
Introducción al forcing Segundo semestre de 2024

Práctico 1: Cardinales y axioma de elección

En lo que sigue, se trabaja en ZFC (= ZF + AC), salvo indicación en contrario.

Los cardinales y su aritmética Se recuerda que un ordinal κ es un cardinal (notación: Cn(κ))
cuando no es equipotente a ningún ordinal menor que sí mismo, es decir:

Cn(κ) :≡ On(κ) ∧ (∀α< κ) α ≁ κ .

Cabe destacar que todos los ordinales finitos son cardinales, mientras el mínimo cardinal infini-
to es el ordinal ω (= N), que se suele escribir ℵ0 como cardinal. Por el teorema de Zermelo (que
sigue de AC), todo conjunto X admite un buen orden, y luego es equipotente a algún ordinal (en
general no único). Se llama cardinal de X y se escribe Card(X) al mínimo ordinal equipotente
a X (que es necesariamente un cardinal). Por construcción, tenemos que

Card(X) = Card(Y) ⇔ existe f : X →̃ Y biyectiva
(notación: X ∼ Y)

Card(X) ≤ Card(Y) ⇔ existe f : X ↪→ Y inyectiva

Se definen la suma y el producto de una familia cualquiera de cardinales (κi)i∈I como el cardinal
de la suma directa y del producto cartesiano de dicha familia:∑

i∈I

κi := Card
(∑

i∈I

κi

)
y

∏
i∈I

κi := Card
(∏

i∈I

κi

)
En particular, la suma, el producto y la potencia de dos cardinales κ y µ son definidos por:

κ + µ := Card(κ + µ) (cardinal de la suma directa binaria)
κµ := Card(κ × µ) (cardinal del producto cartesiano binario)
κµ := Card

(
κµ
)

(cardinal del conjunto de las funciones f : µ→ κ)

Ejercicio 1. (1) A partir de las definiciones anteriores, demostrar que las siguientes identidades
se cumplen para todos cardinales κ, µ y ν:

κ + µ = µ + κ κµ = µκ κ0 = 1 0µ = 0 (si µ ≥ 1)
(κ + µ) + ν = κ + (µ + ν) (κµ)ν = κ(µν) κ1 = κ 1µ = 1

κ + 0 = 0 + κ = κ κ 1 = 1 κ = κ κµ+ν = κµκν

κ(µ + ν) = κµ + κν κ 0 = 0 κ = 0
(
κµ
)ν
= κµν

(2) Demostrar que para todos cardinales κ, κ′, µ y µ′, tenemos que:

κ ≤ κ′ ⇒ κ + µ ≤ κ′ + µ κ ≤ κ′ ⇒ κµ ≤ κ′µ

κ ≤ κ′ ⇒ κµ ≤ κ′µ κ ≥ 1 ∧ µ ≤ µ′ ⇒ κµ ≤ κµ
′

(3) Demostrar que para todo cardinal κ y para toda familia (µi)i∈I de cardinales, tenemos que

κ
(∑

i∈I

µi

)
=
∑
i∈I

κµi y κ
∑

i∈I µi =
∏
i∈I

κµi .
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Cardinales infinitos

Ejercicio 2. El objetivo de este ejercicio es demostrar sin axioma de elección (y por lo tanto:
sin usar la teoría de los cardinales) que todo ordinal infinito λ es equipotente al producto
cartesiano λ × λ, es decir: λ ∼ (λ × λ). Para ello, se supone por el absurdo que no es el caso, y
se escribe λ al ordinal infinito más pequeño tal que λ ≁ λ× λ. Se equipa el producto cartesiano
λ × λ con la relación binaria (≤2) definida(1) por

(x1, y1) ≤2 (x2, y2) ≡ máx(x1, y1) < máx(x2, y2) ∨

(máx(x1, y1) = máx(x2, y2) ∧ x1 < x2) ∨

(máx(x1, y1) = máx(x2, y2) ∧ x1 = x2 ∧ y1 ≤ y2)

para todos (x1, y1), (x2, y2) ∈ λ × λ.

(1) Demostrar que la relación (≤2) es un buen orden sobre λ × λ.
(2) Construir un encaje de conjuntos (bien) ordenados f : (λ,≤) ↪→ (λ × λ,≤2),

es decir: una función f : λ→ λ × λ tal que (∀x, y ∈ λ) (x ≤ y⇔ f (x) ≤2 f (y)).

En lo siguiente, se escriben µ al único ordinal isomorfo al conjunto bien ordenado (λ × λ,≤2),
y h : (λ × λ) →̃ µ al isomorfismo correspondiente.

(3) Deducir de lo anterior que λ < µ.

Como λ ∈ µ, se definen (α, β) := h−1(λ) (∈ λ × λ) y γ := máx(α, β) + 1.

(4) Demostrar que el ordinal λ es isomorfo al segmento inicial Seg(α, β) en (λ × λ,≤2).
(5) Demostrar que Seg(α, β) ⊆ (γ × γ). Deducir que el ordinal γ es infinito.
(6) Deducir de lo anterior que existe una inyección λ ↪→ γ.
(7) Mostrar que (6) lleva a una contradicción, lo que acaba la demostración del resultado.

Ejercicio 3 (Aritmética de los cardinales infinitos).
(1) Deducir del Ejercicio 2 que κ2 = κ para todo cardinal infinito κ.
(2) Deducir que si κ, µ son cardinales infinitos y n un cardinal finito, entonces:

κ + µ = κµ = máx(κ, µ) κ + n = κ
κ n = κn = κ (si n ≥ 1) nµ = 2µ (si n ≥ 2)

(3) Demostrar que si κ y µ son cardinales infinitos, entonces:

máx(κ, 2µ) ≤ κµ ≤ máx(2κ, 2µ)

Demostrar que κ ≤ 2µ implica que κµ = 2µ.

La jerarquía de los cardinales infinitos Para todo cardinal κ, existe un menor cardinal ma-
yor a κ, que se llama el cardinal sucesor de κ y se escribe κ+. La clase (propia) de los cardinales
infinitos forma una sucesión transfinita (ℵα)α∈On definida por:

ℵ0 := ω, ℵα+1 := ℵ+α y ℵλ := sup
α<λ

ℵα (λ ordinal límite)

(1)Esta definición es debida a Kurt Gödel.
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Ejercicio 4 (Teorema de König). Sean (Ai)i∈I y (Bi)i∈I dos familias de conjuntos (I cualquiera),
tales que Card(Ai) < Card(Bi) para todo i ∈ I. Se escriben:

S :=
∑

i∈I Ai a la suma directa de la familia (Ai)i∈I , equipada con la familia de las inyec-
ciones canónicas σi : Ai → S (i ∈ I).

P :=
∏

i∈I Bi al producto cartesiano (generalizado) de la familia (Bi)i∈I , equipado con la
familia de las proyecciones πi : P→ Bi (i ∈ I).

Sea f : S → P una función cualquiera. Para todo i ∈ I, se considera la función fi : Ai → Bi

definida por fi := πi ◦ f ◦ σi.

(1) Demostrar que existe un elemento p ∈ P tal que πi(p) < img( fi) para todo i ∈ I.
(Sugerencia: usar la hipótesis Card(Ai) < Card(Bi).)

(2) Demostrar que p < img( f ), y deducir que la función f no es sobreyectiva.
(3) Deducir de lo anterior el teorema de König:

Si (κi)i∈I y (µi)i∈I son dos familias de cardinales indizadas por un conjunto I
cualquiera, tales que κi < µi para todo i ∈ I, entonces:∑

i∈I

κi <
∏
i∈I

µi .

¿Qué se observa en el caso particular donde κi = 1 y µi = 2 para todo i ∈ I?

Ejercicio 5 (Aplicación del teorema de König). En este ejercicio, se trabaja en ZFC.

(1) Demostrar que:
∑
n∈ω

ℵn = ℵω.

(2) Con el teorema de König (Ejercicio 4), deducir que: ℵω < ℵ
ℵ0
ω .

Se recuerda que Card(R) = Card(P(ω)) = 2ℵ0 («potencia del continuo»).

(3) Deducir de lo anterior que 2ℵ0 , ℵω.

Axioma de elección dependiente El axioma de elección dependiente (DC)(2) es una forma
débil del axioma de elección (AC) dada por la siguiente fórmula:

(∀A,∅)(∀R⊆ A × A) [(∀x ∈ A)(∃y ∈ A) x R y ⇒
(∃(xn)n∈ω ∈ Aω)(∀n ∈ω) xn R xn+1] (DC)

Así, a partir de un conjunto A , ∅ y de una relación R ⊆ A × A tal que (∀x ∈ A)(∃y ∈ A) x R y,
este axioma elige una sucesión (xn)n∈ω ∈ Aω tal que x0 R x1 R x2 R x3 · · · xn R xn+1 · · ·

Ejercicio 6. Demostrar en ZF que: AC⇒ DC.

A veces, se considera la siguiente formulación del axioma de elección dependiente, que
permite fijar el primer elemento x0 = x de la sucesión (xn)n∈ω ∈ Aω:

∀A (∀R⊆ A × A) [(∀x ∈ A)(∃y ∈ A) x R y ⇒
(∀x ∈ A)(∃(xn)n∈ω ∈ Aω)(x0 = x ∧ (∀n ∈ω) xn R xn+1)] (DC0)

(2)Axiom of dependent choices en inglés.
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Ejercicio 7. Demostrar en ZF que: DC0 ⇔ DC.

(Sugerencia: para demostrar la implicación DC ⇒ DC0 con un elemento inicial x ∈ A fijado,
se puede considerar el conjunto A′ formado por todas las sucesiones finitas (xi)i≤n ∈ A[0..n] tales
que x0 = x y xi−1 R xi para todo i ∈ [1..n], equipado con la relación R′ ⊆ A′ × A′ definida por:
(xi)i≤n R′ (yi)i≤m ≡ m = n + 1 ∧ (∀i≤ n) xi = yi.)

Ejercicio 8 (Relaciones bien fundadas y axioma de elección dependiente). Sea R una relación
binaria sobre un conjunto X.

(1) Demostrar en ZF que si R es bien fundada sobre X, entonces no existe ninguna sucesión
(xn)n∈ω tal que R(xn+1, xn) para todo n ∈ ω.

(2) Demostrar el recíproco en ZF + DC.

Ejercicio 9. Demostrar en ZF + DC el Teorema de Baire:

En un espacio métrico completo X, la intersección de cualquier familia numerable
de subconjuntos abiertos densos de X es un subconjunto denso de X.

Axioma de elección numerable El axioma de elección numerable (ACω) es una forma débil
del axioma de elección (AC) dada por la siguiente fórmula:

∀(An)n∈ω

[
(∀n ∈ω) An , ∅ ⇒

(∏
n∈ω

An

)
, ∅
]
.

Ejercicio 10. Demostrar en ZF que DC0 ⇒ ACω, donde DC0 es el axioma de elección depen-
diente con elemento inicial fijado. Deducir (en ZF) que: AC⇒ DC⇒ ACω.

Se recuerda que un conjunto A es:

finito cuando A ∼ n para algún n ∈ ω;
infinito cuando A ≁ n para todo n ∈ ω;
Dedekind-infinito cuando existe una función f : A→ A inyectiva y no sobreyectiva.

Ejercicio 11. Sea A un conjunto.

(1) Demostrar en ZF (sin ACω) que si A es Dedekind-infinito, entonces A es infinito.
(2) Demostrar en ZF + ACω que si A es infinito, entonces A es Dedekind-infinito.

Sugerencia: Demostrar que si A es infinito, entonces existe una función inyectiva fn :
n ↪→ A para cada n ∈ ω.
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