INTRODUCCION AL FORCING SEGUNDO SEMESTRE DE 2024

Practico 2: Modelos de Fraenkel-Mostowski

ZF sin axioma de fundacion En lo que sigue, se trabaja en la teoria de conjuntos de Zermelo-
Fraenkel sin axioma de fundacién: ZF™ := ZF — AF, ysenota % := {x : x = x} alaclase
universal. Se define la jerarquia acumulativa (V,)acon POr Ve 1= Up<o B(Vp) (paratodo a € On),
y se escribe V := (J,con Vo @ su union transfinita (que no necesariamente coincide con %/).

Se recuerda que la clausura transitiva de un conjunto a, notada Cl(a), es el menor conjunto
transitivo que contiene a como subconjunto: Cl(a) = |, " a.

Ejercicio 1 (Consistencia relativa del axioma de la fundacién). Se dice que un conjunto a es
bien fundado cuando la relacién € es bien fundada en Cl(a), la clausura transitiva de a:

abien fundado = (MXCCla)(X# 2 = (AxeX)xNX=9)

(1) Demostrar que un conjunto es bien fundado si y sélo si todos sus elementos lo son.

(2) Deducir de lo anterior que si @ y b son bien fundados, entonces {a, b}, | Ja y todos los
subconjuntos de a son bien fundados, asi como el conjunto potencia ‘B(a).

(3) Demostrar (en ZF ") que V es la clase de los conjuntos bien fundados.
(4) Demostrar (en ZF") que (V,€) E ZF, es decir: (V,€) E ¢ para cada axioma ¢ de ZF.
(5) Concluir que las teorias ZF y ZF~ son equiconsistentes.

Ejercicio 2 (Consistencia de la negacién del axioma de infinitud). En este ejercicio, se nota
ZFs, a ZF en que el axioma de infinitud ha sido reemplazado por su negacién: «todos los
conjuntos son finitos». (Los otros axiomas y esquemas se mantienen iguales.)

(1) Demostrar (en ZF") que (V,,, €)  ZFg,.
(2) Deducir (en ZF") que Cons(ZFgy).

Observacion: Se puede demostrar que ZFg;, es equiconsistente con PA (Aritmética de Peano).

Ejercicio 3 (Cardinales inaccesibles). En ZFC, se dice que un cardinal A es inaccesible cuando:
(l) A> NO;
(i1) Si k es un cardinal < A, entonces 2 < A;

(i) Si (k;)ie; s una familia de cardinales < A indizada por un conjunto / de cardinal |/| < A4,
entonces sup;.; ki < A.

Un cardinal es accesible cuando no es inaccesible.
(1) Demostrar (en ZFC) que si A es un cardinal inaccesible, entonces
Vil =4 y VYaa@eV, & aCVAlal <)
(2) Demostrar (en ZFC) que si 4 es un cardinal inaccessible, entonces (V,, €)  ZFC.
Se escribe CI al axioma: «existe un cardinal inaccesible».
(3) Deducir de lo anterior que ZFC < ZFC + CI.



Sea A la clase de todos los ordinales menores que todo cardinal inaccesible, y V) :=
Ugen Ve (Observar que si % satisface CI, entonces A es el primer cardinal inaccesible y V5 es
un conjunto, mientras que si % no satisface CI, entonces A = Ony V) = V.)

(4) Demostrar (en ZFC) que (Vi,€) E ZFC + -CL.
(5) Deducir de lo anterior que ZFC + —CI ~ ZFC (equiconsistencia).

Ejercicio 4 (Modelos con atomos). Se llama dtomo a todo conjunto x que es su propio conjunto
unitario: x = {x}. El objetivo de este ejercicio es demostrar la independencia de la férmula
«existe un d&tomo» con respecto a ZF~. Para ello, se considera una relacién binaria ®(x, y) que
realiza una biyeccién de % sobre % (en ZF), en el sentido en que

VxAlyd(x,y) A VyAlxD(x,y),
y se nota € a la relacion binaria sobre %/ definida por: y €’ x sii y € ®(x) (x,ye ).
(1) Demostrar en ZF que (% ,€’) E ZF".
(2) Demostrar en ZFC que (% ,€’) E AC.
Se considera ahora la biyeccion @ : %7 = %/ definida por
O(x,y) = x=0Ay=1DVEx=1Ay=0Vxe¢{0, 1} Ay=Xx)

(3) Demostrar en ZF (con el ® anterior) que (%, €’) | «existe un atomo».
(Sugerencia: Considerar el conjunto 0 = & en el modelo (%, €’).)

(4) Concluir que la férmula «existe un d&tomo» es independiente de ZF .

(5) Modificar la biyeccion @ para que el modelo (%, €”) satisfaga (en ZF) la férmula:
«la clase de los 4&tomos es un conjunto numerable», es decir:

JA[Vx(x €A & x={x}) A (Af €A®) f biyectiva].

Ejercicio 5 (Consistencia relativa de AC en ZF). En este ejercicio, se trabaja en ZF (sin AC).

(1) Construir (en ZF) una funcional J(a, u) que establece una biyeccion entre On y la clase
On* := e, On" de las tuplas de ordinales. (Sugerencia: Se puede construir antes una
férmula R(u, v) que define un buen orden sobre On*.)

(2) Construir (en ZF) una funcional K(n, x) que establece una biyeccion entre w y V,,,.

Dados un conjunto X y una férmula interna f € Form,,; (para algin n € w) con parimetros
(ai,...,a,) € X", se escribe

Val(f, (ay,...,a,),X) = {aeX : (X,e) E f(a,ay,...,a,)}.

Se dice que un conjunto a es ordinal-definible (notacién: OD(x)) cuando existe un ordinal o y
una férmula interna f € Form,,; (para algin n € w) con parametros ordinales ay,...,@, < @
tales que Val(f, (ay,...,a,), V,) = {a}. Formalmente:

OD(a) := (Aa€On)@ne w)Af € Form,,)(Aa ea”) Val(f,a,V,) = {a}.

(3) Sea ¢(x,ay,...,qa,) una férmula externa con una unica variable libre x y cuyos para-
metros aj,...,a, son ordinales. Demostrar que si existe un Unico conjunto a tal que
#(a,ay,...,a,), entonces el conjunto a es ordinal-definible.
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(4) (Reciproco:) Usando las funcionales J y K definidas en (1) y (2), construir una férmula

externa ®(x, xi, ..., x,) con n + 1 variables libres x, xi, ..., x, tal que para todo a € OD,
existen ordinales ay, .. ., @, tales que
Vx(O(x,ai,...,q,) © x=a).

Como es posible que un conjunto ordinal-definible tenga un elemento no ordinal-definible",
se considera la clase HOD de los conjuntos hereditariamente ordinal-definibles, escribiendo:

HOD(x) := (VyeCl({x})) OD(®).
(donde ClI({x}) es la clausura transitiva de {x}).

(5) Verificar (en ZF) que Vx(x € HOD & x€ OD A x € HOD).
(6) Demostrar (en ZF) que (HOD, €) = ZF.
(7) Demostrar (en ZF) que (HOD, €) E AC, y concluir que ZFC ~ ZF.

Ejercicio 6 (Consistencia relativa de -~AC en ZF"). En este ejercicio, se trabaja en la teoria
Iy = ZF + «laclase de los atomos es un conjunto numerable».

(Vimos en el Ejercicio 4 (5) que la teoria .7, es consistente relativamente a ZF.) Se escribe A
al conjunto (numerable) de todos los dtomos, y se considera la sucesion transfinita (W, )qcon
definida por Wy := Ay W, := g, B(Wp) para todo ordinal a > 0.

(1) Demostrar (en %) que W, es un conjunto transitivo para todo @ € On. Deducir que
Weoi1 = B(W,) para todo ordinal @, y W, = | J,, W, para todo ordinal limite A.

(2) Sea W := ,eon We. Demostrar (en %) que
We) E % + Vx(x#2 = Tyen)yNnx=2Vy={})

A partir de ahora se trabaja en la teoria .7} := Z+Vx(x # @ = (Ayex)(yNx =T Vy = {y})).
(Vimos en (2) que 7 < 9, < ZF.) Como anteriormente, se considera la jerarquia (W,).con
definida por Wy := Ay W, := g, B(Wp) para todo ordinal @ > 0, y se nota W := (,e0n We-

(3) Demostrar (en .77) que W = % .

Sea S, el grupo de las permutaciones del conjunto A.

(4) Definir una funcional “y = o - x”” que extiende la funcién (o, x) = o(x) (: S4 X A — A)
en una accion del grupo S, sobre el universo, de tal modo que

o-x={oc-y:y€eux} (para todo conjunto x)

(5) Verificar que o - @ = « para todos o € S, y a € On'®.
(6) Demostrar que para toda férmula externa ¢(x, ..., x,), tenemos que

Vxi, .o s X )P0 X1y 0 - X)) © DX, .., X))

(Sugerencia: Razonar por induccion externa sobre ¢(xy, ..., x,).)

ML a férmula «OD es una clase transitiva» es indecidible en ZF.
@Y més generalmente o - x = x para todo x € V (= Uyeon Va)-
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Se dice que un conjunto a es definible en términos de ordinales y dtomos (notacion: OAD(x))
cuando existe un ordinal @ y una férmula f € Form,,,,, (para algunos n,p € w) con para-
metros (ay,...,Q,ai,...,a,) € a" X AP, tales que Val(f,(ai,...,ay,ai,...,a,), W,) = {a}.
Formalmente:

OAD(a) := (da€On)(dn,pecw)df € Form,,,.1)
(Ad € ")(3d € AP) Val(f, (&, @), W,) = {a}.

(7) Sea ¢(x,ay,...,a,,u) una férmula externa con una Unica variable libre x y cuyos para-
metros son n ordinales @/, ..., , y una sucesién finita u de 4tomos®. Demostrar que si
existe un Unico conjunto a tal que ¢(a, ay, ..., a,, u), entonces a € OAD.

(8) (Reciproco:) Construir una férmula externa ®(x, xy, ..., x,,y) con n + 2 variables libres
X, X1,...,X,,y tal que para todo a € OAD, existen ordinales «;,...,a, y una sucesion
finita u de dtomos tales que

Vx(O(x,a,...,q,,u) © x=a).

Se considera la clase HOAD de los conjuntos hereditariamente definibles en términos de ordi-
nales y dtomos, escribiendo:

HOAD(x) = (VyeCl({x})) OAD(y).

(9) Verificar (en 77) que Yx(x € HOAD & x € OAD A x C HOAD).
(10) Demostrar (en .77) que (HOAD, €) E ZF .
(11) Demostrar (en .7;) que (HOAD,€) | (YX CA)(X finito V X cofinito).

(12) Deducir que (HOAD, €) = A infinito A A Dedekind-finito A =(A bien ordenable),
y concluir que ZF~ + -AC, =~ ZF.

3Es decir una funcién u : p — A para algtin p € w. (El entero p es interno.)
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