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Práctico 4: Modelos booleanos

El modelo booleano VB Dada un álgebra booleana completa B, se define la clase VB de los
B-nombres por VB :=

⋃
α∈On VB

α , donde VB
α :=

⋃
β<α B⊆VB

β para todo α ∈ On. El universo V se
encaja en VB mediante la funcional (x 7→ x̌) : V → VB definida por ∈-recursión sobre x ∈ V por
x̌ := {(y̌, 1) : y ∈ x}. A partir de ahora, se considera el lenguaje de primer orden L∈,⊆,V̌ definido
a partir de los tres símbolos de predicado «· ∈ ·» (pertenencia), «· ⊆ ·» (inclusión primitiva) y
«· ∈ V̌» (pertenencia al universo inicial), y a cada fórmula φ(x1, . . . , xn) del lenguaje L∈,⊆,V̌ se
asocia la funcional ((u1, . . . , un) 7→ Jφ(u1, . . . , un)KB) :

(
VB)n 7→ B definida por:

Ju = vKB := Ju ⊆ vKB ∧ Jv ⊆ uKB Ju ⊆ vKB :=
∧

u′∈dom(u)

(
u(u′)→ Ju′ ∈ vKB

)
Ju ∈ vKB :=

∨
v′∈dom(v)

(
v(v′) ∧ Ju = v′KB

)
Ju ∈ V̌KB :=

∨
x∈V

Ju = x̌KB

J¬φ(u⃗)KB := ¬Jφ(u⃗)KB Jφ(u⃗)⇒ ψ(u⃗)KB := Jφ(u⃗)KB → Jψ(u⃗)KB

Jφ(u⃗) ∧ ψ(u⃗)KB := Jφ(u⃗)KB ∧ Jψ(u⃗)KB Jφ(u⃗) ∨ ψ(u⃗)KB := Jφ(u⃗)KB ∨ Jψ(u⃗)KB

J∀yφ(y, u⃗)KB :=
∧
v∈VB

Jφ(v, u⃗)KB J∃yφ(y, u⃗)KB :=
∨
v∈VB

Jφ(v, u⃗)KB

En lo siguiente, se trabaja en el lenguaje L∈,V̌ (inducido por los símbolos de predicado «· ∈ ·»
y «· ∈ V̌»), ya que la inclusión usual, definida por x ⊆ y :≡ ∀z (z ∈ x ⇒ z ∈ y), tiene la
misma denotación que la inclusión primitiva del lenguaje anterior. En fin, dada una fórmula
φ(x1, . . . , xn) con parámetros u1, . . . , un ∈ VB, se nota

VB |= φ(u1, . . . , un) :≡ Jφ(u1, . . . , un)KB = 1B .

La clase VB equipada con la noción de satisfacción anterior constituye un modelo booleano
de ZF, en el sentido en que en ZF, se demuestra que

(1) VB |= φ para cada teorema de ZFV̌
(1)

En el modelo booleano VB, el predicado «· ∈ V̌» define una clase transitiva que contiene todos
los ordinales y cumple las mismas propiedades que el universo inicial:

(2) VB |= (∀x ∈ V̌) x ⊆ V̌ ∧ On ⊆ V̌;
(3) ∀x1 · · · ∀xn

(
φ(x1, . . . , xn) ⇔ VB |= φV̌(x̌1, . . . , x̌n)

)
;

Y en ZFC se demuestra que:
(4) VB |= AC, y luego: VB |= φ para cada teorema de ZFC.

Dadas familias (ai)i∈I ∈ BI y (ui)i∈I ∈
(
VB)I indexadas por un mismo conjunto I, se define la

mezcla
∑

i∈I ai · ui por

dom
(∑

i∈I ai · ui

)
:=
⋃
i∈I

dom(ui)(∑
i∈I ai · ui

)
(v) :=

∨
i∈I

(ai ∧ Jv ∈ uiKB) (para todo v ∈
⋃

i∈I dom(ui))

(1)Donde ZFV̌ es la teoría de Zermelo-Fraenkel cuyos esquemas de comprensión y de reemplazo han sido ex-
tendidos a todas las fórmulas del lenguaje L∈,V̌ .
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y se demuestra que si ai ∧ a j ≤ Jui = u jKB para todos i, j ∈ I, entonces

ai ≤ J
∑

i∈I ai · ui = uiKB (para todo i ∈ I)

Ejercicio 1 (Ordinales booleanos).
(1) Demostrar (en ZF) que para toda fórmula φ(x) (con parámetros en VB), tenemos que

J(∃α ∈On)φ(α)KB =
∨
α∈On

Jφ(α̌)KB y J(∀α ∈On)φ(α)KB =
∧
α∈On

Jφ(α̌)KB

(2) Demostrar (en ZF) que para todo u ∈ VB, las siguientes aserciones son equivalentes:
(2.1) VB |= On(u)
(2.2) Existen una familia de ordinales (αi)i∈I y una partición de la unidad (ai)i∈I

(indexadas por el mismo conjunto I) tales que VB |= u =
∑

i∈I ai · α̌i.

El principio del máximo En ZFC, el modelo booleano VB cumple el principio del máximo:
para cada fórmula φ(x, w⃗) (con parámetros w⃗ ∈ VB), existe u∗ ∈ VB tal que

J∃xφ(x, w⃗)KB
(
=
∨
u∈VB

Jφ(u, w⃗)KB
)
= Jφ(u∗, w⃗)KB .

(Y dualmente, existe u∗ ∈ VB tal que J∀xφ(x, w⃗)KB = Jφ(u∗, w⃗)KB.)

Ejercicio 2 (Forma débil del principio del máximo). Mostrar en ZF (sin AC) que si φ(x, w⃗)
(con w⃗ ∈ VB) es tal que VB |= ∃!xφ(x, w⃗), entonces existe u∗ ∈ VB tal que VB |= φ(u∗, w⃗).
Sugerencia: Hallar un ordinal α tal que

∨
u∈VB

α
Jφ(u, w⃗)KB = 1, y considerar el B-nombre u∗ ∈ VB

definido por dom(u∗) := VB
α y u∗(v) := J∃xφ(x, w⃗) ∧ v ∈ xKB para todo v ∈ dom(u∗).

Ejercicio 3 (El principio del máximo es equivalente a AC).
(1) Dada una familia (bi)i∈I ∈ BI tal que

∨
i∈I bi = 1, se llama refinamiento disjunto de (bi)i∈I

a toda partición de la unidad (ai)i∈I ∈ BI tal que ai ≤ bi para todo i ∈ I. Se notan:
u al B-nombre definido por dom(u) = {ı̌ : i ∈ I} y u(ı̌) := bi para todo i ∈ I;

R al conjunto de todos los refinamientos disjuntos de (bi)i∈I;

U := {v ∈ VB : Jv ∈ uKB = 1}.
(1.1) Verificar que para todo (ai)i∈I ∈ R, tenemos que

(∑
i∈I ai · ı̌

)
∈ U.

(1.2) Mostrar que para todo v ∈ U, existe un único (ai)i∈I ∈ R tal que Jv =
∑

i∈I ai · ı̌KB = 1.

(2) Sean las fórmulas:
Φ(B) : (∀u ∈VB)

(
Ju , ∅KB = 1 ⇒ (∃v ∈VB) Jv ∈ uKB = 1

)
.

Ψ(B) : Toda familia (bi)i∈I ∈ BI tal que
∨

i∈I bi = 1 tiene un refinamiento disjunto.

(2.1) Demostrar en ZF (sin AC) que: Φ(B) ⇔ Ψ(B) (usando (1)).
(2.2) Sea B la clase de las álgebras booleanas completas.

Demostrar en ZF (sin AC) que: (∀B ∈B)Ψ(B) ⇒ AC.
Sugerencia: Considerar el caso particular donde B = P(X), con X cualquiera.

(3) Deducir de lo anterior que (en ZF) el principio del máximo es equivalente a AC.
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Ejercicio 4 (Núcleo). Dado u ∈ VB, un núcleo de u es un conjunto U ⊆ VB tal que:
(i) Jv ∈ uKB = 1 para todo v ∈ U.

(ii) Para todo v ∈ VB tal que Jv ∈ uKB = 1, existe un único v′ ∈ U tal que Jv = v′KB = 1.

(1) Demostrar (en ZFC) que todo u ∈ VB tiene un núcleo.
(2) Verificar (en ZFC) que si U1 y U2 son dos núcleos de un mismo nombre u ∈ VB, entonces

el conjunto h := {(v1, v2) ∈ U1 × U2 : Jv1 = v2KB = 1} es una biyección entre U1 y U2.
(3) Sea u ∈ VB tal que VB |= u , ∅, y U un núcleo de u.

(3.1) Verificar (en ZFC) que U , ∅.
(3.2) Probar (en ZFC) que para todo v ∈ VB, existe v′ ∈ U tal que Jv = v′KB = Jv ∈ uKB.

Modelos inducidos A partir de ahora, se considera un modelo de Tarski M |= ZFC, así como
puntos B,≤B ∈M tales que M |= «(B,≤B) es un álgebra booleana completa». En lo siguiente
se nota B al conjunto externo asociado a B, y ≤B a la relación externa asociada a ≤B:

B := {a ∈M : M |= a ∈ B}
a ≤B a′ :≡ M |= a ≤B a′ (⇔ (a, a′)M ∈M B)

(comprensión externa)
(para todos a, a′ ∈ B)

En la metateoría, el par (B,≤B) es un álgebra booleana M -completa, en el sentido en que todo
subconjunto externo X ⊆ B asociado a un subconjunto interno X ⊆M B (es decir: un punto
X ∈ M tal que M |= X ⊆ B) tiene un ínfimo y un supremo en B. En lo siguiente, se nota
PM (B) al conjunto de los subconjuntos de B que corresponden a un subconjunto interno:

P
M (B) := {X ⊆ B : (∃X ∈M )(∀a ∈B)(a ∈ X ⇔M |= a ∈ X)}

La construcción del modelo booleano VB (en ZFC) induce un subconjunto
M B := {u ∈M : M |= u ∈ VB}.

Para cada fórmula φ(x1, . . . , xn) de L∈,V̌ , la funcional (u1, . . . , un) 7→ Jφ(u1, . . . , un)KB (definida
en ZF) induce en el modelo M |= ZFC una función(

(u1, . . . , un) 7→ Jφ(u1, . . . , un)KB
)

:
(
M B)n → B

mientras que la funcional x 7→ x̌ (en ZFC) induce una función
(a 7→ ǎ) : M →M B

De las propiedades de VB en ZFC, se deduce que:
(1) JφKB = 1B para cada teorema de ZFCV̌

(2) J(∀x ∈ V̌) x ⊆ V̌ ∧ On ⊆ V̌KB = 1B
(3) M |= φ(a1, . . . , an) sii JφV̌(ǎ1, . . . , ǎn)KB = 1B

(para cada fórmula φ(x1, . . . , xn) con parámetros a1, . . . , an ∈M ).

Dado un ultrafiltro U ⊆ M (interno o externo), se nota M [U] := M B/∼, donde ∼ es la
relación binaria sobre M definida por

u ∼ u′ :≡ Ju = u′KB ∈ U (u, u′ ∈M B)
y se equipa M [U] con las relaciones (∈M [U]) ⊆M [U]2 y M̌ ⊆M [U] definidas por

[u] ∈M [U] [u′] sii Ju ∈ u′KB ∈ U
[u] ∈ M̌ sii Ju ∈ u′KB ∈ U

(u, v ∈M B)
(u ∈M B)

Para cada fórmula φ(x1, . . . , xn) de L∈,V̌ con parámetros u1, . . . , un ∈M B, se demuestra que:
M [U] |= φ([u1], . . . , [un]) sii Jφ(u1, . . . , un)KB ∈ U.

(interpretando el símbolo «· ∈ V̌» por la relación u ∈ M̌ en M [U]).
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De las propiedades del modelo booleano interno M B ⊆M , se deduce que:

(1) El conjunto M [U] equipado con las relaciones ∈M [U] y M̌ es un modelo de ZFCV̌ .
(2) M [U] |= (∀x ∈ V̌) x ⊆ V̌ ∧ On ⊆ V̌ .
(3) La función h : M →M [U] definida por h(a) := [ǎ] para todo a ∈M es un encaje de

(M , ∈M ) en (M [U], ∈M [U]).
(4) Tenemos que h(M ) ⊆ M̌ y a través de esta inclusión, M̌ (equipado con ∈M [U]) es una

extensión elemental de M (equipado con ∈M ).

(Observar que la inclusión h(M ) ⊆ M̌ es estricta en general.)

Ultrafiltro M -genérico Se dice que el ultrafiltroU ⊆ B es M -genérico cuando
X ⊆ U implica

∧
X ∈ U (para todo X ∈ PM (B))

o dualmente, cuando:∨
X ∈ U implica X ∩U , ∅ (para todo X ∈ PM (B))

(Ejercicio: Demostrar la equivalencia entre ambas definiciones.)

Ejercicio 5 (Caracterización de la igualdad h(M ) = M̌ ).
(1) Demostrar que si el ultrafiltroU ⊆ B es M -genérico, entonces h(M ) = M̌ .
(2) Demostrar (en ZFC) que para toda anticadena A ⊆ B, existe una familia de conjuntos

(xa)a∈A y un nombre u ∈ VB tal que Ju = x̌aKB = a para todo a ∈ A.
(3) Deducir de lo anterior que si h(M ) = M̌ , entonces el ultrafiltroU ⊆ B es M -genérico.

Sugerencia: Observar que para todo X ∈ PM (B), existe una anticadena A ∈ PM (B) tal
que
∨
X =
∨
A y tal que para todo a ∈ A, existe b ∈ X, tal que a ≤B b.

Ejercicio 6 (Ultrafiltros internos y externos). Se dice que un ultrafiltro U ⊆ B es interno
cuando viene de un punto U ∈ M tal que M |= U ⊆ B ultrafiltro. Demostrar que para todo
ultrafiltro M -genéricoU ⊆ B, las siguientes aserciones son equivalentes:

(i) U es un ultrafiltro interno
(ii) U = ↑{a} para algún átomo a ∈ B

(iii) M [U] = M̌ (≃M )

Ejercicio 7 (Caracterización de los ultrafiltros genéricos). Se dice que un subconjuntoD ⊆ B∗

(= B − {0}) es denso cuando ↑D = B∗.

(1) Demostrar que un subconjuntoU ⊆ B es un ultrafiltro M -genérico si y sólo siU es un
filtro propio de B que interseca todo conjunto densoD ⊆ B∗ que viene de M .

(2) Demostrar que si M es numerable, entonces existe un ultrafiltro M -genéricoU ⊆ B.
Sugerencia: Considerar una enumeración (Dn)n<ω de los suconjuntos densos de B que
vienen de M , construir una sucesión decreciente (bn)n<∈ω ∈ B

∗ω tal que bn ∈ Dn para
todo n ∈ ω, y tomarU := ↑{bn : n < ω}.

Ejercicio 8 (B-nombre genérico). En ZF, se define el B-nombre genérico U ∈ VB por U :=
{(b̌, b) : b ∈ B} ∈ VB. Demostrar que VB |= «U ⊆ B̌ es un ultrafiltro V̌-genérico».
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