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Motivacién (1/2)

@ El forcing esta presentado tradicionalmente como un método de
transformacién de modelos (transitivos):

Input: = un modelo transitivo M | ZF
con un conjunto de forcing (P, <p) € M

= un filtro M-genérico G C P

Output: » la extensién genérica M[G] (generada por M y G)
» la relacién de forcing p IF o(uq,...,uy), tal que:
M[G] E p(uf,...,uf) & (eq)plFp(ur,...,un)

(Pero el método se generaliza a los modelos .# |= ZF cualesquiera)

e Problema: ;Cdmo razonar en M[G]?
o ;Cémo utilizar el cardcter minimal de M[G]?
o jCémo utilizar la relacién de forcing p - o(u1,...,un)?

o jCémo deducir las propiedades de M[G] a partir de las de M?
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Motivacién (2/2)

o ldea: Presentar el forcing como transformacién de teorias:

Input: = una extensién & de ZF

que describe el universo inicial .Z
asi como un conjunto de forcing (P, <p) (en .#)

Output: » otra extensién 7 de ZF

que describe la extensién genérica .#[G] obtenida
a partir de un filtro V-genérico G C PP cualquiera

@ Obs.: El lenguaje de 7* (que incluye el lenguaje de 7) introduce:
— un simbolo de predicado V' (_) que representa el universo inicial
— un simbolo de constante G (ahora parte del output) que representa
un filtro V-genérico G C PP cualquiera (el “filtro genérico genérico”)

Teorema fundamental (Conservatividad en V)

T ko sii T+ oV para toda sentencia  de 7

Corolario: Las teorias .7 y 7 * son equiconsistentes J
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; " ord d ;
Lenguajes de 1°" orden (recordatorio

Definicién (Lenguaje de 1°" orden)

o Un lenguaje (de 1°" orden) estd definido a partir de:

e un conjunto de simbolos de funcién (notacién: f, g, h, etc.)
e un conjunto de simbolos de predicado (notacién: p, ¢, r, etc.)

en que cada simbolo s (funcién/predicado) tiene una aridad fis (€ IN)

@ Dichos simbolos definen los términos (notacién: ¢, u, v, etc.) y
las férmulas (notacidn: ¢, ¥, x, etc.) del lenguaje considerado:
Términos tbu = x | f(t,...,tk) (8f = k)
Formulas 2 'l;Z} = tl =t ‘ p(tlv OO ,tk) (fp = k)
| = | eV | @AY
|¢¢w| Ve | Jze
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Teorias de 1*" ord datori
€orias ae oraen recordatorio

Definicién (Teoria de 1°" orden)
@ Una teorfa 7 (de 1°" orden) estd definida a partir de:

o su lenguaje .Z (de 1 orden)
e sus axiomas (= sentencias de .%)

@ Una sentencia ¢ de .Z es un teorema de .7 cuando es derivable
(en NK o LK) a partir de los axiomas de 7.

Notacién: 7+ ¢ ("7 demuestra ¢") )

@ Una teoria .7 sobre un lenguaje £ es consistente cuando
no existe ninglin o € L talque ko y I+ -p

@ De modo equivalente, 7 es consistente cuando existe
al menos una sentencia p € £ tal que J /¢
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Subteorias y extensiones (recordatorio)

Dadas teorias .7 (sobre .Z) y .7’ (sobre .£"):

Definicién (Subteorias, extensiones)

& es una subteoria de 7' (0 .7’ es una extensién de .77) cuando:
(1) £ C % (inclusién de lenguajes)

(2) I+ ¢ implica J'F ¢ paratoda sentencia p € .Z
Notacién: 7 C .9’ (o J' 2 9)

Obs.: De modo equivalente, se puede reemplazar (2) por:
(2") 7'+ ¢ para todo axioma ¢ de J

Definicién (Extensiones conservativas)

T’ es una extensién conservativa de 7 cuando:
(1) £ C & (inclusién de lenguajes)
(2) k¢ sii 'k ¢ paratoda sentencia p € .Z
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Extensiones de Henkin (recordatorio)

Definicién (Extensién de Henkin)

Sea .7 una teorfa, y p(z) una férmula tal que .7 F Jz p(z) )

La extensién de Henkin de 7 con respecto al teorema 3z ¢(z)
es la teoria de 1°" orden:

@ cuyo lenguaje es el lenguaje de .7 enriquecido con
un simbolo de constante ¢ fresco

@ cuyos axiomas son los de .7, mds el axioma ¢(c)

(*) No se necesita que x sea lnico
o Ejemplo: La extension de Henkin de ZF con respecto al teorema

“Existe un cuerpo totalmente ordenado completo”

es ZF extendido con un nuevo simbolo de constante R y con el
axioma: “RR es un cuerpo totalmente ordenado completo”

Proposicion: Toda extensién de Henkin es conservativa J

Demo. Ejercicio
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Extensiones definicionales (1/4)

@ Otro ejemplo importante de extensién conservativa:

Definicién (Extensién definicional)

Sea .7 una teoria (sobre un lenguaje .#). Una extensién ' O
(sobre un lenguaje ") es definicional cuando existe una traduccidn

(p(@) = ¢*(7) : £ =2

que asocia a cada férmula ¢(Z) € £’ una férmula ¢*(Z) € £
con las mismas variables libres Z, de tal modo que:

(1) T F VZ(¢(Z) & ¢*(2)) para cada férmula ¢(&) € £/
(2) Si 'k ¢ entonces T ko para cada sentencia ¢ € .Z
(i.e. T’ es una extensién conservativa de 7) )
e De modo equivalente, se puede reemplazar (2) por:
(2.1) Si I’k ¢ entonces T F o* para cada sentencia ¢ € %’
(2.2) T F VE(p(T) & ¢*(Z)) para cada férmula ¢(Z) € .

Ejercicio: Probar la equivalencia entre ambas definiciones
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Extensiones definicionales (2/4)

@ Se verifica ficilmente (ejercicio) que la traduccidén ¢(Z) — ¢*(Z)
cumple la siguientes equivalencias en la teoria .7:

(me(@)" & —¢*(D)
(p(@) Vo(Z) < ¢ (@) VY (2)
(Fzo (20, 7)) & Tz (350 ) (etc.)

» Se dice que el mapa ¢(Z) — ¢*(Z) es una traduccién ldgica

@ De hecho, siempre se puede disefiar (ejercicio) la traduccién Iégica
(p(Z) = ¢*(%)) : L' — £ de tal modo que

e*(Z) = @@ sip@ el
(—p(@)" = —¢*(@)
(p(@) V(@) = ") vy (D)
(Fzo (w0, 7)) = 3z ™ (w0, T) (etc.)
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Extensiones definicionales (3/4)

@ Los dos ejemplos elementales de extensién definicional
son los siguientes:

Proposicién (Definicién de predicado)

Sea .7 una teorfa y t(Z) una férmula del lenguaje de 7.

La extensién de .7 con un simbolo de predicado p (fp = |#|) definido
por el axioma VZ (p(Z) < (&) es una extensién definicional de 7

Demo. Ejercicio

Proposicién (Definicién de funcién)

Sea  una teoria y (Z,y) una férmula del lenguaje de 7 tal que
T E VZ 3y (&, y).

La extensién de .7 con un simbolo de funcién f (#f = |¥|) definido
por el axioma VZ (Z, f(Z)) es una extensién definicional de .7

Demo. Ejercicio
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Extensiones definicionales (4/4)

@ De hecho, cualquier extensién definicional se puede descomponer
como una sucesidn (finita o transfinita) de extensiones definicionales
elementales (i.e. por una definicién de predicado o de funcién):

Teorema (Caracterizacién de las extensiones definicionales) (con AC)

Sea .7 una teoria de 1°" orden.

Una teorfa .7/ es una extensién definicional de 7 si y sélo si existe un
ordinal 7y y una sucesién creciente de teorias (.7, )a<~ tales que:

1) =Ty =7

(2) Para todo a < v, la teorfa J41 es una extensién definicional elemental
de 7, (i.e. por una definicién de predicado o de funcién)

(3) Para todo ordinal limite A <~: 7 = U, Ja

Demo. Ejercicio
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Extensiones estandar de ZF (1/2)

Definicién (Extensiones estdndar de ZF)

Una extensién .7 D ZF es estdndar cuando los axiomas de comprensién
y de reemplazo se cumplen en 7 para todas las férmulas del lenguaje
de J (y no sélo para las férmulas del lenguaje de ZF). Las extensiones
estandar de ZF también se llaman teorias de conjuntos estandar

@ Es claro que toda extensién puramente axiomatica de ZF (i.e. sin
extender el lenguaje de ZF) es estandar. Ejemplos tipicos:

ZFC (= ZF 4+ AQC), ZFC+ V=L, ZFC 4+ H(G)C
@ El ejemplo tipico de extensién no estandar es la Internal Set Theory

(IST) de Nelson ('77), que introduce un simbolo de predicado st(x)
prohibido en los axiomas de comprensién y de reemplazo



Introduccién Trans.: T +— T* Teoremas en T * Ejemplo Conservatividad y completitud
0000000000080  0OOOOOOOO00 000000000000000000000000 0000 00000000000000000000000000

Extensiones estandar de ZF (2/2)

Proposicién (Preservacién del caracter estandar)

Toda extensién de Henkin o definicional de una extension estdndar de ZF
es una extension estandar de ZF

Demo. Sean J una extensién estdndar de ZF, y ' una teoria que es una extensién de Henkin

de 7 o una extensién definicional de 7. Sélo tratamos el caso de la comprension aquf; el caso del
reemplazo se trata de modo dnélogo. Dada una férmula (z, Z) cualquiera del lenguaje de T, se
trata de mostrar que el axioma de comprensién C, :=VZVaIb Ve (r €b <&z € a A p(z, 2))

asociado a p(z, Z) es derivable en 7. Para ello, se distinguen dos casos:

@ 7’ es una extensién de Henkin que introduce un simbolo de constante c.

Sea ¢o(x, y, Z) la férmula del lenguaje de 7 obtenida reemplazando la constante ¢ por
una variable y fresca, de tal modo que p(z, Z) = po(z, ¢, Z). Como J es una extensién
estdndar de ZF, la férmula C, :=Vy VZVa3bVz (z € b x € a A po(x,y, Z)) es
derivable en 7, y luego en J" por extensién. Pero como J’ + C,,, = C,, (instanciando
la variable y por la constante c), se concluye que ' I C.,.

@ 7’ es una extensién definicional, cuyo lenguaje se reduce al lenguaje de .7 mediante una
traduccién Iégica (¢ — ™) : Lo/ — L. Como J es una extensién estandar de ZF,
la férmula Co» :=VZVa3b Ve (z € b e x € a A p*(x,Z)) es derivable en 7, y luego
en I’ por extensién. Pero como I’ - Vz VZ (¢(z, Z) < ¢*(z, Z)), se deduce que
T'F Cp < Cux, y por lo tanto 7' + C,. O

v
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La teoria de base 7

La transformacién de forcing se aplica a una teoria de base .7

Definicién (Teorfa de base para el forcing)

Una teoria de base es una extensidn estandar .7 D ZF tal que:

(1) El lenguaje de 7

e no contiene ninglin simbolo de funcién de aridad > 1
(pero si puede tener simbolos de constante y/o de predicado ademds de €)

o distingue dos simbolos de constante P, <p tales que:

(2) J + (P, <p) es un conjunto ordenado no vacio

@ En la prictica, la teoria de base .7 estd construida a partir de ZF(C)
(o a partir de una extensién bien conocida de ZF), skolemizando el teorema
que expresa la existencia del conjunto de forcing deseado:

7 = ZF (+ DC/AC/H(G)C/V =L/ --)
+ (axioma que define IP)
+ (axioma que define <p)
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Ejemplos de teorias de base

o Para forzar —HC:

g = ZFC + P = Fin(Ng x w,2)
+ (<) = {(p,9) €P*:p2 4} J

En la extensién genérica: 7* + —HC

@ Para forzar 280 = Ny5:

7 = ZFC + HGC + P = Fin(N42><w,2)
+ (<p) = {(p,g) €P?>:p2Dq} J

En la extensién genérica: 7" = 280 =Ny,

@ Para forzar un buen orden sobre P (w):

g = ZF + DC + P = Uaen, Iny(a, B(w))
+ (<p) = {(p)eP?:p2q} J

En la extension genérica:  .7* F 3h:N; — P(w) biyectiva
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La extensién genérica 7 *

La extension genérica .7 * es la teoria construida de modo algoritmico
a partir de la teoria de base .7 del siguiente modo:

o El lenguaje de .77* es el lenguaje de .7 enriquecido con:

o Un simbolo de predicado unario V(_), también escrito _ € V'

(que representa el universo inicial como una clase adentro del universo expandido)

o Un simbolo de constante G (que representa un filtro V-genérico C P)

@ Los axiomas de .7* se dividen entre 5 grupos:

1. Los axiomas de ZF (extendidos al lenguaje de .7*)
Los axiomas de transitividad

Los axiomas de .7 relativizados a V'

El axioma de genericidad

Ok Wb

El axioma del nombre

Teorema fundamental: ¢ si J*+ oV (p€Z7)

Corolario: Las teorias .7 y .7* son equiconsistentes
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1. Los axiomas de ZF (extendidos al lenguaje de .7*)

1. Axiomas de ZF (extendidos al lenguaje de 7*)

J* k extensionalidad, pares, unidn, potencia, infinitud, fundacién
T* F comprensién,,, reemplazo,, para cada férmula ¢, € Lo~

@ Por construccién, 7* es una extensién estandar de ZF
@ Los simbolos extra V(_) y G se pueden usar en los axiomas de
comprensién y de reemplazo. Por ejemplo:
ANV = {zcA:xz eV}
(La interseccién de un conjunto A con la clase V es un conjunto)

o Notacién: zCV = Wy(ycaz=ycV)

Obs.: Como siempre, usaremos simbolos de funcién informales (“notaciones”) en la
teoria de base .7 asi como en la extensién genérica 7 *. Dichos simbolos de funcién
no pertenencen al lenguaje oficial de .7 o de J*, sino al lenguaje “vernaculo” usado
para trabajar en 7 o en .7* (i.e. extensién definicional)
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2. Los axiomas de transitividad

2. Axiomas de transitividad

T* F Va(ze V= - V) (la clase V es transitiva)
T* F ce 174 para cada simbolo de constante ¢ € £+,
inclusive los dos simbolos Py <p

T* = V¥ (R(f) = Te V) para cada simbolo de predicado R € L4
distinto de “=" y de “€”

@ Los axiomas de transitividad implican que:

o La clase V es transitiva

o La clase V contiene todas las constantes de la teoria de base .7,
inclusive Py <p (por otro lado, tenemos que G ¢ V' en general)

o La clase V es no vacia, pues P € V

o También se afiade el axioma Vi (R(Z) = Z € V) (ie. RC V™)
para cada simbolo de predicado R € L~ (distinto de “="y de “€")
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3. Los axiomas de .7 relativizados a V/

@ Por el grupo de axiomas 1, el universo expandido (descrito por .7*)
esta regido por los axiomas de ZF

(Pero los otros axiomas de .7 no tienen que cumplirse en T*: F Z T*)

@ El grupo de axiomas 3 expresa que la clase transitiva V' esta regida
por los axiomas de la teoria de base 7:

3. Axiomas de  relativizados a V

T* F QDV para cada axioma ¢ de la teoria de base 7

@ A partir de los grupos 2 y 3, se deduce el:
Principio de importacion: Si Tk, entonces T*t Y J

o Se dice que la clase V es un modelo transitivo de .7 adentro de 7*
(en particular, V cumple todos los teoremas de ZF C .7)

@ Obs.: Probaremos mis adelante que J F¢ sii J°F gpv
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4. El axioma de genericidad

4. Axioma de genericidad

T* F G es un filtro V-genérico de P

@ (G es un filtro de P:

(1) GCP A G#2 (subconjunto no vacio de P)
(2) (Vp,geP)(peGAp<qg=q€Qq) (clausura superior)
3) (Vp,qeG)(Breq@)(r<pAr<ygq) (compatibilidad interna)

Intuicion: Los elementos de G son compatibles de a dos, en el sentido del
orden definicional (Scott): pCq := p>g¢q

e G es V-genérico:
(4) (YDCP)(Ddenso A DEV = DNG # @)

Recordatorio: D denso = (VpeP)(3ge D) (g <p)

Topologia implicita: abierto = subconjunto de P cerrado inferiormente

00000000000000000000000000
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5. El axioma del nombre

Nos interesamos aqui en los conjuntos A C V

(conjuntos potencialmente nuevos con contenido antiguo)
@ Por ejemplo:
o x CV paratodo z € V (por transitividad)

o GCV (aunque G ¢ V en general)

@ ;Cdémo describir los conjuntos A C V mediante elementos de V?

Definicién (P-nombre para un conjunto A C V)

Un P-nombre para un conjunto A C V es un conjunto N € V tal que:
Ve(x € A & (Ipeq) (z,p) € N)

Obs.: El P-nombre N (€ V) caracteriza A (C V), pero no es (nico en general

5. Axioma del nombre

T* F (VACV)(ANeV)Vz(z € A & (IpeqG)(z,p) € N)

(Cada conjunto A C V tiene un P-nombre N € V)
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Los axiomas de .7* (resumen)

1. Axiomas de ZF (extendidos al lenguaje de 77*)
o Extensionalidad, pares, unién, potencia, infinitud y fundacién
o Comprensién y reemplazo para todas las férmulas de 7~
2. Axiomas de transitividad
o VzeV)xzCV
eceV para cada constante ¢c € Lo
o VZ(R(Z)=Ze€V) para cada predicado R € L5 — {=, €}
3. Axiomas de .7 relativizados a V'

o v para cada axioma ¢ de la teoria

4. Axioma de genericidad
o GCPANG#@ A
(Vp,qeP)pe GAp<qg=q€qG) A
(Vp,q€G)(FreG)(r<pAr<gq) A
(VDCP)(D densoAD €V = DNG # @)

5. Axioma del nombre
o (WVACV)@NeV)Vz(z €A & (Ipeq)(x,p) € N)
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Observaciones

o El lenguaje de .77 agrega 2 simbolos al lenguaje de .7, luego:

e Si . tiene un vocabulario finito (resp. numerable),
entonces .7 * tiene un vocabulario finito (resp. numerable)

e Si . tiene un lenguaje numerable (resp. de cardinal k),
entonces .7 " tiene un lenguaje numerable (resp. de cardinal k)

o Ademas:

Proposicion

Si el conjunto de axiomas de .7 es recursivo (resp. semirrecursivo)*),
entonces el conjunto de axiomas de .77* es recursivo (resp. semirrecursivo)

(%) Semi recursivo = recursivamente enumerable

@ Veremos mas adelante que:

o 7 consistente < 7 consistente, pero:

o 7 completa # 7 completa

(Razén: los axiomas de 7™ no especifican qué elementos de P pertenecen a G)
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Filtros genéricos triviales

A partir de ahora, se derivan teoremas generales en J*

e Vimos que ¢ €V para cada constante ¢ € %5 (inclusive Py <p).
i Qué tal con el filtro V-genérico G C P?

Proposicién (Caracterizacién de los filtros genéricos en V)

(7*F) GeV < (3peP)(patomo A G =1,{po})

Recordatorio: pg dtomo = (Vq1,q2<po)3reP)(r < ¢ Ar < q2)

Demo. Igual que en el caso de los modelos transitivos (ejercicio). O

o Los filtros genéricos de la forma G = 1)/{po} (con po € P dtomo)
son dichos triviales. Por contrarreciproco:

Corolario: (7*F) (P,<p) sin dtomos = G ¢V J

» Razén por que en la prictica, siempre se elige (P, <p) sin dtomos
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La nocion de nombre

o ldea: Representar los conjuntos A C V (“frontera de V")
por elementos de V:

N es un P-nombre para A
& NeV AVe(reAs (Ipeq)(x,p) €N)
& NecV A Ig(N)=A
escribiendo:  Ig(N) = {z e JUN: (Fpeq) (z,p) € N}
(El P-nombre N € V caracteriza el conjunto A C V, pero no es tinico)
@ Se observa que:
o Todo conjunto A € V tiene un P-nombre: Ny := A x P (€ V)

e Si A, B C V tienen P-nombres N4, Ng € V, entonces los conjuntos
AUB, AnNB, A— B C V tienen P-nombres en V' (ejercicio)

o Inclusive G (C V) tiene un P-nombre: Ng := {(p,p) : p € P} (¢ V)

Axioma del nombre: (VACV)(3NecV) A= Ig(N) |




Introduccién Trans.: F — T* Teoremas en 7 * Ejemplo Conservatividad y completitud
0000000000000 00000000000 000M00000000000000000000 OO0 00000000000000000000000000

El lema de acotacidén y sus consecuencias

Lema de acotacién: (J*F) (VACV)(3A' €eV)AC A J

Demo. Dado Ny € V tal que Ig(Na) = A, setoma A’ :=JUNa € V. O

Corolario:

(1) (*F) OnCV, vy por lo tanto:
(2) (Z*F) V esuna clase propia, On = On", CnC Cn"
(3) (7*F) GeV = V=V
y
Demo. (1) Por el absurdo, se supone que On Z V,yse considera o := min(On — V).
Por minimalidad, tenemos que « QqV, y luego exi§te A€V tg aC A (lema de acotacién).
Pero también es claro que a = OnY, y luego OnY = o C A € V: contradiccién.
(2) Se sigue de (1), observando que “On(a)"” es Agy “Cn(a)” es II;.
(3) Supongamos que G EV\V/. Se demuestra que x € V para todo x € V, por €-induccién.
Dado z € V tal que y € V paratodo y € (HI), es decir: tal que x C V/, se considera un
P-nombre n € V para x, y se observa que:
z = Ig(n) = {yeUUn: (3peq)(y,p) En} € V. O
ev férmula Ay, con GEV
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Nombres recursivos (1/2)

@ Para cada u € V, se escribe mas generalmente

I (u) == {I¥(v) : (Fpeq)(v,p) € u}

(Definicién por €-recursién sobre u)

@ Dado un conjunto z cualquiera (€ V), se dice que un conjunto
u € V es un P-nombre recursivo para x cuando z = I (u)

Teorema (Existencia de nombres recursivo)

(7*F) VY (FueV) z=IF(u)

Demo. Sea (Va)acon la jerarquia acumulativa de V:  V,, := U‘ISV(‘V/}X) = U(‘IS(VQ) nv).
B<a B<a

Dado un conjunto x (€ V) tal que (Vy € z)(Jv € V) y = I (v) (HI), se asocia a cada

elemento y € x el minimo ordinal o, € On tal que (Jv € Vay) y = I (v), y se nota

A:=Uye, Ay, donde A, :={v € Vay cy=1IZ(v)} paratodoy € x.

Como A C V (por construccién), existe u € V tal que A = Ig(u), y por lo tanto:

IZ(uw) ={IZ(v): (FpeG) (v,p) eut={IF(v):veE A ={y:y €Ex} == O
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Nombres recursivos (2/2)

@ Vimos que el axioma del nombre implica que todo conjunto X C V
estd incluido en alglin conjunto X’ € V:

(7*F) (VXCV)BX'eV) X C X' (Lema de acotacién)

@ Mas generalmente, el teorema de existencia de nombres recursivos
implica que para cada conjunto X (en el universo expandido), se puede
hallar Y € V' (en el universo inicial) al menos tan “grande” como X:

Lema de la sobreyeccidon

(7*F) VX 3y eV) (3f:Y — X) f sobreyectiva

Demo. Sin pérdida de generalidad, se puede suponer que X # & (si no: tomar Y := X = 9).
Sea Y € V un P-nombre recursivo para X, i.e. tal que I (Y) = X. Fijado un punto zg € X,
se considera la funcién f : Y — X definida por

_ [IZ(v) siy=(v,p)paraalginp € G
fy) = {xﬁ si no (yey)

observando que:  f(Y) D {IZ(v): (GpE€G) (v,p) €Y} =1IZ(Y) = X. O
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Axioma de eleccién en J y en T*

@ Una consecuencia importante del lema anterior es la siguiente:

Teorema: (J*+) (AC)V = AC J

Demo. Supongamos que V = AC. Queremos mostrar que todo conjunto X (€ V') es bien
ordenable. Para ello, se considera un conjunto Y € V' equipado con una sobreyeccién f : Y — X.
Como V = AC, existe un ordinal a y un elemento g € V tal que V |= g : a — Y biyectiva, es
decir (en V:) una funcién g : « — Y biyectiva (por absolutez). Luego se observa que la funcién
h : X — a definida por h(z) = min{B < o : f(g(B)) = x} es inyectiva, lo que implica que el
conjunto X es bien ordenable. O

@ Y por lo tanto: Si 7+ AC, entonces J*F AC )

@ Pero en general, ni el axioma de eleccién numerable (AC,,) ni el axioma
de eleccién dependiente (DC) son preservados por extensidén genérica:

T AC,, 2 T* F AC, (en general)
J +DC - T+ DC (en general)



Introduccién Trans.: F — T* Teoremas en 7 * Ejemplo Conservatividad y completitud
0000000000000 00000000000 000000080000000000000000 0000 00000000000000000000000000

Minimalidad de V' con respecto a V'y G

Teorema (Minimalidad de V' con respecto a V' y G)

Sea M una clase transitiva de 7%, tal que (7*+) M = ZF™.
Entonces: (7*F) VCM AGEM = M=V

(%) Es decir tal que .7* F o™ para cada axioma/teorema de ZF

Demo. Primero se observa que en ZF, se puede definir por €-recursién una funcional
z +— PG (x) (que depende de un solo pardmetro G cualquiera), tal que:

(ZFF) Va(Pa(@) = {Pc(y): (3peG) (y,p) € z}).

Dado un modelo transitivo M |= ZF (en Z*) tal que V.C My G € M, se nota (z > &2 (z))
: M — M ala funcional z +— ®¢ relativizada a M, observando que

(77 F) (VzeM)[2F (z) = {3 (v): (Bpe @) (y,p) € ©)M}

{2 (v) : Greq) (y,p) € x}]

Luego se demuestra (en 7 *) por €-induccién sobre u € V' (C M por hipétesis) que
IF (u) (={IF (v) : (Fp€G) (v,p) €u}) = Y (u)

para todo « € V, y por lo tanto: Ig(u) € M. Como tenemos que Vz (Fu€ V) z = IF (u)
(teorema de existencia de los nombres recursivos), se concluye que Vz (z € M).
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El dlgebra booleana V-completa B

e Notaciones (recordatorio):

pTq = (FreP)(r<pAr<yq)
plqg = —(FreP)(r<pAr<q)
X+ = {pEIP’:(VqEX)qu}

B = {XeP"(P): X=X} (eV)

e: P=B = p—{p}*+t (eV)

@ En la teoria 7%, se deriva que:
(1) (B, C) es un algebra booleana V-completa

(2) La funcién e: (P, <) — (B, C) es mondtona, y mas aln un encaje
cuando (P, <) es separativo: (Vp,geP)(p £ q= (3p'<p)p’ L q)

@ En lo siguiente, usaremos frecuentemente el

Lema: (7*F) (VXeP'PH(XNG#£2 < XLinGg+o) |

Demo. Ejercicio
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El ultrafiltro V-genérico G C B

o Sedefine: G == {XeB: XNG+#2} (CB)

Proposicién (Ultrafiltro V-genérico)

(7*F) G es un ultrafiltro V-genérico de B:

-XelG &
XAYelG &
XVYeG &

(/\ieIXi) el &
(Vier Xs) € G =

para todos X,Y € By para toda familia (X;);c; € B'NV

(escribiendo =X := X1, X AY:=XNY, XVY:=(XUY)tt, etc)

X¢Gq
XeG AYeQR
XeGVYeG

X, eG para todo ¢ € I
X, € G para algin i € 1

Demo. Ejercicio

o Ademis:  (T°F) (VXeP'(P)(XNG#0 & X+ ed)|
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La nocién de B-nombre (1/2)

o El axioma del nombre permite representar cada conjunto A C V' por
un P-nombre N € V, tal que Ig(N) = A, escribiendo

Ig(N) == {z € UUN : (Ipeq) (z,p) € N}
@ Obs. El la practica, siempre se puede tomar N € V tal que N C V x P

o El dlgebra booleana B combinada con en ultrafiltro GCB permite
dar una representacion alternativa de los conjuntos A C V' por
funciones particulares, llamadas B-nombres. Formalmente:

Definicién (B-nombre)

Un B-nombre es una funcién f € V que asocia a cada elemento
x € dom(f) un valor de verdad f(z) € B:

f B-nombre sii feEV A ffuncién A img(f) CB

@ Intuicién: B-nombre = funcién “indicatriz’ f: X — B, con X, f eV
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La nocién de B-nombre (2/2)

o Se interpreta cada B-nombre f € V por el conjunto
Jo(f) = {z € dom(f): f(x) € G} (C dom(f) C V)

o El axioma del nombre implica que todo conjunto A C V también
tiene un B-nombre:

Proposicién (Existencia de los B-nombres)

(7*F) (YACV)@3feV)(f B-nombre A Jg(f) = A)

Demo. Sea N un P-nombre para A, es decir un conjunto N € V tal que Ic(N) = A.
Se considera la funcién f € V' definida por:

dom(f) = m(N) = {z e UUN : Jy (z,y) € N}
y f(z) = {peP:(z,p) € N} 1+ (z € dom(f))

y se verifica que para todo & € V/, tenemos que:
z € Ja(f) & zedom(f) A f(z)€q
& zedom(f) A {peP: (z,p) E N} NG #D
& (3peq) (z,p) €N & z €A O
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Acotacién del cardinal de 3(X) cuando X € V'

o Para cada conjunto X €V, se nota Jg x K BXNV) — P(X)
a la funcién definida para todo f € (BX NV) por:

Jax(f) = Ja(f) = {zedom(f): f(x) € G}

Proposicion
(7*F) Lafuncién Jg x : (BXNV) — P(X) es sobreyectiva

Demo. Para cada subconjunto Y € J3(X), se elige un B-nombre f € V tal que Ja(f) =Y,
y se considera la funcién f’ € BX N V definida por:

Se concluye, observando que Jg,x (f') = Ja(f) =Y. O

Corolario (Acotacién del cardinal de B(X) cuando X € V) (con AC)
Si 7+ AC, entonces 7* F (VX €eV) |P(X) < [BXNV]|
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B-nombres funcionales (1/2)

@ Sean X,Y € V. Para toda funcién pavrcial f:X =Y, se observa
que feP(X xY), con (X xY)eV

@ Por lo tanto, cada funcién parcial f : X — Y puede ser representada
por un B-nombre h € BX*Y NV . Mds atn:

Proposicién (Existencia de un B-nombre funcional)

(7" F) Para toda funcién parcial f: X =Y (con X,Y € V),
existe un B-nombre h € (BX*Y NV) tal que:

(1) f=Ja(h)

(2) VzeX)Vy, v €Y)y#y = h(z,y) Ah(z,y’) =08)
(i.e. la familia (h(z,y))yey € (BY¥ N V) es una anticadena para todo = € X)

» Se dice que la funcién h € (BX*Y N V) tal que (1) y (2)
es un B-nombre funcional para la funcién f: X — Y
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B-nombres funcionales (2/2)

Demo. Dada una funcién parcial f : X — Y, se considera un B-nombre ho € (BX*Y NnV)
tal que Jg (ho) = f. Como la relacién f C X X Y es funcional, tenemos que

(VeeX)(Vy #y €Y)~((z,y) € fA(2,y) € f)
entonces: Vze X)(Vy #y' €Y)=(ho(z,y) € G A ho(z,y’) € C:')
y por lo tanto: by = (/\ /\ ﬁ(ho(ﬂi,y)Aho(w»y/))) € G
zE€X y#y €Y

por las propiedades de conmutacién del ultrafiltro V-genérico G C B. Se considera ahora la
funcién h : X X Y — B definida por h(z,y) := ho(z,y) A by paratodo (z,y) € X X Y.
Es claro que h € IR AT/ por construccién. Ademds:

(1) Jg(h) = f, pues para todo (z,y) € X X Y, tenemos que:

h(z,y) € G & (ho(z,y)Abo) €G & ho(z,y) €G & (z,y)€f
ya que f = Jg(ho).
(2) El B-nombre h es funcional, pues para todos € X ey # y’ € Y, tenemos que:

h(z,y) Ah(z,y") = ho(z,y) Aho(z,y") Abo
(ho(z,y) A ho(z,y")) A =(ho(z,y) A ho(z,y")) = Og. O

IN
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Condiciones sobre las anticadenas (1/2)

Definicién (Condicién de cadena numerable)

Se dice que (P, <) cumple la condicién de cadena numerable (c.c.c.)
cuando toda anticadena de P tiene un cardinal a lo sumo numerable:

(P, <) cumple la c.cc. & (VACP)(A anticadena = |A| < Np)

@ Mas generalmente:

Definicién (Condicién de x-cadena)

Dado un cardinal infinito %, se dice que (P, <) cumple la condicién de
k-cadena (k-c.c.) cuando toda anticadena de P tiene un cardinal < &:

(P, <) cumple la k-c.c. &k cardinal infinito A
(VACP)(A anticadena = |A| < k)

e Caso particular (k =N;): c.c.c. = Ny-c.c.

@ En lo siguiente, siempre se considera la condicién de k-cadena
(que no es absoluta) en el sentido del universo inicial
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Condiciones sobre las anticadenas (2/2)

@ Recordatorio:
A CP anticadena := (Vp1,p2 € A)(p1 # p2 = p1 L p2)
A C B anticadena = (VX1,X2€ A)(X1 # X2 = X1 A X2 = 03)
@ La condicién de k-cadena (k-c.c.) sélo trata de las anticadenas de P.
Sin embargo:
Proposicion
Si 7 AC, entonces:

T FVk [(P,<) cumple la k-cc. =
(VACB)(A anticadena = |A| < k)]

Demo. Dado un cardinal infinito  tal que (P, <) cumple la k-c.c., se considera una anticadena

A CB,ysenota A’ := A\ {0g} C B. Por AC, existe h : A’ — P tal que h(X) € X para todo
X € A’. Como A’ C B es una anticadena, la funcién h : A’ — P es inyectiva, y su imagen h(A’)
es una anticadena de P. Por lo tanto: |A| < |A'|+1 = |h(A)|+1 < k. O

V,
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Acotacidon del cardinal de B

Si  F AC, entonces:

T F (VX €B)(JACP)(A anticadena A X = A+L)

Demo. Sea A una anticadena de P, incluida y maximal en X (por AC). Se verifica facilmente
que At = X (usando la maximalidad de A C X), y luego A++ = x+1+ = x. DJ

@ Notacién: <% := sup{p* : A< rAXE Cn} (5,0 € Cn)
Proposicion
Si 7 F AC, entonces:
T+ V& ((P,<) cumple la s-c.c. = [B| < |P[<¥)

Demo. Sea P . (P) el conjunto de los subconjuntos de P de cardinal < . Como (P, <) cumple
la k-c.c., todas las anticadenas de P estdn en P, (P), entonces la funcién h : P . (P) — B
definida por h(X) = X+~ para todo X € P (P) es sobreyectiva. Por lo tanto:

Bl < IB<(®)| < P57 U
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Preservacion de los cardinales (1/4)

e Recordatorio: Todos los cardinales de V estédn en On = On” C V.
Ademds, como las férmulas “u es un cardinal” y “u es un cardinal
regular” son II;, tenemos que:

T* F (Yu€ On)(p cardinal = (u cardinal)’) A
(V€ On)(u card. regular = (u card. regular)V')
o bien p € Cn: p se mantiene en V/

o Para cada i€ Cn":
K " {o bien ¢ Cn: p se colapasa en V

Teorema (Preservacién de los cardinales bajo la k-c.c.)

Si 7 FAC (yluego J*F AC), entonces:

T* + Ve [(k card. regular infinito A (P, <) cumple la m—c.c.)v =
(V> k) ((u cardinal)V <y cardinal) A

v

(Vu> k) ((u card. regular)V < i card. regular) |
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Preservacion de los cardinales (2/4)

Demo. Sea k un cardinal regular infinito en M, tal que (P, <) cumple la k-c.c. en M.
(1) Preservacién de los cardinales regulares > k.

Sea un ordinal ;> k tal que j es un cardinal regular en V. Queremos mostrar que 4 es un
ordinal regular (y luego un cardinal regular) en V. Para ello, se considera un ordinal A < p, asf
como una funcién f : A — p en V. Queremos probar que la imagen de f estd acotada por algtin
ordinal By < p. Para ello, se considera un B-nombre funcional para f, es decir: una funcién

h € B NV tal que f = Jg(h) y tal que la familia (h(@, 8))s<, (€ V) es una anticadena
para todo o < A. A partir de ahora, se trabaja en V con el nombre h:

Para cada o < A, se escribe B, := {8 < p : h(a,3) # Og}. Como la familia
(h(c, B))g<p € B* es una anticadena, la funcién (8 +— h(c,B)) : Bo — B es
inyectiva, y su imagen A, := {h(e,B) : B € Bo} C B es una anticadena. Como
(P, <) cumple la k-c.c., sabemos que [Ay| < K, y luego |Bo| = [Aa| < & (< p).
Como A < py como p es un cardinal, tenemos que |A| < p. Ademds, tenemos que
[Ba| < p para todo o < A, entonces |, . Bal < p, pues p es regular. Por lo
tanto, existe 8o < p tal que h(«a, 3) = Op para todos « < Ay B € |Bo, pl.

Acabamos de construir un ordinal By < p tal que par todos o < Ay B € |Bo, u[, tenemos que
h(a,B) =08 ¢ G, y por lo tanto f(a) # 3. Entonces la imagen de f : A — u estd acotada

por el ordinal By < p. Acabamos de mostrar que para todo A < p, todas las funciones de A

en p estdn acotadas. Por lo tanto y es un ordinal regular, y luego un cardinal regular en V.. (...)
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Preservacion de los cardinales (3/4)

Demo. del teorema (continuacién y fin). (2) Preservacion de los cardinales > k.

Queremos mostrar que para todo p > Kk, p € onV implica 4 € Cn. Para ello, se razona por el
absurdo, y se considera el menor ordinal p > & tal que p € cn’'y ¢ Cn. Por (1), es claro
que p es un cardinal singular en V, y en particular > k. Por lo tanto, existe una familia
(Ka)a<x €V tal que

@ recnV y A<

@ un € CnVy Ba < p para todo o < A

Q@ [ =sup,y Ha-
Sin pérdida de generalidad, se puede suponer que p > K para todo oo < A. (Si no: cambiar o
por ul, := max(lq, k) < f para todo o < X, observando que Sup, . g, = p.)

Como p es el minimo ordinal > « tal que p € cnV pero u ¢ Cn, se deduce que uo € Cn para
todo o < Kk (pues k < po < p). Entonces p es el supremo de una familia de cardinales de V, y
luego v es un cardinal en V: contradiccién. O

V.

Corolario (Caso particular donde x = R; en V)

Si 7 F AC A (P,<) cumple la c.c.c., entonces:

T* + (Ve On)((n cardinal)V < p cardinal) A

(V€ On)((p card. regular)’ &y card. regular)
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Preservacion de los cardinales (4/4)

@ Se observa que (P, <) cumple la k-c.c. para cualquier cardinal
regular x > |P|. Por lo tanto:

Corolario

Si J FAC (yluego *F AC), entonces:
T* + 3k [(k card. regular)’ A
(V> k) ((n cardinal)V < p cardinal) A
(V> k) ((p card. regular)V & p card. regular) |

» Una extensidn genérica colapsa los cardinales (y los cardinales
regulares) sélo hasta cierto ordinal. Después de este ordinal,
todos los cardinales (y los cardinales regulares) se mantienen

Corolario

Si 7 F AC entonces: 7* b (A, 0€ On) (Ve On) Nyyq =RV

Ato+a

Demo. Ejercicio
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Resumen (1/2)

A partir de nuestra axiomatizacién de .77 (y gracias al axioma del nombre),
conseguimos demostrar que:

o 7 F GeV & (IpgeP)(po dtomo A G =11{po})
o 7* F (VXCV)3X'eV)X C X'

e 7* F OnCV, y por lo tanto:

o 7"+ On=0n" A CnCCn’

e 7  F GeV & V=V

o 7* F VX (Y €V) (3f: Y — X) f sobreyectiva

e Si JFAC, entonces I*F AC

@ Pero T+ AC, (resp. 7FDC) & T*F AC, (resp. 7 I-DCQ)
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Resumen (2/2)

A partir de nuestra axiomatizacién de 7 * (y gracias al axioma del nombre),
conseguimos demostrar que:

o El universo V es minimal con respecto a V' y G:
Si 7*-(M = ZF)AVCMAGE M, entonces T*+M =V

trans.

o Si 7 FAC, entonces J* F (VX €V) |BX) < |BXNV|

eSi JFHAC y JF (P, <) cumple la c.c.c.,, entonces:
T* b (Ve On)((p cardinal)V & p cardinal) A
(Vi€ On)((u card. regular)V < p card. regular)

@ Mas generalmente, si 7 - AC, entonces:

T* + Vr[(k card. regular infinito A (P, <) cumple la H—C.C.)V =

(V> k) ((u cardinal)V < p cardinal) A

(V> k) ((p card. regular)v & card. regular) ]



@ Introduccién

© Transformacién de teorias: 7 +— 7*
© Teoremas en 7%
@ Ejemplo: forzar 2% =R, (n > 1)

© Conservatividad y completitud
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Fijado n > 1, forzar 2% =R, (1/3)
Fijado un entero n > 1, queremos forzar PACIE N

@ Para ello, se considera la teoria de base

F = ZFC + HGC + P = Fin(R, x w, 2)
+ (<p) = {(pg) eP*:pDq}

(sobre el lenguaje formado a partir de los simbolos €, Py <p)

o La teoria 7 es una extensién definicional de ZFC + HGC,
y por lo tanto: . &~ ZFC+ HGC =~ ZF (equiconsistencia)

e En 7, se demuestra que:
(1) (ZF) (P,<p) cumple la c.c.c. y es separativo
(2) (T F) [Pl = Ry xw| =Ry

o Se define B := {X € B(P) : X = X} vy se prueba que:
(3) (ZF) R = [Pl < Bl < [P = Wb — ¥,

encaje c.c.c. HGC
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Fijado n > 1, forzar 2% =R, (2/3)

@ Sea J* la extensién genérica asociada a la teoria T
@ Tenemos que 7 * D ZFC (yaque 7 F AC)

@ En la teoria .77*, se define el dlgebra booleana B usando la misma
férmula que en 7, pero relativizdndola a V:

B = {X ePp"(P) : X = Xx1L}

Més generalmente, tenemos que 7 F (B) implica 7* bV (B) para
cualquier férmula ¢(z) del lenguaje de .7 (principio de importacién)
e Como (P, <p) cumple la c.c.c. (en V), se deriva que:
(4) (77 F) R =N,
(5) (7*F) P = Fin(XY xw, 2) = Fin(R,, x w, 2)
(6) (7*F) |B)]=[RV| =¥, (pues 7 - [B2| = R,,)
(M) (77F)

7) (7FF) 2% = [Bw) < |BY] =R,
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Fijado n > 1, forzar 2% =R, (3/3)

@ En 7* se define g:=|JG, yseobservaque g : N, X w— 2
(funcién parcial a priori), pues G C Fin(Nn X w, 2) es un filtro
e Usando la V-genericidad de G, se demuestra que:
(8) (7*F) Lafuncién g : R, X w — 2 es total
@ Ahora se considera la funcién h: X, — PB(w) definida por
ha) = {n€w:g(a,n) =1} (. < Xyp)
e Usando de nuevo la V-genericidad de G, se demuestra que:
(9) (&*F) Lafuncién h : R, — P(w) es inyectiva
(10) (T*F) 2% = [B(w)| > N, y por lo tanto:
(11) (F*F) 2% = Rn,
@ Como I* ~ Z =~ ZF (admitido), se concluye que:

Teorema: ZFC+ 2% =X, ~ ZF (paracadan > 1) J




o Introduccién

© Transformacién de teorias: .7 + T
0 Teoremas en I*
@ Ejemplo: forzar 2% =R, (n > 1)

© Conservatividad y completitud
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Introduccidn

e Dada una teoria de base 7 (cualquiera) y su extensién genérica 7 *,
queremos demostrar el:

Teorema (Conservatividad relativamente a V)

La teoria J* es una extensién conservativa de .7 relativamente a V:

Tk sii T* QOV (para toda sentencia ¢ € L)

@ Obs.: Sdlo se trata de demostrar la implicacién reciproca, ya que
la implicacién directa es obvia (principio de importacién)

Corolario: Las teorias 7 y 7* son equiconsistentes J

Demo. Considerar la férmula ¢ := 0=1. O

@ Para ello, vamos a construir un modelo booleano de la teoria J*
adentro de la teoria 7

@ Obs.: Para variar, se usa aqui una construccién alternativa basada en la nocién
de P-nombre, y no en la nocién de B-nombre presentada en el capitulo 3
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La clase de los P-nombres (recursivos)

A partir de ahora se trabaja en la teoria 7

o Como siempre, se define: B = {X e B(P) : X = X1}

Proposiciéon

(ZF) (B,C) es un élgebra booleana completa no degenerada

o Se construye la clase V¥ de los P-nombres (recursivos) por:

= UVO]?, con VP = U‘I?(VBPXIP’) (x e On)J

aeOn B<a

@ Intuicién: Un P-nombre (recursivo) es un conjunto u de la forma

u = {(Ulvpl)v (v21p3)a (’U3,p3)7 } (g VP X P)

donde los v; son P-nombres (recursivos) y los p; son condiciones

@ Obs.: En un P-nombre w € VT, un mismo elemento v € m; (u) puede ser
asociado a muiiltiples condiciones (i.e. los P-nombres no son funciones en general)
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lgualdad, inclusién y pertenencia en V¥ (1/2)

@ Dados P-nombres u,v € VT, se escribe:
11
ulp] = {peP:(v,p) €u} (e B)

En particular, tenemos que ufv] = @ = O cuando v ¢ 71 (u)

e A cada u,v € V¥ se asocian valores de verdad
[u=v]F, [uCo]f, [uev]f € B

definidos por recursién mutua sobre los rangos de u y v en V':

[u=2v]" = [uCv]fAfvCu]f
[uCo]f = /\(u[u'] — [ €]")
u/ €my (u)

[u€v]t := \/(v[v’] Au=v"]F)

v'€my (v)
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lgualdad, inclusién y pertenencia en V¥ (2/2)

Proposicién ([- = -]¥ es una equivalencia en VF)

(7 ) Para todos u,v,w € VF:

(1) [u=u]"=1s

2) [w =l = [v = olf

(3) lu=vl" Alv=w]" < [u=w]"

Demo. Ejercicio

Proposicién ([- € -]¥ es compatible con [ = -]|¥ en VF)

(7 ) Para todos u,v,w € VF:
(1) ufv] < [veu]®
(2) [u=2]*Avew]® < [uecw]®

(3) [u €] Av=w]f < [uecw]?

Demo. Ejercicio
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Intermezzo: comparacién entre VF y VB (1/2)

e Construccién de los modelos booleanos VT y VB:

VP = VI, con  VE = [JBWVI xP) (a€On)

aceOn B<a
VB = V2, con VP = UBQVILB (o € On)
B<a

aceOn

@ Intuicién: VP = B(VF xP) (clase de conjuntos de pares)

B
VB = BV (clase de funciones parciales)

@ Sin embargo, se puede pasar de una construccién a la otra usando
b VB VP vy 4 VP VB definidas por:

(feVvh

dom(fu) = {fv:v e m(u)} L (uweVh)
fu(g) = {p eP:Fv((v,p) Eu A fv= g)} (9 € dom(fu))

las funcionales
bf = {(bg,p) : g€ dom(f) Ape f(9)}
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Int : ién entre VF y VB 2/2
ntermezzo: comparacion entre Yy

Lema: (7F) (VfeVB)#hf=f )

Demo. Ejercicio

b : VB VP esinyectiva

@ En particular: P B .
g : V' —>V” essobreyectiva

Proposicion

(1) (ZF) (Vf,geVE)( Df=bgl® = [f=4g]"
[bf €bg]l® = [f€gl®

AN
)
(2) (7F) (VuoeV?)( [fu=t]® = [u=v]f 3

[fu € go]* = [ue€]”

Demo. Ejercicio

e Conclusién: VT y V® son elementalmente equivalentes
(al menos para el lenguaje de ZF)
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Introduccién Trans.: T +— T* Teoremas en 7 *
00000008000000000000000000

0000000000000 00000000000 000000000000000000000000 0000

Encaje de V en VF

e Cada conjunto x (€ V) estd representado en V¥ por el P-nombre i
definido (por &-recursién) por:

= {(g,p) rycazApeP} = {g:yecx} xP

Proposicién (Encaje con respecto a =, €)

(1) (7+) Vo (VueV) [uea]” = \[[u=g"
2) (7 1) Vx\fy( (z=y & [=9]F =18) A
(z#y & [E=9]" =08) A
(xcy & [zegff=18) A
(z¢y & [Ee€y]"=0s) )

Demo. Ejercicio

. vV — VE w i
» La correspondencia {x o g es un “encaje” de V en VF
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Interpretacién de los demds simbolos de .7 (1/2)

o Cada simbolo de predicado R del lenguaje de 7 (distinto de =, €) estd
interpretado por la funcional [R(-)]F : (V]P’)k — B definida por:

[R(uy, ..., up)]¥ := \/([[u1 =& ]" A A fur = &]7) J

(xl,...,afk)GR

(Identificando el simbolo R con la clase {(x1,...,zx) € V* : R(z1,...,2%)})

Proposicion

Para cada simbolo de predicado R del lenguaje de .7, tenemos que:
1) (7F) (va,geVv’) ([2= " A[R@]" < [R@)])
(2 () vZ( ( R@ < [R@I =1s) A

(-R@ & [R@] =08) )

(Escribiendo [@ = 7] := [ur = v1]F A -+ A [ug = vg]F)

Demo. Ejercicio
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Interpretacién de los demds simbolos de .7 (2/2)

o El predicado V() del lenguaje de .7* estd interpretado por:

V@I = \u=2aF (u e VP)J

zeV

Proposiciéon

(1) (TF) (Vu,0eV?) ([u=of AVW]* < [VEOI)
(2 (7F) vz [VE)] =1

Demo. Ejercicio

o Cada constante c¢ del lenguaje de .7 estd interpretada por:
¢ :=¢¢€ VP

@ La constante G del lenguaje de J* estd interpretada por:
G = {Bp) :peP} € VP J
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Interpretacion de las férmulas de .7*

@ Se interpreta cada férmula atémica de .7*, sustituyendo en la
funcional asociada al predicado subyacente (inclusive =, €) cada
constante ¢ € %4~ por el correspondiente P-nombre ¢ € VT

@ Por ejemplo:
o si p(xr) = R(x,c) entonces: [o(uw)]* := [R(u,&)]"
e si p(x) z) entonces: [p(u)]F = [R(¢u)]"
o si © = c') entonces: [elf = [R(&N]F (etc.)

Tl
= =
H 6

o Luego se extiende la definicién a todas las férmulas (&) del
lenguaje de .77* (por induccién externa sobre ¢(&)), escribiendo:

[~e@)]" := —[e@@)]" [o(@) = Y@ = [e(@)]" — [@)]"
[o(@) Ap@@)]" := [e@]F A @] Te(@) V@] = [p@]° V [v@)]*
Vy ey, DIF == \lp(v, )] By e, DI° = \/le(, )]

veVP veVP
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Correccion légica

o Notacién: VF = p(ur,...,u,) = [e(ur,...,un)]f =1

Lema (Regla de Leibniz)

Para cada férmula ¢(x, Z) del lenguaje de 7*, tenemos que:

(7 F) (Vu,v,d€VF) ([u=2]"Afpu, D] < [p(, D))

Demo. Ejercicio

@ Dado un contexto T'(Z) = ¢1(&),...,pn(Z), se escribe:

L@ = [er@]" A A Lon(@)]F

Teorema (Correccidn légica)

Si un secuente I'(Z) - ¢(Z) es derivable en el sistema NK, entonces:
(7 F) (vaeVH([L@]* < [«@]")

Demo. Ejercicio
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Los axiomas de .7* (recordatorio)

1. Axiomas de ZF (extendidos al lenguaje de 77*)
o Extensionalidad, pares, unién, potencia, infinitud y fundacién
o Comprensién y reemplazo para todas las férmulas de 7~
2. Axiomas de transitividad
o VzeV)xzCV
eceV para cada constante ¢c € Lo
o VZ(R(Z)=Ze€V) para cada predicado R € L5 — {=, €}
3. Axiomas de .7 relativizados a V'

o v para cada axioma ¢ de la teoria

4. Axioma de genericidad
o GCPANG#@ A
(Vp,qeP)pe GAp<qg=q€qG) A
(Vp,q€G)(FreG)(r<pAr<gq) A
(VDCP)(D densoAD €V = DNG # @)

5. Axioma del nombre
o (WVACV)@NeV)Vz(z €A & (Ipeq)(x,p) € N)
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Correccién de los axiomas de .7* (1/8)

Lema (Cuantificaciones relativizadas)

Para cada férmula o(z, Z) del lenguaje de 7%, tenemos que:

(1) (7+) (Vu,wevﬂﬁ([[(axeu)somw)ﬂ“’ - \/(u[vww(u,w)ﬂ“"))

veETy (u)

@) (7H) <Vu,wev“”>([[<\meu>so<x7w)u“’ - /\(u[vw[w,w)ﬂ“”))

vEm (u)

Demo. Ejercicio

Proposicién 1 (Correccién de los axiomas de ZF)

(7 ) VP |= extensionalidad A pares A comprensién,, A unién A
potencia A infinitud A reemplazo,, A fundacién

donde ¢, 1 recorren todas las férmulas del lenguaje de 7*

Demo. Ejercicio



Introduccién Trans.: T +— T* Teoremas en T * Ejemplo Conservatividad y completitud
0000000000000 00000000000

000000000000000000000000 0000 00000000000000@O0000000000

Correccién de los axiomas de .7* (2/8)

Proposicién 2 (Correccién de los axiomas de transitividad)

(1) (FF) VP E (VeeV)2zCV
2 (TF) VP E ceV
(3) (ZF) VP E VZ(R@E) =>TeV)

para cada constante ¢ de I

para cada predicado R de
(distinto de =, €)

Demo. Ejercicio

Para cada férmula ¢(z, Z) del lenguaje de 7, tenemos que

W) (7F) (Faev?) ([[(\mevwm,w)ﬂﬂ“’ - /\[[sooe,w)ﬂp)

@) (7F) (voev?) (uexem oz, D)

Demo. Ejercicio
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Correccién de los axiomas de .7* (3/8)

Para cada férmula o(z1,...,z,) del lenguaje de .7, tenemos que

(g }_) Vxlvxn (‘p(xla”'axn) < VP ):Wv(j’.laajn))

Demo. Por induccién externa sobre la férmula ¢(z1, ...,z ), usando el Lema 3.1
para tratar el caso de los cuantificadores. DJ

Proposicién 3 (Correccién de los axiomas de 7 relativizados a V)

(9 }—) %44 = 4,0‘7 para cada axioma ¢ de

Demo. Para cada axioma ¢ de 7, tenemos que 7 ¢ (obvio) y T+ ¢ < VE = <p‘7
(por el Lema 3.2), y por lo tanto: F F V¥ |= V. DJ
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Correccién de los axiomas de .7* (4/8)

o Recordatorio: La constante G (€ .Z#~) esta interpretada por
G = {(p) : peP} (e V)

Proposicién 4 (Correccién del axioma de genericidad)

(7F) VEEGCP A G#2 A
(Vp,qeP)(pe GAp<q=qeG) A
(Vp,q€G) (FreG)(r<pAr<gq) A
(YDCP)(Ddenso A DV = DNG # 9)

Demo. Para todo p € P, se observa que:
[peGl” = V(Glarlp=dl") = G = {p}"" = e
q€EP
Luego, se demuestra que:

o [GCPI = NGB = [BePl’) = Alelp) = 1z) = 1.
pEeP pEP

o [G£2lf = [(FpeP)peGlf = \/GB = el = L ()

pEP pEP
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Correccién de los axiomas de .7* (5/8)

Demo (continuacién).
@ Dados p, g € P, se distinguen dos casos:

@ Si(p,q) ¢ (<p), entonces
[PEGAP<G=JdEC] = e(P) A0z —e(g) = 1n.

@ Si(p,q) € (<p), entonces e(p) C e(q), y luego
[peGAp<qd=3deG] = elp)Alpg—e(g = 1

Por lo tanto: [(Vp,q€P)(p e GAp<q=qec Q] = /\1B = 1p.
p,q€P

@ Dados p, g € P, se observa que:
e(p) Ae(a) = (P} n{ad*t = HpH* nWU{ah
= (prnUa* = (U) T = (Nin)”

T<p,q T<p,q
= (N+)" = (U™ = Ve
r<p,q r<p,q r<p,q

y por lo tanto:  [(Vp,q € G)EreG)(r < pAr < I
= A(CWBI A Gla = V(G A [F <517 AT < dlF))

p,q€P r€P

= /\(C(P)/\E(Q)*\/e(rﬁ = /\1]3 = 1p. O

p,qEP T<p,q p,qEP
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Correccién de los axiomas de .7* (6/8)

Demo (continuacién y fin).
@ Dado un conjunto D cualquiera, se observa que:
= = = i C
o [DCPF = [DCPF = {13 SDCE
Op si no
@ Si D C P, entonces [D denso]” = [(D denso)‘q/]]]FD = {(I)B s D denso
B SI NO

(por el Lema 3.2)
@ Si ademds D C PP es denso, entonces:

[DnG# o] = [(3peG)pe DI
= V(@A eDl) = V{py™" = D' = 1
pEP peD
(pues D C P denso)
Por lo tanto: [(YDCP)(D densoA D € V = DNG # 2)]°

[(VDeV)(D CPADdenso= DnNG # 2)]°

= A(ID CPI° A [D denso]” — [D NG # 2]°)
DeVv
= AIDNG #2]° = 15 O

DCP
D denso
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Correccién de los axiomas de .7* (7/8)

Proposicién 5 (Correccién del axioma del nombre)

(7F) VE E (VACV)3NeV)Vz(x € A< (Ipeq) (x,p) € N)

Demo. Sea A € VF. Para todo u € 71 (A), se nota X, := {z € V : [u = z]* # 0s}.

Dados & # y € X,,, se observa que [u = Z]® A [u = §]* < [# = §]° = Op. Entonces la
funcién (z — [u = #]%) : X, — B* es inyectiva, y como B* es un conjunto, se deduce
que la clase X,, también es un conjunto. Se nota X := UuEm(A) X, y se considera el
P-nombre A’ := {(&,p) :xz € X Ap € [& € A]’} € V*. Se observa que:
@ [A'C A = A& - [zeAlf) = Az € Alf - [z € ATY) = 1z
zEX zEX
° [ACAT = AW~ [ueal) = A(Al] - /(A3 A [u = 2]7))
uem (A) uem (A) reX
= A = V(2 € AT A [u = 3]7))
uem (A) rEX
= /\(A[u] =V ([ue A" Afu= 50]]“”)) = /\(A[u] - VIu= 5;]]P)
uem (A) zE€X uem (A) zEX
= /\(A[u] - VIu= gz]]]“’) = NAul = [ueV]?) = [AC V]
u€m (A) zEV uem (A)
y por lo tanto: [A = A’']F =[A C A'JF A[A’ C A]F =[A C V], (..)

V
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Correccién de los axiomas de .7* (8/8)

Demo (continuacién y fin). Ahora se nota No := {(z,p) : 2z € X Ap € [z € A]F}.
Para todo u € V¥, tenemos que:

[Gpeq) (u,p) € NoJ*
V(G A T, 5) € NolP) =/ ({p} A VI, 5) = 2I7)

pEP peP 2E€Ng
= V(o aV@u=a rla=5")) = V(o A Ve =4])
pEP (z,9)ENg pEP TEX tq.
pelzea]l
=V VU ark=3") = V(zecAl Alu=3])
reEX pGIIIGA]]P zEX
= V@MW A=) = [ucAT.
vem (A)

Entonces: [ACV=3NeV)Vz(z € As (Ipeq) (z,p) € N)]*
> [ACV=Vz(z€As (IpeQ) (z,p) € No)]*
= [A=A"=>Vz(z€ A (IpEQ) (z,p) € No)[*
= [A=A"=>Vz(ze A & (FIpEq) (z,p) € No)|*

[A=AT > A(lu€ AT © [@p€G) (u,p) € Nol°) = 1a.
ue VP

Y por lo tanto:

[VACV)ENeV)Vz(z € As (Fpeq) (z,p) e NI = A1z

AevP

1p. O
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Correccién y conservatividad

@ En las Prop. 1-5, demostramos que 7 - VF |= ¢ para cada
axioma ¢ de .J*, y por lo tanto:

Teorema (Correccidn)

Si J*F ¢, entonces TFVFEop (para toda sentencia ¢ € L +)

@ Obs.: Este resultado ya implica que 7* es consistente relativamente a .7.

Teorema (Conservatividad relativamente a V) (recordatorio)

La teorfa J* es una extensién conservativa de .7 relativamente a V:

Tk sii T* gOV (para toda sentencia ¢ € fg))

Demo. !_a implicacién directa es el principio de importacién. Reciprocamente, supongamos que
T |F ch. Entonces & + VT = va (por el teorema de correccién). Pero también tenemos que
T oo VP =Y (porel Lema 3.2), y por lo tanto T + . O

v

Corolario: Las teorias .7 y 7* son equiconsistentes )
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Correccién y completitud

e Vimos que el teorema de conservatividad (relativamente a V') es una
consecuencia del teorema de correccidn, que expresa que:

Si J*F ¢, entonces T+ %44 Eo (para toda sentencia ¢ € Jg*)J

@ Se puede refinar el resultado anterior del siguiente modo:

Teorema (Completitud)
Para toda sentencia ¢ € Lg-: T ke si TFEVEEe

> El sistema de axiomas de la teoria .7 * es bastante expresivo
para capturar todas la sentencias del lenguaje de .7* que se
cumplen en el modelo booleano VT adentro de la teoria .7

@ Obs.: Se puede ver la teoria 7" como la preimagen de la teoria .
por la traduccién (V¥ ) : Lo+ — Lo

7' = (VPE)NI) )




Introduccién Trans.: T +— T* Teoremas en T * Ejemplo Conservatividad y completitud
0000000000000 00000000000 000000000000000000000000 0000 00000000000000000000000800

Demostracién del teorema de completitud (1/3)

@ La construccién del modelo booleano de * adentro de la teoria
se puede importar en la teoria .77* del modo siguiente:

B = {XePP): X=X} (eV)
e Se notan . v
VE o= (VF) (CV)
e Para cada férmula ¢(z1,...,z,) del lenguaje de 7", se nota
()] = (VF)" =B

a la funcional de interpretacién de la férmula p(z1,...,2xn)
en el modelo booleano V¥ C V

<

o En la teorfa .7, se considera la funcional (u s u®) : VP =V
definida por €-recursién sobre u € V¥ por:

WS = {06 (FpeG) (v,p) € u} = I (u)
@ Ya demostramos el

Teorema: (7*F) Vz (GueVP) z =" |




Introduccién Trans.: T +— T* Teoremas en T * Ejemplo Conservatividad y completitud
0000000000000 00000000000 000000000000000000000000 0000 00000000000000000000000080

Demostracién del teorema de completitud (2/3)

@ Ademas, tenemos que:

(1) (7*F) (Vu,veVh) (v =17 & [u=v]"NG #2)
(2) (77 F) (Vu,veVh) (v ev? & [uer]' NG #2)
(3) (77 k) (VieVH)(R@E@®) & [R@]' NG #2)

4) (7°F) (weVvh) eV & [ueV] NG+ o)

Demo. Ejercicio

@ Y por lo tanto:

Proposicion

Para toda férmula ¢(x1,...,x,) del lenguaje de *, tenemos que:

(7°F) (Vug,...,un €VF) (p(uf,...,ud) & [p(ut,...,u)]F NG #2)

Demo. Ejercicio



Introduccién Trans.: T +— T* Teoremas en T * Ejemplo Conservatividad y completitud
0000000000000 00000000000 000000000000000000000000 0000 00000000000000000000000008

Demostracién del teorema de completitud (3/3)

Teorema (Completitud) (recordatorio)

Para toda sentencia p € Lo-:  T*F ¢ si TFEVP

Demo. Ya demostramos la implicacién directa (correccién). Reciprocamente, supongamos que
T+ VP =, esdecir T F [o]F = 1p. Entonces T* + ([¢]F = 18)" (por importacién),
es decir T* F [¢]F = 1g, yluego T* F [0]® NG # @. Por la Prop. anterior, también
tenemos que 7* + o < [p]F NG # @, yporlotanto: T* + . O

@ Conclusién: La teoria .7* es la preimagen de la teoria de base
por la traduccién (VP |=.) : Lo — Lo

7 = (V)T J
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