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Alexandre Miquel

octubre de 2024



Introducción Trans.: T 7→ T ∗ Teoremas en T ∗ Ejemplo Conservatividad y completitud

Motivación (1/2)

El forcing está presentado tradicionalmente como un método de
transformación de modelos (transitivos):

Input: ■ un modelo transitivo M |= ZF
con un conjunto de forcing (P,≤P) ∈M

■ un filtro M -genérico G ⊆ P

Output: ▶ la extensión genérica M [G] (generada por M y G)

▶ la relación de forcing p ⊩ φ(u1, . . . , un), tal que:
M [G] |= φ(uG1 , . . . , u

G
n ) ⇔ (∃p∈G) p ⊩ φ(u1, . . . , un)

(Pero el método se generaliza à los modelos M |= ZF cualesquiera)

Problema: ¿Cómo razonar en M [G]?

¿Cómo utilizar el carácter minimal de M [G]?

¿Cómo utilizar la relación de forcing p ⊩ φ(u1, . . . , un)?

¿Cómo deducir las propiedades de M [G] a partir de las de M?



Introducción Trans.: T 7→ T ∗ Teoremas en T ∗ Ejemplo Conservatividad y completitud

Motivación (2/2)

Idea: Presentar el forcing como transformación de teoŕıas:

Input: ■ una extensión T de ZF
que describe el universo inicial M
aśı como un conjunto de forcing (P,≤P) (en M )

Output: ▶ otra extensión T ∗ de ZF
que describe la extensión genérica M [G] obtenida
a partir de un filtro V̌ -genérico G ⊆ P cualquiera

Obs.: El lenguaje de T ∗ (que incluye el lenguaje de T ) introduce:

– un śımbolo de predicado V̌ ( ) que representa el universo inicial

– un śımbolo de constante G (ahora parte del output) que representa
un filtro V̌ -genérico G ⊆ P cualquiera (el “filtro genérico genérico”)

Teorema fundamental (Conservatividad en V̌ )

T ⊢ φ sii T ∗ ⊢ φV̌ para toda sentencia φ de T

Corolario: Las teoŕıas T y T ∗ son equiconsistentes
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Lenguajes de 1er orden (recordatorio)

Definición (Lenguaje de 1er orden)

Un lenguaje (de 1er orden) está definido a partir de:

un conjunto de śımbolos de función (notación: f , g, h, etc.)
un conjunto de śımbolos de predicado (notación: p, q, r, etc.)

en que cada śımbolo s (función/predicado) tiene una aridad ♯s (∈ N)

Dichos śımbolos definen los términos (notación: t, u, v, etc.) y
las fórmulas (notación: φ, ψ, χ, etc.) del lenguaje considerado:

Términos t, u ::= x | f(t1, . . . , tk) (♯f = k)

Fórmulas φ,ψ ::= t1 = t2 | p(t1, . . . , tk) (♯p = k)

| ¬φ | φ ∨ ψ | φ ∧ ψ
| φ⇒ ψ | ∀xφ | ∃xφ
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Teoŕıas de 1er orden (recordatorio)

Definición (Teoŕıa de 1er orden)

Una teoŕıa T (de 1er orden) está definida a partir de:

su lenguaje L (de 1er orden)

sus axiomas (= sentencias de L )

Una sentencia φ de L es un teorema de T cuando es derivable
(en NK o LK) a partir de los axiomas de T .

Notación: T ⊢ φ (“T demuestra φ”)

Una teoŕıa T sobre un lenguaje L es consistente cuando
no existe ningún φ ∈ L tal que T ⊢ φ y T ⊢ ¬φ

De modo equivalente, T es consistente cuando existe
al menos una sentencia φ ∈ L tal que T ̸⊢ φ
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Subteoŕıas y extensiones (recordatorio)

Dadas teoŕıas T (sobre L ) y T ′ (sobre L ′):

Definición (Subteoŕıas, extensiones)

T es una subteoŕıa de T ′ (o T ′ es una extensión de T ) cuando:

(1) L ⊆ L ′ (inclusión de lenguajes)

(2) T ⊢ φ implica T ′ ⊢ φ para toda sentencia φ ∈ L

Notación: T ⊆ T ′ (o T ′ ⊇ T )

Obs.: De modo equivalente, se puede reemplazar (2) por:

(2′) T ′ ⊢ φ para todo axioma φ de T

Definición (Extensiones conservativas)

T ′ es una extensión conservativa de T cuando:

(1) L ⊆ L ′ (inclusión de lenguajes)

(2) T ⊢ φ sii T ′ ⊢ φ para toda sentencia φ ∈ L
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Extensiones de Henkin (recordatorio)

Definición (Extensión de Henkin)

Sea T una teoŕıa, y φ(x) una fórmula tal que T ⊢ ∃xφ(x) (∗)

La extensión de Henkin de T con respecto al teorema ∃xφ(x)
es la teoŕıa de 1er orden:

cuyo lenguaje es el lenguaje de T enriquecido con
un śımbolo de constante c fresco

cuyos axiomas son los de T , más el axioma φ(c)

(∗) No se necesita que x sea único

Ejemplo: La extensión de Henkin de ZF con respecto al teorema

“Existe un cuerpo totalmente ordenado completo”

es ZF extendido con un nuevo śımbolo de constante R y con el
axioma: “R es un cuerpo totalmente ordenado completo”

Proposición: Toda extensión de Henkin es conservativa

Demo. Ejercicio
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Extensiones definicionales (1/4)

Otro ejemplo importante de extensión conservativa:

Definición (Extensión definicional)

Sea T una teoŕıa (sobre un lenguaje L ). Una extensión T ′ ⊇ T
(sobre un lenguaje L ′) es definicional cuando existe una traducción

(φ(x⃗) 7→ φ∗(x⃗)) : L ′ → L

que asocia a cada fórmula φ(x⃗) ∈ L ′ una fórmula φ∗(x⃗) ∈ L
con las mismas variables libres x⃗, de tal modo que:

(1) T ′ ⊢ ∀x⃗ (φ(x⃗) ⇔ φ∗(x⃗)) para cada fórmula φ(x⃗) ∈ L ′

(2) Si T ′ ⊢ φ entonces T ⊢ φ para cada sentencia φ ∈ L

(i.e. T ′ es una extensión conservativa de T )

De modo equivalente, se puede reemplazar (2) por:

(2.1) Si T ′ ⊢ φ entonces T ⊢ φ∗ para cada sentencia φ ∈ L ′

(2.2) T ⊢ ∀x⃗ (φ(x⃗) ⇔ φ∗(x⃗)) para cada fórmula φ(x⃗) ∈ L

Ejercicio: Probar la equivalencia entre ambas definiciones
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Extensiones definicionales (2/4)

Se verifica fácilmente (ejercicio) que la traducción φ(x⃗) 7→ φ∗(x⃗)
cumple la siguientes equivalencias en la teoŕıa T ′:

(¬φ(x⃗))∗ ⇔ ¬φ∗(x⃗)

(φ(x⃗) ∨ ψ(x⃗))∗ ⇔ φ∗(x⃗) ∨ ψ∗(x⃗)

(∃x0 φ(x0, x⃗))∗ ⇔ ∃x0 φ∗(x0, x⃗) (etc.)

▶ Se dice que el mapa φ(x⃗) 7→ φ∗(x⃗) es una traducción lógica

De hecho, siempre se puede diseñar (ejercicio) la traducción lógica
(φ(x⃗) 7→ φ∗(x⃗)) : L ′ → L de tal modo que

φ∗(x⃗) ≡ φ(x⃗) si φ(x⃗) ∈ L

(¬φ(x⃗))∗ ≡ ¬φ∗(x⃗)

(φ(x⃗) ∨ ψ(x⃗))∗ ≡ φ∗(x⃗) ∨ ψ∗(x⃗)

(∃x0 φ(x0, x⃗))∗ ≡ ∃x0 φ∗(x0, x⃗) (etc.)
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Extensiones definicionales (3/4)

Los dos ejemplos elementales de extensión definicional
son los siguientes:

Proposición (Definición de predicado)

Sea T una teoŕıa y ψ(x⃗) una fórmula del lenguaje de T .

La extensión de T con un śımbolo de predicado p (♯p = |x⃗|) definido
por el axioma ∀x⃗ (p(x⃗) ⇔ ψ(x⃗)) es una extensión definicional de T

Demo. Ejercicio

Proposición (Definición de función)

Sea T una teoŕıa y ψ(x⃗, y) una fórmula del lenguaje de T tal que

T ⊢ ∀x⃗ ∃!y ψ(x⃗, y).

La extensión de T con un śımbolo de función f (♯f = |x⃗|) definido
por el axioma ∀x⃗ ψ(x⃗, f(x⃗)) es una extensión definicional de T

Demo. Ejercicio
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Extensiones definicionales (4/4)

De hecho, cualquier extensión definicional se puede descomponer
como una sucesión (finita o transfinita) de extensiones definicionales
elementales (i.e. por una definición de predicado o de función):

Teorema (Caracterización de las extensiones definicionales) (con AC)

Sea T una teoŕıa de 1er orden.

Una teoŕıa T ′ es una extensión definicional de T si y sólo si existe un
ordinal γ y una sucesión creciente de teoŕıas (Tα)α≤γ tales que:

(1) T0 = T y Tγ = T ′

(2) Para todo α < γ, la teoŕıa Tα+1 es una extensión definicional elemental
de Tα (i.e. por una definición de predicado o de función)

(3) Para todo ordinal ĺımite λ ≤ γ: Tλ =
⋃

α<λ Tα.

Demo. Ejercicio
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Extensiones estándar de ZF (1/2)

Definición (Extensiones estándar de ZF)

Una extensión T ⊇ ZF es estándar cuando los axiomas de comprensión
y de reemplazo se cumplen en T para todas las fórmulas del lenguaje
de T (y no sólo para las fórmulas del lenguaje de ZF). Las extensiones
estándar de ZF también se llaman teoŕıas de conjuntos estándar

Es claro que toda extensión puramente axiomática de ZF (i.e. sin

extender el lenguaje de ZF) es estándar. Ejemplos t́ıpicos:

ZFC (= ZF+ AC), ZFC + V =L, ZFC+ H(G)C

El ejemplo t́ıpico de extensión no estándar es la Internal Set Theory
(IST) de Nelson (’77), que introduce un śımbolo de predicado st(x)
prohibido en los axiomas de comprensión y de reemplazo
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Extensiones estándar de ZF (2/2)

Proposición (Preservación del carácter estándar)

Toda extensión de Henkin o definicional de una extensión estándar de ZF
es una extensión estándar de ZF

Demo. Sean T una extensión estándar de ZF, y T ′ una teoŕıa que es una extensión de Henkin
de T o una extensión definicional de T . Sólo tratamos el caso de la comprenśıon aqúı; el caso del
reemplazo se trata de modo ánálogo. Dada una fórmula φ(x, z⃗) cualquiera del lenguaje de T ′, se
trata de mostrar que el axioma de comprensión Cφ :≡ ∀z⃗ ∀a ∃b ∀x (x ∈ b ⇔ x ∈ a ∧ φ(x, z⃗))
asociado a φ(x, z⃗) es derivable en T ′. Para ello, se distinguen dos casos:

T ′ es una extensión de Henkin que introduce un śımbolo de constante c.
Sea φ0(x, y, z⃗) la fórmula del lenguaje de T obtenida reemplazando la constante c por
una variable y fresca, de tal modo que φ(x, z⃗) ≡ φ0(x, c, z⃗). Como T es una extensión
estándar de ZF, la fórmula Cφ0

:≡ ∀y ∀z⃗ ∀a ∃b ∀x (x ∈ b ⇔ x ∈ a ∧ φ0(x, y, z⃗)) es
derivable en T , y luego en T ′ por extensión. Pero como T ′ ⊢ Cφ0

⇒ Cφ (instanciando
la variable y por la constante c), se concluye que T ′ ⊢ Cφ.

T ′ es una extensión definicional, cuyo lenguaje se reduce al lenguaje de T mediante una
traducción lógica (ψ 7→ ψ∗) : LT ′ → LT . Como T es una extensión estándar de ZF,
la fórmula Cφ∗ :≡ ∀z⃗ ∀a ∃b ∀x (x ∈ b ⇔ x ∈ a ∧ φ∗(x, z⃗)) es derivable en T , y luego

en T ′ por extensión. Pero como T ′ ⊢ ∀x ∀z⃗ (φ(x, z⃗) ⇔ φ∗(x, z⃗)), se deduce que
T ′ ⊢ Cφ ⇔ Cφ∗ , y por lo tanto T ′ ⊢ Cφ.



Introducción Trans.: T 7→ T ∗ Teoremas en T ∗ Ejemplo Conservatividad y completitud

Plan

1 Introducción

2 Transformación de teoŕıas: T 7→ T ∗

3 Teoremas en T ∗

4 Ejemplo: forzar 2ℵ0 = ℵn (n ≥ 1)

5 Conservatividad y completitud



Introducción Trans.: T 7→ T ∗ Teoremas en T ∗ Ejemplo Conservatividad y completitud

Plan

1 Introducción

2 Transformación de teoŕıas: T 7→ T ∗
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La teoŕıa de base T

La transformación de forcing se aplica a una teoŕıa de base T

Definición (Teoŕıa de base para el forcing)

Una teoŕıa de base es una extensión estándar T ⊇ ZF tal que:

(1) El lenguaje de T :

no contiene ningún śımbolo de función de aridad ≥ 1
(pero śı puede tener śımbolos de constante y/o de predicado además de ∈)

distingue dos śımbolos de constante P, ≤P tales que:

(2) T ⊢ (P,≤P) es un conjunto ordenado no vaćıo

En la práctica, la teoŕıa de base T está construida a partir de ZF(C)
(o a partir de una extensión bien conocida de ZF), skolemizando el teorema
que expresa la existencia del conjunto de forcing deseado:

T := ZF (+ DC/AC/H(G)C/V =L/ · · · )
+ ⟨axioma que define P⟩
+ ⟨axioma que define ≤P⟩
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Ejemplos de teoŕıas de base

Para forzar ¬HC:

T := ZFC + P = Fin(ℵ2 × ω, 2)
+ (≤P) = {(p, q) ∈ P2 : p ⊇ q}

En la extensión genérica: T ∗ ⊢ ¬HC

Para forzar 2ℵ0 = ℵ42:

T := ZFC + HGC + P = Fin(ℵ42 × ω, 2)
+ (≤P) = {(p, q) ∈ P2 : p ⊇ q}

En la extensión genérica: T ∗ ⊢ 2ℵ0 = ℵ42

Para forzar un buen orden sobre P(ω):

T := ZF + DC + P =
⋃
α<ℵ1

Iny(α,P(ω))
+ (≤P) = {(p, q) ∈ P2 : p ⊇ q}

En la extensión genérica: T ∗ ⊢ ∃h : ℵ1 → P(ω) biyectiva
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La extensión genérica T ∗

La extensión genérica T ∗ es la teoŕıa construida de modo algoŕıtmico
a partir de la teoŕıa de base T del siguiente modo:

El lenguaje de T ∗ es el lenguaje de T enriquecido con:

Un śımbolo de predicado unario V̌ ( ), también escrito ∈ V̌
(que representa el universo inicial como una clase adentro del universo expandido)

Un śımbolo de constante G (que representa un filtro V̌ -genérico ⊆ P)

Los axiomas de T ∗ se dividen entre 5 grupos:

1. Los axiomas de ZF (extendidos al lenguaje de T ∗)

2. Los axiomas de transitividad

3. Los axiomas de T relativizados a V̌

4. El axioma de genericidad

5. El axioma del nombre

Teorema fundamental: T ⊢ φ sii T ∗ ⊢ φV̌ (φ ∈ LT )

Corolario: Las teoŕıas T y T ∗ son equiconsistentes



Introducción Trans.: T 7→ T ∗ Teoremas en T ∗ Ejemplo Conservatividad y completitud

1. Los axiomas de ZF (extendidos al lenguaje de T ∗)

1. Axiomas de ZF (extendidos al lenguaje de T ∗)

T ∗ ⊢ extensionalidad, pares, unión, potencia, infinitud, fundación
T ∗ ⊢ comprensiónφ, reemplazoψ para cada fórmula φ,ψ ∈ LT ∗

Por construcción, T ∗ es una extensión estándar de ZF

Los śımbolos extra V̌ ( ) y G se pueden usar en los axiomas de
comprensión y de reemplazo. Por ejemplo:

A ∩ V̌ := {x ∈ A : x ∈ V̌ }
(La intersección de un conjunto A con la clase V̌ es un conjunto)

Notación: x ⊆ V̌ := ∀y (y ∈ x⇒ y ∈ V̌ )

Obs.: Como siempre, usaremos śımbolos de función informales (“notaciones”) en la
teoŕıa de base T aśı como en la extensión genérica T ∗. Dichos śımbolos de función
no pertenencen al lenguaje oficial de T o de T ∗, sino al lenguaje “vernáculo” usado
para trabajar en T o en T ∗ (i.e. extensión definicional)
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2. Los axiomas de transitividad

2. Axiomas de transitividad

T ∗ ⊢ ∀x (x ∈ V̌ ⇒ x ⊆ V̌ ) (la clase V̌ es transitiva)

T ∗ ⊢ c ∈ V̌ para cada śımbolo de constante c ∈ LT ,
inclusive los dos śımbolos P y ≤P

T ∗ ⊢ ∀x⃗ (R(x⃗) ⇒ x⃗ ∈ V̌ ) para cada śımbolo de predicado R ∈ LT

distinto de “=” y de “∈”

Los axiomas de transitividad implican que:

La clase V̌ es transitiva

La clase V̌ contiene todas las constantes de la teoŕıa de base T ,
inclusive P y ≤P (por otro lado, tenemos que G /∈ V̌ en general)

La clase V̌ es no vaćıa, pues P ∈ V̌

También se añade el axioma ∀x⃗ (R(x⃗) ⇒ x⃗ ∈ V̌ ) (i.e. R ⊆ V̌ n)

para cada śımbolo de predicado R ∈ LT (distinto de “=” y de “∈”)
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3. Los axiomas de T relativizados a V̌

Por el grupo de axiomas 1, el universo expandido (descrito por T ∗)
está regido por los axiomas de ZF

(Pero los otros axiomas de T no tienen que cumplirse en T ∗: T ̸⊆ T ∗)

El grupo de axiomas 3 expresa que la clase transitiva V̌ está regida
por los axiomas de la teoŕıa de base T :

3. Axiomas de T relativizados a V̌

T ∗ ⊢ φV̌ para cada axioma φ de la teoŕıa de base T

A partir de los grupos 2 y 3, se deduce el:

Principio de importación: Si T ⊢ φ, entonces T ∗ ⊢ φV̌

Se dice que la clase V̌ es un modelo transitivo de T adentro de T ∗

(en particular, V̌ cumple todos los teoremas de ZF ⊆ T )

Obs.: Probaremos más adelante que T ⊢ φ sii T ∗ ⊢ φV̌
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4. El axioma de genericidad

4. Axioma de genericidad

T ∗ ⊢ G es un filtro V̌ -genérico de P

G es un filtro de P:
(1) G ⊆ P ∧ G ̸= ∅ (subconjunto no vaćıo de P)

(2) (∀p, q ∈P) (p ∈ G ∧ p ≤ q ⇒ q ∈ G) (clausura superior)

(3) (∀p, q ∈G) (∃r∈G) (r ≤ p ∧ r ≤ q) (compatibilidad interna)

Intuición: Los elementos de G son compatibles de a dos, en el sentido del
orden definicional (Scott): p ⊑ q := p ≥ q

G es V̌ -genérico:

(4) (∀D⊆P ) (D denso ∧ D ∈ V̌ ⇒ D ∩G ̸= ∅)

Recordatorio: D denso ≡ (∀p∈P ) (∃q ∈D) (q ≤ p)

Topoloǵıa impĺıcita: abierto = subconjunto de P cerrado inferiormente
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5. El axioma del nombre

Nos interesamos aqúı en los conjuntos A ⊆ V̌
(conjuntos potencialmente nuevos con contenido antiguo)

Por ejemplo:

x ⊆ V̌ para todo x ∈ V̌ (por transitividad)

G ⊆ V̌ (aunque G /∈ V̌ en general)

¿Cómo describir los conjuntos A ⊆ V̌ mediante elementos de V̌ ?

Definición (P-nombre para un conjunto A ⊆ V̌ )

Un P-nombre para un conjunto A ⊆ V̌ es un conjunto N ∈ V̌ tal que:

∀x (x ∈ A ⇔ (∃p∈G) (x, p) ∈ N)

Obs.: El P-nombre N (∈ V̌ ) caracteriza A (⊆ V̌ ), pero no es único en general

5. Axioma del nombre

T ∗ ⊢ (∀A⊆ V̌ ) (∃N ∈ V̌ )∀x (x ∈ A ⇔ (∃p∈G) (x, p) ∈ N)

(Cada conjunto A ⊆ V̌ tiene un P-nombre N ∈ V̌ )
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Los axiomas de T ∗ (resumen)

1. Axiomas de ZF (extendidos al lenguaje de T ∗)

Extensionalidad, pares, unión, potencia, infinitud y fundación
Comprensión y reemplazo para todas las fórmulas de T ∗

2. Axiomas de transitividad

(∀x∈ V̌ ) x ⊆ V̌
c ∈ V̌ para cada constante c ∈ LT

∀x⃗ (R(x⃗) ⇒ x⃗ ∈ V̌ ) para cada predicado R ∈ LT − {=,∈}

3. Axiomas de T relativizados a V̌

φV̌ para cada axioma φ de la teoŕıa T

4. Axioma de genericidad

G ⊆ P ∧ G ̸= ∅ ∧
(∀p, q ∈P)(p ∈ G ∧ p ≤ q ⇒ q ∈ G) ∧
(∀p, q ∈G)(∃r∈G)(r ≤ p ∧ r ≤ q) ∧
(∀D⊆P)(D denso ∧D ∈ V̌ ⇒ D ∩G ̸= ∅)

5. Axioma del nombre

(∀A⊆ V̌ ) (∃N ∈ V̌ ) ∀x (x ∈ A ⇔ (∃p∈G) (x, p) ∈ N)
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Observaciones

El lenguaje de T ∗ agrega 2 śımbolos al lenguaje de T , luego:

Si T tiene un vocabulario finito (resp. numerable),
entonces T ∗ tiene un vocabulario finito (resp. numerable)

Si T tiene un lenguaje numerable (resp. de cardinal κ),
entonces T ∗ tiene un lenguaje numerable (resp. de cardinal κ)

Además:

Proposición

Si el conjunto de axiomas de T es recursivo (resp. semirrecursivo)(∗),
entonces el conjunto de axiomas de T ∗ es recursivo (resp. semirrecursivo)

(∗) Semi recursivo = recursivamente enumerable

Veremos más adelante que:

T consistente ⇔ T ∗ consistente, pero:

T completa ̸⇒ T ∗ completa
(Razón: los axiomas de T ∗ no especifican qué elementos de P pertenecen a G)
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Plan

1 Introducción

2 Transformación de teoŕıas: T 7→ T ∗

3 Teoremas en T ∗

4 Ejemplo: forzar 2ℵ0 = ℵn (n ≥ 1)

5 Conservatividad y completitud
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Filtros genéricos triviales

A partir de ahora, se derivan teoremas generales en T ∗

Vimos que c ∈ V̌ para cada constante c ∈ LT (inclusive P y ≤P).
¿Qué tal con el filtro V̌ -genérico G ⊆ P?

Proposición (Caracterización de los filtros genéricos en V̌ )

(T ∗ ⊢) G ∈ V̌ ⇔ (∃p∈P) (p átomo ∧ G = ↑↓{p0})
Recordatorio: p0 átomo ≡ (∀q1, q2 ≤ p0)(∃r∈P )(r ≤ q1 ∧ r ≤ q2)

Demo. Igual que en el caso de los modelos transitivos (ejercicio).

Los filtros genéricos de la forma G = ↑↓{p0} (con p0 ∈ P átomo)

son dichos triviales. Por contrarrećıproco:

Corolario: (T ∗ ⊢) (P,≤P) sin átomos ⇒ G /∈ V̌

▶ Razón por que en la práctica, siempre se elige (P,≤P) sin átomos
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La noción de nombre

Idea: Representar los conjuntos A ⊆ V̌ (“frontera de V̌ ”)

por elementos de V̌ :

N es un P-nombre para A

⇔ N ∈ V̌ ∧ ∀x (x ∈ A⇔ (∃p∈G) (x, p) ∈ N)

⇔ N ∈ V̌ ∧ IG(N) = A

escribiendo: IG(N) := {x ∈
⋃⋃

N : (∃p∈G) (x, p) ∈ N}
(El P-nombre N ∈ V̌ caracteriza el conjunto A ⊆ V̌ , pero no es único)

Se observa que:

Todo conjunto A ∈ V̌ tiene un P-nombre: NA := A× P (∈ V̌ )

Si A,B ⊆ V̌ tienen P-nombres NA, NB ∈ V̌ , entonces los conjuntos
A ∪B, A ∩B, A−B ⊆ V̌ tienen P-nombres en V̌ (ejercicio)

Inclusive G (⊆ V̌ ) tiene un P-nombre: NG := {(p, p) : p ∈ P} (∈ V̌ )

Axioma del nombre: (∀A⊆ V̌ )(∃N ∈ V̌ ) A = IG(N)
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El lema de acotación y sus consecuencias

Lema de acotación: (T ∗ ⊢) (∀A⊆ V̌ )(∃A′ ∈ V̌ )A ⊆ A′

Demo. Dado NA ∈ V̌ tal que IG(NA) = A, se toma A′ :=
⋃⋃

NA ∈ V̌ .

Corolario:

(1) (T ∗ ⊢) On ⊆ V̌ , y por lo tanto:

(2) (T ∗ ⊢) V̌ es una clase propia, On = On V̌ , Cn ⊆ Cn V̌

(3) (T ∗ ⊢) G ∈ V̌ ⇒ V̌ = V

Demo. (1) Por el absurdo, se supone que On ̸⊆ V̌ , y se considera α := min(On − V̌ ).
Por minimalidad, tenemos que α ⊆ V̌ , y luego existe A ∈ V̌ t.q. α ⊆ A (lema de acotación).

Pero también es claro que α = OnV̌ , y luego OnV̌ = α ⊆ A ∈ V̌ : contradicción.

(2) Se sigue de (1), observando que “On(α)” es ∆0 y “Cn(α)” es Π1.

(3) Supongamos que G ∈ V̌ . Se demuestra que x ∈ V̌ para todo x ∈ V , por ∈-inducción.
Dado x ∈ V tal que y ∈ V̌ para todo y ∈ x (HI), es decir: tal que x ⊆ V̌ , se considera un
P-nombre n ∈ V̌ para x, y se observa que:

x = IG(n) =
{
y ∈

⋃⋃
n︸ ︷︷ ︸

∈V̌

: (∃p∈G) (y, p) ∈ n︸ ︷︷ ︸
fórmula ∆0, con G∈V̌

}
∈ V̌ .
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Nombres recursivos (1/2)

Para cada u ∈ V̌ , se escribe más generalmente

I∞G (u) := {I∞G (v) : (∃p∈G) (v, p) ∈ u}

(Definición por ∈-recursión sobre u)

Dado un conjunto x cualquiera (∈ V ), se dice que un conjunto
u ∈ V̌ es un P-nombre recursivo para x cuando x = I∞G (u)

Teorema (Existencia de nombres recursivo)

(T ∗ ⊢) ∀x (∃u∈ V̌ ) x = I∞G (u)

Demo. Sea (V̌α)α∈On la jerarqúıa acumulativa de V̌ : V̌α :=
⋃

β<α

P
V̌
(V̌α) =

⋃
β<α

(P(V̌α) ∩ V̌ ).

Dado un conjunto x (∈ V ) tal que (∀y ∈ x)(∃v ∈ V̌ ) y = I∞G (v) (HI), se asocia a cada

elemento y ∈ x el ḿınimo ordinal αy ∈ On tal que (∃v ∈ V̌αy ) y = I∞G (v), y se nota

A :=
⋃

y∈x Ay , donde Ay := {v ∈ V̌αy : y = I∞G (v)} para todo y ∈ x.

Como A ⊆ V̌ (por construcción), existe u ∈ V̌ tal que A = IG(u), y por lo tanto:

I
∞
G (u) = {I∞G (v) : (∃p∈G) (v, p) ∈ u} = {I∞G (v) : v ∈ A} = {y : y ∈ x} = x.
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Nombres recursivos (2/2)

Vimos que el axioma del nombre implica que todo conjunto X ⊆ V̌
está incluido en algún conjunto X ′ ∈ V̌ :

(T ∗ ⊢) (∀X ⊆ V̌ )(∃X ′ ∈ V̌ ) X ⊆ X ′ (Lema de acotación)

Más generalmente, el teorema de existencia de nombres recursivos
implica que para cada conjunto X (en el universo expandido), se puede
hallar Y ∈ V̌ (en el universo inicial) al menos tan “grande” como X:

Lema de la sobreyección

(T ∗ ⊢) ∀X (∃Y ∈ V̌ ) (∃f : Y → X) f sobreyectiva

Demo. Sin pérdida de generalidad, se puede suponer que X ̸= ∅ (si no: tomar Y := X = ∅).
Sea Y ∈ V̌ un P-nombre recursivo para X, i.e. tal que I∞G (Y ) = X. Fijado un punto x0 ∈ X,
se considera la función f : Y → X definida por

f(y) :=

{
I∞G (v) si y = (v, p) para algún p ∈ G
x0 si no

(y ∈ Y )

observando que: f(Y ) ⊇ {I∞G (v) : (∃p∈G) (v, p) ∈ Y } = I∞G (Y ) = X.
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Axioma de elección en T y en T ∗

Una consecuencia importante del lema anterior es la siguiente:

Teorema: (T ∗ ⊢) (AC)V̌ ⇒ AC

Demo. Supongamos que V̌ |= AC. Queremos mostrar que todo conjunto X (∈ V ) es bien
ordenable. Para ello, se considera un conjunto Y ∈ V̌ equipado con una sobreyección f : Y ↠ X.
Como V̌ |= AC, existe un ordinal α y un elemento g ∈ V̌ tal que V̌ |= g : α → Y biyectiva, es
decir (en V :) una función g : α → Y biyectiva (por absolutez). Luego se observa que la función
h : X → α definida por h(x) = min{β < α : f(g(β)) = x} es inyectiva, lo que implica que el
conjunto X es bien ordenable.

Y por lo tanto: Si T ⊢ AC, entonces T ∗ ⊢ AC

Pero en general, ni el axioma de elección numerable (ACω) ni el axioma
de elección dependiente (DC) son preservados por extensión genérica:

T ⊢ ACω ̸⇒ T ∗ ⊢ ACω (en general)

T ⊢ DC ̸⇒ T ∗ ⊢ DC (en general)
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Minimalidad de V con respecto a V̌ y G

Teorema (Minimalidad de V con respecto a V̌ y G)

Sea M una clase transitiva de T ∗, tal que (T ∗ ⊢) M |= ZF(∗).

Entonces: (T ∗ ⊢) V̌ ⊆M ∧ G ∈M ⇒ M = V

(∗) Es decir tal que T ∗ ⊢ φM para cada axioma/teorema de ZF

Demo. Primero se observa que en ZF, se puede definir por ∈-recursión una funcional
x 7→ ΦG(x) (que depende de un solo parámetro G cualquiera), tal que:

(ZF ⊢) ∀x (ΦG(x) = {ΦG(y) : (∃p∈G) (y, p) ∈ x}) .

Dado un modelo transitivo M |= ZF (en T ∗) tal que V̌ ⊆ M y G ∈ M , se nota (x 7→ ΦM
G (x))

: M → M a la funcional x 7→ ΦG relativizada a M , observando que

(T ∗ ⊢) (∀x∈M)
[
ΦM

G (x) =
{
ΦM

G (y) : ((∃p∈G) (y, p) ∈ x)M
}

= {ΦM
G (y) : (∃p∈G) (y, p) ∈ x}

]
Luego se demuestra (en T ∗) por ∈-inducción sobre u ∈ V̌ (⊆ M por hipótesis) que

I∞G (u) (:= {I∞G (v) : (∃p∈G) (v, p) ∈ u}) = ΦM
G (u)

para todo x ∈ V̌ , y por lo tanto: IG(u) ∈ M . Como tenemos que ∀x (∃u∈ V̌ ) x = I∞G (u)
(teorema de existencia de los nombres recursivos), se concluye que ∀x (x ∈ M).
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El álgebra booleana V̌ -completa B

Notaciones (recordatorio):

p ⊤ q :≡ (∃r∈P)(r ≤ p ∧ r ≤ q)

p ⊥ q :≡ ¬(∃r∈P)(r ≤ p ∧ r ≤ q)

X⊥ :=
{
p ∈ P : (∀q ∈X) p ⊥ q

}
B := {X ∈ PV̌(P) : X = X⊥⊥} (∈ V̌ )

e : P → B := p 7→ {p}⊥⊥ (∈ V̌ )

En la teoŕıa T ∗, se deriva que:

(1) (B,⊆) es un álgebra booleana V̌ -completa

(2) La función e : (P,≤) → (B,⊆) es monótona, y más aún un encaje
cuando (P,≤) es separativo: (∀p, q ∈P)(p ̸≤ q ⇒ (∃p′ ≤ p) p′ ⊥ q)

En lo siguiente, usaremos frecuentemente el

Lema: (T ∗ ⊢) (∀X ∈PV̌(P))(X ∩G ̸= ∅ ⇔ X⊥⊥ ∩G ̸= ∅)

Demo. Ejercicio
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El ultrafiltro V̌ -genérico G̃ ⊆ B

Se define: G̃ := {X ∈ B : X ∩G ̸= ∅} (⊆ B)

Proposición (Ultrafiltro V̌ -genérico)

(T ∗ ⊢) G̃ es un ultrafiltro V̌ -genérico de B:

¬X ∈ G̃ ⇔ X /∈ G̃

X ∧ Y ∈ G̃ ⇔ X ∈ G̃ ∧ Y ∈ G̃

X ∨ Y ∈ G̃ ⇔ X ∈ G̃ ∨ Y ∈ G̃(∧
i∈I Xi

)
∈ G̃ ⇔ Xi ∈ G̃ para todo i ∈ I(∨

i∈I Xi

)
∈ G̃ ⇔ Xi ∈ G̃ para algún i ∈ I

para todos X,Y ∈ B y para toda familia (Xi)i∈I ∈ BI ∩ V̌
(escribiendo ¬X := X⊥, X ∧ Y := X ∩ Y , X ∨ Y := (X ∪ Y )⊥⊥, etc.)

Demo. Ejercicio

Además: (T ∗ ⊢) (∀X ∈PV̌(P))(X ∩G ̸= ∅ ⇔ X⊥⊥ ∈ G̃)
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La noción de B-nombre (1/2)

El axioma del nombre permite representar cada conjunto A ⊆ V̌ por
un P-nombre N ∈ V̌ , tal que IG(N) = A, escribiendo

IG(N) := {x ∈
⋃⋃

N : (∃p∈G) (x, p) ∈ N}

Obs. El la práctica, siempre se puede tomar N ∈ V̌ tal que N ⊆ V̌ × P

El álgebra booleana B combinada con en ultrafiltro G̃ ⊆ B permite
dar una representación alternativa de los conjuntos A ⊆ V̌ por
funciones particulares, llamadas B-nombres. Formalmente:

Definición (B-nombre)

Un B-nombre es una función f ∈ V̌ que asocia a cada elemento
x ∈ dom(f) un valor de verdad f(x) ∈ B:

f B-nombre sii f ∈ V̌ ∧ f función ∧ img(f) ⊆ B

Intuición: B-nombre = función “indicatriz” f : X → B, con X, f ∈ V̌
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La noción de B-nombre (2/2)

Se interpreta cada B-nombre f ∈ V̌ por el conjunto

JG(f) := {x ∈ dom(f) : f(x) ∈ G̃} (⊆ dom(f) ⊆ V̌ )

El axioma del nombre implica que todo conjunto A ⊆ V̌ también
tiene un B-nombre:

Proposición (Existencia de los B-nombres)

(T ∗ ⊢) (∀A⊆ V̌ )(∃f ∈ V̌ )(f B-nombre ∧ JG(f) = A)

Demo. Sea N un P-nombre para A, es decir un conjunto N ∈ V̌ tal que IG(N) = A.
Se considera la función f ∈ V̌ definida por:

y

dom(f) := π1(N) = {x ∈
⋃⋃

N : ∃y (x, y) ∈ N}
f(x) := {p ∈ P : (x, p) ∈ N}⊥⊥ (x ∈ dom(f))

y se verifica que para todo x ∈ V̌ , tenemos que:

x ∈ JG(f) ⇔ x ∈ dom(f) ∧ f(x) ∈ G̃

⇔ x ∈ dom(f) ∧ {p ∈ P : (x, p) ∈ N} ∩G ̸= ∅
⇔ (∃p∈G) (x, p) ∈ N ⇔ x ∈ A.
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Acotación del cardinal de P(X) cuando X ∈ V̌

Para cada conjunto X ∈ V̌ , se nota JG,X : (BX ∩ V̌ ) → P(X)
a la función definida para todo f ∈ (BX ∩ V̌ ) por:

JG,X(f) := JG(f) = {x ∈ dom(f) : f(x) ∈ G̃}

Proposición

(T ∗ ⊢) La función JG,X : (BX ∩ V̌ ) → P(X) es sobreyectiva

Demo. Para cada subconjunto Y ∈ P(X), se elige un B-nombre f ∈ V̌ tal que JG(f) = Y ,

y se considera la función f ′ ∈ BX ∩ V̌ definida por:

f ′(x) :=

{
f(x) si x ∈ dom(f)

0B si no
(x ∈ X)

Se concluye, observando que JG,X(f ′) = JG(f) = Y .

Corolario (Acotación del cardinal de P(X) cuando X ∈ V̌ ) (con AC)

Si T ⊢ AC, entonces T ∗ ⊢ (∀X ∈ V̌ ) |P(X)| ≤
∣∣BX ∩ V̌

∣∣
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B-nombres funcionales (1/2)

Sean X,Y ∈ V̌ . Para toda función parcial f : X ⇀ Y , se observa
que f ∈ P(X × Y ), con (X × Y ) ∈ V̌

Por lo tanto, cada función parcial f : X ⇀ Y puede ser representada
por un B-nombre h ∈ BX×Y ∩ V̌ . Más aún:

Proposición (Existencia de un B-nombre funcional)

(T ∗ ⊢) Para toda función parcial f : X ⇀ Y (con X,Y ∈ V̌ ),
existe un B-nombre h ∈ (BX×Y ∩ V̌ ) tal que:

(1) f = JG(h)

(2) (∀x∈X)(∀y, y′ ∈Y )(y ̸= y′ ⇒ h(x, y) ∧ h(x, y′) = 0B)

(i.e. la familia (h(x, y))y∈Y ∈ (BY ∩ V̌ ) es una anticadena para todo x ∈ X)

▶ Se dice que la función h ∈ (BX×Y ∩ V̌ ) tal que (1) y (2)
es un B-nombre funcional para la función f : X ⇀ Y
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B-nombres funcionales (2/2)

Demo. Dada una función parcial f : X ⇀ Y , se considera un B-nombre h0 ∈ (BX×Y ∩ V̌ )
tal que JG(h0) = f . Como la relación f ⊆ X × Y es funcional, tenemos que

(∀x∈X)(∀y ̸= y′ ∈Y )¬((x, y) ∈ f ∧ (x, y′) ∈ f)

entonces: (∀x∈X)(∀y ̸= y′ ∈Y )¬(h0(x, y) ∈ G̃ ∧ h0(x, y
′) ∈ G̃)

y por lo tanto: b0 :=

( ∧
x∈X

∧
y ̸=y′∈Y

¬(h0(x, y) ∧ h0(x, y
′
))

)
∈ G̃

por las propiedades de conmutación del ultrafiltro V̌ -genérico G̃ ⊆ B. Se considera ahora la
función h : X × Y → B definida por h(x, y) := h0(x, y) ∧ b0 para todo (x, y) ∈ X × Y .

Es claro que h ∈ BX×Y ∩ V̌ , por construcción. Además:

(1) JG(h) = f , pues para todo (x, y) ∈ X × Y , tenemos que:

h(x, y) ∈ G̃ ⇔ (h0(x, y) ∧ b0) ∈ G̃ ⇔ h0(x, y) ∈ G̃ ⇔ (x, y) ∈ f

ya que f = JG(h0).

(2) El B-nombre h es funcional, pues para todos x ∈ X e y ̸= y′ ∈ Y , tenemos que:

h(x, y) ∧ h(x, y′) = h0(x, y) ∧ h0(x, y
′) ∧ b0

≤ (h0(x, y) ∧ h0(x, y
′)) ∧ ¬(h0(x, y) ∧ h0(x, y

′)) = 0B .
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Condiciones sobre las anticadenas (1/2)

Definición (Condición de cadena numerable)

Se dice que (P,≤) cumple la condición de cadena numerable (c.c.c.)
cuando toda anticadena de P tiene un cardinal a lo sumo numerable:

(P,≤) cumple la c.c.c. ⇔ (∀A⊆P)(A anticadena ⇒ |A| ≤ ℵ0)

Más generalmente:

Definición (Condición de κ-cadena)

Dado un cardinal infinito κ, se dice que (P,≤) cumple la condición de
κ-cadena (κ-c.c.) cuando toda anticadena de P tiene un cardinal < κ:

(P,≤) cumple la κ-c.c. ⇔ κ cardinal infinito ∧
(∀A⊆P)(A anticadena ⇒ |A| < κ)

Caso particular (κ = ℵ1): c.c.c. = ℵ1-c.c.

En lo siguiente, siempre se considera la condición de κ-cadena
(que no es absoluta) en el sentido del universo inicial
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Condiciones sobre las anticadenas (2/2)

Recordatorio:

A ⊆ P anticadena :≡ (∀p1, p2 ∈A)(p1 ̸= p2 ⇒ p1 ⊥ p2)

A ⊆ B anticadena :≡ (∀X1, X2 ∈A)(X1 ̸= X2 ⇒ X1 ∧X2 = 0B)

La condición de κ-cadena (κ-c.c.) sólo trata de las anticadenas de P.
Sin embargo:

Proposición

Si T ⊢ AC, entonces:

T ⊢ ∀κ
[
(P,≤) cumple la κ-c.c. ⇒
(∀A⊆B)(A anticadena ⇒ |A| < κ)

]
Demo. Dado un cardinal infinito κ tal que (P,≤) cumple la κ-c.c., se considera una anticadena
A ⊆ B, y se nota A′ := A \ {0B} ⊆ B. Por AC, existe h : A′ → P tal que h(X) ∈ X para todo
X ∈ A′. Como A′ ⊆ B es una anticadena, la función h : A′→P es inyectiva, y su imagen h(A′)
es una anticadena de P. Por lo tanto: |A| ≤ |A′| + 1 = |h(A′)| + 1 < κ.
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Acotación del cardinal de B

Lema

Si T ⊢ AC, entonces:

T ⊢ (∀X ∈B)(∃A⊆P)(A anticadena ∧ X = A⊥⊥)

Demo. Sea A una anticadena de P, incluida y maximal en X (por AC). Se verifica fácilmente

que A⊥ = X⊥ (usando la maximalidad de A ⊆ X), y luego A⊥⊥ = X⊥⊥ = X.

Notación: µ<κ := sup{µλ : λ < κ ∧ λ ∈ Cn} (κ, µ ∈ Cn)

Proposición

Si T ⊢ AC, entonces:

T ⊢ ∀κ
(
(P,≤) cumple la κ-c.c. ⇒ |B| ≤ |P|<κ

)
Demo. Sea P<κ(P) el conjunto de los subconjuntos de P de cardinal < κ. Como (P,≤) cumple
la κ-c.c., todas las anticadenas de P están en P<κ(P), entonces la función h : P<κ(P) → B
definida por h(X) = X⊥⊥ para todo X ∈ P<κ(P) es sobreyectiva. Por lo tanto:

|B| ≤ |P<κ(P)| ≤ |P|<κ.
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Preservación de los cardinales (1/4)

Recordatorio: Todos los cardinales de V están en On = OnV̌ ⊆ V̌ .
Además, como las fórmulas “µ es un cardinal” y “µ es un cardinal
regular” son Π1, tenemos que:

T ∗ ⊢ (∀µ∈On)
(
µ cardinal ⇒ (µ cardinal)V̌

)
∧

(∀µ∈On)
(
µ card. regular ⇒ (µ card. regular)V̌

)
Para cada µ ∈ Cn V̌ :

{
o bien µ ∈ Cn: µ se mantiene en V

o bien µ /∈ Cn: µ se colapasa en V

Teorema (Preservación de los cardinales bajo la κ-c.c.)

Si T ⊢ AC (y luego T ∗ ⊢ AC), entonces:

T ∗ ⊢ ∀κ
[(
κ card. regular infinito ∧ (P,≤) cumple la κ-c.c.

)V̌ ⇒
(∀µ≥κ)

(
(µ cardinal)V̌ ⇔ µ cardinal

)
∧

(∀µ≥κ)
(
(µ card. regular)V̌ ⇔ µ card. regular

) ]
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Preservación de los cardinales (2/4)

Demo. Sea κ un cardinal regular infinito en M , tal que (P,≤) cumple la κ-c.c. en M .

(1) Preservación de los cardinales regulares ≥ κ.

Sea un ordinal µ ≥ κ tal que µ es un cardinal regular en V̌ . Queremos mostrar que µ es un
ordinal regular (y luego un cardinal regular) en V . Para ello, se considera un ordinal λ < µ, aśı
como una función f : λ → µ en V . Queremos probar que la imagen de f está acotada por algún
ordinal β0 < µ. Para ello, se considera un B-nombre funcional para f , es decir: una función
h ∈ Bλ×µ ∩ V̌ tal que f = JG(h) y tal que la familia (h(α, β))β<µ (∈ V̌ ) es una anticadena

para todo α < λ. A partir de ahora, se trabaja en V̌ con el nombre h:

Para cada α < λ, se escribe Bα := {β < µ : h(α, β) ̸= 0B}. Como la familia
(h(α, β))β<µ ∈ Bµ es una anticadena, la función (β 7→ h(α, β)) : Bα → B es
inyectiva, y su imagen Aα := {h(α, β) : β ∈ Bα} ⊆ B es una anticadena. Como
(P,≤) cumple la κ-c.c., sabemos que |Aα| < κ, y luego |Bα| = |Aα| < κ (≤ µ).

Como λ < µ y como µ es un cardinal, tenemos que |λ| < µ. Además, tenemos que
|Bα| < µ para todo α < λ, entonces |

⋃
α<λ Bα| < µ, pues µ es regular. Por lo

tanto, existe β0 < µ tal que h(α, β) = 0B para todos α < λ y β ∈ ]β0, µ[.

Acabamos de construir un ordinal β0 < µ tal que par todos α < λ y β ∈ ]β0, µ[, tenemos que

h(α, β) = 0B /∈ G̃, y por lo tanto f(α) ̸= β. Entonces la imagen de f : λ → µ está acotada
por el ordinal β0 < µ. Acabamos de mostrar que para todo λ < µ, todas las funciones de λ
en µ están acotadas. Por lo tanto µ es un ordinal regular, y luego un cardinal regular en V . (...)
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Preservación de los cardinales (3/4)

Demo. del teorema (continuación y fin). (2) Preservación de los cardinales ≥ κ.

Queremos mostrar que para todo µ ≥ κ, µ ∈ CnV̌ implica µ ∈ Cn. Para ello, se razona por el

absurdo, y se considera el menor ordinal µ ≥ κ tal que µ ∈ CnV̌ y µ /∈ Cn. Por (1), es claro
que µ es un cardinal singular en V̌ , y en particular µ > κ. Por lo tanto, existe una familia
(µα)α<λ ∈ V̌ tal que

λ ∈ CnV̌ y λ < µ;

µα ∈ CnV̌ y µα < µ para todo α < λ;

µ = supα<λ µα.

Sin pérdida de generalidad, se puede suponer que µα ≥ κ para todo α < λ. (Si no: cambiar µα

por µ′
α := max(µα, κ) < µ para todo α < λ, observando que supα<λ µ

′
α = µ.)

Como µ es el ḿınimo ordinal ≥ κ tal que µ ∈ CnV̌ pero µ /∈ Cn, se deduce que µα ∈ Cn para
todo α < κ (pues κ ≤ µα < µ). Entonces µ es el supremo de una familia de cardinales de V , y
luego µ es un cardinal en V : contradicción.

Corolario (Caso particular donde κ = ℵ1 en V̌ )

Si T ⊢ AC ∧ (P,≤) cumple la c.c.c., entonces:

T ∗ ⊢ (∀µ∈On)
(
(µ cardinal)V̌ ⇔ µ cardinal

)
∧

(∀µ∈On)
(
(µ card. regular)V̌ ⇔ µ card. regular

)
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Preservación de los cardinales (4/4)

Se observa que (P,≤) cumple la κ-c.c. para cualquier cardinal
regular κ > |P|. Por lo tanto:

Corolario

Si T ⊢ AC (y luego T ∗ ⊢ AC), entonces:

T ∗ ⊢ ∃κ
[(
κ card. regular)V̌ ∧
(∀µ≥κ)

(
(µ cardinal)V̌ ⇔ µ cardinal

)
∧

(∀µ≥κ)
(
(µ card. regular)V̌ ⇔ µ card. regular

) ]
▶ Una extensión genérica colapsa los cardinales (y los cardinales

regulares) sólo hasta cierto ordinal. Después de este ordinal,
todos los cardinales (y los cardinales regulares) se mantienen

Corolario

Si T ⊢ AC entonces: T ∗ ⊢ (∃λ, σ ∈On)(∀α∈On) ℵλ+α = ℵV̌λ+σ+α
Demo. Ejercicio
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Resumen (1/2)

A partir de nuestra axiomatización de T ∗ (y gracias al axioma del nombre),
conseguimos demostrar que:

T ∗ ⊢ G ∈ V̌ ⇔ (∃p0 ∈P)(p0 átomo ∧ G = ↑↓{p0})

T ∗ ⊢ (∀X ⊆ V̌ )(∃X ′ ∈ V̌ ) X ⊆ X ′

T ∗ ⊢ On ⊆ V̌ , y por lo tanto:

T ∗ ⊢ On = On V̌ ∧ Cn ⊆ Cn V̌

T ∗ ⊢ G ∈ V̌ ⇔ V = V̌

T ∗ ⊢ ∀X (∃Y ∈ V̌ ) (∃f : Y → X) f sobreyectiva

Si T ⊢ AC, entonces T ∗ ⊢ AC

Pero T ⊢ ACω (resp. T ⊢ DC) ̸⇒ T ∗ ⊢ ACω (resp. T ⊢ DC)
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Resumen (2/2)

A partir de nuestra axiomatización de T ∗ (y gracias al axioma del nombre),
conseguimos demostrar que:

El universo V es minimal con respecto a V̌ y G:

Si T ∗ ⊢ (M |=
trans.

ZF) ∧ V̌ ⊆M ∧G ∈M , entonces T ∗ ⊢M = V

Si T ⊢ AC, entonces T ∗ ⊢ (∀X ∈ V̌ ) |P(X)| ≤
∣∣BX ∩ V̌

∣∣
Si T ⊢ AC y T ⊢ (P,≤) cumple la c.c.c., entonces:

T ∗ ⊢ (∀µ∈On)
(
(µ cardinal)V̌ ⇔ µ cardinal

)
∧

(∀µ∈On)
(
(µ card. regular)V̌ ⇔ µ card. regular

)
Más generalmente, si T ⊢ AC, entonces:

T ∗ ⊢ ∀κ
[(
κ card. regular infinito ∧ (P,≤) cumple la κ-c.c.

)V̌ ⇒
(∀µ≥κ)

(
(µ cardinal)V̌ ⇔ µ cardinal

)
∧

(∀µ≥κ)
(
(µ card. regular)V̌ ⇔ µ card. regular

) ]
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Plan

1 Introducción

2 Transformación de teoŕıas: T 7→ T ∗

3 Teoremas en T ∗

4 Ejemplo: forzar 2ℵ0 = ℵn (n ≥ 1)

5 Conservatividad y completitud
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Fijado n ≥ 1, forzar 2ℵ0 = ℵn (1/3)

Fijado un entero n ≥ 1, queremos forzar 2ℵ0 = ℵn

Para ello, se considera la teoŕıa de base

T := ZFC + HGC + P = Fin(ℵn × ω, 2)
+ (≤P) = {(p, q) ∈ P2 : p ⊇ q}

(sobre el lenguaje formado a partir de los śımbolos ∈, P y ≤P)

La teoŕıa T es una extensión definicional de ZFC+ HGC,
y por lo tanto: T ≈ ZFC+ HGC ≈ ZF (equiconsistencia)

En T , se demuestra que:

(1) (T ⊢) (P,≤P) cumple la c.c.c. y es separativo

(2) (T ⊢) |P| = |ℵn × ω| = ℵn

Se define B := {X ∈ P(P) : X = X⊥⊥} y se prueba que:

(3) (T ⊢) ℵn = |P| ≤
encaje

|B| ≤
c.c.c.

|P|<ℵ1 = ℵℵ0
n =

HGC

ℵn
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Fijado n ≥ 1, forzar 2ℵ0 = ℵn (2/3)

Sea T ∗ la extensión genérica asociada a la teoŕıa T

Tenemos que T ∗ ⊇ ZFC (ya que T ⊢ AC)

En la teoŕıa T ∗, se define el álgebra booleana B usando la misma
fórmula que en T , pero relativizándola a V̌ :

B := {X ∈ PV̌(P) : X = X⊥⊥}

Más generalmente, tenemos que T ⊢ φ(B) implica T ∗ ⊢ φV̌(B) para
cualquier fórmula φ(x) del lenguaje de T (principio de importación)

Como (P,≤P) cumple la c.c.c. (en V̌ ), se deriva que:

(4) (T ∗ ⊢) ℵV̌n = ℵn

(5) (T ∗ ⊢) P = Fin(ℵV̌n × ω, 2) = Fin(ℵn × ω, 2)

(6) (T ∗ ⊢)
∣∣(Bω)V̌ ∣∣ = ∣∣ℵV̌n ∣∣ = ℵn (pues T ⊢ |Bω | = ℵn)

(7) (T ∗ ⊢) 2ℵ0 = |P(ω)| ≤
∣∣(Bω)V̌ ∣∣ = ℵn
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Fijado n ≥ 1, forzar 2ℵ0 = ℵn (3/3)

En T ∗ se define g :=
⋃
G, y se observa que g : ℵn × ω ⇀ 2

(función parcial a priori), pues G ⊆ Fin(ℵn × ω, 2) es un filtro

Usando la V̌ -genericidad de G, se demuestra que:

(8) (T ∗ ⊢) La función g : ℵn × ω ⇀ 2 es total

Ahora se considera la función h : ℵn → P(ω) definida por

h(α) := {n ∈ ω : g(α, n) = 1} (α < ℵn)

Usando de nuevo la V̌ -genericidad de G, se demuestra que:

(9) (T ∗ ⊢) La función h : ℵn → P(ω) es inyectiva

(10) (T ∗ ⊢) 2ℵ0 = |P(ω)| ≥ ℵn, y por lo tanto:

(11) (T ∗ ⊢) 2ℵ0 = ℵn

Como T ∗ ≈ T ≈ ZF (admitido), se concluye que:

Teorema: ZFC+ 2ℵ0 = ℵn ≈ ZF (para cada n ≥ 1)
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Plan

1 Introducción

2 Transformación de teoŕıas: T 7→ T ∗

3 Teoremas en T ∗

4 Ejemplo: forzar 2ℵ0 = ℵn (n ≥ 1)

5 Conservatividad y completitud
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Introducción

Dada una teoŕıa de base T (cualquiera) y su extensión genérica T ∗,
queremos demostrar el:

Teorema (Conservatividad relativamente a V̌ )

La teoŕıa T ∗ es una extensión conservativa de T relativamente a V̌ :

T ⊢ φ sii T ∗ ⊢ φV̌ (para toda sentencia φ ∈ LT )

Obs.: Sólo se trata de demostrar la implicación rećıproca, ya que
la implicación directa es obvia (principio de importación)

Corolario: Las teoŕıas T y T ∗ son equiconsistentes

Demo. Considerar la fórmula φ :≡ 0 = 1.

Para ello, vamos a construir un modelo booleano de la teoŕıa T ∗

adentro de la teoŕıa T

Obs.: Para variar, se usa aqúı una construcción alternativa basada en la noción
de P-nombre, y no en la noción de B-nombre presentada en el caṕıtulo 3
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La clase de los P-nombres (recursivos)

A partir de ahora se trabaja en la teoŕıa T

Como siempre, se define: B := {X ∈ P(P) : X = X⊥⊥}

Proposición

(T ⊢) (B,⊆) es un álgebra booleana completa no degenerada

Se construye la clase V P de los P-nombres (recursivos) por:

V P :=
⋃

α∈On

V P
α , con V P

α :=
⋃
β<α

P(V P
β × P) (α ∈ On)

Intuición: Un P-nombre (recursivo) es un conjunto u de la forma

u = {(v1, p1), (v2, p3), (v3, p3), . . .} (⊆ V P × P)

donde los vi son P-nombres (recursivos) y los pi son condiciones

Obs.: En un P-nombre u ∈ V P, un mismo elemento v ∈ π1(u) puede ser
asociado a múltiples condiciones (i.e. los P-nombres no son funciones en general)
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Igualdad, inclusión y pertenencia en V P (1/2)

Dados P-nombres u, v ∈ V P, se escribe:

u[v] :=
{
p ∈ P : (v, p) ∈ u

}⊥⊥
(∈ B)

En particular, tenemos que u[v] = ∅ = 0B cuando v /∈ π1(u)

A cada u, v ∈ V P se asocian valores de verdad

Ju = vKP, Ju ⊆ vKP, Ju ∈ vKP ∈ B

definidos por recursión mutua sobre los rangos de u y v en V P:

Ju = vKP := Ju ⊆ vKP ∧ Jv ⊆ uKP

Ju ⊆ vKP :=
∧

u′∈π1(u)

(
u[u′] → Ju′ ∈ vKP

)
Ju ∈ vKP :=

∨
v′∈π1(v)

(
v[v′] ∧ Ju = v′KP

)
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Igualdad, inclusión y pertenencia en V P (2/2)

Proposición (J· = ·KP es una equivalencia en V P)

(T ⊢) Para todos u, v, w ∈ V P:

(1) Ju = uKP = 1B

(2) Ju = vKP = Jv = uKP

(3) Ju = vKP ∧ Jv = wKP ≤ Ju = wKP

Demo. Ejercicio

Proposición (J· ∈ ·KP es compatible con J· = ·KP en V P)

(T ⊢) Para todos u, v, w ∈ V P:

(1) u[v] ≤ Jv ∈ uKP

(2) Ju = vKP ∧ Jv ∈ wKP ≤ Ju ∈ wKP

(3) Ju ∈ vKP ∧ Jv = wKP ≤ Ju ∈ wKP

Demo. Ejercicio
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Intermezzo: comparación entre V P y V B (1/2)

Construcción de los modelos booleanos V P y V B:

V P :=
⋃

α∈On

V P
α , con V P

α :=
⋃
β<α

P(V P
β × P) (α ∈ On)

V B :=
⋃

α∈On

V B
α , con V B

α :=
⋃
β<α

B⊆V B
β (α ∈ On)

Intuición: V P = P(V P × P) (clase de conjuntos de pares)

V B = B⊆V B
(clase de funciones parciales)

Sin embargo, se puede pasar de una construcción a la otra usando
las funcionales ♭ : V B → V P y ♯ : V P → V B definidas por:

♭f :=
{
(♭g, p) : g ∈ dom(f) ∧ p ∈ f(g)

}
(f ∈ V B)

dom(♯u) := {♯v : v ∈ π1(u)} (u ∈ V P)

♯u(g) :=
{
p ∈ P : ∃v ((v, p) ∈ u ∧ ♯v = g)

}⊥⊥
(g ∈ dom(♯u))
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Intermezzo: comparación entre V P y V B (2/2)

Lema: (T ⊢) (∀f ∈V B) ♯♭f = f

Demo. Ejercicio

En particular:

{
♭ : V B → V P es inyectiva

♯ : V P → V B es sobreyectiva

Proposición

(1) (T ⊢) (∀f, g ∈V B)
(

J♭f = ♭gKP = Jf = gKB ∧
J♭f ∈ ♭gKP = Jf ∈ gKB

)
(2) (T ⊢) (∀u, v ∈V P)

(
J♯u = ♯vKB = Ju = vKP ∧
J♯u ∈ ♯vKB = Ju ∈ vKP

)
Demo. Ejercicio

Conclusión: V P y V B son elementalmente equivalentes
(al menos para el lenguaje de ZF)
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Encaje de V en V P

Cada conjunto x (∈ V ) está representado en V P por el P-nombre x̌
definido (por ∈-recursión) por:

x̌ := {(y̌, p) : y ∈ x ∧ p ∈ P} = {y̌ : y ∈ x} × P

Proposición (Encaje con respecto a =, ∈)

(1) (T ⊢) ∀x (∀u∈V P) Ju ∈ xKP =
∨
y∈x

Ju = y̌KP

(2) (T ⊢) ∀x ∀y
(

(x = y ⇔ Jx̌ = y̌KP = 1B) ∧
(x ̸= y ⇔ Jx̌ = y̌KP = 0B) ∧
(x ∈ y ⇔ Jx̌ ∈ y̌KP = 1B) ∧
(x /∈ y ⇔ Jx̌ ∈ y̌KP = 0B)

)
Demo. Ejercicio

▶ La correspondencia

{
V → V P

x 7→ x̌
es un “encaje” de V en V P
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Interpretación de los demás śımbolos de T ∗ (1/2)

Cada śımbolo de predicado R del lenguaje de T (distinto de =, ∈) está

interpretado por la funcional JR(·)KP :
(
V P)k → B definida por:

JR(u1, . . . , uk)KP :=
∨

(x1,...,xk)∈R

(
Ju1 = x̌1KP ∧ · · · ∧ Juk = x̌kKP

)
(Identificando el śımbolo R con la clase {(x1, . . . , xk) ∈ V k : R(x1, . . . , xk)})

Proposición

Para cada śımbolo de predicado R del lenguaje de T , tenemos que:

(1) (T ⊢) (∀u⃗, v⃗ ∈V P)
(
Ju⃗ = v⃗KP ∧ JR(u⃗)KP ≤ JR(v⃗)KP

)
(2) (T ⊢) ∀x⃗

(
( R(x⃗) ⇔ JR(ˇ⃗x)KP = 1B) ∧
(¬R(x⃗) ⇔ JR(ˇ⃗x)KP = 0B)

)
(Escribiendo Ju⃗ = v⃗KP := Ju1 = v1KP ∧ · · · ∧ Juk = vkKP)

Demo. Ejercicio
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Interpretación de los demás śımbolos de T ∗ (2/2)

El predicado V̌ (x) del lenguaje de T ∗ está interpretado por:

JV̌ (u)KP :=
∨
x∈V

Ju = x̌KP (u ∈ V P)

Proposición

(1) (T ⊢) (∀u, v ∈V P)
(
Ju = vKP ∧ JV̌ (u)KP ≤ JV̌ (v)KP

)
(2) (T ⊢) ∀x JV̌ (x̌)KP = 1B

Demo. Ejercicio

Cada constante c del lenguaje de T está interpretada por:

ċ := č ∈ V P

La constante G del lenguaje de T ∗ está interpretada por:

Ġ := {(p̌, p) : p ∈ P} ∈ V P
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Interpretación de las fórmulas de T ∗

Se interpreta cada fórmula atómica de T ∗, sustituyendo en la
funcional asociada al predicado subyacente (inclusive =, ∈) cada
constante c ∈ LT ∗ por el correspondiente P-nombre ċ ∈ V P

Por ejemplo:

• si φ(x) ≡ R(x, c) entonces: Jφ(u)KP := JR(u, ċ)KP

• si φ(x) ≡ R(c, x) entonces: Jφ(u)KP := JR(ċ, u)KP

• si φ ≡ R(c, c′) entonces: JφKP := JR(ċ, ċ′)KP (etc.)

Luego se extiende la definición a todas las fórmulas φ(x⃗) del
lenguaje de T ∗ (por inducción externa sobre φ(x⃗)), escribiendo:

J¬φ(u⃗)KP := ¬Jφ(u⃗)KP Jφ(u⃗) ⇒ ψ(u⃗)KP := Jφ(u⃗)KP → Jψ(u⃗)KP

Jφ(u⃗) ∧ ψ(u⃗)KP := Jφ(u⃗)KP ∧ Jψ(u⃗)KP Jφ(u⃗) ∨ ψ(u⃗)KP := Jφ(u⃗)KP ∨ Jψ(u⃗)KP

J∀y φ(y, u⃗)KP :=
∧

v∈V P

Jφ(v, u⃗)KP J∃y φ(y, u⃗)KP :=
∨

v∈V P

Jφ(v, u⃗)KP
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Corrección lógica

Notación: V P |= φ(u1, . . . , un) :≡ Jφ(u1, . . . , un)KP = 1B

Lema (Regla de Leibniz)

Para cada fórmula φ(x, z⃗) del lenguaje de T ∗, tenemos que:

(T ⊢) (∀u, v, w⃗∈V P)
(
Ju = vKP ∧ Jφ(u, w⃗)KP ≤ Jφ(v, w⃗)KP

)
Demo. Ejercicio

Dado un contexto Γ(x⃗) ≡ φ1(x⃗), . . . , φn(x⃗), se escribe:

JΓ(u⃗)KP := Jφ1(u⃗)KP ∧ · · · ∧ Jφn(u⃗)KP

Teorema (Corrección lógica)

Si un secuente Γ(x⃗) ⊢ φ(x⃗) es derivable en el sistema NK, entonces:

(T ⊢) (∀u⃗∈V P)
(
JΓ(u⃗)KP ≤ Jφ(u⃗)KP

)
Demo. Ejercicio
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Los axiomas de T ∗ (recordatorio)

1. Axiomas de ZF (extendidos al lenguaje de T ∗)

Extensionalidad, pares, unión, potencia, infinitud y fundación
Comprensión y reemplazo para todas las fórmulas de T ∗

2. Axiomas de transitividad

(∀x∈ V̌ ) x ⊆ V̌
c ∈ V̌ para cada constante c ∈ LT

∀x⃗ (R(x⃗) ⇒ x⃗ ∈ V̌ ) para cada predicado R ∈ LT − {=,∈}

3. Axiomas de T relativizados a V̌

φV̌ para cada axioma φ de la teoŕıa T

4. Axioma de genericidad

G ⊆ P ∧ G ̸= ∅ ∧
(∀p, q ∈P)(p ∈ G ∧ p ≤ q ⇒ q ∈ G) ∧
(∀p, q ∈G)(∃r∈G)(r ≤ p ∧ r ≤ q) ∧
(∀D⊆P)(D denso ∧D ∈ V̌ ⇒ D ∩G ̸= ∅)

5. Axioma del nombre

(∀A⊆ V̌ ) (∃N ∈ V̌ ) ∀x (x ∈ A ⇔ (∃p∈G) (x, p) ∈ N)
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Corrección de los axiomas de T ∗ (1/8)

Lema (Cuantificaciones relativizadas)

Para cada fórmula φ(x, z⃗) del lenguaje de T ∗, tenemos que:

(1) (T ⊢) (∀u, w⃗∈V P)

(
J(∃x∈u)φ(x, w⃗)KP =

∨
v∈π1(u)

(
u[v] ∧ Jφ(u, w⃗)KP

))

(2) (T ⊢) (∀u, w⃗∈V P)

(
J(∀x∈u)φ(x, w⃗)KP =

∧
v∈π1(u)

(
u[v] → Jφ(v, w⃗)KP

))
Demo. Ejercicio

Proposición 1 (Corrección de los axiomas de ZF)

(T ⊢) V P |= extensionalidad ∧ pares ∧ comprensiónφ ∧ unión ∧
potencia ∧ infinitud ∧ reemplazoψ ∧ fundación

donde φ, ψ recorren todas las fórmulas del lenguaje de T ∗

Demo. Ejercicio
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Corrección de los axiomas de T ∗ (2/8)

Proposición 2 (Corrección de los axiomas de transitividad)

(1) (T ⊢) V P |= (∀x∈ V̌ ) x ⊆ V̌

(2) (T ⊢) V P |= c ∈ V̌ para cada constante c de T

(3) (T ⊢) V P |= ∀x⃗ (R(x⃗) ⇒ x⃗ ∈ V̌ ) para cada predicado R de T
(distinto de =, ∈)

Demo. Ejercicio

Lema 3.1

Para cada fórmula φ(x, z⃗) del lenguaje de T , tenemos que

(1) (T ⊢) (∀w⃗∈V P)

(
J(∀x∈ V̌ )φ(x, w⃗)KP =

∧
x∈V

Jφ(x̌, w⃗)KP
)

(2) (T ⊢) (∀w⃗∈V P)

(
J(∃x∈ V̌ )φ(x, w⃗)KP =

∨
x∈V

Jφ(x̌, w⃗)KP
)

Demo. Ejercicio
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Corrección de los axiomas de T ∗ (3/8)

Lema 3.2

Para cada fórmula φ(x1, . . . , xn) del lenguaje de T , tenemos que

(T ⊢) ∀x1 · · · ∀xn
(
φ(x1, . . . , xn) ⇔ V P |= φV̌(x̌1, . . . , x̌n)

)
Demo. Por inducción externa sobre la fórmula φ(x1, . . . , xn), usando el Lema 3.1
para tratar el caso de los cuantificadores.

Proposición 3 (Corrección de los axiomas de T relativizados a V̌ )

(T ⊢) V P |= φV̌ para cada axioma φ de T

Demo. Para cada axioma φ de T , tenemos que T ⊢ φ (obvio) y T ⊢ φ ⇔ V P |= φV̌

(por el Lema 3.2), y por lo tanto: T ⊢ V P |= φV̌ .



Introducción Trans.: T 7→ T ∗ Teoremas en T ∗ Ejemplo Conservatividad y completitud

Corrección de los axiomas de T ∗ (4/8)

Recordatorio: La constante G (∈ LT ∗) está interpretada por

Ġ := {(p̌, p) : p ∈ P} (∈ V P)

Proposición 4 (Corrección del axioma de genericidad)

(T ⊢) V P |= G ⊆ P ∧ G ̸= ∅ ∧
(∀p, q ∈P) (p ∈ G ∧ p ≤ q ⇒ q ∈ G) ∧
(∀p, q ∈G) (∃r∈G) (r ≤ p ∧ r ≤ q) ∧
(∀D⊆P ) (D denso ∧ D ∈ V̌ ⇒ D ∩G ̸= ∅)

Demo. Para todo p ∈ P, se observa que:

Jp ∈ GKP =
∨
q∈P

(
Ġ[q̌] ∧ Jp̌ = q̌KP

)
= Ġ[p̌] = {p}⊥⊥

= e(p).

Luego, se demuestra que:

JG ⊆ PKP =
∧
p∈P

(
Ġ[p̌] → Jp̌ ∈ PKP

)
=

∧
p∈P

(
e(p) → 1B

)
= 1B.

JG ̸= ∅KP = J(∃p∈ P) p ∈ GKP =
∨
p∈P

Ġ[p̌] =
∨
p∈P

e(p) = 1B. (...)
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Corrección de los axiomas de T ∗ (5/8)

Demo (continuación).

Dados p, q ∈ P, se distinguen dos casos:

Si (p, q) /∈ (≤P), entonces

Jp̌ ∈ G ∧ p̌ ≤ q̌ ⇒ q̌ ∈ GKP = e(p) ∧ 0B → e(q) = 1B.

Si (p, q) ∈ (≤P), entonces e(p) ⊆ e(q), y luego

Jp̌ ∈ G ∧ p̌ ≤ q̌ ⇒ q̌ ∈ GKP = e(p) ∧ 1B → e(q) = 1B.

Por lo tanto: J(∀p, q ∈ P)(p ∈ G ∧ p ≤ q ⇒ q ∈ G)KP =
∧

p,q∈P
1B = 1B.

Dados p, q ∈ P, se observa que:

e(p) ∧ e(q) = {p}⊥⊥ ∩ {q}⊥⊥ = (↓{p})⊥⊥ ∩ (↓{q})⊥⊥

= (↓{p} ∩ ↓{q})⊥⊥
=

(⋃
r≤p,q

{r}
)⊥⊥

=
(⋂
r≤p,q

{r}⊥
)⊥

=
(⋂
r≤p,q

{r}⊥⊥⊥
)⊥

=
(⋃
r≤p,q

{r}⊥⊥
)⊥⊥

=
∨

r≤p,q

e(r)

y por lo tanto: J(∀p, q ∈G)(∃r∈G)(r ≤ p ∧ r ≤ q)KP

=
∧

p,q∈P

(
Ġ[p̌] ∧ Ġ[q̌] →

∨
r∈P

(
Ġ[ř] ∧ Jř ≤ p̌KP ∧ Jř ≤ q̌KP

))
=

∧
p,q∈P

(
e(p) ∧ e(q) →

∨
r≤p,q

e(r)
)

=
∧

p,q∈P
1B = 1B.
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Corrección de los axiomas de T ∗ (6/8)

Demo (continuación y fin).

Dado un conjunto D cualquiera, se observa que:

JĎ ⊆ PKP = JĎ ⊆ P̌KP =

{
1B si D ⊆ P
0B si no

Si D ⊆ P, entonces JĎ densoKP = J(Ď denso)V̌ KP =

{
1B si D denso

0B si no

(por el Lema 3.2)
Si además D ⊆ P es denso, entonces:

JĎ ∩G ̸= ∅KP = J(∃p∈G) p ∈ ĎKP

=
∨
p∈P

(
Ġ[p̌] ∧ Jp̌ ∈ ĎKP

)
=

∨
p∈D

{p}⊥⊥
= D

⊥⊥
= 1B.

(pues D ⊆ P denso)

Por lo tanto: J(∀D⊆ P)(D denso ∧D ∈ V̌ ⇒ D ∩G ̸= ∅)KP

= J(∀D∈ V̌ )(D ⊆ P ∧D denso ⇒ D ∩G ̸= ∅)KP

=
∧

D∈V

(
JĎ ⊆ PKP ∧ JĎ densoKP → JĎ ∩G ̸= ∅KP

)
=

∧
D⊆P

D denso

JĎ ∩G ̸= ∅KP = 1B.
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Corrección de los axiomas de T ∗ (7/8)

Proposición 5 (Corrección del axioma del nombre)

(T ⊢) V P |= (∀A⊆ V̌ ) (∃N ∈ V̌ )∀x (x ∈ A⇔ (∃p∈G) (x, p) ∈ N)

Demo. Sea A ∈ V P. Para todo u ∈ π1(A), se nota Xu := {x ∈ V : Ju = x̌KP ̸= 0B}.
Dados x ̸= y ∈ Xu, se observa que Ju = x̌KP ∧ Ju = y̌KP ≤ Jx̌ = y̌KP = 0B. Entonces la

función (x 7→ Ju = x̌KP) : Xu → B∗ es inyectiva, y como B∗ es un conjunto, se deduce
que la clase Xu también es un conjunto. Se nota X :=

⋃
u∈π1(A)Xu y se considera el

P-nombre A′ := {(x̌, p) : x ∈ X ∧ p ∈ Jx̌ ∈ AKP} ∈ V P. Se observa que:

JA′ ⊆ AKP =
∧

x∈X

(
A

′
[x̌] → Jx̌ ∈ AKP

)
=

∧
x∈X

(
Jx̌ ∈ AKP → Jx̌ ∈ AKP

)
= 1B

JA ⊆ A′KP =
∧

u∈π1(A)

(
A[u] → Ju ∈ A

′KP
)

=
∧

u∈π1(A)

(
A[u] →

∨
x∈X

(
A

′
[x̌] ∧ Ju = x̌KP

))
=

∧
u∈π1(A)

(
A[u] →

∨
x∈X

(
Jx̌ ∈ AKP ∧ Ju = x̌KP

))
=

∧
u∈π1(A)

(
A[u] →

∨
x∈X

(
Ju ∈ AKP ∧ Ju = x̌KP

))
=

∧
u∈π1(A)

(
A[u] →

∨
x∈X

Ju = x̌KP
)

=
∧

u∈π1(A)

(
A[u] →

∨
x∈V

Ju = x̌KP
)

=
∧

u∈π1(A)

(
A[u] → Ju ∈ V̌ KP

)
= JA ⊆ V̌ KP

y por lo tanto: JA = A′KP = JA ⊆ A′KP ∧ JA′ ⊆ AKP = JA ⊆ V̌ KP. (...)
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Corrección de los axiomas de T ∗ (8/8)

Demo (continuación y fin). Ahora se nota N0 := {(x, p) : x ∈ X ∧ p ∈ Jx̌ ∈ AKP}.
Para todo u ∈ V P, tenemos que:

J(∃p∈G) (u, p) ∈ Ň0KP

=
∨
p∈P

(
Ġ[p̌] ∧ J(u, p̌) ∈ Ň0KP

)
=

∨
p∈P

(
{p}⊥⊥ ∧

∨
z∈N0

J(u, p̌) = žKP
)

=
∨
p∈P

(
{p}⊥⊥ ∧

∨
(x,q)∈N0

(
Ju = x̌KP ∧ Jq̌ = p̌KP

))
=

∨
p∈P

(
{p}⊥⊥ ∧

∨
x∈X t.q.

p∈Jx̌∈AKP

Ju = x̌KP
)

=
∨

x∈X

∨
p∈Jx̌∈AKP

(
{p}⊥⊥ ∧ Ju = x̌KP

)
=

∨
x∈X

(
Jx̌ ∈ AKP ∧ Ju = x̌KP

)
=

∨
v∈π1(A′)

(
A

′
[v] ∧ Ju = vKP

)
= Ju ∈ A

′KP.

Entonces: JA ⊆ V̌ ⇒ (∃N ∈ V̌ ) ∀x (x ∈ A ⇔ (∃p∈G) (x, p) ∈ N)KP

≥ JA ⊆ V̌ ⇒ ∀x (x ∈ A ⇔ (∃p∈G) (x, p) ∈ Ň0)KP

= JA = A′ ⇒ ∀x (x ∈ A ⇔ (∃p∈G) (x, p) ∈ Ň0)KP

= JA = A′ ⇒ ∀x (x ∈ A′ ⇔ (∃p∈G) (x, p) ∈ Ň0)KP

= JA = A
′KP →

∧
u∈V P

(
Ju ∈ A

′KP ↔ J(∃p∈G) (u, p) ∈ Ň0KP
)

= 1B.

Y por lo tanto:

J(∀A⊆ V̌ ) (∃N ∈ V̌ ) ∀x (x ∈ A ⇔ (∃p∈G) (x, p) ∈ N)KP =
∧

A∈V P
1B = 1B.
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Corrección y conservatividad

En las Prop. 1–5, demostramos que T ⊢ V P |= φ para cada
axioma φ de T ∗, y por lo tanto:

Teorema (Corrección)

Si T ∗ ⊢ φ, entonces T ⊢ V P |= φ (para toda sentencia φ ∈ LT ∗ )

Obs.: Este resultado ya implica que T ∗ es consistente relativamente a T .

Teorema (Conservatividad relativamente a V̌ ) (recordatorio)

La teoŕıa T ∗ es una extensión conservativa de T relativamente a V̌ :

T ⊢ φ sii T ∗ ⊢ φV̌ (para toda sentencia φ ∈ LT )

Demo. La implicación directa es el principio de importación. Rećıprocamente, supongamos que

T ∗ ⊢ φV̌ . Entonces T ⊢ V P |= φV̌ (por el teorema de corrección). Pero también tenemos que

T ⊢ φ ⇔ V P |= φV̌ (por el Lema 3.2), y por lo tanto T ⊢ φ.

Corolario: Las teoŕıas T y T ∗ son equiconsistentes
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Corrección y completitud

Vimos que el teorema de conservatividad (relativamente a V̌ ) es una
consecuencia del teorema de corrección, que expresa que:

Si T ∗ ⊢ φ, entonces T ⊢ V P |= φ (para toda sentencia φ ∈ LT ∗ )

Se puede refinar el resultado anterior del siguiente modo:

Teorema (Completitud)

Para toda sentencia φ ∈ LT ∗ : T ∗ ⊢ φ sii T ⊢ V P |= φ

▶ El sistema de axiomas de la teoŕıa T ∗ es bastante expresivo
para capturar todas la sentencias del lenguaje de T ∗ que se
cumplen en el modelo booleano V P adentro de la teoŕıa T

Obs.: Se puede ver la teoŕıa T ∗ como la preimagen de la teoŕıa T
por la traducción (V P |= ·) : LT ∗ → LT :

T ∗ = (V P |= ·)−1(T )
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Demostración del teorema de completitud (1/3)

La construcción del modelo booleano de T ∗ adentro de la teoŕıa T
se puede importar en la teoŕıa T ∗ del modo siguiente:

Se notan

{
B := {X ∈ PV̌(P) : X = X⊥⊥} (∈ V̌ )

V̌ P :=
(
V P)V̌ (⊆ V̌ )

Para cada fórmula φ(x1, . . . , xn) del lenguaje de T ∗, se nota

Jφ(·)KP :
(
V̌ P)n → B

a la funcional de interpretación de la fórmula φ(x1, . . . , xn)
en el modelo booleano V̌ P ⊆ V̌

En la teoŕıa T ∗, se considera la funcional (u 7→ uG) : V̌ P → V
definida por ∈-recursión sobre u ∈ V̌ P por:

uG := {vG : (∃p∈G) (v, p) ∈ u} = I∞G (u)

Ya demostramos el

Teorema: (T ∗ ⊢) ∀x (∃u∈ V̌ P) x = uG
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Demostración del teorema de completitud (2/3)

Además, tenemos que:

Lema

(1) (T ∗ ⊢) (∀u, v ∈V P)
(
uG = vG ⇔ Ju = vKP ∩G ̸= ∅

)
(2) (T ∗ ⊢) (∀u, v ∈V P)

(
uG ∈ vG ⇔ Ju ∈ vKP ∩G ̸= ∅

)
(3) (T ∗ ⊢) (∀u⃗∈V P)

(
R(u⃗G) ⇔ JR(u⃗)KP ∩G ̸= ∅

)
(4) (T ∗ ⊢) (∀u∈V P)

(
uG ∈ V̌ ⇔ Ju ∈ V̌ KP ∩G ̸= ∅

)
Demo. Ejercicio

Y por lo tanto:

Proposición

Para toda fórmula φ(x1, . . . , xn) del lenguaje de T ∗, tenemos que:

(T ∗ ⊢) (∀u1, . . . , un ∈V P)
(
φ(uG

1 , . . . , u
G
n ) ⇔ Jφ(u1, . . . , un)KP ∩G ̸= ∅

)
Demo. Ejercicio
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Demostración del teorema de completitud (3/3)

Teorema (Completitud) (recordatorio)

Para toda sentencia φ ∈ LT ∗ : T ∗ ⊢ φ sii T ⊢ V P |= φ

Demo. Ya demostramos la implicación directa (corrección). Rećıprocamente, supongamos que

T ⊢ V P |= φ, es decir T ⊢ JφKP = 1B. Entonces T ∗ ⊢ (JφKP = 1B)
V̌ (por importación),

es decir T ∗ ⊢ JφKP = 1B, y luego T ∗ ⊢ JφKP ∩G ̸= ∅. Por la Prop. anterior, también

tenemos que T ∗ ⊢ φ ⇔ JφKP ∩G ̸= ∅, y por lo tanto: T ∗ ⊢ φ.

Conclusión: La teoŕıa T ∗ es la preimagen de la teoŕıa de base T
por la traducción (V P |= ·) : LT ∗ → LT :

T ∗ = (V P |= ·)−1(T )
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