Z).

(3) Para todo X ∈ B, tenemos que X⊥ ∈ B, y además: X ∧ X⊥ = X ∩ X⊥ = ∅ = 0B,

mientras que X ∨ X⊥ = (X ∪ X⊥)⊥⊥ = (X⊥ ∩ X⊥⊥)⊥ = ∅⊥ = P = 1B.

Obs.: Desde el punto de vista de la topoloǵıa sobre P (cuyos abiertos
son los subconjuntos U ⊆ P cerrados inferiormente), se observa que B
es el conjunto de los abiertos regulares de P:

Lema: B =
{
U ⊆ P : U = U

◦}
Demo: Ejercicio

Más generalmente: En cualquier espacio topológico E, el conjunto H formado
por los abiertos de E es un álgebra de Heyting completa, en que la negación está
dada por ¬U = (Uc)◦. En este marco, los abiertos regulares de E son precisa-

mente los elementos U ∈ H tales que U = ¬¬U (= U
◦
) (Ejercicio)
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Preliminares: “encaje” de P en B

Se considera la función e : P → B∗ (= B− {0}) definida por:

e(p) := {p}⊥⊥ = {q ∈ P : (∀r≤ q) r ⊤ p} (p ∈ P)
(Función monótona, pero no necesariamente inyectiva)

Ejercicio: Probar que p átomo en P
(sentido del forcing)

⇔ e(p) átomo en B
(sentido de las álg. bool.)

Se dice que el conjunto de forcing (P,≤) es separativo cuando:

(∀p, q ∈P)(p ̸≤ q ⇒ (∃p′ ≤ p)(p′ ⊥ q))

Proposición

Si (P,≤) es separativo, entonces e(p) = ↓{p} para todo p ∈ P,
y por lo tanto la función e : P → B∗ es un encaje:

p ≤ q ⇔ e(p) ⊆ e(q) (para todos p, q ∈ P)

Demo. Ejercicio

▶ En la práctica, se usarán conjuntos de forcing separativos
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Preliminares: B adentro de un modelo transitivo

En lo siguiente, se efectuará la construcción del álgebra booleana B
adentro de un modelo transitivo M |= ZF tal que (P,≤) ∈M :

B := {X ∈ PM (P) : X⊥⊥ = X} (∈M)

(Observar que la fórmula “X⊥⊥ = X” es absoluta)

En el modelo transitivo M |= ZF, el conjunto B (equipado con ⊆)

es un álgebra booleana completa:

(ZF ⊢) (B es un álgebra booleana completa)M

Pero en el universo V , el conjunto B (equipado con ⊆) sólo es un
álgebra booleana M -completa:

(ZF ⊢) B es un álgebra booleana ∧
(∀S ∈PM (B))(S tiene ı́nfimo y supremo)

(Observar que las fórmulas “B es un álgebra booleana”, “S ⊆ B tiene ı́nfimo”
y “S ⊆ B tiene supremo” son absolutas)
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Preliminares: filtros y ultrafiltros genéricos (1/3)

Dado un modelo transitivo M |= ZF tal que (P,≤), se define:

B := {X ∈ PM (P) : X⊥⊥ = X} (∈M)

Cada filtro F ⊆ P induce un filtro (propio) F̃ ⊆ B, definido por:

F̃ = {X ∈ B : X ∩ F ̸= ∅}
(Ejercicio: Verificar que F̃ es un filtro propio de B)

Además:

Proposición (Ultrafiltro M -genérico)

Si G ⊆ P es un filtro M -genérico, entonces G̃ ⊆ B es un ultrafiltro
M -genérico, es decir: un ultrafiltro de B tal que:

(∀i∈ I) Xi ∈ G̃ ⇒
∧
i∈I

Xi ∈ G̃

para toda familia (Xi)i∈I ∈ (BI ∩M)
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Preliminares: filtros y ultrafiltros genéricos (2/3)

Demo. Sea G ⊆ P un filtro M -genérico. Es claro que el conjunto G̃ := {X ∈ B : X ∩ G ̸= ∅}
es un filtro propio de B. Además, para cada X ∈ B, el conjunto X ∪ X⊥ es predenso, y por lo
tanto existe p ∈ G tal que p ∈ X ∪ X⊥. Entonces o bien p ∈ X ∩ G, y luego X ∈ G̃, o bien
p ∈ X⊥ ∩ G, y luego X⊥ ∈ G̃. Esto acaba de mostrar que G̃ es un ultrafiltro de B.
(M -genericidad) Dada una familia (Xi)i∈I ∈ BI ∩M tal que Xi ∈ G̃ para todo i ∈ I, se nota

X∗ :=
⋂

i∈I Xi (tenemos que X∗ ∈ B pues B es M -completa). Queremos probar que X∗ ∈ G̃.

Para ello, se observa que el conjunto
(⋃

i∈I X⊥
i

)
∪

(⋃
i∈I X⊥

i

)⊥ (∈ M) es predenso, y luego
interseca G. Se distinguen dos casos:

O bien
⋃

i∈I X⊥
i interseca G. En este caso, X⊥

i interseca G y luego X⊥
i ∈ G̃

para algún i ∈ I: absurdo, pues Xi ∈ G̃ para todo i ∈ I (por hipótesis).

Entonces
(⋃

i∈I X⊥
i

)⊥ =
⋂

i∈I X⊥⊥
i = X∗ interseca G, es decir: X∗ ∈ G̃.

Dado un filtro M -genérico G ⊆ P, se demuestra que:

Lema: p ∈ G ⇔ e(p) ∈ G̃ para todo p ∈ P
(
es decir: G = e−1(G̃)

)
Demo: Ejercicio

Y por lo tanto: G ∈M ⇔ G̃ ∈M
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Preliminares: filtros y ultrafiltros genéricos (3/3)

Como para cualquier ultrafiltro, la pertenencia asociada con el
ultrafiltro G̃ ⊆ B conmuta con todas las operaciones booleanas:

¬X ∈ G̃ ⇔ X /∈ G̃

X ∧ Y ∈ G̃ ⇔ X ∈ G̃ ∧ Y ∈ G̃

X ∨ Y ∈ G̃ ⇔ X ∈ G̃ ∨ Y ∈ G̃

(donde ¬X := X⊥, X ∧ Y := X ∩ Y y X ∨ Y := (X ∪ Y )⊥⊥)

Debido al carácter M -genérico, las últimas dos propiedades de
comutación se extienden a toda familia (Xi)i∈I ∈ BI ∩M :∧

i∈I

Xi ∈ G̃ ⇔ (∀i∈ I) Xi ∈ G̃∨
i∈I

Xi ∈ G̃ ⇔ (∃i∈ I) Xi ∈ G̃

Por lo tanto, la función indicatriz 1G̃ : B → 2 es un morfismo de
álgebras booleanas M -completas
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Teorema de la extensión genérica (recordatorio)

Teorema (Extensión genérica) (recordatorio)

Sean un modelo transitivo M |= ZF y un conjunto de forcing (P,≤) ∈M .
Para todo filtro M -genérico G ⊆ P, existe una clase M [G] tal que:

(1) M [G] es un modelo transitivo de ZF

(2) M ⊆M [G] y G ∈M [G]

(3) Para todo modelo transitivo N |= ZF tal que M ⊆ N y G ∈ N ,
tenemos que M [G] ⊆ N (i.e. M [G] está generado por M y G)

Además, tenemos que:

(4) OnM [G] = OnM

(5) Si M |= AC, entonces M [G] |= AC
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Teorema de la extensión genérica: demostración (1/3)

Demo. Dados un modelo transitivo M |= ZF, un conjunto de forcing (P,≤) ∈ M
y un filtro M -genérico G ⊆ P, se escribe:

B := {X ∈ PM (P) : X⊥⊥ = X} (∈ M) al álgebra booleana inducida por P;

e : P → B∗ a la función definida por e(p) = {p}⊥⊥ para todo p ∈ P;

G̃ := {X ∈ B : X ∩ G ̸= ∅} ⊆ B al ultrafiltro M -genérico inducido por G;

MB :=
(
V B)M (⊆ M) a la clase de los B-nombres inducidos por B en el modelo M ;

x 7→ x̌ a la funcional que asocia a cada conjunto x ∈ M el B-nombre x̌ ∈ MB

definido por recursión sobre x ∈ M por: x̌ := {(y̌, 1B) : y ∈ x}.

Mediante el ultrafiltro G̃ ⊆ B, se asocia a cada B-nombre u ∈ MB su reificación uG ∈ V ,
la cual está definida por recursión sobre u ∈ MB por:

uG :=
{
vG : v ∈ dom(u) ∧ u(v) ∈ G̃

}
(u ∈ MB)

Esto permite construir la clase M [G] :=
{
uG : u ∈ MB} (⊆ V ).

Por ∈-inducción sobre x ∈ M , se demuestra que x̌G = x para todo x ∈ M . Para ello,
se observa que si y̌G = y para todo y ∈ x (HI), entonces:

x̌G = {vG : v ∈ dom(x̌) ∧ x̌(v) ∈ G̃} = {y̌G : y ∈ x} =(HI) {y : y ∈ x} = x.

Esto implica que x = x̌G ∈ M [G] para todo x ∈ M , y por lo tanto M ⊆ M [G].

También se define el nombre genérico g := {(p̌, e(p)) : p ∈ P} ∈ MB. Se observa que

gG = {p̌G : p ∈ P ∧ e(p) ∈ G̃} = {p : p ∈ P ∧ p ∈ G} = G,

y por lo tanto G = gG ∈ M [G], lo que acaba de probar (2). (...)
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Teorema de la extensión genérica: demostración (2/3)

Demo (continuación). En el modelo booleano MB (⊆ M), cada fórmula φ(x1, . . . , xn) de ZF

induce una funcional ((u1, . . . , un) 7→ Jφ(u1, . . . , un)KB) :
(
MB)n → B.

Lema: uG = vG ⇔ Ju = vKB ∈ G̃ para todos u, v ∈ MB

uG ∈ vG ⇔ Ju ∈ vKB ∈ G̃ para todos u, v ∈ MB

Demo. del Lema. Se demuestra la primera equivalencia por inducción mutua sobre u y v.

Supongamos que u′G = v′V ⇔ Ju′ = v′KB ∈ G̃ para todos u′∈dom(u), v′∈dom(v) (HI).
Dado u′ ∈ dom(u), se observa que:

Ju′ ∈ vKB ∈ G̃ ⇔
∨

v′∈dom(v)

(
v(v

′
) ∧ Ju′

= v
′KB) ∈ G̃

⇔ (∃v′ ∈ dom(v))
(
v(v′) ∈ G̃ ∧ Ju′ = v′KB ∈ G̃

)
⇔(HI) (∃v′ ∈ dom(v))

(
v′G ∈ vG ∧ u′G = v′G)

⇔ u′G ∈ vG (∗)
y por lo tanto

Ju ⊆ vKB ∈ G̃ ⇔
∧

u′∈dom(u)

(
u(u

′
) ⇒ Ju′ ∈ vKB) ∈ G̃

⇔ (∀u′ ∈ dom(u))
(
u(u′) ∈ G̃ ⇒ Ju′ ∈ vKB ∈ G̃

)
⇔ (∀u′ ∈ dom(u))

(
u′G ∈ uG ⇒ u′G ∈ vG

)
⇔ uG ⊆ vG.

De modo análogo se demuestra que Jv ⊆ uKB ∈ G̃ ⇔ vG ⊆ uG, y por lo tanto tenemos que

Ju = vKB ∈ G̃ ⇔ uG = vG. La segunda equivalencia se deduce de la primera con la misma
técnica de prueba que para (∗). (...)
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Teorema de la extensión genérica: demostración (3/3)

Demo (continuación y fin).

Proposición: Para toda fórmula φ(x1, . . . , xn) con parámetros u1, . . . , un ∈ MB:

φM[G](uG
1 , . . . , uG

n ) ⇔ Jφ(u1, . . . , un)KB ∈ G̃

Demo. de la Prop. Por inducción externa sobre φ(x1, . . . , xn), usando el Lema anterior para
las fórmulas atómicas. Por ejemplo, cuando φ(x1, . . . , xn) ≡ ∃x0 φ0(x0, x1, . . . , xn):

Jφ(u1, . . . , un)KB ∈ G̃ ⇔
∨

u0∈MB
Jφ0(u0, u1, . . . , un)K

B ∈ G̃

⇔ (∃u0 ∈MB) Jφ0(u0, u1, . . . , un)KB ∈ G̃

⇔(HI) (∃u0 ∈MB)φ
M[G]
0 (uG

0 , uG
1 , . . . , uG

n )

⇔ (∃x∈M [G])φ
M[G]
0 (x, uG

1 , . . . , uG
n )

⇔ φM[G](uG
1 , . . . , uG

n ).

Los otros casos se tratan de modo análogo.

Por construcción, es claro que M [G] es una clase transitiva. Además, tenemos que MB |= φ para

cada teorema φ de ZF, luego JφKB = 1B ∈ G̃, y por lo tanto φM[G]. Es decir: M [G] |= ZF (1).

Dado un modelo transitivo N |= ZF tal que M ⊆ N y G ∈ N , se verifica que

uG = {vG : v ∈ dom(u) ∧ u(v) ∈ G̃} ∈ N

para todo u ∈ MB (por inducción sobre u ∈ MB), lo que implica que M [G] ⊆ N (3).

(4) De la minimalidad de M [G] se deduce fácilmente (ejercicio) que OnM[G] = OnM

(5) Si M |= AC, entonces JACKB = 1B (⇒ ACM[G]), y por lo tanto M [G] |= AC.
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La relación de forcing (1/4)

La demostración del teorema de la extensión genérica se basa en:

(1) La construcción adentro de M del álgebra booleana B (∈ M)
inducida por P aśı como del modelo booleano MB (⊆ M)

(2) La definición de una funcional u 7→ uG que reifica cada nombre
u ∈ MB en un conjunto uG ∈ M [G] (:= imagen de (·)G)

(3) La observación que φM [G](u⃗G) ⇔ Jφ(u⃗)KB ∈ G̃

para cada fórmula φ(x⃗) de ZF con parámetros u⃗ ∈ MB

Tradicionalmente, el v́ınculo entre el modelo booleano MB (⊆M)
y la extensión genérica M [G] ⊇M se expresa por medio de una
relación de forcing p ⊩ φ(u1, . . . , un) (“p fuerza φ(u1, . . . , un)”)

definida adentro de M por:

p ⊩ φ(u1, . . . , un) :≡ e(p) ≤ Jφ(u1, . . . , un)K
B

⇔ p ∈ Jφ(u1, . . . , un)K
B

(con p ∈ P y u1, . . . , un ∈ MB)
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La relación de forcing (2/4)

La relación de forcing “p ⊩ φ(u1, . . . , un)” permite deducir
las propiedades de la extensión generica M [G] a partir de las
propiedades del modelo booleano MB (⊆M):

Teorema de forcing

Para toda fórmula φ(x1, . . . , xn) con parámetros u1, . . . , un ∈MB:

φM [G](uG1 , . . . , u
G
n ) ⇔ (∃p∈G) p ⊩ φ(u1, . . . , un)

(Reformulación obvia de la equivalencia (3) de la diapositiva anterior)

Como MB |= ZF (en M), se deduce que M [G] |= ZF

Por otro lado, la relación de forcing está definida por completo adentro
de M (sin ninguna referencia a G). De tal modo que:

p ⊩ φ(u1, . . . , un) ⇔ (p ⊩ φ(u1, . . . , un))
M

▶ Permite construir conjuntos en M (y nombres en MB) usando el
predicado de forcing en los axiomas de comprensión/reemplazo
relativizados a M
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La relación de forcing (3/4)

Recordatorio: dados p ∈ P y u1, . . . , un ∈MB:

p ⊩ φ(u1, . . . , un) :≡ e(p) ≤ Jφ(u1, . . . , un)K
B

⇔ p ∈ Jφ(u1, . . . , un)K
B

Proposición (Propiedades de la relación de forcing)

Para todas fórmulas φ y ψ con parámetros en MB:

p ⊩ φ ∧ q ≤ p ⇒ q ⊩ φ

¬(∃p∈P)(p ⊩ φ ∧ p ⊩ ¬φ)
(∀p∈P)(∃q≤ p)(q ⊩ φ ∨ q ⊩ ¬φ)

p ⊩ ¬φ ⇔ (∀q≤ p) q ̸⊩ φ

p ⊩ φ ∧ ψ ⇔ p ⊩ φ ∧ p ⊩ ψ

p ⊩ φ ∨ ψ ⇔ (∀q≤ p)(∃r≤ q)(r ⊩ φ ∨ r ⊩ ψ)

p ⊩ ∀xφ(x) ⇔ (∀u∈MB) p ⊩ φ(u)

p ⊩ ∃xφ(x) ⇔ (∀q≤ p)(∃r≤ q)(∃u∈MB) r ⊩ φ(u)

Demo: Ejercicio
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La relación de forcing (4/4)

Observación. Vimos en el caṕıtulo anterior que la funcional

((u1, . . . , un) 7→ Jφ(u1, . . . , un)K
B
) :

(
MB)n → B

está definida más generalmente para cualquier fórmula φ ∈ L∈,V̌ ,
lo que permite extender la relación de forcing a ese lenguaje

Cuando se trabaja en una extensión generica M [G], es natural
extender la operación de relativización φ 7→ φM [G] a todas las
fórmulas del lenguaje L∈,V̌ , añadiendo la cláusula:

(x ∈ V̌ )M [G] :≡ x ∈M

En este nuevo lenguaje, se mantiene el

Teorema de forcing: Para cada fórmula φ(x1, . . . , xn) del lenguaje L∈,V̌

φM [G](uG
1 , . . . , u

G
n ) ⇔ (∃p∈G) p ⊩ φ(u1, . . . , un)

aśı como las propiedades de la relación p ⊩ φ (véase diapo. anterior)

Conclusión: M [G] |= ZFV̌ (i.e. con comprensión y reemplazo en L∈,V̌ )
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Plan

1 Introducción

2 Extensiones genéricas

3 Ejemplos: reales de Cohen

4 Extensión genérica de un modelo cualquiera
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El conjunto Fin(E, 2) (1/3)

En esta sección, se consideran conjuntos de forcing de la forma

(P,≤) = (Fin(E, 2), ⊇)

donde Fin(E, 2) es el conjunto de las funciones finitas de E a 2

Fin(E) := {f : E ⇀ 2 : dom(f) finito}

equipado aqúı con el orden f ≤ g :≡ f ⊇ g (inclusión inversa)

Proposición (Absolutez)

La fórmula “Y = Fin(E, 2)” es absoluta, en el sentido en que

(∀E ∈M) FinM (E, 2) = Fin(E, 2)

para cualquier modelo transitivo M |= ZF

Demo. Primero se observa que la fórmula “f : E ⇀ 2 ∧ dom(E) finito” es Σ1, y por lo tanto

FinM (E, 2) ⊆ Fin(E, 2). Rećıprocamente, se demuestra por inducción sobre el cardinal (finito)

de dom(f) que f ∈ Fin(E, 2) implica f ∈ FinM (E, 2).
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El conjunto Fin(E, 2) (2/3)

Obs.: Para todos f, g ∈ Fin(E, 2) (equipado con ⊇), tenemos que:

f ⊤ g ⇔ f ∪ g función

⇔ (∀x∈dom(f) ∩ dom(g)) f(x) = g(x)

f ⊥ g ⇔ (∃x∈dom(f) ∩ dom(g)) f(x) ̸= g(x)

Proposición (Propiedades de (Fin(E, 2), ⊇))

Dado un conjunto E cualquiera:

(1) El conjunto ordenado (Fin(E, 2), ⊇) es separativo

(2) Si E es infinito, entonces (Fin(E), ⊇) no tiene átomos

(3) Toda anticadena de (Fin(E, 2), ⊇) es finita o numerable

Demo. (1) Dados f, g ∈ Fin(E, 2) tales que f ̸⊇ g, se trata de hallar f ′ ⊇ f tal que f ′ ⊥ g.
Si f ⊥ g, basta con tomar f ′ := f . Si f ⊤ g, entonces dom(f) ̸⊇ dom(g), y existe
x ∈ dom(g) tal que x /∈ dom(f). En este caso, basta con tomar f ′ := f ∪ {(x, 1 − g(x))}.

(2) Sea f ∈ Fin(E, 2). Como E es infinito, existe x ∈ E − dom(f). Sean f0 := f ∪ {(x, 0)}
y f1 := f ∪ {(x, 1)}. Por construcción, tenemos que f0, f1 ⊇ f y f0 ⊥ f1. (...)
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El conjunto Fin(E, 2) (3/3)

Demo (continuación y fin). (3) Primero, se demuestra par inducción sobre n ∈ ω que toda
anticadena A ⊆ Fin(E, 2) tal que |dom(f)| = n para todo f ∈ A es finita

Paso de base. Obvio, pues si |dom(f)| = 0 para todo f ∈ A, entonces A ⊆ {∅}.
Paso inductivo. Se supone que la propiedad se cumple para algún n ∈ ω, y se considera
una anticadena A ⊆ Fin(E, 2) tal que |dom(f)| = n + 1 para todo f ∈ A.

Si A = ∅, entonces A es obviamente finita.

Si A ̸= ∅, se fija una función f0 ∈ A, con dom(f0) = {e1, . . . , en+1}, y para cada
i ∈ [1..n+1], se escribe Ai := {f ∈ A : f(ei) ̸= f0(ei)}. Como A es una anticadena,
tenemos que A = {f0} ∪ A1 ∪ · · · ∪ An+1. Fijemos un ı́ndice i ∈ [1..n + 1]. Como
f(ei) = 1 − f0(ei) para todo f ∈ Ai, todas las funciones f ∈ Ai coinciden sobre ei.
Por lo tanto, el conjunto A′

i := {f↾dom(f)−{ei} : f ∈ Ai} sigue siendo una anticadena

de Fin(E, 2), pero tal que |dom(f)| = n para todo f ∈ A′
i. Por HI, la anticadena A′

i
es finita, aśı como la anticadena Ai, que es equipotente a A′

i. Por lo tanto la anticadena A,
igual a {f0} ∪ A1 ∪ · · · ∪ An+1, es finita.

Luego se observa que toda anticadena A ⊆ Fin(E, 2) se puede descomponer en la forma
A =

⋃
n∈ω An, donde An = {f ∈ A : |dom(f)| = n} para cada n ∈ ω. Por lo anterior,

An es una anticadena finita para todo n ∈ ω, y por lo tanto A es a lo sumo numerable.

Observaciones: Si (P,≤) = Fin(E,⊇) (con E ∈ M infinito), entonces:

(1) implica que la función e : (P,≤) → (B,⊆) es un encaje

(2) implica que todo filtro genérico G ⊆ P está afuera de M : G /∈ M

Veremos más adelante el impacto de (3) sobre los cardinales de M [G]
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Ejemplo 1: añadidura de un real de Cohen (1/3)

Objetivo: Añadir al universo un nuevo subconjunto c ⊆ ω,
o de modo equivalente: una nueva función indicatriz g : ω → 2

(1) Para ello, se considera un modelo transitivo M |= ZF aśı como
el conjunto de forcing (P,≤) ∈M definido por P := Fin(ω, 2)
y f ≤ g sii f ⊇ g para todos f, g ∈ P

(Intuición: los elementos de Fin(ω, 2) son aproximaciones potenciales
de la función indicatriz g que queremos construir)

(2) Dado un filtro M -genérico G ⊆ P(†), se trabaja a partir de ahora en
la extensión genérica M [G] inducida por G, observando que G /∈M
y luego M [G] ⊋M (pues P = Fin(ω, 2) no tiene átomos)

(3) Como G ⊆ P es un filtro, sus elementos son compatibles de a dos,
y la unión g :=

⋃
G es una función (: ω ⇀ 2). Además:

Proposición: La función g : ω → 2 es total

(†)Sabemos que tal filtro existe al menos cuando M es numerable
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Ejemplo 1: añadidura de un real de Cohen (2/3)

Demo. Para cada n ∈ ω, se nota Dn := {f ∈ Fin(ω, 2) : n ∈ dom(f)}, y se observa que:

Dn ∈ M , pues Fin(ω, 2) ∈ M y la fórmula “n ∈ dom(f)” es ∆0.

Dn es denso en Fin(ω, 2), pues para todo f ∈ Fin(ω, 2):

▶ o bien n ∈ dom(f) y f ∈ Dn,

▶ o bien n /∈ dom(f) y la función f ′ ∈ Fin(ω, 2) definida por f ′ := f ∪ {(n, 0)}
es tal que f ′ ≤ f y f ′ ∈ Dn.

Por lo tanto Dn ∩ G ̸= ∅, y existe fn ∈ G tal que fn ∈ Dn, es decir: tal que n ∈ dom(fn).
Por lo tanto n ∈ dom(g) (⊇ dom(fn)) para todo n ∈ ω, es decir: dom(g) = ω.

(4) Como g :=
⋃
G y como G está cerrado superiormente, tenemos

que G = {f ∈ P : f ⊆ g}, y por lo tanto g /∈M (pues G /∈M)

(5) Sea c := {n ∈ ω : g(n) = 1} (⊆ ω) (real de Cohen).
Como g = 1c, tenemos que c /∈M (pues g /∈M)

Conclusión: Conseguimos construir una extensión genérica M [G] del
modelo de base M que tiene más números reales que M :

PM (ω) ⊊ PM [G](ω) (∋ c)
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Ejemplo 1: añadidura de un real de Cohen (3/3)

Construimos un real de Cohen: c ∈ PM [G](ω), c /∈ PM (ω)

¿Cuáles son las propiedades de c en M [G]?

c no es constructible (pues L ⊆ M ̸∋ c), y por lo tanto:

c es infinito y coinfinito

La función indicatriz 1c : ω → 2 no es computable

Para todo r ∈ PM (ω), tenemos que: c △ r /∈ PM (ω).
En particular, tenemos una inyección:

PM (ω) ↪→ PM [G](ω)−PM (ω)
r 7→ c △ r

A través de la biyección usual h : PM [G](ω) →̃ RM [G],
el número h(c) ∈ RM [G] es transcendente (etc.)

Obs.: Las prop. anteriores se cumplen para todo c ∈ PM [G](ω)−PM (ω)
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Ejemplo 2: añadidura de ℵ2 reales de Cohen (1/3)

Objetivo: Añadir al universo ℵ2 nuevos subconjuntos cα ⊆ ω (α < ℵ2),
o de modo equivalente: una nueva función indicatriz g : ℵ2 × ω → 2

(1) Para ello, se considera un modelo transitivo M |= ZFC aśı como
el conjunto de forcing (P,≤) := (Fin(ℵM

2 × ω, 2), ⊇) (∈M)

(2) Dado un filtro M -genérico G ⊆ P, se trabaja a partir de ahora en la
extensión genérica M [G] inducida por G, observando que G /∈M
y luego M [G] ⊋M (pues P = Fin(ℵM

2 × ω, 2) no tiene átomos)

(3) Como G ⊆ P es un filtro, sus elementos son compatibles de a dos,
y la unión g :=

⋃
G es una función (: ℵM

2 × ω ⇀ 2). Además:

Proposición: La función g : ℵM
2 × ω → 2 es total

Demo: Misma técnica que para el Ejemplo 1 (Ejercicio)

(4) Se considera la función h : ℵM
2 → PM [G](ω) definida por:

h(α) := {n ∈ ω : g(α, n) = 1} (α < ℵM
2 )
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Ejemplo 2: añadidura de ℵ2 reales de Cohen (2/3)

Resumen: A partir del filtro genérico G ⊆ P, construimos una función
indicatriz g :=

⋃
G : ℵM

2 × ω → 2, a partir de la cual construimos
una función h : ℵM

2 → PM [G](ω) por:

h(α) := {n ∈ ω : g(α, n) = 1} (α < ℵM
2 )

Proposición

La función h : ℵM
2 → PM [G](ω) es inyectiva

Demo. Dados α ̸= β < ℵM
2 , se nota Dα,β := {f ∈ P : (∃n∈ω) f(α, n) ̸= f(β, n)} ∈ M .

El conjunto Dα,β ⊆ P es denso, pues para todo f ∈ P, existe n ∈ ω tal que (α, n) /∈ dom(f) y
(β, n) /∈ dom(f), lo que permite construir f ′ := f ∪ {((α, n), 0), ((β, n), 1)} ∈ P, tal que
f ′ ≤ f y f ′ ∈ Dα,β . Como G ⊆ P es M -genérico, existe f ∈ Dα,β ∩ G. Sea n ∈ ω tal que
f(α, n) ̸= f(β, n). Entonces g(α, n) ̸= g(β, n) (pues g ⊇ f), y luego h(α) ̸= h(β).

(5) Por lo tanto: M [G] |= ZFC + ℵM
2 ⪯ P(ω)
(∃ inyección)

Problema: ¿Cómo se relacionan ℵM
2 y ℵM [G]

2 ?
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La condición de cadena numerable (c.c.c.) (1/5)

En cualquier extensión genérica M [G], tenemos que:

Lema: CnM [G] ⊆ CnM

Demo. Se sigue de que OnM = OnM[G] y de que la fórmula “Cn(κ)” es de clase Π1.

Por otro lado, un cardinal κ en M puede perder su estatus de cardinal en

M [G], si éste introduce una biyección f : κ →̃ α para algún α < κ

Corolario: (∀α∈OnM ) ℵM
α ≤ ℵM [G]

α

Demo. Ejercicio

Definición (Condición de cadena numerable)

Se dice que (P,≤) cumple la condición de cadena numerable (c.c.c.)
cuando toda anticadena de P es finita o numerable

¡Cuidado! La fórmula “(P,≤) cumple la c.c.c.” no es absoluta,
y tiene sentidos distintos en M y en M [G]. En lo siguiente, siempre
se considerará dicha fórmula en el modelo de base M
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La condición de cadena numerable (c.c.c.) (2/5)

Teorema (Preservación de los cardinales por c.c.c)

Si M |= (AC ∧ (P,≤) cumple la c.c.c.), entonces CnM [G] = CnM

La demostración del teorema de preservación de los cardinales por c.c.c.
se basa en las nociones de cofinalidad y de cardinal regular:

Dados ordinales α y β, se dice que α es cofinal a β y se escribe
α ◁ β cuando existe una función estrictamente creciente f : α→ β
tal que (∀η <β)(∃ξ <α) f(ξ) ≥ η

Proposición: ◁ es un orden sobre On, tal que: α ◁ β ⇒ α ≤ β

Demo. Ejercicio. Observar que el orden ◁ no es total: 0 ̸◁ 1 y 1 ̸◁ 0

Dado un ordinal α, se llama cofinalidad de α y se escribe cof(α) al
ḿınimo ordinal cofinal a α. Tenemos que cof(α) ≤ α

▶ Ejemplos: cof(0) = 0, cof(n) = 1 para todo n ∈ ω∗, cof(ω) = ω,
cof(ω + 1) = 1, etc.
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La condición de cadena numerable (c.c.c.) (3/5)

Proposición: cof(cof(α)) = cof(α) para todo α ∈ On

Demo. Ejercicio

Se dice que un ordinal α es regular cuando cof(α) = α

Proposición: Todo ordinal regular es un cardinal

Demo. Por contrarrećıproco, se demuestra (ejercicio) que si α no es un
cardinal, entonces no es regular, usando el siguiente lema técnico:

Lema: Sean ordinales α y β. Si existe una función f : β → α
tal que (∀η <α)(∃ξ <β) f(ξ) ≥ η, entonces cof(α) ≤ β

Proposición: El cardinal ℵα+1 es regular para todo α ∈ On

Demo. Ejercicio

Obs.: La fórmula “α es un cardinal regular” es Π1

Un cardinal es singular (fórmula Σ1) cuando no es regular

▶ El primer cardinal singular infinito es ℵω (pues cof(ℵω) = ℵ0)
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La condición de cadena numerable (c.c.c.) (4/5)

Proposición (Caracterización de los cardinales singulares infinitos)

Un cardinal infinito κ es singular si y sólo si existe una familia (µξ)ξ<λ de
cardinales < κ indexada por un cardinal λ < κ y tal que κ = supξ<λ µξ

Demo. Ejercicio

Ahora tenemos las herramientas para demostrar el

Teorema (Preservación de los cardinales por c.c.c) (recordatorio)

Si M |= (AC ∧ (P,≤) cumple la c.c.c.), entonces CnM [G] = CnM

Demo. Supongamos que M |= AC y M |= (P,≤) cumple la c.c.c.. Basta con mostrar que

κ ∈ CnM implica κ ∈ CnM[G], por inducción sobre κ ∈ M . Se distinguen tres casos:

1. κ es finito en M . Obvio, pues los ordinales finitos coinciden en M y en M [G].

2. κ es infinito y singular en M . En este caso, existe en M una familia (µξ)ξ<λ de cardinales
menores a κ indexada por un cardinal λ < κ, tal que supξ<λ µξ = κ. Pero como µξ < κ

para todo ξ < λ, el ordinal µξ también es un cardinal en M [G] para todo ξ < λ (por (HI)),
y por lo tanto el supremo κ = supξ<λ µξ también es un cardinal en M [G].
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La condición de cadena numerable (c.c.c.) (5/5)

Demo (continuación y fin).

3. κ es infinito y regular en M . Queremos mostrar que κ también es un ordinal regular en
M [G]. Basta con mostrar que para todo cardinal λ < κ (en M y en M [G]), toda función
f : λ → κ (∈ M [G]) está acotada. Para ello, se considera una función f : λ → κ (∈ M [G])

y un nombre ḟ ∈ MB tal que ḟG = f . Como M [G] |= f : λ → κ, existe p ∈ G tal que

p ⊩ ḟ : λ̌ → κ̌. A partir de ahora, se trabaja en M con el nombre ḟ :

Para cada α < λ, se escribe

Bα := {β < κ : (∃q≤ p) q ⊩ ḟ(α̌) = β̌}

y para cada β ∈ Bα, se elige qα,β ≤ p tal que q ⊩ ḟ(α̌) = β̌ (por AC). Ahora se

observa que para todos β1 ̸= β2 < κ, no existe ningún r ∈ P tal que r ⊩ ḟ(α̌) = β̌1

y r ⊩ ḟ(α̌) = β̌2. Por lo tanto, la función (β 7→ qα,β) : Bα → P es inyectiva y su
imagen Qα := {qα,β : β ∈ Bα} es una anticadena de P. Por la c.c.c., el conjunto Qα

y luego Bα (que es equipotente con Bα) es a lo sumo numerable para todo α < λ.
Entonces |

⋃
α<λ Bα| ≤ λ×ℵ0 = λ < κ, y por lo tanto el conjunto

⋃
α<λ Bα está

acotado por algún β0 < κ, de tal modo que para todos α < λ y β > β0 (β < κ),
tenemos que β /∈ Bα. Acabos de mostrar que

(∀q≤ p) q ̸⊩ ḟ(α̌) = β̌, es decir: p ⊩ ḟ(α̌) ̸= β̌

para todos α < λ y β > β0 (β < κ).

Volviendo a M [G], se deduce (por el teorema de forcing) que f(α) ≤ β0 para todo α < λ.
Esto demuestra que la función f : λ → κ está acotada por el ordinal β0 < κ.
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Ejemplo 2: añadidura de ℵ2 reales de Cohen (3/3)

Volviendo a la extensión genérica M [G] inducida por un modelo
transitivo M |= ZFC y un filtro M -genérico G ⊆ Fin(ℵM

2 × ω, 2):

(5) Vimos que: M [G] |= ZFC + ℵM
2 ⪯ P(ω)

(6) Pero como (P,≤) := (Fin(ℵM
2 × ω, 2), ⊇) cumple la c.c.c.

(en M), tenemos que ℵM
2 = ℵM [G]

2 , y por lo tanto:

Teorema: M [G] |= ZFC+ ¬HC

¡Felicidades! Acabamos de refutar la hipótesis del continuo

|�| = ℵ1

1878–1963

Q.E.P.D.
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¿Consistencia relativa de ZFC+ ¬HC?

(1) Supongamos que ZF (y luego ZFC) es consistente

(2) Entonces ZF tiene un modelo numerable
(por completitud + Löwenheim-Skolem descendiente)

(3) Sea M un modelo transitivo numerable de ZF
(supone impĺıcitamente que la metateoŕıa es ZF)

(4) Se define (P,≤) := (Fin(ℵM
2 × ω, 2), ⊇) ∈M

(5) Sea un filtro M -genérico G ⊆ P (por el Lema de Rasiowa-Sikorski)

y M [G] la extensión genérica correspondiente a M y G
(por el teorema de la extensión genérica)

(6) Vimos que M [G] |= ZFC+ ¬HC

(7) Y por lo tanto ZFC+ ¬HC es consistente

Problema: (2) no necesariamente implica (3)
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Ejemplo 3: fijado n ≥ 1, forzar 2ℵ0 = ℵn (1/3)

Fijado un entero n ≥ 1, queremos forzar el axioma 2ℵ0 = ℵn

(1) Para ello, se considera un modelo transitivo M |= ZFC+ HGC
con el conjunto de forcing (P,≤) := (Fin(ℵM

n × ω, 2), ⊇) (∈M)

(2) Dado un filtro M -genérico G ⊆ P, se trabaja a partir de ahora en la
extensión genérica M [G] inducida por G, observando que G /∈M
y luego M [G] ⊋M (pues P = Fin(ℵM

n × ω, 2) no tiene átomos)

(3) Como G ⊆ P es un filtro, sus elementos son compatibles de a dos,
y la unión g :=

⋃
G es una función (: ℵM

n × ω ⇀ 2). Además:

Proposición: La función g : ℵM
n × ω → 2 es total

Demo: Misma técnica que para los Ejemplos 1 y 2 (Ejercicio)

(4) Se considera la función h : ℵM
n → PM [G](ω) definida por:

h(α) := {k ∈ ω : g(α, k) = 1} (α < ℵM
n )
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Ejemplo 3: fijado n ≥ 1, forzar 2ℵ0 = ℵn (2/3)

Proposición

La función h : ℵM
n → PM [G](ω) es inyectiva

Demo: Misma técnica que para el Ejemplo 2 (Ejercicio)

(5) Además: M [G] |= ℵn = ℵM
n (pues P cumple la c.c.c. en M)

(6) Por lo tanto: M [G] |= 2ℵ0 ≥ ℵn

(Observar que M |= 2ℵ0 = ℵ1 mientras que M [G] |= 2ℵ0 ≥ ℵn)

Queda demostrar que M [G] |= 2ℵ0 ≤ ℵn

Para ello, vamos a:

(a) Determinar los cardinales de P y B en M

(b) Mostrar que para todo X ∈M , el cardinal de P(X) en M [G]
está acotado por el cardinal de BX en M
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Cardinales de P y de B (1/2)

Lema (Cardinal de Fin(E, 2)) (en ZFC)

Para todo conjunto infinito E: |Fin(E, 2)| = |E|
Demo. Ejercicio

A partir de ahora, se considera un conjunto de forcing (P,≤) (en ZFC),
y se nota B := {X ∈ P(P) : X⊥⊥ = X}

Lema (en ZFC)

Todo elemento X ∈ B está completamente determinado por cualquier
anticadena maximal A ⊆ X, pues: X = A⊥⊥

Demo. Sea A una anticadena maximal de X. Como X (∈ B) está cerrado inferiormente en P,
A también es una anticadena de P. Basta con probar que A⊥ = X⊥. La inclusión X⊥ ⊆ A⊥ es
obvia, pues A ⊆ X. Para demostrar la inclusión rećıproca, se razona por el absurdo, suponiendo
que existe p ∈ A⊥ tal que p /∈ X⊥. Como p /∈ X⊥, existe q ∈ X tal que q ⊤ p, y luego, existe
r ∈ P tal que r ≤ p, q. Pero como los conjuntos A⊥ (∋ p) y X (∋ q) son cerrados inferiormente,

se deduce que r ∈ A⊥ ∩ X. Por lo tanto, el conjunto A′ := A ∪ {r} es una anticadena de P
(pues r ∈ A⊥) tal que A′ ⊆ X (pues r ∈ X), lo que contradice la maximalidad de A en X.
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Cardinales de P y de B (2/2)

Sea A (⊆ P(P)) el conjunto de todas las anticadenas de P.
El lema anterior implica (en ZFC) que la función

(A 7→ A⊥⊥) : A → B
es sobreyectiva, y por lo tanto: |B| ≤ |A|. Luego:

Proposición (en ZFC)

Si (P,≤) cumple la c.c.c., entonces |B∗| ≤ |P|ℵ0 (notando B∗ := B − {∅})

Demo. Como (P,≤) cumple la c.c.c. tenemos que |A∗| ≤ |P|ℵ0 (notando A∗ := A − {∅}).
Y por lo anterior, se concluye que |B∗| ≤ |A∗| ≤ |P|ℵ0 .

Corolario (en ZFC)

Si P = Fin(E, 2) con E infinito, entonces |B| ≤ |E|ℵ0

Demo. Si E es infinito, entonces: |B| = |B∗| ≤ |P|ℵ0 = |Fin(E, 2)|ℵ0 = |E|ℵ0 .
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Acotación del cardinal de P(X) en M [G]

Proposición

En toda extensión genérica M [G], tenemos que:

M [G] |= (∀X ∈M) ∃h (h : (BX)M → P(X) sobreyectiva)

(escribiendo (BX)M := BX ∩M al conjunto de las funciones f : X → B en M)

Demo. Sea la función h : (BX ∩ M) → P(X) definida por h(f) := {x ∈ X : f(x) ∈ G̃}
para todo f ∈ BX ∩ M . Para mostrar que la función h es sobreyectiva, se considera un
subconjunto Y ⊆ X in M [G]. Fijado un nombre Ẏ ∈ MB tal que Ẏ G = Y , se considera la

función f ∈ BX ∩ M definida por f(x) = {p ∈ P : p ⊩ x̌ ∈ Ẏ } (∈ B) para todo x ∈ X.

(Observar que f := {(x, S) ∈ X × B : (∀p∈ P)(p ∈ S ⇔ p ⊩ x̌ ∈ Ẏ )} ∈ M .)

Luego, se concluye por el teorema de forcing que

h(f) = {x∈X : f(x) ∈ G̃} = {x∈X : (∃p∈G) p ⊩ x̌ ∈ Ẏ } = {x∈X : x ∈ Y } = Y .

Corolario: Si además M |= AC (y luego M [G] |= AC), entonces:

M [G] |= (∀X ∈M) |P(X)| ≤ |BX ∩M |



Introducción Extensiones genéricas Ejemplos Caso no transitivo

Ejemplo 3: fijado n ≥ 1, forzar 2ℵ0 = ℵn (3/3)

Volviendo a la extensión genérica M [G] inducida por un modelo transitivo
M |= ZFC+ HGC y un filtro M -genérico G ⊆ Fin(ℵM

n × ω, 2):

(6) Vimos que: M [G] |= 2ℵ0 ≥ ℵn

Proposición: M [G] |= 2ℵ0 ≤ ℵn

Demo. En el modelo de base M se observa que P = Fin(ℵn × ω, 2), entonces

(M |=) |B| ≤ |ℵn × ω|ℵ0 = ℵℵ0
n =

HGC

(
2ℵn−1

)ℵ0 = 2ℵn−1×ℵ0 = 2ℵn−1 =
HGC

ℵn

(usando que M |= HGC), y luego: M |= |Bω| ≤ ℵℵ0
n = ℵn. Entonces M |= Bω ⪯ ℵn,

y como ℵM
n = ℵM[G]

n (pues P cumple la c.c.c. en M), se deduce que M [G] |= Bω ∩ M ⪯ ℵn

(pues la relación ⪯ es Σ1), y por lo tanto: M [G] |= 2ℵ0 ≤ |Bω ∩ M | ≤ ℵn.

(8) Por lo tanto: M [G] |= 2ℵ0 = ℵn

Ejercicio: ¿Que pasa si uno remplaza ℵn por ℵω+1? ¿por ℵω?
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4 Extensión genérica de un modelo cualquiera



Introducción Extensiones genéricas Ejemplos Caso no transitivo

Ĺımites del enfoque de Cohen

Idea fundamental del forcing (según Cohen):

Todo modelo transitivo M (el modelo de base) puede ser extendido en
un modelo transitivo M [G] ⊇M (la extensión genérica) mediante un
nuevo conjunto G (el filtro M -genérico) aproximado por los elementos
de un conjunto ordenado no vaćıo (P,≤) ∈M (el conjunto de forcing)

Para asegurar la existencia de un filtro M -genérico G ⊆ P (en general

afuera de M), Cohen supone que el modelo de base M es numerable

Problema: ¡No se sabe si tal modelo existe!

La hipótesis de la consistencia de ZF implica la existencia de un modelo
numerable (por completitud + Löwenheim-Skolem), pero no necesariamente
de un modelo numerable bien fundado (de modo externo)

Además, el enfoque de Cohen presupone que la metateoŕıa también es la
teoŕıa de conjuntos (colapso de Mostowski, construcción de M [G], etc.)

▶ ¿Cómo construir M [G] a partir de un modelo M cualquiera?
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Convenciones de escritura

Dado un modelo de Tarski M |= ZF:

A cada punto A ∈ M se asocia el conjunto externo

A := {a ∈ M : M |= a ∈ A} (⊆ M )

Dados puntos A,≤A ∈ M tales que M |= “≤A orden sobre A”,
se escribe ≤A a la relación de orden (externa) sobre A definida por:

a ≤A a′ sii M |= a ≤A a′ (a, a′ ∈ A)

Dados puntos A,B, f ∈ M tales que M |= “f función de A en B”,
se escribe f a la función (externa) de A en B definida por:

f(a) := (f(a))M (a ∈ A)

Se dice que un subconjunto externo X ⊆ M viene de M
cuando X = X para algún punto X ∈ M
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La noción de filtro M -genérico

Sea un modelo de Tarski M |= ZF con puntos P,≤P ∈ M t.q.:

M |= (P,≤P) es un conjunto ordenado no vaćıo

En la metateoŕıa, los puntos P,≤P ∈ M que definen el conjunto de
forcing inducen un conjunto ordenado externo (P,≤P)

Se dice que un subconjunto externo G ⊆ P es un filtro M -genérico
cuando:

(1) G ⊆ P es un filtro: G ̸= ∅ ∧ G = ↑G ∧
(∀p, q ∈G)(∃r∈G)(r ≤P p ∧ r ≤P q)

(2) G interseca todo subconjunto denso D ⊆ P que viene de M

Lema (Rasiowa-Sikorski, variante)

Si M es numerable, entonces existe un filtro M -genérico G ⊆ P

Además, fijada una condición p0 ∈ P, se puede imponer que p0 ∈ G

Demo. Misma demostración que para la formulación usual (ejercicio)
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Extensión genérica de un modelo cualquiera (1/6)

Dado un modelo de Tarski M |= ZF con puntos P,≤P ∈ M t.q.:

M |= (P,≤P) es un conjunto ordenado no vaćıo

Teorema (Extensión genérica, generalización)

Para todo filtro M -genérico G ⊆ P, existe una extensión M [G] ⊇ M
con un punto G ∈ M [G] tales que:
(1) M [G] |= ZFV̌ (interpretando V̌ por M ⊆ M [G])

(2) M [G] |= (∀x∈ V̌ )x ⊆ V̌

(3) G = G (i.e. G viene del punto G ∈ M [G])

(4) Si N ⊆ M [G] es un submodelo transitivo definible en L∈,V̌

tal que M ∪ {G} ⊆ N y N |= ZF, entonces N = M [G]

(5) OnM [G] = OnM

(6) Si M |= AC, entonces M [G] |= AC
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Extensión genérica de un modelo cualquiera (2/6)

Demo. Se escriben:

B al punto de M definido por M |= ∀X (X ∈ B ⇔ X ⊆ P ∧ X⊥⊥=X)

e al punto de M definido por M |= e : P → B ∧ (∀p∈ P) e(p) = {p}⊥⊥

MB := (V B)M ⊆ M al modelo booleano interno inducido por B

ǎ (∈ MB) al B-nombre estándar (en M ) asociado a cada punto a ∈ M(
(u1, . . . , un) 7→ Jφ(u1, . . . , un)KB

)
:

(
MB)n → B a la función de interpretación

externa asociada a cada fórmula φ(x1, . . . , xn) del lenguaje L∈,V̌

G̃ al subconjunto de B definido por G̃ := {X ∈ B : X ∩ G ≠ ∅}

Lema: El subconjunto G̃ ⊆ B es un ultrafiltro M -genérico, es decir:
un ultrafiltro de B tal que para todo H ∈ M , si H ⊆ G̃, entonces (

∧
H)M ∈ G̃

Demo del Lema. Ejercicio.

Se define el conjunto M [G] por M [G] := MB/∼, donde ∼ es la relación de equivalencia sobre

MB definida por
u ∼ v sii Ju = vKB ∈ G̃ (u, v ∈ MB)

y se dota M [G] de la estructura de modelo del lenguaje L∈,V̌ en que los śımbolos “· ∈ ·” y

“· ∈ V̌ ” están interpretados por las relaciones (∈̃) ⊆ M [G]2 y M̌ ⊆ M [G] definidas por:

[u] ∈̃ [v] sii Ju ∈ vKB∈ G̃ (u, v ∈ MB)

[u] ∈ M̌ sii Ju ∈ V̌ KB∈ G̃ (u ∈ MB) (...)
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Extensión genérica de un modelo cualquiera (3/6)

Demo (continuación). Sea h : M → M [G] la función definida por h(a) := [ǎ] (a ∈ M ).

Dicha función es un encaje de (M , ∈M ) en (M [G], ∈M[G]), pues para todos a1, a2 ∈ M :

a1 = a2 sii Jǎ1 = ǎ2KB ∈ G̃ sii [ǎ1] = [ǎ2] sii h(a1) = h(a2)

a1 ∈M a2 sii Jǎ1 ∈ ǎ2KB ∈ G̃ sii [ǎ1] ∈M[G] [ǎ2] sii h(a1) ∈M[G] h(a2)

Además tenemos que h(M ) = M̌ , pues para todo u ∈ MB:

[u] ∈ M̌ sii Ju ∈ V̌ KB ∈ G̃ sii
∨

a∈M

Ju = ǎKB ∈ G̃

sii Ju = ǎKB ∈ G̃ para algún a ∈ M (por M -genericidad)

sii [u] = h(a) para algún a ∈ M sii [u] ∈ h(M ).

En lo siguiente, se identifica M con M̌ = h(M ) (≃ M ).

Proposición: Para toda fórmula φ(x1, . . . , xn) de L∈,V̌ con parámetros u1, . . . , un ∈ MB:

M [G] |= φ([u1], . . . , [un]) sii Jφ(u1, . . . , un)KB∈ G̃

Demo. Por inducción sobre la fórmula φ(x1, . . . , xn), distinguiendo los siguientes casos:

Si φ(x1, x2) ≡ x1 = x2, entonces para todos u1, u2 ∈ MB:

M [G] |= [u1] = [u2] sii [u1] = [u2] sii u1 ∼ u2 sii Ju1 = u2KB∈ G̃

Si φ(x1, x2) ≡ x1 ∈ x2, entonces para todos u1, u2 ∈ MB:

M [G] |= [u1] ∈ [u2] sii [u1] ∈̃ [u2] sii Ju1 ∈ u2KB∈ G̃ (...)
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Extensión genérica de un modelo cualquiera (4/6)

Demo de la Proposición (continuación).

Si φ(x1) ≡ x1 ∈ V̌ , entonces para todo u1 ∈ MB:

M [G] |= [u1] ∈ V̌ sii [u1] ∈ M̌ sii Ju1 ∈ V̌ KB∈ G̃

Si φ(x⃗) ≡ ¬φ1(x⃗), entonces para todos u⃗ ∈ MB, tenemos que:

M [G] |= φ([u⃗]) sii M [G] ̸|= φ1([u⃗]) sii Jφ1(u⃗)KB /∈ G̃ (por HI)

sii ¬BJφ1(u⃗)KB∈ G̃ sii Jφ(u⃗)KB∈ G̃ (...)

Si φ(x⃗) ≡ φ1(x⃗) ∨ φ2(x⃗), entonces para todos u⃗ ∈ MB, tenemos que:

M [G] |= φ([u⃗]) sii M [G] |= φ1([u⃗]) o M [G] |= φ2([u⃗])

sii Jφ1(u⃗)KB∈ G̃ o Jφ2(u⃗)KB∈ G̃ (por HI)

sii Jφ1(u⃗)KB ∨B Jφ2(u⃗)KB ∈ G̃
sii Jφ(u⃗)KB ∈ G̃

Si φ(x⃗) ≡ ∃x0 φ0(x0, x⃗), entonces para todos u⃗ ∈ MB, tenemos que:

M [G] |= φ([u⃗]) sii M [G] |= φ0([u0], [u⃗]) para algún u0 ∈ MB

sii Jφ0(u0, u⃗)KB∈ G̃ para algún u0 ∈ MB (por HI)

sii
∨

u0∈MB
Jφ0(u0, u⃗)K

B∈ G̃ (por M -genericidad)

sii Jφ(u⃗)KB∈ G̃

Obs.: Aqúı se trata el caso de ∃/∀, usando el carácter M -genérico del ultrafiltro G̃ ⊆ B.
No se necesita suponer que M |= AC o que el modelo booleano MB (⊆ M ) está lleno.
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Extensión genérica de un modelo cualquiera (5/6)

Demo del Teorema (continuación). Usando la Prop. anterior:

(1) Para cada teorema φ de ZFV̌ , tenemos que JφKB= 1B ∈ G̃, luego M [G] |= φ.

(2) Tenemos que J(∀x∈ V̌ ) x ⊆ V̌ KB
= 1B ∈ G̃, entonces M [G] |= (∀x∈ V̌ ) x ⊆ V̌ .

(3) Sea G := [g], con g := {(p̌, e(p)) : p ∈ P}M ∈ MB (nombre genérico). Para todo

u ∈ MB, tenemos que:

M [G] |= [u] ∈ G sii Ju ∈ gKB ∈ G̃ sii
∨
p∈P

(
e(p) ∧ Ju = p̌KB)

∈ G̃

sii
(
e(p) ∧ Ju = p̌KB

)
∈ G̃ para algún p ∈ G̃ (por M -genericidad)

sii e(p) ∈ G̃ y Ju = p̌KB ∈ G̃ para algún p ∈ G̃
sii p ∈ G̃ y [u] = h(p) para algún p ∈ G̃ sii [u] ∈ h(G)

y por lo tanto G = h(G) = G (a través de la identificación M = M̌ ).

Obs.: Combinando la igualdad anterior (i.e. G = G) con las propiedades del filtro M -genérico
(externo) G ⊆ P, se deduce que: M [G] |= G ⊆ P filtro V̌ -genérico.

(4) Véase siguiente diapositiva.

(5) Tenemos que JOn ⊆ V̌ KB
= 1B ∈ G̃, y luego M [G] |= On ⊆ V̌ , es decir OnM[G] ⊆ M

(a través de la identificación M = M̌ ), y por lo tanto OnM[G] = OnM .

(6) Si M |= AC entonces JACKB = 1B ∈ G̃, y luego M [G] |= AC. (...)
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Extensión genérica de un modelo cualquiera (6/6)

Demo del Teorema (continuación y fin). Sólo queda probar el carácter minimal de M [G] (4).
Para ello, se considera la teoŕıa T sobre el lenguaje L∈,V̌ ,P,≤P,G

(donde P, ≤P y G son nuevos

śımbolos de constantes) cuyos axiomas son los axiomas de ZFV̌ , más las tres fórmulas:

φ1 :≡ V̌ transitiva ∧ On ⊆ V̌

φ2 :≡ (P,≤P) ∈ V̌ conjunto ordenado no vaćıo

φ3 :≡ G ⊆ P filtro V̌ -genérico

En la teoŕıa T se construye a partir de (P,≤P) el álgebra booleana B ∈ V̌ aśı como el modelo

booleano interno V̌ B ⊆ V̌ del modo usual, y se considera la funcional (u 7→ uG) : V̌ B → V

definida por recursión sobre u ∈ V̌ B por: uG := {vG : v ∈ dom(u) ∧ u(v) ∩ G ̸= ∅}.
Es claro por (1)–(3) que M [G] es un modelo de la teoŕıa T (interpretando los śımbolos P, ≤P
y G por los puntos G, P,≤P ∈ M [G]). El el próximo caṕıtulo (Forcing axiomático), probaremos

además que: M [G] |= ∀x (∃u∈ V̌ B) x = uG (∗) (admitido aqúı).

(4) Se considera ahora un submodelo N ⊆ M [G] definido a partir de una clase Cp⃗ ≡ C(x, p⃗)
(de L∈,V̌ ) con parámetros p⃗ ∈ M [G], en el sentido en que a ∈ N sii M [G] |= a ∈ Cp⃗

para todo a ∈ M [G], y se supone que M [G] |= Cp⃗ transitiva, M [G] |= V̌ ⊆ Cp⃗ ∧ G ∈ Cp⃗

y M [G] |= φ para cada teorema de ZF.

A partir de las hipótesis anteriores, se demuestra que M [G] |= (∀u∈ V̌ B) (uG ∈ Cp⃗)

(razonando por inducción sobre u ∈ V̌ B en la teoŕıa de M [G]), y por (∗), se deduce que
M [G] |= ∀x (x ∈ Cp⃗), es decir: N = M [G].
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Conclusión

El teorema de la extensión genérica se extiende a un modelo de base
M |= ZF cualquiera (no necesariamente transitivo o bien fundado)

Como en el caso transitivo, el filtro M -genérico G ⊆ P existe
al menos cuando M es numerable (Rasiowa-Sikorski)

Construcción de la extensión genérica M [G] ⊇ M por cociente
(en la metateoŕıa) y no por reificación (por ∈-recursión)

▶ Necesita una metateoŕıa más débil (comprensión + cociente)

Como en el caso transitivo, la extensión genérica M [G] ⊇ M
es única, pero sólo a menos de isomorfismo
(Consecuencia de que M [G] |= ∀x (∃u∈ V̌ B) (x = uG) — Ejercicio)

Al final, siempre se razona de mismo modo en M [G], cuyas propiedades
se derivan de las de M mediante la relación de forcing p ⊩ φ

▶ Observar que adentro de M [G], el modelo de base M (escrito V̌ )

sigue siendo un modelo transitivo de ZF (de modo interno)
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Resumen

Caso M transitivo Caso general

Estátus de M
M conjunto o clase propia
en ZF(C) (= metateoŕıa)

M conjunto en el
sentido de la metateoŕıa

¿M bien fundado? Śı (pues transitivo) No necesariamente

¿Existencia de G? Al menos cuando M es numerable (Rasiowa-Sikorski)

¿M [G] bien fundado? Śı (pues transitivo) No necesariamente

¿Unicidad de M [G]? Śı Śı, a menos de iso

Construcción de M [G] Imagen de la funcional
(u 7→ uG) : M B → V

Cociente de M B por
ultrafiltro M -genérico

En ambos casos, las propiedades de M [G] se deducen de las de M por:

M [G] |= φ(uG1 , . . . , u
G
n ) sii (∃p∈G) p ⊩ φ(u1, . . . , un)

(con u1, . . . , un ∈ M B ⊆ M )
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