
Introducción al forcing Segundo semestre de 2024

Práctico 3: Álgebras booleanas

Retículos Se recuerda que un retículo es un conjunto ordenado L = (L,≤) en que todo par de
elementos x, y ∈ L tiene ínfimo (notación: x ∧ y) y supremo (notación: x ∨ y). Un retículo L es
acotado cuando tiene mínimo (notación: 0 o ⊥) y máximo (notación: 1 o ⊤).

Ejercicio 1 (Retículos completos). Demostrar que en cualquier retículo L = (L,≤), las siguien-
tes aserciones son equivalentes:

(i) Todo subconjunto X ⊆ L tiene ínfimo.
(ii) Todo subconjunto X ⊆ L tiene supremo.

Cuando es el caso, se dice que L es un retículo completo.

Ejercicio 2 (Retículos distributivos). Sea L = (L,≤) un retículo.
(1) Demostrar que para todos x, y ∈ L, tenemos que

y deducir que
x ≤ y ⇔ x ∧ y = x ⇔ x ∨ y = y

x ∧ (y ∨ x) = x ∨ (y ∧ x) = x .
(2) Verificar que para todos x, y, z ∈ L, tenemos que:

x ∧ (y ∨ z) ≥ (x ∧ y) ∨ (x ∧ z) y x ∨ (y ∧ z) ≤ (x ∨ y) ∧ (x ∨ z).
(3) Demostrar que las siguientes dos condiciones son equivalentes:

(3.1) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) para todos x, y, z ∈ L;
(3.2) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) para todos x, y, z ∈ L.

Cuando (3.1) y (3.2) se cumplen, se dice que L es un retículo distributivo.

Ejercicio 3 (Distributividad infinitaria). El objetivo de este ejercicio es mostrar que la propie-
dad de distributividad binaria x ∧ (y1 ∨ y2) = (x ∧ y1) ∨ (x ∧ y2) no implica la propiedad de
distributividad infinitaria: x ∧

∨
i∈I yi =

∨
i∈I(x ∧ yi) (I cualquiera). Para ello, se considera el

conjunto N := ω equipado con el orden de divisibilidad: x ⪯ y sii y = xz para algún z ∈ N.
(1) Demostrar que (N,⪯) es un retículo distributivo completo, con mínimo 1 y máximo 0.

Para ello, se podrá observar que el subconjunto N∗ := N − {0} equipado con el orden
de divisibilidad ⪯ es isomorfo al conjunto ω(ω) de las sucesiones de ordinales finitos con
soporte finito, equipado con el orden producto (≤ω)ω.

(2) Considerar el elemento x := 2 ∈ N así como el subconjunto Y ⊆ N formado por los
números primos impares, y verificar que x ∧

∨
Y ,
∨

(x ∧ Y).

Ejercicio 4 (Complementos). Sea L = (L,≤) un retículo acotado. Dado un elemento x ∈ L, se
llama complemento de x a todo elemento x′ ∈ L tal que x ∧ x′ = 0 y x ∨ x′ = 1. Cuando todos
los elementos de L tienen un complemento, se dice que el retículo L es complementado.

(1) Demostrar que si el retículo L es distributivo, entonces el complemento de un elemento
de L, cuando existe, es único.

(2) Dar un ejemplo de retículo acotado y complementado en que todos los elementos distin-
tos de 0 y 1 tienen al menos dos complementos distintos.
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Álgebras booleanas Se recuerda que un álgebra booleana es un retículo acotado, distributivo
y complementado. Un álgebra booleana es completa cuando el retículo subyacente es completo.

Ejercicio 5 (Álgebras booleanas). Sea B un álgebra booleana.

(1) Verificar que ¬¬x = x para todo x ∈ B.
(2) Demostrar que x ≤ y sii ¬y ≤ ¬x para todos x, y ∈ B.
(3) Deducir que ¬(x ∧ y) = ¬x ∨ ¬y y ¬(x ∨ y) = ¬x ∧ ¬y para todos x, y ∈ B.

Se define la implicación por x→ y := ¬x ∨ y (x, y ∈ B).

(4) Demostrar que x ∧ y ≤ z sii x ≤ y→ z (para todos x, y, z ∈ B).
(5) Deducir que x ≤ y sii x→ y = 1 (para todos x, y ∈ B).
(6) Usando la equivalencia anterior, demostrar que toda álgebra booleana completa cumple

la propiedad de distributividad infinitaria: x ∧
∨

i∈I yi =
∨

i∈I(x ∧ yi) (I cualquiera).

Se definen la equivalencia lógica por x ⇔ y := (x → y) ∧ (y → x) y la diferencia simétrica
por x △ y := ¬(x↔ y) = (x ∧ ¬y) ∨ (y ∧ ¬x) (x, y ∈ B).

(7) Verificar que x = y sii x↔ y = 1 sii x △ y = 0 para todos x, y ∈ B.
(8) Demostrar que ¬(x↔ y) = ¬x↔ y = x↔ ¬y = x △ y para todos x, y ∈ B.

Ejercicio 6 (Álgebras de Heyting). Sea H = (H,≤) un retículo. Dados x, y ∈ H, se llama
pseudocomplemento de x relativamente a y al elemento x → y := máx{z ∈ H : z ∧ x ≤ y},
cuando dicho elemento (máximo) existe. Cuando el pseudocomplemento relativo x→ y existe
para todos x, y ∈ H, se dice que H está pseudocomplementado.

(1) Demostrar que x→ y, cuando existe, está caracterizado por la adjunción:
z ≤ x→ y sii z ∧ x ≤ y (para todo z ∈ H)

Se llama álgebra de Heyting a todo retículo acotado pseudocomplementado.

(2) Demostrar que toda álgebra booleana es un álgebra de Heyting.
(3) Demostrar que todo conjunto totalmente ordenado acotado es un álgebra de Heyting.

¿Cuándo es un álgebra booleana?
(4) Demostrar que toda topologíaT (sobre un conjunto X) es un álgebra de Heyting completa

(con el orden de inclusión). ¿Cuándo es un álgebra booleana?

A partir de ahora, se supone que H = (H,≤) es un álgebra de Heyting.

(5) Deducir de (1) que x ≤ y sii x→ y = 1 para todos x, y ∈ H.
(6) Demostrar que la operación→ es antítona por la izquierda y monótona por la derecha:

Si x′ ≤ x e y ≤ y′, entonces x→ y ≤ x′ → y′ (para todos x, x′, y, y′ ∈ H).
(7) Demostrar que para todos x, x1, x2, y, y1, y2 ∈ H, tenemos que:

x→ (x ∧ y) = x→ y
(x1 ∧ x2)→ y = x1 → (x2 → y)
x→ (y1 ∧ y2) = (x→ y1) ∧ (x→ y2)
x→ (y1 ∨ y2) ≥ (x→ y1) ∨ (x→ y2)

Justificar por qué la última desigualdad no es una igualdad.
(8) Deducir que toda álgebra de Heyting es un retículo distributivo.

(Sugerencia: Calcular x ∧ (y ∨ z)→ (x ∧ y) ∨ (x ∧ z).)

2



(9) Demostrar que si además el álgebra de Heyting H es completa, entonces:
x ∧
∨

i∈I yi =
∨

i∈I(x ∧ yi) para todo x ∈ H e (yi)i∈I ∈ HI (I cualquiera).
(10) Demostrar que para todos x1, x2, y ∈ H, tenemos que:

(x1 ∨ x2)→ y = (x1 → y) ∧ (x2 → y)

Para todo x ∈ H, se nota ¬x := (x→ 0).
(11) Verificar que x ∧ ¬x = 0, x ∨ ¬x ≤ 1 y x ≤ ¬¬x para todo x ∈ H.

Justificar por qué las última dos desigualdades no son igualdades.
(12) Demostrar que las siguientes aserciones son equivalentes:

(i) H es un álgebra booleana;
(ii) ¬¬x = x para todo x ∈ H;

(iii) x ∨ ¬x = 1 para todo x ∈ H.

Ejercicio 7 (Álgebra de Tarski-Lindenbaum). Sea T una teoría de primer orden sobre un
lenguaje L . Se nota T0 (resp. F0) al conjunto de los términos cerrados (resp. al conjunto de
las fórmulas cerradas) del lenguaje L . Se equipa el conjunto F0 con la equivalencia ∼ definida
por φ ∼ ψ sii T ⊢ φ ⇔ ψ (para todos φ, ψ ∈ F0), y se llama álgebra de Tarski-Lindenbaum
de la teoría T al cociente BT := F0/∼ equipado con el orden ≤ definido por:

[φ] ≤ [ψ] sii T ⊢ φ⇒ ψ

(1) Demostrar que BT es un álgebra booleana, en que:
[φ] ∧ [ψ] = [φ ∧ ψ], [φ] ∨ [ψ] = [φ ∨ ψ] y ¬[φ] = [¬φ] (para todos φ, ψ ∈ F0)

(2) Verificar que:
(i) BT � 1 sii T es inconsistente.

(ii) BT � 2 sii T es consistente y completa.
(3) Demostrar que si la teoría T es Henkin-completa(1), entonces:

[∀xφ(x)] =
∧
t∈T0

[φ(t)] y [∃xφ(x)] =
∨
t∈T0

[φ(t)]

para toda fórmula φ(x) del lenguaje L que depende de una sola variable x.
(4) ¿Qué pasa cuando T no es Henkin-completa?

Ejercicio 8 (Morfismos de álgebras booleanas). Dadas álgebras booleanas B y B′, se dice que
una función f : B→ B′ es un morfismo de álgebras booleanas cuando:

f (¬x) = ¬ f (x)
f (x ∧ y) = f (x) ∧ f (y) f (0B) = 0B′

f (x ∨ y) = f (x) ∨ f (y) f (1B) = 1B′

(para todos x, y ∈ B)

Se dice que f : B→ B′ es un isomorfismo de álgebras booleanas cuando además f es biyectiva
y su inversa f −1 : B′ → B es un morfismo de álgebras booleanas.

(1) Demostrar que una función f : B→ B′ es un isomorfismo de álgebras booleanas
si y sólo si f es un isomorfismo de conjuntos ordenados.

(2) Demostrar que todo morfismo inyectivo f : B ↪→ B′ de álgebras booleanas es un encaje:
x ≤ y sii f (x) ≤ f (y) (para todos x, y ∈ B)

(3) Deducir que todo morfismo biyectivo de álgebras booleanas es un isomorfismo.

(1)Se recuerda que una teoría T es Henkin-completa cuando para toda fórmula φ(x) de su lenguaje que depende
de una sola variable x, existe un término tφ ∈ T0 tal que T ⊢ ∃xφ(x)⇒ φ(tφ).
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Ejercicio 9 (El álgebra booleana numerable sin átomos). Se dice que un elemento a de un
álgebra booleana B es un átomo cuando a > 0 y a es minimal en B − {0}.

(1) Sea R ⊆ P(ω) el conjunto de los subconjuntos recursivos de ω(2) e I ⊆ R el ideal de los
subconjuntos finitos. Demostrar que R/I es un álgebra booleana numerable sin átomos.

(2) Sea P ⊆ P(ω) el conjunto de los subconjuntos periódicos de ω(3). Demostrar que P es
una subálgebra booleana de P(ω), numerable y sin átomos.

(3) Demostrar que si B y C son dos álgebras booleanas numerables y sin átomos, entonces B
y C son isomorfas. Para ello, se podrá construir dos sucesiones crecientes de subálgebras
booleanas finitas (Bn ⊆ B)n∈ω y (Cn ⊆ C)n∈ω tales que Bn � Cn para todo n ∈ ω, y tales
que B =

⋃
n∈ω Bn y C =

⋃
n∈ω Cn.

Ejercicio 10 (Operadores de clausura y polaridades). En este ejercicio, se presentan unas he-
rramientas para construir retículos completos.
Operadores de clausura Sea A un conjunto. Un operador de clausura sobre A es una función
(X 7→ X) : P(A)→ P(A) tal que:

(i) X ⊆ X (ii) X = X (iii) X ⊆ Y implica X ⊆ Y

para todos X,Y ∈ P(A).

(1) Demostrar que el conjunto T :=
{
X ∈ P(A) : X = X

}
(equipado con ⊆) es un retículo

completo en que el ínfimo de una familia es su intersección. ¿Cuál es su supremo?

Polaridades Una polaridad es una terna (A−, A+,R) formada por dos conjuntos A− y A+ equi-
pados con una relación R ⊆ A− × A+ cualquiera (el polo). Se notan:

X+ := {y ∈ A+ : (∀x ∈ X) x R y} (⊆ A+) para todo X ⊆ A−;
Y− := {x ∈ A− : (∀y ∈Y) x R y} (⊆ A−) para todo Y ⊆ A+.

(2) Demostrar que para todos X, X′ ⊆ A− (resp. Y,Y ′ ⊆ A+):

(2.1) X ⊆ X′ implica X+ ⊇ X′+ (resp. Y ⊆ Y ′ implica Y− ⊇ Y ′−)
(2.2) X ⊆ (X+)− (resp. Y ⊆ (Y−)+)
(2.3) ((X+)−)+ = X+ (resp. ((Y−)+)− = Y−)

(3) Deducir de lo anterior que X 7→ (X+)− y Y 7→ (Y−)+ son operadores de clausura sobre A−

y A+, respectivamente, y que los conjuntos

T− :=
{
X ∈ P(A−) : (X+)− = X

}
y T+ :=

{
Y ∈ P(A+) : (Y−)+ = Y

}
(equipados con ⊆) son retículos completos antiisomorfos el uno del otro.

(4) Caracterizar los ínfimos y los supremos en T− y en T+.
(5) En el caso particular donde A+ = A− = A y donde R ⊆ A2 es simétrica, ¿se puede deducir

que T+ = T− es un álgebra booleana? Demostrarlo, o dar un contrajemplo.

Un ejemplo importante de construcción por polaridad está dado en el ejercicio siguiente.

(2)Es decir los subconjuntos de ω cuya función característica es computable.
(3)Es decir los subconjuntos de ω cuya función característica es periódica.

4



Ejercicio 11 (Completación de Dedekind-MacNeille). Sea P = (P,≤) un conjunto ordenado
cualquiera. En el marco de la polaridad (P, P,≤) (véase Ejercicio 10), se notan

X− := {x ∈ P : (∀y ∈ X) x ≤ y} y X+ := {x ∈ P : (∀y ∈ X) x ≥ y}

para todo X ∈ P. Se llama completación de Dedekind-MacNeille del conjunto ordenado (P,≤)
al conjunto P̄ := {X ⊆ P : (X+)− = X} ordenado por la inclusión. Vimos en el ejercicio anterior
que P̄ es un retículo completo. Para todo x ∈ P, se nota ι(x) := {x}− (∈ P̄).

(1) Verificar que ι(x) = ↓x (= clausura inferior de x) para todo x ∈ P, y deducir que la
función ι : P→ P̄ es un encaje de (P,≤) en (P̄,⊆).

(2) Demostrar que ι preserva todos los ínfimos y supremos que existen en P, es decir:
(i) si x = ı́nfi∈I xi (en P), entonces ι(x) =

∧
i∈I ι(xi) (en P̄),

(ii) si x = supi∈I xi (en P), entonces ι(x) =
∨

i∈I ι(xi) (en P̄)
para todos x ∈ P y (xi)i∈I ∈ PI (I cualquiera).

(3) Demostrar que para todo X ∈ P̄, tenemos que:

X =
∧
{Y ∈ ι(P) : Y ⊇ X} =

∨
{Y ∈ ι(P) : Y ⊆ X}.

(Es decir: todo elemento de P̄ es ínfimo y supremo de elementos que vienen de P.)
(4) Deducir que si P es un retículo completo, entonces ι : (P,≤)→ (P̄,⊆) es un isomorfismo.
(5) Demostrar más generalmente que si L es un retículo completo, entonces toda función

monótona f : P → L que preserva los ínfimos y supremos que existen en P se extiende
de manera única en un morfismo de retículos completos f̄ : P̄→ L:

P̄
f̄
��

P

ι

OO

f
// L

(6) Determinar P̄ en el caso particular donde P = Q (equipado con el orden usual).
(7) Demostrar que si (P,≤) es un álgebra de Heyting (resp. de Boole), entonces su comple-

tación de Dedekind-MacNeille (P̄,⊆) también lo es.
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