
Introducción al forcing Segundo semestre de 2024

Práctico 2: Modelos de Fraenkel-Mostowski

ZF sin axioma de fundación En lo que sigue, se trabaja en la teoría de conjuntos de Zermelo-
Fraenkel sin axioma de fundación: ZF− := ZF − AF, y se nota U := {x : x = x} a la clase
universal. Se define la jerarquía acumulativa (Vα)α∈On por Vα :=

⋃
β<αP(Vβ) (para todo α ∈ On),

y se escribe V :=
⋃
α∈On Vα a su unión transfinita (que no necesariamente coincide con U ).

Se recuerda que la clausura transitiva de un conjunto a, notada Cl(a), es el menor conjunto
transitivo que contiene a como subconjunto: Cl(a) =

⋃
n∈ω
⋃n a.

Ejercicio 1 (Consistencia relativa del axioma de la fundación). Se dice que un conjunto a es
bien fundado cuando la relación ∈ es bien fundada en Cl(a), la clausura transitiva de a:

a bien fundado :≡ (∀X ⊆Cl(a))(X , ∅ ⇒ (∃x ∈ X) x ∩ X = ∅)

(1) Demostrar que un conjunto es bien fundado si y sólo si todos sus elementos lo son.
(2) Deducir de lo anterior que si a y b son bien fundados, entonces {a, b},

⋃
a y todos los

subconjuntos de a son bien fundados, así como el conjunto potencia P(a).
(3) Demostrar (en ZF−) que V es la clase de los conjuntos bien fundados.
(4) Demostrar (en ZF−) que (V, ∈) |= ZF, es decir: (V, ∈) |= ϕ para cada axioma ϕ de ZF.
(5) Concluir que las teorías ZF y ZF− son equiconsistentes.

Ejercicio 2 (Consistencia de la negación del axioma de infinitud). En este ejercicio, se nota
ZFfin a ZF en que el axioma de infinitud ha sido reemplazado por su negación: «todos los
conjuntos son finitos». (Los otros axiomas y esquemas se mantienen iguales.)

(1) Demostrar (en ZF−) que (Vω, ∈) |= ZFfin.
(2) Deducir (en ZF−) que Cons(ZFfin).

Observación: Se puede demostrar que ZFfin es equiconsistente con PA (Aritmética de Peano).

Ejercicio 3 (Cardinales inaccesibles). En ZFC, se dice que un cardinal λ es inaccesible cuando:

(i) λ > ℵ0;
(ii) Si κ es un cardinal < λ, entonces 2κ < λ;

(iii) Si (κi)i∈I es una familia de cardinales < λ indizada por un conjunto I de cardinal |I| < λ,
entonces supi∈I κi < λ.

Un cardinal es accesible cuando no es inaccesible.

(1) Demostrar (en ZFC) que si λ es un cardinal inaccesible, entonces
|Vλ| = λ y ∀a (a ∈ Vλ ⇔ a ⊆ Vλ ∧ |a| < λ)

(2) Demostrar (en ZFC) que si λ es un cardinal inaccessible, entonces (Vλ, ∈) |= ZFC.

Se escribe CI al axioma: «existe un cardinal inaccesible».

(3) Deducir de lo anterior que ZFC < ZFC + CI.
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Sea Λ la clase de todos los ordinales menores que todo cardinal inaccesible, y VΛ :=⋃
α∈Λ Vα. (Observar que si U satisface CI, entonces Λ es el primer cardinal inaccesible y VΛ es

un conjunto, mientras que si U no satisface CI, entonces Λ = On y VΛ = V .)

(4) Demostrar (en ZFC) que (VΛ, ∈) |= ZFC + ¬CI.
(5) Deducir de lo anterior que ZFC + ¬CI ≈ ZFC (equiconsistencia).

Ejercicio 4 (Modelos con átomos). Se llama átomo a todo conjunto x que es su propio conjunto
unitario: x = {x}. El objetivo de este ejercicio es demostrar la independencia de la fórmula
«existe un átomo» con respecto a ZF−. Para ello, se considera una relación binaria Φ(x, y) que
realiza una biyección de U sobre U (en ZF), en el sentido en que

∀x∃!yΦ(x, y) ∧ ∀y∃!xΦ(x, y),

y se nota ∈′ a la relación binaria sobre U definida por: y ∈′ x sii y ∈ Φ(x) (x, y ∈ U ).

(1) Demostrar en ZF que (U , ∈′) |= ZF−.
(2) Demostrar en ZFC que (U , ∈′) |= AC.

Se considera ahora la biyección Φ : U →̃U definida por

Φ(x, y) :≡ (x = 0 ∧ y = 1) ∨ (x = 1 ∧ y = 0) ∨ (x < {0, 1} ∧ y = x)

(3) Demostrar en ZF (con el Φ anterior) que (U , ∈′) |= «existe un átomo».
(Sugerencia: Considerar el conjunto 0 = ∅ en el modelo (U , ∈′).)

(4) Concluir que la fórmula «existe un átomo» es independiente de ZF−.
(5) Modificar la biyección Φ para que el modelo (U , ∈′) satisfaga (en ZF) la fórmula:

«la clase de los átomos es un conjunto numerable», es decir:
∃A [∀x (x ∈ A ⇔ x = {x}) ∧ (∃ f ∈ Aω) f biyectiva] .

Ejercicio 5 (Consistencia relativa de AC en ZF). En este ejercicio, se trabaja en ZF (sin AC).

(1) Construir (en ZF) una funcional J(α, u) que establece una biyección entre On y la clase
On∗ :=

⋃
n∈ωOnn de las tuplas de ordinales. (Sugerencia: Se puede construir antes una

fórmula R(u, v) que define un buen orden sobre On∗.)
(2) Construir (en ZF) una funcional K(n, x) que establece una biyección entre ω y Vω.

Dados un conjunto X y una fórmula interna f ∈ Formn+1 (para algún n ∈ ω) con parámetros
(a1, . . . , an) ∈ Xn, se escribe

Val( f , (a1, . . . , an), X) := {a ∈ X : (X, ∈) |= f (a, a1, . . . , an)}.

Se dice que un conjunto a es ordinal-definible (notación: OD(x)) cuando existe un ordinal α y
una fórmula interna f ∈ Formn+1 (para algún n ∈ ω) con parámetros ordinales α1, . . . , αn < α
tales que Val( f , (α1, . . . , αn),Vα) = {a}. Formalmente:

OD(a) :≡ (∃α ∈On)(∃n ∈ω)(∃ f ∈Formn+1)(∃α⃗ ∈αn) Val( f , α⃗,Vα) = {a}.

(3) Sea ϕ(x, α1, . . . , αn) una fórmula externa con una única variable libre x y cuyos pará-
metros α1, . . . , αn son ordinales. Demostrar que si existe un único conjunto a tal que
ϕ(a, α1, . . . , αn), entonces el conjunto a es ordinal-definible.
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(4) (Recíproco:) Usando las funcionales J y K definidas en (1) y (2), construir una fórmula
externa Φ(x, x1, . . . , xn) con n + 1 variables libres x, x1, . . . , xn tal que para todo a ∈ OD,
existen ordinales α1, . . . , αn tales que

∀x (Φ(x, α1, . . . , αn) ⇔ x = a).

Como es posible que un conjunto ordinal-definible tenga un elemento no ordinal-definible(1),
se considera la clase HOD de los conjuntos hereditariamente ordinal-definibles, escribiendo:

HOD(x) :≡ (∀y ∈Cl({x})) OD(y).

(donde Cl({x}) es la clausura transitiva de {x}).

(5) Verificar (en ZF) que ∀x (x ∈ HOD ⇔ x ∈ OD ∧ x ⊆ HOD).
(6) Demostrar (en ZF) que (HOD, ∈) |= ZF.
(7) Demostrar (en ZF) que (HOD, ∈) |= AC, y concluir que ZFC ≈ ZF.

Ejercicio 6 (Consistencia relativa de ¬AC en ZF−). En este ejercicio, se trabaja en la teoría

T0 := ZF− + «la clase de los átomos es un conjunto numerable».

(Vimos en el Ejercicio 4 (5) que la teoría T0 es consistente relativamente a ZF.) Se escribe A
al conjunto (numerable) de todos los átomos, y se considera la sucesión transfinita (Wα)α∈On

definida por W0 := A y Wα :=
⋃
β<αP(Wβ) para todo ordinal α > 0.

(1) Demostrar (en T0) que Wα es un conjunto transitivo para todo α ∈ On. Deducir que
Wα+1 = P(Wα) para todo ordinal α, y Wλ =

⋃
α<λWα para todo ordinal límite λ.

(2) Sea W :=
⋃
α∈On Wα. Demostrar (en T0) que

(W, ∈) |= T0 + ∀x (x , ∅⇒ (∃y ∈ x)(y ∩ x = ∅ ∨ y = {y}))

A partir de ahora se trabaja en la teoría T1 := T0+∀x (x , ∅⇒ (∃y ∈ x)(y∩ x = ∅∨y = {y})).
(Vimos en (2) que T1 ≤ T0 ≤ ZF.) Como anteriormente, se considera la jerarquía (Wα)α∈On

definida por W0 := A y Wα :=
⋃
β<αP(Wβ) para todo ordinal α > 0, y se nota W :=

⋃
α∈On Wα.

(3) Demostrar (en T1) que W = U .

Sea SA el grupo de las permutaciones del conjunto A.

(4) Definir una funcional “y = σ · x” que extiende la función (σ, x) 7→ σ(x) (: SA × A → A)
en una acción del grupo SA sobre el universo, de tal modo que

σ · x = {σ · y : y ∈ x} (para todo conjunto x)

(5) Verificar que σ · α = α para todos σ ∈ SA y α ∈ On(2).
(6) Demostrar que para toda fórmula externa ϕ(x1, . . . , xn), tenemos que

(∀x1, . . . , xn)
(
ϕ(σ · x1, . . . , σ · xn) ⇔ ϕ(x1, . . . , xn)

)
(Sugerencia: Razonar por inducción externa sobre ϕ(x1, . . . , xn).)

(1)La fórmula «OD es una clase transitiva» es indecidible en ZF.
(2)Y más generalmente σ · x = x para todo x ∈ V (=

⋃
α∈On Vα).
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Se dice que un conjunto a es definible en términos de ordinales y átomos (notación: OAD(x))
cuando existe un ordinal α y una fórmula f ∈ Formn+p+1 (para algunos n, p ∈ ω) con pará-
metros (α1, . . . , αn, a1, . . . , ap) ∈ αn × Ap, tales que Val( f , (α1, . . . , αn, a1, . . . , ap),Wα) = {a}.
Formalmente:

OAD(a) :≡ (∃α ∈On)(∃n, p ∈ω)(∃ f ∈Formn+p+1)
(∃α⃗ ∈αn)(∃a⃗ ∈ Ap) Val( f , (α⃗, a⃗),Wα) = {a}.

(7) Sea ϕ(x, α1, . . . , αn, u) una fórmula externa con una única variable libre x y cuyos pará-
metros son n ordinales α1, . . . , αn y una sucesión finita u de átomos(3). Demostrar que si
existe un único conjunto a tal que ϕ(a, α1, . . . , αn, u), entonces a ∈ OAD.

(8) (Recíproco:) Construir una fórmula externa Φ(x, x1, . . . , xn, y) con n + 2 variables libres
x, x1, . . . , xn, y tal que para todo a ∈ OAD, existen ordinales α1, . . . , αn y una sucesión
finita u de átomos tales que

∀x (Φ(x, α1, . . . , αn, u) ⇔ x = a).

Se considera la clase HOAD de los conjuntos hereditariamente definibles en términos de ordi-
nales y átomos, escribiendo:

HOAD(x) :≡ (∀y ∈Cl({x})) OAD(y).

(9) Verificar (en T1) que ∀x (x ∈ HOAD ⇔ x ∈ OAD ∧ x ⊆ HOAD).
(10) Demostrar (en T1) que (HOAD, ∈) |= ZF−.
(11) Demostrar (en T1) que (HOAD, ∈) |= (∀X ⊆ A)(X finito ∨ X cofinito).
(12) Deducir que (HOAD, ∈) |= A infinito ∧ A Dedekind-finito ∧ ¬(A bien ordenable),

y concluir que ZF− + ¬ACω ≈ ZF.

(3)Es decir una función u : p→ A para algún p ∈ ω. (El entero p es interno.)
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