
Introducción al forcing Segundo semestre de 2024

Práctico 5: Extensiones genéricas

Conjuntos de condiciones Sea (P,≤) ∈ M un conjunto de forcing (i.e. un conjunto ordenado
no vacío) en un modelo transitivo M |= ZF. Dadas condiciones p, q ∈ P, se nota

p ⊤ q :≡ (∃r ∈P)(r ≤ p ∧ r ≤ q) («p y q son compatibles»)
p ⊥ q :≡ ¬(∃r ∈P)(r ≤ p ∧ r ≤ q) («p y q son incompatibles»)

Se recuerda que un subconjunto X ⊆ P es:

abierto cuando (∀p, q ∈P)(p ≤ q ∧ q ∈ X ⇒ p ∈ X)
denso cuando (∀p ∈P)(∃q ∈ X) q ≤ p
predenso cuando (∀p ∈P)(∃q ∈ X) q ⊤ p
un filtro cuando X , ∅ ∧ X = ↑X ∧ (∀p, q ∈ X)(∃r ∈ X)(r ≤ p ∧ r ≤ q)
una anticadena cuando (∀p, q ∈ X)(p , q⇒ p ⊥ q)

Ejercicio 1 (Filtros M-genéricos). Demostrar que para todo filtro G ⊆ P, las siguientes aser-
ciones son equivalentes:

(i) G interseca todo subconjunto denso de P en M.
(ii) G interseca todo subconjunto abierto denso de P en M.

(iii) G interseca todo subconjunto predenso de P en M.
(iv) G interseca toda anticadena maximal de P en M (cuando M |= AC)

Cuando es el caso, se dice que G ⊆ P es un filtro M-genérico.

Ejercicio 2 (Ortogonal de un conjunto de condiciones). Dado un subconjunto X ⊆ P, se nota
X⊥ := {p ∈ P : (∀q ∈ X) p ⊥ q}. Demostrar que para todos X,Y ⊆ P:

(1) X ⊆ Y implica X⊥ ⊇ Y⊥

(2) X ⊆ X⊥⊥

(3) X⊥ = X⊥⊥⊥

(4) X⊥ está cerrado inferiormente
(5) X ∩ X⊥ = ∅
(6) X ∪ X⊥ es predenso
(7) X = X⊥⊥ sii X = X

◦
(i.e. X es un abierto regular).

Ejercicio 3 (El álgebra booleana B). Sea B := {X ∈ PM(P) : X = X⊥⊥} (∈ M) el álgebra
booleana inducida por P, y e : P→ B la función definida por e(p) := {p}⊥⊥ para todo p ∈ P.

(1) Verificar que e(p) = {q ∈ P : (∀r≤ q) r ⊤ p} para todo p ∈ P.
(2) Demostrar que para toda condición p:

e(p) es un átomo en B (sentido booleano) sii (∀q1, q2 ≤ p) q1 ⊤ q2.

El conjunto de forcing (P,≤) es separativo cuando (∀p, q ∈P)(p ̸≤ q⇒ (∃p′ ≤ p) p′ ⊥ q).

(3) Demostrar que si (P,≤) es separativo, entonces e(p) = ↓{p} para todo p ∈ P, y luego la
función e : P→ B es un encaje de (P,≤) en (B,⊆).
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Relación de forcing Dada una fórmula φ(x1, . . . , xn) de L∈,V̌ , se recuerda que la relación de
forcing p ⊩ φ(u1, . . . , un) (con p ∈ P y u1, . . . , un ∈ MB) está definida en M por:

p ⊩ φ(u1, . . . , un) ⇔ e(p) ≤ Jφ(u1, . . . , un)KB
⇔ p ∈ Jφ(u1, . . . , un)KB

Ejercicio 4 (Propiedades de la relación de forcing). Dadas fórmulas φ, ψ, χ(x) con parámetros
(implícitos) in MB, demostrar que para todo p ∈ P, tenemos que:

(1) p ⊩ φ ⇒ (∀q≤ p) q ⊩ φ
(2) ¬(∃p ∈P)(p ⊩ φ ∧ p ⊩ ¬φ)
(3) (∀p ∈P)(∃q≤ p)(q ⊩ φ ∨ q ⊩ ¬φ)
(4) p ⊩ ¬φ ⇔ (∀q≤ p) q ⊮ φ
(5) p ⊩ φ ∧ ψ ⇔ p ⊩ φ ∧ p ⊩ ψ
(6) p ⊩ φ ∨ ψ ⇔ (∀q≤ p)(∃r≤ q)(r ⊩ φ ∨ r ⊩ ψ)
(7) p ⊩ ∀xφ(x) ⇔ (∀u ∈MB) p ⊩ φ(u)
(8) p ⊩ ∃xφ(x) ⇔ (∀q≤ p)(∃r≤ q)(∃u ∈MB) r ⊩ φ(u)

Cuando M |= AC, demostrar además que:

(9) p ⊩ ∃xφ(x) ⇔ (∃u ∈MB) p ⊩ φ(u)

Ejercicio 5 (Cardinales posibles para el continuo). En este ejercicio, se supone que existe un
modelo transitivo numerable de ZF.

(1) Mostrar (bajo la hipótesis anterior) que cada una de las siguientes teorías tiene un modelo
transitivo numerable: ZFC + HGC, ZFC + 2ℵ0 = ℵn (n ≥ 1) y ZFC + 2ℵ0 = ℵω+1.

(2) Demostrar en ZFC que (∀κ ∈Cn)(cof(κ) = ℵ0 ⇒ κℵ0 > κ)
(Sugerencia: Usar el lema de König.)

(3) Demostrar en ZFC + HGC que (∀κ ∈Cn)(cof(κ) > ℵ0 ⇒ κℵ0 = κ)
(Sugerencia: Observar que si cof(κ) > ℵ0, entonces κℵ0 = supµ<κ µ

ℵ0 .)
(4) Mostrar que existe un modelo transitivo M |= ZFC y un cardinal κ ∈ CnM tales que:

M |= cof(κ) > ℵ0 y M |= κℵ0 > κ. (Sugerencia: Elegir M tal que M |= 2ℵ0 = ℵ2.)
(5) Dado un modelo transitivo numerable M |= ZFC, demostrar que para todo cardinal in-

finito κ ∈ CnM tal que M |= κℵ0 = κ, existe una extensión genérica M[G] ⊇ M tal que
CnM[G] = CnM y M[G] |= 2ℵ0 = κ.

Ejercicio 6 (Condición de κ-cadena). Sea un modelo transitivo M |= ZFC y un conjunto de
forcing (P,≤) ∈ M. Fijado un cardinal infinito κ ∈ CnM, se dice que el conjunto de forcing
(P,≤) ∈ M cumple la condición de κ-cadena (notación: κ-c.c.), cuando

M |= (∀A⊆P)(A anticadena⇒ |A| < κ).

En lo siguiente, siempre se considera la condición de κ-cadena (que no es absoluta) en el sentido
del modelo de base M.

(1) Sea B := {X ∈ PM(P) : X = X⊥⊥} ∈ M el álgebra booleana inducida por P en M.
Demostrar que si (P,≤P) cumple la κ-c.c. en M, entonces:

M |= (∀A⊆B)(A anticadena⇒ |A| < κ).
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A partir de ahora, se considera un filtro M-genérico G ⊆ P.

(2) Demostrar que si (P,≤P) cumple la κ-c.c. en M, con κ regular en M, entonces:

M[G] |= (∀µ≥ κ)
(
(µ cardinal regular)M ⇔ µ cardinal regular

)
.

(Sugerencia: Adaptar la prueba del teorema de preservación de los cardinales bajo la
condición de cadena numerable.)

(3) Demostrar que si (P,≤P) cumple la κ-c.c. en M, con κ regular en M, entonces:

M[G] |= (∀µ≥ κ)
(
(µ cardinal)M ⇔ µ cardinal

)
.

(Sugerencia: Considerar el mínimo contraejemplo.)
(4) Deducir de lo anterior que en toda extensión genérica M[G] ⊇ M, existe un cardinal

infinito κ ∈ CnM tal que:

M[G] |= (∀µ≥ κ)
(
(µ cardinal)M ⇔ µ cardinal

)
.

(5) Demostrar que en toda extensión genérica M[G] ⊇ M:

M[G] |= (∃λ, σ ∈On)(∀α ∈On)(ℵλ+α = ℵM
λ+σ+α).

Ejercicio 7 (Colapso de cardinales). Sea un modelo transitivo numerable M |= ZF. Mostrar
que para cada par X,Y ∈ M de conjuntos infinitos en M, existe una extensión genérica de M en
la cual ambos conjuntos X e Y son equipotentes.

Ejercicio 8 (Conjuntos de forcing κ-distributivos y κ-cerrados). Sea un modelo transitivo M |=
ZFC y un conjunto de forcing (P,≤) ∈ M. Fijado un cardinal infinito κ ∈ CnM, se dice que el
conjunto de forcing (P,≤) ∈ M es:

κ-distributivo cuando la intersección de toda familia (en M) de subconjuntos abiertos
densos de P indexada por el cardinal κ es un subconjunto abierto denso de P;
<κ-distributivo cuando es λ-distributivo para todo cardinal λ < κ (en M);
κ-cerrado cuando toda sucesión decresciente de elementos de P (en M) indexada por un
ordinal λ ≤ κ tiene una cota inferior en P;
<κ-cerrado cuando es λ-cerrado para todo cardinal λ < κ (en M).

(1) Demostrar que si (P,≤P) es κ-cerrado (en M) entonces es κ-distributivo.
(2) Demostrar que si (P,≤P) es κ-distributivo (en M), entonces en toda extensión genérica

M[G] ⊇ M y para todo conjunto X ∈ M, tenemos que (Xκ)M[G] = (Xκ)M, y en particular:
PM[G](κ) = PM(κ).

(3) Deducir de lo anterior que si el conjunto de forcing (P,≤P) ∈ M es <κ-distributivo, enton-
ces toda extensión genérica M[G] ⊇ M preserva todos los cardinales hasta κ (inclusive).

Ejercicio 9 (Forzar un buen orden sobre P(ω)). En un modelo transitivo M |= ZF + DC, se
considera el conjunto de forcing (P,≤P) ∈ M definido por:

(P,≤P) :=
(⋃
α<ℵM

1

Iny(α,PM(ω)), ⊇
)

donde Iny(α,PM(ω)) es el conjunto de las funciones inyectivas de α en PM(ω). Fijado un filtro
M-genérico G ⊆ P, se nota g :=

⋃
G (∈ M[G]).
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(1) Demostrar que (P,≤P) es ℵ0-cerrado en M, y deducir que PM[G](ω) = PM(ω).
(Sugerencia: No se pueden usar directamente los resultados del Ejercicio 8, que requieren
que M |= AC. Sin embargo, se pueden adaptar dichas ideas al marco de este ejercicio, en
que sólo suponemos que M |= DC.)

(2) Demostrar que M[G] |= g : ℵ1 → P(ω) biyectiva.
(Sugerencia: Primero demostrar que M[G] |= g : ℵM

1 → P(ω) biyectiva,
y luego deducir que ℵM[G]

1 = ℵM
1 .)

(3) Deducir que M[G] |= P(ω) bien ordenable.

Ejercicio 10 (Colapso de Lévy). En un modelo transitivo M |= ZF, se consideran un cardinal
regular infinito κ (en M) y otro cardinal λ > κ (en M). Se considera el conjunto de forcing

(P,≤) :=
(
{( f : κ ⇀ λ) : |dom( f )| < κ}M, ⊇

)
(∈ M)

así como un filtro M-genérico G ⊆ P.

(1) Demostrar que el conjunto ordenado (P,≤) es separativo y <κ-cerrado (en M). Deducir
que todos los cardinales ≤ κ en M están preservados en M[G].

(2) Demostrar que M[G] |= |λ| = κ.
(3) Demostrar que si λκ = λ (en M), entonces |P| = λ (en M). Deducir (bajo la hipótesis

anterior) que todos los cardinales > λ en M están preservados en M[G].

Ejercicio 11 (Forcing producto). Sean (P1,≤1), (P2,≤2) ∈ M dos nociones de forcing adentro
de un mismo modelo transitivo M |= ZF. Se considera el conjunto producto

(P,≤) := (P1 × P2, ≤1 × ≤2)

donde ≤ := ≤1 × ≤2 es el orden producto, definido por

(p1, p2) ≤ (q1, q2) sii p1 ≤1 q1 y p2 ≤2 q2 (para todos (p1, p2), (q1, q2) ∈ P)

(1) Demostrar que para todo G ⊆ P, las siguientes condiciones son equivalentes:
(1.1) El subconjunto G ⊆ P es un filtro M-genérico;
(1.2) G es de la forma G = G1 ×G2, donde G1 ⊆ P1 es un filtro M-genérico,

y G2 ⊆ P2 un filtro M[G1]-genérico.
(1.3) G es de la forma G = G1 ×G2, donde G2 ⊆ P2 es un filtro M-genérico,

y G1 ⊆ P1 un filtro M[G2]-genérico.
(2) Deducir de lo anterior que para todo filtro M-genérico G = G1 ×G2 ⊆ P, tenemos que

M[G] = M[G1][G2] = M[G2][G1].
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