INTRODUCCION AL FORCING SEGUNDO SEMESTRE DE 2024

Practico 4: Modelos booleanos

El modelo booleano V2  Dada un 4lgebra booleana completa B, se define la clase V® de los
B-nombres por VP := Jueon Vi, donde V' = g, B<'s para todo @ € On. El universo V se
encaja en V2 mediante la funcional (x — X) : V — V definida por €-recursién sobre x € V por
X:={@, 1) : y € x}. A partir de ahora, se considera el lenguaje de primer orden .Z, . ;; definido

a partir de los tres simbolos de predicado «- € -» (pertenencia), «- C -» (inclusién primitiva) y

« € V» (pertenencia al universo inicial), y a cada férmula ¢(x4, ..., x,) del lenguaje i”e,g’(, se
asocia la funcional ((uy,...,u,) = [euy,...,u)]®) : (VE)" = B definida por:
[u=v]® = [ucv]®PAvcul® [ucv]® := /\(u(u’) — [u € v]®)
u’ edom(u)
[ue® = \/O0)A[u=Vv]?) [ue VP = \/[u="
v'edom(v) xeV
[=e@]® = =[e@]" le@) = y@]° = [e@]® - [w@D]"
[e@) Ay@]® = [e@]" A [p@]* le@) ve@]* = [e@]* v [p@]*
Vyew. D = [\l ] [yew. D] = \/[ev. D]
veVEB veyB

En lo siguiente, se trabaja en el lenguaje .Z_ ;; (inducido por los simbolos de predicado «- € -»
y « € V»), ya que la inclusién usual, definida por x C y := Vz(z € x = z € ), tiene la
misma denotacion que la inclusion primitiva del lenguaje anterior. En fin, dada una férmula
¢(x1, ..., Xx,) con pardimetros uy, ..., U, € VE, se nota

VEE o, ...,u) = [eu,...,u,)]®=13.

La clase V® equipada con la nocién de satisfaccién anterior constituye un modelo booleano
de ZF, en el sentido en que en ZF, se demuestra que

(1) VB E ¢ para cada teorema de ZF;
En el modelo booleano VB, el predicado «- € V» define una clase transitiva que contiene todos
los ordinales y cumple las mismas propiedades que el universo inicial:

(2) VBEE(YxeV)xCV A OncV;

(3) Y1 Vo (p(xr, s x) © VEE @ (i, X))
Y en ZFC se demuestra que:

(4) VBEEAC, yluego: VB E ¢ paracadateorema de ZFC.

Dadas familias (a;)ic; € B’ y (u;)ie; € (VB)I indexadas por un mismo conjunto I, se define la
mezcla )¢ a; - u; por

dom(Ziez a; - Mi) :
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(para todo v € | J;c; dom(;))

(UDonde ZFy, es la teorfa de Zermelo-Fraenkel cuyos esquemas de comprensién y de reemplazo han sido ex-
tendidos a todas las férmulas del lenguaje Z_ .



y se demuestra que si a; A a; < [u; = u;]® para todos i, j € I, entonces

ai < [Yierai-wi = w]® (paratodo i € I)

Ejercicio 1 (Ordinales booleanos).
(1) Demostrar (en ZF) que para toda férmula ¢(x) (con pardmetros en V?), tenemos que

[Gecome@]® = \/lp@]* vy [Vacome@]® = /\l¢@]"

aeOn aeln

(2) Demostrar (en ZF) que para todo u € V®, las siguientes aserciones son equivalentes:
(2.1) VB On(u)
(2.2) Existen una familia de ordinales («;);c; y una particién de la unidad (a;)e;
(indexadas por el mismo conjunto /) tales que V® Eu = 3. a; - &;.

El principio del maximo En ZFC, el modelo booleano V® cumple el principio del mdximo:
para cada férmula ¢(x, W) (con pardmetros w € V®), existe u* € V® tal que

[Brge W (= \/Ioe D) = [ DI

ucVB

(Y dualmente, existe u, € V® tal que [Vx o(x, ¥)]® = [p(u., W)]®.)

Ejercicio 2 (Forma débil del principio del maximo). Mostrar en ZF (sin AC) que si ¢(x, W)
(con w € VB) es tal que V® | Alx p(x, W), entonces existe u* € V tal que VB | o(u*, ).

Sugerencia: Hallar un ordinal & tal que \/,cyz [¢(u, W)]® = 1, y considerar el B-nombre u* € V*
definido por dom(u*) := VE® y w*(v) := [Axp(x, W) Av € x]|® para todo v € dom(u*).

Ejercicio 3 (El principio del médximo es equivalente a AC).
(1) Dada una familia (b;),c; € B’ tal que \/;; b; = 1, se llama refinamiento disjunto de (b;)¢;
a toda particién de la unidad (a;),e; € B! tal que a; < b; para todo i € I. Se notan:
= 4 al B-nombre definido por dom(u) ={i:i €I} y u(i) := b; paratodoi € I;
= R al conjunto de todos los refinamientos disjuntos de (b;);es;
» U:={veVE:[veu]® =1}
(1.1) Verificar que para todo (;),e; € R, tenemos que (},c;a; - 1) € U.
(1.2) Mostrar que para todo v € U, existe un tnico (a;)ic; € R tal que [v = Y;; a;-1]® = 1.
(2) Sean las féormulas:
OB): MueVEY[uz2]B=1= @veV®[veu]®=1).
WY(B) : Toda familia (b;);c; € B’ tal que \/; b; = 1 tiene un refinamiento disjunto.
(2.1) Demostrar en ZF (sin AC) que: ®(B) & WY(B) (usando (1)).
(2.2) Sea £ la clase de las édlgebras booleanas completas.

Demostrar en ZF (sin AC) que: (VBe A)¥Y(B) = AC.
Sugerencia: Considerar el caso particular donde B = ¥(X), con X cualquiera.

(3) Deducir de lo anterior que (en ZF) el principio del médximo es equivalente a AC.



Ejercicio 4 (Nicleo). Dado u € V®, un niicleo de u es un conjunto U C V® tal que:

(i) [veu]® =1paratodov e U.

(ii) Para todo v € VP tal que [[v € u]|® = 1, existe un tnico V' € U tal que [v = v]® = 1.

(1) Demostrar (en ZFC) que todo u € V? tiene un nicleo.

(2) Verificar (en ZFC) que si U; y U, son dos niicleos de un mismo nombre u € VE, entonces
el conjunto 4 := {(v;, ;) € Uy X U, : [v; = w,]® = 1} es una biyeccién entre U, y U,.

(3) Seau € V®tal que VB  u # @, y U un nicleo de u.
(3.1) Verificar (en ZFC) que U # &.
(3.2) Probar (en ZFC) que para todo v € VB, existe v/ € U tal que [v = v']® = [[v € u]®.

Modelos inducidos A partir de ahora, se considera un modelo de Tarski .# E ZFC, asi como

puntos B, <g € . tales que .# [ «(B, <g) es un algebra booleana completa». En lo siguiente
se nota B al conjunto externo asociado a B, y <g a la relacion externa asociada a <g:

B = {lae H : HEacB} (comprension externa)

a<gd = MEa<pd (& (a,a)” e’ B) (para todos a,a’ € B)

En la metateoria, el par (8, <g) es un dlgebra booleana .# -completa, en el sentido en que todo

subconjunto externo X C B asociado a un subconjunto interno X % B (es decir: un punto

X € # tal que # E X C B) tiene un infimo y un supremo en B. En lo siguiente, se nota
-7 (B) al conjunto de los subconjuntos de B que corresponden a un subconjunto interno:

PYB) = {(XCB: AXeM)VacB)ac X & M Eac X))

La construccién del modelo booleano V2 (en ZFC) induce un subconjunto
M® = {ue M : MEueVE).
Para cada férmula ¢(xq, . . ., x,) de .Z, y, la funcional (uy,...,u,) — [e(u, ..., u,)]® (definida
en ZF) induce en el modelo .# E ZFC una funcion

(g, ... uy) o [o(uy, ... u)]?) « (A®)' - B
mientras que la funcional x — X (en ZFC) induce una funcién
(a—a) : M — H®
De las propiedades de V® en ZFC, se deduce que:
(1) [¢]®? = 1g para cada teorema de ZFCy,
() [(VxeV)xCV A OncCV]% =14
B) M E @lar,...,a)) sii [@"@,...a)]% = 1g
(para cada férmula ¢(xy, ..., x,) con parametros ay, ..., a, € ).

Dado un ultrafiltro U C .# (interno o externo), se nota .Z[U] := .#®/~, donde ~ es la
relacion binaria sobre .# definida por

u~u = u=u]fel (u,u' € %)
y se equipa .7 [U] con las relaciones (€ 7™y c .#[UJ* y M C U] definidas por
(] €™ [w] sii [uew]®?eU (u,ve . #®
wle.Z sii [ueuw]®eU (ue.#®)
Para cada formula ¢(x, ..., x,) de ,,2”6"7 con parametros u, ..., u, € M B se demuestra que:

MU E (], ... [ua]) sii [ou,... u)]? € U.
(interpretando el simbolo «- € V» por la relacién u € .# en .#[U]).
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De las propiedades del modelo booleano interno .#® C ./, se deduce que:

(1) El conjunto .#[U] equipado con las relaciones €™y .4 es un modelo de ZFCj.

(2) U] E (VxeV)xCV A OncCV.

(3) Lafuncion h : # — #[U] definida por h(a) := [d] paratodo a € .# es un encaje de
(A, e”)en (MU, U

(4) Tenemos que h(.#) C M y a través de esta inclusion, M (equipado con €”!“1) es una
extension elemental de .# (equipado con €7%).

(Observar que la inclusién h(.#') C M es estricta en general.)

Ultrafiltro .# -genérico Se dice que el ultrafiltro U C B es .4 -genérico cuando
XCU implica ANXeU (para todo X € P (B))
o dualmente, cuando:
VXeU implica XNU#D (para todo X € B (B))

(Ejercicio: Demostrar la equivalencia entre ambas definiciones.)

Ejercicio 5 (Caracterizacion de la igualdad h(.Z) = M ).
(1) Demostrar que si el ultrafiltro U C B es .# -genérico, entonces h(.#) = M.
(2) Demostrar (en ZFC) que para toda anticadena A C B, existe una familia de conjuntos
(X4)aca y un nombre u € VE tal que [u = X,]® = a para todo a € A.
(3) Deducir de lo anterior que si i(.#) = M , entonces el ultrafiltro U C Bes .4 -genérico.

Sugerencia: Observar que para todo X € B/ (B), existe una anticadena A € P-7(B) tal
que \/X = \/A y tal que para todo a € A, existe b € X, tal que a <g b.

Ejercicio 6 (Ultrafiltros internos y externos). Se dice que un ultrafiltro U C B es interno
cuando viene de un punto U € . tal que .# | U C B ultrafiltro. Demostrar que para todo
ultrafiltro .# -genérico U C B, las siguientes aserciones son equivalentes:

(i) U es un ultrafiltro interno
(ii) U = T{a} para algin dtomo a € B
(iily MU = M (=~ M)

Ejercicio 7 (Caracterizacion de los ultrafiltros genéricos). Se dice que un subconjunto D C B*
(= B —-{0}) es denso cuando TD = B*.

(1) Demostrar que un subconjunto U C B es un ultrafiltro .# -genérico si y s6lo si U es un
filtro propio de 8 que interseca todo conjunto denso D C B* que viene de .Z .

(2) Demostrar que si .# es numerable, entonces existe un ultrafiltro .# -genérico U C B.
Sugerencia: Considerar una enumeracién (9,),«, de los suconjuntos densos de 8 que
vienen de .#, construir una sucesion decreciente (b,),<c, € B*“ tal que b, € D, para
todon € w, y tomar U := T{b, : n < w}.

Ejercicio 8 (B-nombre genérico). En ZF, se define el B-nombre genérico U € V® por U :=
{(b,b) : b € B} € VB, Demostrar que V2 | «U C BB es un ultrafiltro \V/-genérico».



