INTRODUCCION AL FORCING SEGUNDO SEMESTRE DE 2024

Practico 3: Algebras booleanas

Reticulos Se recuerda que un reticulo es un conjunto ordenado L = (L, <) en que todo par de
elementos x,y € L tiene infimo (notacién: x A y) y supremo (notacion: x V y). Un reticulo L es
acotado cuando tiene minimo (notacién: 0 o L) y maximo (notacién: 1 o T).

Ejercicio 1 (Reticulos completos). Demostrar que en cualquier reticulo L = (L, <), las siguien-
tes aserciones son equivalentes:

(i) Todo subconjunto X C L tiene infimo.

(i) Todo subconjunto X C L tiene supremo.

Cuando es el caso, se dice que L es un reticulo completo.

Ejercicio 2 (Reticulos distributivos). Sea L = (L, <) un reticulo.
(1) Demostrar que para todos x,y € L, tenemos que
x<y & xAy=x & xVy=y
y deducir que XAOPVX)=xVHAX)=X.
(2) Verificar que para todos x,y, z € L, tenemos que:
XAQYVD=ZXAY)V(XAZ) y XVOAZDS(xVYy)AKV2).
(3) Demostrar que las siguientes dos condiciones son equivalentes:

3.1) xA(yvVzy=(xAy)V(xAz) paratodos x,y,ze€ L;
32) xVOAZD)=(xVy)A(xVz) paratodosx,y,z€ L.

Cuando (3.1) y (3.2) se cumplen, se dice que L es un reticulo distributivo.

Ejercicio 3 (Distributividad infinitaria). El objetivo de este ejercicio es mostrar que la propie-
dad de distributividad binaria x A (y; V y;) = (x Ay;) V (x A y;) no implica la propiedad de
distributividad infinitaria: x A \/;; yi = Vies(x A y;) (I cualquiera). Para ello, se considera el
conjunto IN := w equipado con el orden de divisibilidad: x <y sii y = xz para algin z € IN.

(1) Demostrar que (IN, <) es un reticulo distributivo completo, con minimo 1 y mdximo O.
Para ello, se podrd observar que el subconjunto IN* := IN — {0} equipado con el orden
de divisibilidad < es isomorfo al conjunto w® de las sucesiones de ordinales finitos con
soporte finito, equipado con el orden producto (<,,)%.

(2) Considerar el elemento x := 2 € IN asi como el subconjunto ¥ C IN formado por los
numeros primos impares, y verificar que x A\/Y # VV(x A Y).

Ejercicio 4 (Complementos). Sea L = (L, <) un reticulo acotado. Dado un elemento x € L, se
llama complemento de x a todo elemento x” € L tal que x A X’ =0y x V x’ = 1. Cuando todos
los elementos de L tienen un complemento, se dice que el reticulo L es complementado.

(1) Demostrar que si el reticulo L es distributivo, entonces el complemento de un elemento
de L, cuando existe, es Unico.

(2) Dar un ejemplo de reticulo acotado y complementado en que todos los elementos distin-
tos de O y 1 tienen al menos dos complementos distintos.



Algebras booleanas Se recuerda que un dlgebra booleana es un reticulo acotado, distributivo
y complementado. Un dlgebra booleana es completa cuando el reticulo subyacente es completo.

Ejercicio 5 (Algebras booleanas). Sea B un dlgebra booleana.

(1) Verificar que ——x = x paratodo x € B.

(2) Demostrar que x <y sii -y < —x paratodos x,y € B.

(3) Deducirque ~(x Ay)=-xV -y y =(xVy)=-xA-y paratodos x,y € B.
Se define la implicacion por x -y :=-xVy (x,y € B).

(4) Demostrar que x Ay <z sii x <y — z (paratodos x,y,z € B).

(5) Deducirque x <y sii x > y=1 (paratodos x,y € B).

(6) Usando la equivalencia anterior, demostrar que toda dlgebra booleana completa cumple
la propiedad de distributividad infinitaria: x A\/;c; yi = Vie;(x A y;) (I cualquiera).

Se definen la equivalencia l6gica por x &y = (x = y) A (y — x) y la diferencia simétrica
por xAy == a(x e y) = (xA-y) V(Y A-x) (x,y €B).

(7) Verificarque x =y sii x & y=1 sii x Ay =0 paratodos x,y € B.

(8) Demostrar que —(x <> y)=-xe y=x¢e y=x Ay paratodos x,y € B.

Ejercicio 6 (Algebras de Heyting). Sea H = (H, <) un reticulo. Dados x,y € H, se llama
pseudocomplemento de x relativamente a y al elemento x — y :=mix{z € H : zAx <y},
cuando dicho elemento (maximo) existe. Cuando el pseudocomplemento relativo x — y existe
para todos x,y € H, se dice que H estd pseudocomplementado.
(1) Demostrar que x — y, cuando existe, estd caracterizado por la adjuncion:
Z<x—>Yy sii ZAX<Yy (para todo z € H)

Se llama dlgebra de Heyting a todo reticulo acotado pseudocomplementado.

(2) Demostrar que toda dlgebra booleana es un dlgebra de Heyting.

(3) Demostrar que todo conjunto totalmente ordenado acotado es un algebra de Heyting.
(Cuéndo es un dlgebra booleana?

(4) Demostrar que toda topologia 7~ (sobre un conjunto X) es un dlgebra de Heyting completa
(con el orden de inclusién). ;Cudndo es un dlgebra booleana?

A partir de ahora, se supone que H = (H, <) es un dlgebra de Heyting.

(5) Deducirde (1)que x <y sii x > y=1 paratodos x,y € H.
(6) Demostrar que la operacion — es antitona por la izquierda y mondétona por la derecha:

Si ¥ <xey<y, entonces x >y < X' =Y (para todos x, x',y,y" € H).
(7) Demostrar que para todos x, x1, X2, ¥, y1, Y2 € H, tenemos que:
x=>xAy) = x—>y
(X1 AX) =y = x1 2 (x—>Y)
x = (1 Ay2) (x = y)A(x—y)

x> Vy) = (x> y)V(x—y)
Justificar por qué la tltima desigualdad no es una igualdad.

(8) Deducir que toda dlgebra de Heyting es un reticulo distributivo.
(Sugerencia: Calcular x A(yVZz) = (xAYy) V(X AZ).)
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(9) Demostrar que si ademds el dlgebra de Heyting H es completa, entonces:
X AVieryi = Vie(x Ay;) paratodo x € H e (y)ie; € H' (I cualquiera).
(10) Demostrar que para todos x;, x,,y € H, tenemos que:
(xXx1Vx) =y = (29 A—Y)
Para todo x € H, se nota —x := (x — 0).
(11) Verificarque x A=x=0, xV-x<1y x<--x paratodox € H.
Justificar por qué las ultima dos desigualdades no son igualdades.
(12) Demostrar que las siguientes aserciones son equivalentes:
(i) H esun algebra booleana;
(if) =—x = x paratodo x € H;
(iii) xV-x =1 paratodo x € H.

Ejercicio 7 (Algebra de Tarski-Lindenbaum). Sea .7 una teoria de primer orden sobre un
lenguaje .Z. Se nota Ty (resp. Fy) al conjunto de los términos cerrados (resp. al conjunto de
las férmulas cerradas) del lenguaje .. Se equipa el conjunto F con la equivalencia ~ definida
por ¢ ~y sii T+ @ & ¥ (paratodos ¢,y € Fy), y se llama dlgebra de Tarski-Lindenbaum
de la teorfa .7 al cociente B4 := F/~ equipado con el orden < definido por:

[Pl <Yl sii T o=y
(1) Demostrar que B~ es un dlgebra booleana, en que:
[Nl =Teryl, [elVIYI=leVyl vy —lel=[-¢] (paratodos ¢,y € Fo)
(2) Verificar que:

(i) B =1 sii 7 es inconsistente.
(i) By =2 sii 7 es consistente y completa.

(3) Demostrar que si la teorfa .7 es Henkin-completa", entonces:

xel = Nl y  [Bxel = \/lpo)]

teTy €T
para toda férmula ¢(x) del lenguaje £ que depende de una sola variable x.
(4) (Qué pasa cuando .7 no es Henkin-completa?

Ejercicio 8 (Morfismos de dlgebras booleanas). Dadas dlgebras booleanas By B’, se dice que
una funcién f : B — B’ es un morfismo de dlgebras booleanas cuando:

f(=x) = =f(x)
JxAy) = f)A ) f(0p) = 0p (para todos x,y € B)
fxvy) = f()V Q) f(p) =1p
Se dice que f : B — B’ es un isomorfismo de dlgebras booleanas cuando ademds f es biyectiva
y suinversa ! : B — B es un morfismo de dlgebras booleanas.
(1) Demostrar que una funcién f : B — B’ es un isomorfismo de dlgebras booleanas
siy s6lo si f es un isomorfismo de conjuntos ordenados.
(2) Demostrar que todo morfismo inyectivo f : B < B’ de dlgebras booleanas es un encaje:
x<y sii f(x) < f(y) (para todos x,y € B)

(3) Deducir que todo morfismo biyectivo de dlgebras booleanas es un isomorfismo.

(DSe recuerda que una teoria .7 es Henkin-completa cuando para toda férmula ¢(x) de su lenguaje que depende
de una sola variable x, existe un término 7, € T tal que 7 F Jx p(x) = @(1,).
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Ejercicio 9 (El dlgebra booleana numerable sin dtomos). Se dice que un elemento a de un
algebra booleana B es un dtomo cuando a > 0 y a es minimal en B — {0}.

(1) Sea R C B(w) el conjunto de los subconjuntos recursivos de w® e I C R el ideal de los
subconjuntos finitos. Demostrar que R// es un dlgebra booleana numerable sin dtomos.

(2) Sea P C B(w) el conjunto de los subconjuntos periédicos de w®. Demostrar que P es
una subdlgebra booleana de ‘B(w), numerable y sin dtomos.

(3) Demostrar que si By C son dos dlgebras booleanas numerables y sin 4tomos, entonces B
y C son isomorfas. Para ello, se podra construir dos sucesiones crecientes de subalgebras
booleanas finitas (B, € B),cw ¥ (C,, € C),ep tales que B, = C, para todo n € w, y tales

que B = Unew B,yC = Unea) Cy.

Ejercicio 10 (Operadores de clausura y polaridades). En este ejercicio, se presentan unas he-
rramientas para construir reticulos completos.

Operadores de clausura  Sea A un conjunto. Un operador de clausura sobre A es una funcién
(X > X): B(A) — PB(A) tal que:

() XCX (i) X=X (i) X C Y implica XC Y
para todos X, Y € P(A).

(1) Demostrar que el conjunto T := {X € B(A) : X = X} (equipado con C) es un reticulo
completo en que el infimo de una familia es su interseccion. ;Cudl es su supremo?

Polaridades Una polaridad es una terna (A~, A*, R) formada por dos conjuntos A~ y A* equi-
pados con una relaciéon R € A~ X A™ cualquiera (el polo). Se notan:

m Xt i={yeA*:(VxeX) xRy} (CA") paratodo X CA~;
m Y i={xeA :(VyeY) xRy} (CA™) paratodo Y CA*.

(2) Demostrar que para todos X, X" € A (resp. ¥, Y’ C A*):
(2.1) X C X’ implica X" 2 X'* (resp. Y C Y’ implica Y~ 2 Y'7)
(22) X C(X*)” (resp. Y C(Y7)")
(23) (X)) =X" (resp. (Y7)")" =Y")
(3) Deducir de lo anterior que X — (X*)~ y Y + (¥Y7)* son operadores de clausura sobre A~
y A, respectivamente, y que los conjuntos
T- = {XePA) : X)) =X} y T = {YePAT) : (YY) =7}

(equipados con C) son reticulos completos antiisomorfos el uno del otro.
(4) Caracterizar los infimos y los supremos en T~ y en T".

(5) En el caso particular donde A" = A~ = A y donde R C A? es simétrica, ;se puede deducir
que T* = T~ es un dlgebra booleana? Demostrarlo, o dar un contrajemplo.

Un ejemplo importante de construccién por polaridad estd dado en el ejercicio siguiente.

@Es decir los subconjuntos de w cuya funcién caracteristica es computable.
3Es decir los subconjuntos de w cuya funcién caracteristica es periddica.
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Ejercicio 11 (Completacion de Dedekind-MacNeille). Sea P = (P, <) un conjunto ordenado
cualquiera. En el marco de la polaridad (P, P, <) (véase Ejercicio 10), se notan

X = {xeP:¥yeX)x<y} y Xt = {xeP:¥yeX) x>y}

para todo X € P. Se llama completacion de Dedekind-MacNeille del conjunto ordenado (P, <)
al conjunto P := {X C P : (X*)™ = X} ordenado por la inclusién. Vimos en el ejercicio anterior
que P es un reticulo completo. Para todo x € P, se nota «(x) := {x}~ (€ P).

(1) Verificar que «(x) = |x (= clausura inferior de x) para todo x € P, y deducir que la
funcién ¢ : P — P es un encaje de (P, <) en (P, C).

(2) Demostrar que ¢ preserva todos los infimos y supremos que existen en P, es decir:
(i) si x =1inf; x; (en P), entonces t(x) = A t(x;) (en P),
(i1) si x =sup,, x; (en P), entonces u(x) = /g t(x;) (en P)
para todos x € Py (x)ie; € P! (I cualquiera).
(3) Demostrar que para todo X € P, tenemos que:

X= AMYeuP): Y2X} = V{¥euP): YCX)

(Es decir: todo elemento de P es infimo y supremo de elementos que vienen de P.)
(4) Deducir que si P es un reticulo completo, entonces ¢ : (P, <) — (P, C) es un isomorfismo.

(5) Demostrar mds generalmente que si L es un reticulo completo, entonces toda funcién
monoétona f : P — L que preserva los infimos y supremos que existen en P se extiende
de manera tnica en un morfismo de reticulos completos f : P — L:

L

N— T

-,

L

(6) Determinar P en el caso particular donde P = Q (equipado con el orden usual).

(7) Demostrar que si (P, <) es un algebra de Heyting (resp. de Boole), entonces su comple-
tacién de Dedekind-MacNeille (P, C) también lo es.



