INTRODUCCION AL FORCING SEGUNDO SEMESTRE DE 2024

Practico 1: Cardinales y axioma de eleccion

En lo que sigue, se trabaja en ZFC (= ZF + AC), salvo indicacién en contrario.

Los cardinales y su aritmética Se recuerda que un ordinal k es un cardinal (notacién: Cn(k))
cuando no es equipotente a ningin ordinal menor que si mismo, es decir:

Cnk) := Onk) N Va<k)a » k.

Cabe destacar que todos los ordinales finitos son cardinales, mientras el minimo cardinal infini-
to es el ordinal w (= IN), que se suele escribir 8, como cardinal. Por el teorema de Zermelo (que
sigue de AC), todo conjunto X admite un buen orden, y luego es equipotente a algtin ordinal (en
general no dnico). Se llama cardinal de X y se escribe Card(X) al minimo ordinal equipotente
a X (que es necesariamente un cardinal). Por construccién, tenemos que

Card(X) = Card(Y) ¢« existe f: X = Y biyectiva
(notacién: X ~ Y)
Card(X) < Card(Y) ¢ existe f: X — Y inyectiva

Se definen la suma y el producto de una familia cualquiera de cardinales (k;);c; como el cardinal
de la suma directa y del producto cartesiano de dicha familia:

ZKi = Card(z Ki) y l_[Ki = Card(l—[ Ki)
i€l i€l i€l i€l

En particular, la suma, el producto y la potencia de dos cardinales x y u son definidos por:

k+u = Card(k + w) (cardinal de la suma directa binaria)
ku = Card(x X u) (cardinal del producto cartesiano binario)
k* .= Card(x") (cardinal del conjunto de las funciones f : u — «)

Ejercicio 1. (1) A partir de las definiciones anteriores, demostrar que las siguientes identidades
se cumplen para todos cardinales «, u y v:

K+u = U+« KU = UK K=1 0 =0 (sig=1)
k+w+v =«k+@Uu+v) (kv = k(uv) k' =k " =1
k+0 =0+« =« kl = 1k =« KT = KK
k(i + V) = K+ kv k0 = 0k =0 (k") = x
(2) Demostrar que para todos cardinales «, ', u 'y p’, tenemos que:
k<K = k+u<«+pu k<K = K<«
k<K = ku<ku k>1Apu<u = K<k

(3) Demostrar que para todo cardinal « y para toda familia (u;),c; de cardinales, tenemos que

K(Z ,ui) - ZKﬂi y Kiel Hi = l_[K/li'

iel iel iel



Cardinales infinitos

Ejercicio 2. El objetivo de este ejercicio es demostrar sin axioma de eleccion (y por lo tanto:
sin usar la teoria de los cardinales) que todo ordinal infinito A es equipotente al producto
cartesiano A X 4, es decir: A ~ (4 X A). Para ello, se supone por el absurdo que no es el caso, y
se escribe A al ordinal infinito més pequefio tal que 4 ~ A X A. Se equipa el producto cartesiano
A X A con la relacién binaria (<,) definida®” por

(x1,y1) <2 (x2,y2) = max(xy,y;) < max(xy,ys) %
(max(xy,yr) = max(xs, y2) A x; < X2) %
(max(xy,y;) = max(xz, y2) A X1 = X2 Ay; < y2)

para todos (x1,y1), (x2,y2) € 4 X A.

(1) Demostrar que la relacion (<;) es un buen orden sobre A X A.

(2) Construir un encaje de conjuntos (bien) ordenados f : (4,<) = (1 X 4, <),
es decir: una funcién f : 4 > A x Atal que (Vx,ye D) (x <y & f(x) < f()).

En lo siguiente, se escriben u al tinico ordinal isomorfo al conjunto bien ordenado (1 X 4, <),
y h: (1 x ) > u al isomorfismo correspondiente.

(3) Deducir de lo anterior que 4 < pu.

Como A € yu, se definen (a,B) := h™'(1) (€Ax A) y y:= mix(a,B) + 1.
(4) Demostrar que el ordinal A es isomorfo al segmento inicial Seg(a, ) en (4 X 4, <,).
(5) Demostrar que Seg(a,8) € (y X y). Deducir que el ordinal y es infinito.

(6) Deducir de lo anterior que existe una inyeccion A < .
(7) Mostrar que (6) lleva a una contradiccion, lo que acaba la demostracion del resultado.

Ejercicio 3 (Aritmética de los cardinales infinitos).
(1) Deducir del Ejercicio 2 que k> = « para todo cardinal infinito «.
(2) Deducir que si «, u son cardinales infinitos y n un cardinal finito, entonces:

K+u = ku = max(k, 1) K+n =k
kn = K" kK (sin>1) nt=2" (sin=>?2)

(3) Demostrar que si k y ¢ son cardinales infinitos, entonces:
max(k,2") < & < max(2,2")

Demostrar que « < 2# implica que «* = 2~.

La jerarquia de los cardinales infinitos Para todo cardinal «, existe un menor cardinal ma-
yor a k, que se llama el cardinal sucesor de k y se escribe «*. La clase (propia) de los cardinales
infinitos forma una sucesion transfinita (N, )qc0, definida por:

No = w, Noi1 1= N7 y N, := supN, (A ordinal limite)

a<Ad

(DEgsta definicién es debida a Kurt GGpEL.



Ejercicio 4 (Teorema de Konig). Sean (A;);c; Y (B;)ic; dos familias de conjuntos (I cualquiera),
tales que Card(A;) < Card(B;) paratodo i € I. Se escriben:

m § = ), A; alasuma directa de la familia (A;),c;, equipada con la familia de las inyec-
ciones canénicas o; : A; —» S (i € I).

= P := []; Bi al producto cartesiano (generalizado) de la familia (B;);c;, equipado con la
familia de las proyecciones ; : P — B; (i € I).

Sea f : § — P una funcién cualquiera. Para todo i € I, se considera la funcién f; : A; — B;
definida por f; :=m; 0o f o 0.

(1) Demostrar que existe un elemento p € P tal que 7;(p) ¢ img(f;) paratodoi € I.
(Sugerencia: usar la hipétesis Card(A;) < Card(B;).)

(2) Demostrar que p ¢ img(f), y deducir que la funcién f no es sobreyectiva.

(3) Deducir de lo anterior el teorema de Konig:

Si (k)ier Y (U)ier son dos familias de cardinales indizadas por un conjunto 1
cualquiera, tales que k; < u; para todo i € I, entonces:

Z K < l_[ M.
i€l i€l
(Qué se observa en el caso particular donde x; = 1y y; = 2 paratodo i € I?
Ejercicio 5 (Aplicacion del teorema de Konig). En este ejercicio, se trabaja en ZFC.

(1) Demostrar que: ZN,, = N,.

(2) Con el teorema de Konig (Ejercicio 4), deducir que: N, < fo’.

Se recuerda que Card(IR) = Card(B(w)) = 2™ («potencia del continuo»).
(3) Deducir de lo anterior que 2™ # K,,.

Axioma de eleccion dependiente El axioma de eleccion dependiente (DC)® es una forma
débil del axioma de eleccion (AC) dada por la siguiente formula:

(VA#2)YRCA X A) [(VxeA)TyeA) xRy =
(A new €AY VN E W) X, R Xp41] (DC)

Asi, a partir de un conjunto A # @ y de una relacion R € A X A tal que (Vxe€A)(dy€A) xRy,
este axioma elige una sucesion (x,),c, € A talque xoRX|RXo RX3-+ X, R Xp41 -+ -

Ejercicio 6. Demostrar en ZF que: AC = DC.

A veces, se considera la siguiente formulacion del axioma de eleccién dependiente, que
permite fijar el primer elemento x, = x de la sucesion (x;,),e, € A“:

VA(VRCAXA)[(Yx€A)TycA) xRy =
(Vx€A)A(Xn)new €EAY) (X0 = x A (YR € W) X, R X41)] (DCo)

@ Axiom of dependent choices en inglés.



Ejercicio 7. Demostrar en ZF que: DC, < DC.

(Sugerencia: para demostrar la implicacién DC = DCj con un elemento inicial x € A fijado,
se puede considerar el conjunto A’ formado por todas las sucesiones finitas (x;);<, € A% tales
que xo = xy x;_; Rx; para todo i € [1..n], equipado con la relaciéon R* C A’ X A’ definida por:
(X)icn R i)igm = m=n+1ANMi<n)x; =y;.)

Ejercicio 8 (Relaciones bien fundadas y axioma de eleccidon dependiente). Sea R una relacion
binaria sobre un conjunto X.

(1) Demostrar en ZF que si R es bien fundada sobre X, entonces no existe ninguna sucesion
(X)new tal que R(x,11, x,) para todo n € w.

(2) Demostrar el reciproco en ZF + DC.

Ejercicio 9. Demostrar en ZF + DC el Teorema de Baire:

En un espacio métrico completo X, la interseccion de cualquier familia numerable
de subconjuntos abiertos densos de X es un subconjunto denso de X.

Axioma de eleccion numerable El axioma de eleccion numerable (AC,) es una forma débil
del axioma de eleccion (AC) dada por la siguiente formula:

VA |(Tnew A, 2 & = (ﬂ A,,) + @].

new

Ejercicio 10. Demostrar en ZF que DCy = AC,,, donde DC, es el axioma de eleccién depen-
diente con elemento inicial fijado. Deducir (en ZF) que: AC = DC = AC,,.

Se recuerda que un conjunto A es:

= finito cuando A ~ n para algin n € w;
= infinito cuando A ~ n para todo n € w;
» Dedekind-infinito cuando existe una funcién f : A — A inyectiva y no sobreyectiva.

Ejercicio 11. Sea A un conjunto.

(1) Demostrar en ZF (sin AC,,) que si A es Dedekind-infinito, entonces A es infinito.

(2) Demostrar en ZF + AC,, que si A es infinito, entonces A es Dedekind-infinito.
Sugerencia: Demostrar que si A es infinito, entonces existe una funcién inyectiva f, :
n < A para cadan € w.



