
A Strongly Normalising Curry-Howard
Correspondence for IZF Set Theory

Alexandre Miquel

Laboratoire de Recherche en Informatique
Université Paris-Sud, 91405 Orsay Cedex, France

Alexandre.Miquel@lri.fr

Abstract. We propose a method for realising the proofs of Intuitionistic
Zermelo-Fraenkel set theory (IZF) by strongly normalising λ-terms. This
method relies on the introduction of a Curry-style type theory extended
with specific subtyping principles, which is then used as a low-level lan-
guage to interpret IZF via a representation of sets as pointed graphs
inspired by Aczel’s hyperset theory.

As a consequence, we refine a classical result of Myhill and Friedman by
showing how a strongly normalising λ-term that computes a function of
type N → N can be extracted from the proof of its existence in IZF.

1 Introduction

In this paper, we revisit the work of Myhill [12], Friedman [4], McCarty [9] and
Krivine [6, 7] related to the study of the computational contents of the proofs of
set theory. Unlike the former approaches that are based on variants of Kleene’s
realisability, we propose a different framework that combines ideas coming from
hyperset theory to the theory of type systems [8, 2, 5].

Technically, our work relies on the introduction of a type system which is used
as an assembly language to interpret the axioms of intuitionisitic set theory in
terms of pointed graphs. Conceptually, this translation is the natural reformu-
lation of Aczel’s model of hyperset theory [1] (originally achieved in set theory)
in a type-theoretical framework. Of course, building this model in type theory
allows us to benefit from the representation of proofs as λ-terms. Moreover, since
the type system we are using enjoys the strong normalisation property, any proof
of IZF is thus realised by a strongly normalising λ-term via our translation.

Apart from the strong normalisation property for IZF—which is the main
contribution of the paper—there are several interests in using a type-theoretical
framework as an intermediate language for studying set theory.

On the practical side, one may benefit from the use of many proof-assistants
based on type theory to build the corresponding λ-terms explicitly: since the
proofs of the axioms of IZF tend to be quite large, writing them down would be
almost impossible by hand. By using the method described in this paper, the

author could explicitely construct (and check) all the proof-terms of IZF axioms
with the help of the Coq proof-assistant [3].1

On a more theoretical side, this decomposition gives new insights about the
relationship between set theories and type theories. As far as we know, there
is currently no type system whose proof theoretical strength reaches the one of
ZF. Despite its non-standard subtyping rules, the extended type system we will
present in section 5 deserves the credit of enjoying this property.

2 The Logical Framework

In this section, we introduce the core part of the logical framework we will use in
this paper. The initial system, called Fω.2, will be first extended in paragraph 3.2
and then in section 5 to reach the proof theoretical strength of IZF.

2.1 System Fω.2

System Fω.2—or system Fω with one universe2—is organised in two syntactic
categories: a syntactic category of object-terms in order to represent mathe-
matical objects, and a syntactic category of proof-terms in order to represent
mathematical proofs.

Object terms actually form an autonomous type system (the ‘higher part’
of system Fω.2) which is completely independent from proof-terms. (Unlike the
calculus of constructions, system Fω.2 has no proof-dependent types.) This type
system can be seen as an extension of Martin-Löf’s logical framework

Object terms

M,N, T, U,A,B ::= Type1 | Type2 | Πx :T .U
| x | λx :T .U | M(N)
| Prop | A⇒ B
| ∀x :T .B | ∃x :T .B

with a primitive type Prop of propositions (below the first universe Type1), plus
extra constructions to represent implication and universal/existential quantifi-
cation. In this presentation, the letters M , N denote arbitrary object terms,
whereas the letters T , U are reserved for types (i.e. the terms of type Type1 or
Type2) and the letters A,B for propositions (i.e. the terms of type Prop).

As in Martin-Löf’s logical framework [8], we make a distinction between a
universe Type1 of small data-types and a (top) universe Type2 of large data-types.
For convenience, we also consider a cumulativity rule Type1 ⊂ Type2.3 Notice
that at the level of object terms, Prop is not a sort, and propositions are not

1 The corresponding proof-scripts can be downloaded on the author’s web page at
http://pauillac.inria.fr/~miquel.

2 “Fω.2” means: “system F with higher-order twice”.
3 To preserve simplicity, we do not address here the problem of propagating cumula-

tivity through dependent products.

Formation of signatures: Σ `

[] `
Σ ` T : Typei

Σ; [x : T] `
x/∈DV (Σ)

Typing rules of object terms: Σ ` M : T

Σ `
Σ ` Prop : Type1

Σ `
Σ ` Type1 : Type2

Σ ` M : Type1

Σ ` M : Type2

Σ `
Σ ` x : T

(x:T)∈Σ
Σ ` T : Typei Σ; [x : T] ` U : Typei

Σ ` Πx : T . U : Typei

i∈{1;2}

Σ; [x : T] ` M : U

Σ ` λx : T . M : Πx : T . U
Σ ` M : Πx : T . U Σ ` N : T

Σ ` M(N) : U{x := N}

Σ ` A : Prop Σ ` B : Prop

Σ ` A ⇒ B : Prop

Σ; [x : T] ` B : Prop

Σ ` Q x : T . B : Prop
Q∈{∀;∃}

Σ ` M : T

Σ ` M : T ′ T=βT ′

Formation of logical contexts: Σ ` Γ ctx

Σ `
Σ ` [] ctx

Σ ` Γ ctx Σ ` A : Prop

Σ ` Γ ; [ξ : A] ctx
ξ/∈DV (Γ)

Typing rules of proof-terms: 〈Σ〉Γ ` t : A

Σ ` Γ ctx
〈Σ〉Γ ` ξ : A

(ξ:A)∈Γ
〈Σ〉Γ ` t : A

〈Σ〉Γ ` t : A′ A=βA′

〈Σ〉Γ ; [ξ : A] ` t : B

〈Σ〉Γ ` λξ . t : A ⇒ B

〈Σ〉Γ ` t : A ⇒ B 〈Σ〉Γ ` u : A

〈Σ〉Γ ` tu : B

〈Σ; [x : T]〉Γ ` t : B

〈Σ〉Γ ` t : ∀x : T . B
x/∈FV (Γ)

〈Σ〉Γ ` t : ∀x : T . B Σ ` N : T

〈Σ〉Γ ` t : B{x := N}

Σ; [x : T] ` B : Prop Σ ` N : T 〈Σ〉Γ ` t : B{x := N}
〈Σ〉Γ ` t : ∃x : T . B

Σ; [x : T] ` A : Prop Σ ` B : Prop 〈Σ〉Γ ` t : ∀x : T . (A ⇒ B)

〈Σ〉Γ ` t : (∃x : T . A) ⇒ B

Fig. 1. Typing rules of system Fω.2

data-types. (Of course, propositions will be considered as data-types, but only
at the level of proof-terms.)

Formally, the type system of object terms is based on a judgement Σ `M : T
which expresses that the term M has type T under the assumptions in Σ. The
corresponding typing assumptions are regrouped in signatures

Signatures Σ ::= [x1 : T1; . . . ;xn : Tn]

that are finite ordered lists of declarations of the form (x : T). In order to ensure
that the terms T involved in such declarations are well-formed types, we also
need a judgement Σ ` which expresses that the signature Σ is well-formed. The
typing rules for both judgements are then defined by mutual recursion thanks
to the rules given in Fig. 1.

The proof system (i.e. the ‘lower part’) of system Fω.2 follows the typing
discipline à la Curry, so that proofs terms are actually pure λ-terms:

Proof-terms t, u ::= ξ | λξ . t | tu

By this, we mean that the universal and existential quantifications are treated
as infinitary intersection and union types respectively, so that in practice the
corresponding introduction and elimination rules have no impact on proof-terms.
On the other hand, implication is introduced and eliminated as usual, by the
means of λ-abstraction and application.

Proof-terms depend on assumptions that are declared in logical contexts:

Logical contexts Γ ::= [ξ1 : A1; . . . ; ξk : Ak] .

Since the object-terms Ai involved in such declarations cannot depend on proof-
variables, the order of these declarations is irrelevant. To ensure that each Ai

is a well-formed proposition (in a given signature), we introduce a judgement
Σ ` Γ ctx which expresses that the logical context Γ is well-formed in the
signature Σ. Finally, the last judgement 〈Σ〉Γ ` t : A expresses that in the
signature Σ, the proof-term t is a proof of the sequent Γ ` A. The rules of
inference for both judgements are given in Fig. 1.

Although the logic of system Fω.2 is ultimately built on implication and
quantifiers, the connectives ∧, ∨ and units >, ⊥ are definable by the means of
standard second-order encodings, as well as Leibniz equality.

The Primitive Existential Quantifier Although the existential quantifier could
have been defined purely in terms of ∀ and ⇒ (by the mean of the standard
second-order encoding of the existential quantifier), system Fω.2 introduces a
primitive form of existential quantification that behaves exactly as an infinitary
union type constructor. (See the last two proof-typing rules of Fig. 1.)

In practice, the primitive form of existential quantifier—which restores a sym-
metry between quantifiers in a spirit which is very close to the one of standard
realisability—tends to produce more compact proof-terms than the second-order

encoding. But the main reason for using the primitive form of existential quan-
tification is that denotations of propositions become much more readable in the
normalisation model, a point which is important when studying intuitionistic
forms of the axiom of choice as we will do in paragraphs 4.3 and 4.4.

From the point of view of provability of course, both forms of existential
quantification are logically equivalent, and the full system with primitive form
of existential quantification is nothing else but a conservative extension of the
system restricted to ∀ and ⇒ only.

3 Interpreting Zermelo’s Set Theory

Equality & Compatibility axioms

(Refl) ∀x x = x
(Sym) ∀x, y x = y ⇒ y = x
(Trans) ∀x, y, z x = y ⇒ y = z ⇒ x = z

(Compat-L) ∀x, y, z x = y ⇒ y ∈ z ⇒ x ∈ z
(Compat-R) ∀x, y, z x ∈ y ⇒ y = z ⇒ x ∈ z

Zermelo’s axioms

(Ext) ∀a, b (∀x x ∈ a ⇔ x ∈ b) ⇒ a = b

(Pair) ∀a, b ∃c ∀x x ∈ c ⇔ x = a ∨ x = b

(Select) ∀a ∃b ∀x x ∈ b ⇔ x ∈ a ∧ φ
where φ is any formula such that b /∈ FV (φ)

(Power) ∀a ∃b ∀x x ∈ b ⇔ (∀y y ∈ x ⇒ y ∈ a)

(Union) ∀a ∃b ∀x x ∈ b ⇔ (∃y y ∈ a ∧ x ∈ y)

(Infinity) ∃a ∅ ∈ a ∧ (∀x x ∈ a ⇒ x ∪ {x} ∈ a)

Fig. 2. Axioms of Zermelo’s set theory

In this section, we briefly explain how to encode Intuitionistic Zermelo’s set
theory in system Fω.2. We only give the basics of the encoding whose imple-
mentation details can be found in the author’s PhD thesis [11].

Formally, Intuitionistic Zermelo’s set theory (IZ) is the intuitionisitic first-
order theory based on two binary predicates ‘=’ (equality) and ‘∈’ (membership)
whose axioms are given in Fig. 2.

3.1 Sets as Pointed Graphs

A set is represented in system Fω.2 as a pointed graph, that is, as a triple
(X,A, a) where:

1. X : Type1 is the carrier (i.e. the type of vertices)
2. A : X→X→Prop is the edge relation (or local membership)
3. a : X is the root of the pointed graph.

Intuitively, a pointed graph (X,A, a) can be thought as a kind of transitive
closure of a set whose structure is given by the relation A(x, y) (that can be
read as: ‘x is a local element of y’) and by the root a (i.e. the entry point in the
transitive closure).

Notice that unlike the terms X, A and a, the triple (X,A, a) is not a real
object of system Fω.2 (which does not provide any pairing mechanism) but only
an informal notation to group related components. Similarly, we also introduce
the following shorthands

∀(X,A, a).φ ∆≡ ∀X :Type1 .∀A : (X→X→Prop) .∀a :X .φ

∃(X,A, a).φ ∆≡ ∃X :Type1 .∃A : (X→X→Prop) .∃a :X .φ

λ(X,A, a).M
∆≡ λX :Type1 . λA : (X→X→Prop) . λa :X .M

to denote the universal and existential quantifications as well as the λ-abstraction
over the class of pointed graphs.

Extensional equality of set theory is interpreted as bisimilarity in the class
of pointed graphs. This relation denoted by (X,A, a) ≈ (Y,B, b) is defined by:

(X,A, a) ≈ (Y,B, b)
∆≡

∃R : (X→Y→Prop) .(
∀x, x′ :X .∀y :Y . A(x′, x) ∧R(x, y) ⇒ ∃y′ :Y . B(y′, y) ∧R(x′, y′)

)
∧(

∀y, y′ :Y . ∀x :X . B(y′, y) ∧R(x, y) ⇒ ∃x′ :X . A(x′, x) ∧R(x′, y′)
)
∧

R(a, b) .

Membership is then interpreted as shifted bisimilarity, namely:

(X,A, a) ∈ (Y,B, b)
∆≡ ∃b′ :B . B(b′, b) ∧ (X,A, a) ≈ (Y,B, b′) .

Once the interpretation of equality and membership has been defined, it is
straightforward to translate any formula φ of set theory as a proposition φ∗ in
system Fω.2. For that, we consider a fixed mapping that associates three distinct
variables Xi : Type1, Ai : Xi→Xi→Prop and ai : Xi of the type system Fω.2
to each variable xi of the first-order language of set theory, and we set:

(xi = xj)∗
∆≡ (Xi, Ai, ai) ≈ (Xj , Aj , aj)

(xi ∈ xj)∗
∆≡ (Xi, Ai, ai) ∈ (Xj , Aj , aj)

(φ3 ψ)∗
∆≡ φ∗ 3 ψ∗ (3 ∈ {⇒; ∧; ∨})

(Qx φ)∗
∆≡ Q(X,A, a) . φ∗ (Q ∈ {∀; ∃})

It is straightforward to check that this translation validates the equality and
compatibility axioms of Fig. 2.

3.2 Soundness of Zermelo’s Axioms

The main interest of interpreting sets as pointed graphs and equality as bisimi-
larity is that it automatically validates the axiom of extensionality:

Proposition 1 (Extensionality) — The translation of the extensionality ax-
iom is provable in system Fω.2.

As pointed out by [12, 9, 6], the interpretation of the extensionality axiom is
the cornerstone of any computational interpretation of (the proofs of) set theory.
On the other hand, proving that the bisimilarity relation is extensional w.r.t. the
shifted bisimilarity relation is quite easy, and the formalisation of this proof in
type-theory gives the corresponding λ-term for free.

The other axioms of Zermelo express the possibility of constructing new sets
from other sets by several means. Except for the axiom of infinity, all the cor-
responding constructions have a natural translation in terms of pointed graphs
that can be formalised in system Fω.2, so that:

Proposition 2 (Finitary Zermelo axioms) — The translation of (Pair),
(Power), (Union) and of each instance of (Select) is provable in Fω.2.

However, the axiom of infinity poses another problem, since its interpretation
in terms of pointed graphs requires an infinite small data-type whose existence
cannot be proved in the logical framework we presented in section 2.4

As proposed in [11], a way to solve this problem is to add an extra universe
below the universe Type1 (i.e. a universe Type0) from which one easily recon-
structs a type of numerals by suitable encodings (so that the full construction
of a model of IZ actually takes place in system Fω.3).

In this paper, we consider a simpler solution by extending our logical frame-
work with primitive numerals. For that, we introduce a small type Nat : Type1

with two constructors 0 : Nat and S : Nat→Nat, as well as two primitive functions
pred : Nat→Nat and null : Nat→Prop with the computational rules

pred(0) →β 0 pred(S(M)) →β M null(0) →β > null(S(M)) →β ⊥

from which we easily derive that S is injective, and that S(n) 6= 0 for any
n : Nat (where 6= denotes the negation of Leibniz equality). In this framework,
the induction principle comes for free provided we restrict all the quantifications
with the predicate wf nat defined by

wf nat(n)
∆≡ ∀P : (Nat→Prop) . P (0) ⇒ (∀p :Nat . P (p) ⇒ P (S(p))) ⇒ P (n) .

Using this, it is then easy to build a pointed graph that represents the set ω of
von Neumann numerals, so that:
4 A simple counter-model is the obvious extension of the finitary boolean model of

Church’s theory of simple types to system Fω.2, in which small types are interpreted
by hereditarily finite sets whereas large types are interpreted by the elements of a
fixed set-theoretical universe.

Proposition 3 (Infinity) — The translation of the axiom of infinity is prov-
able in system Fω.2 extended with primitive numerals.

3.3 Beyond Zermelo

It is natural to ask whether the former soundness result can be extended to IZF,
which is obtained by adding the collection scheme to IZ:

(Coll) ∀a (∀x∈a ∃y φ) ⇒ ∃b ∀x∈a ∃y∈b φ

(where φ is an arbitrary formula such that b /∈ FV (φ)).
Unfortunately, the answer is negative, since the soundness of (Coll) would

entail the relative consistency of ZF w.r.t. Fω.2 with primitive numerals (via
Gödel’s negation translation, which maps provable formulas of ZF to provable
formulas of IZF). On the other hand, our type system can be seen as a subsys-
tem of the calculus of constructions with universes whose strong normalisation
property (and logical consistency) has been proved in ZF [10], so that its proof-
theoretical strength is actually less than the one of ZF.5

4 The Normalisation Model M

This section is devoted to the construction of a strong normalisation model M
of Fω.2. The main interest of such a model is not only that it constitutes the
main device for proving the strong normalisation property of system Fω.2 but
that it naturally validates more propositions than the syntax, and thus suggests
extensions of it.

4.1 Interpreting Object-Terms

The model M is defined in classical set theory with axiom of choice (ZFC). To
interpret type-theoretical universes, we also assume the following axiom:

Axiom 4 — There exists two nested ZF-universes.

By ZF-universe (or set-theoretical universe), we mean any transitive set U
that fulfils the following conditions:

1. A ∈ U ⇒ P(A) ∈ U
2. A ∈ U ∧ (Bx)x∈A ∈ UA ⇒ (

⋃
x∈ABx) ∈ U

3. ω ∈ U

ZF-universes are closed under all the operations that can be defined in ZFC,
among which the generalised cartesian product that will be used to interpret
dependent products:

A ∈ U ∧ (Bx)x∈A ∈ UA ⇒
(∏

x∈A

Bx

)
∈ U.

5 We conjecture that system Fω.2 with primitive numerals has the same proof-
theoretical strength as higher-order Zermelo’s set theory.

In the following, we assume that U1 and U2 are two ZF-universes such that
U1 ∈ U2. Since we want to interpret any signature, we must prohibit empty
types by setting JTypeiK = Ui \ {∅} for i ∈ {1; 2}. (Notice that these sets are
still closed under generalised cartesian products, thanks to the axiom of choice.)

Propositions are interpreted as saturated sets [10]. The set of all saturated
sets, denoted by SAT, is closed under arbitrary (non-empty) unions and in-
tersections, and forms a complete lattice whose top element is SN , and whose
bottom element is the set Neut of neutral terms. Moreover, SAT is closed under
the construction S → T defined by

S → T
∆≡ {t ∈ Λ; ∀u ∈ S tu ∈ T} ∈ SAT .

Let M = U2. A valuation is a function ρ : V →M, where V denotes the set
of object-variables. The interpretation (M,ρ) 7→ JMKρ is defined by

JTypeiKρ = Ui \ {∅} JPropKρ = SAT JxKρ = ρ(x)

JΠx :T .UKρ =
∏

v∈JT Kρ

JUK(ρ;x←v) Jλx :T .MKρ =
(
v∈JT Kρ

7→ JMK(ρ;x←v)

)
JM(N)Kρ = JMKρ(JNKρ) JA⇒ BKρ = JAKρ → JBKρ

J∀x :T .AKρ =
⋂

v∈JT Kρ

JAK(ρ;x←v) J∃x :T .AKρ =
⋃

v∈JT Kρ

JAK(ρ;x←v)

whereas the constants Nat, 0, S, pred and null are interpreted in the obvious way.
Notice that the right-hand side of the equation which gives the interpretation of
the application may be undefined, so that the function ρ 7→ JMKρ is partial.

Each signature Σ is interpreted as the set JΣK of all valuations ρ such that
ρ(x) ∈ JT K for each declaration (x : T) ∈ Σ (i.e. the set of adapted valuations).
We finally get by a straightforward induction:

Proposition 5 (Soundness of typing) — If Σ `M : T , then for all ρ ∈ JΣK,
the denotations JMKρ and JT Kρ are well-defined, and JMKρ ∈ JT Kρ.

As for any strong normalisation model, our model enjoys the crucial property
that the denotation of a (well-formed) type is always inhabited. For this reason,
any well-formed signature admits at least an adapted valuation.

4.2 The Normalisation Invariant

As well as we interpreted signatures as sets of adapted valuations, each logical
context Γ = [ξ1 : A1; . . . ; ξn : An] is now interpreted as a set of adapted sub-
stitutions. Formally, JΓ Kρ is defined (for a given valuation ρ) as the set of all
substitutions σ = [ξ1 := u1; . . . ; ξn := un] such that ui ∈ JAiKρ for all i = 1..n.

We can now express the strong normalisation invariant of (Curry-style) sys-
tem Fω.2 as follows:

Proposition 6 (Strong normalisation invariant) — If 〈Σ〉Γ `t :A is deriv-
able, then for all ρ ∈ JΣK and for all σ ∈ JΓ Kρ one has t[σ] ∈ JAKρ.

By instantiating this result to an arbitrary adapted valuation ρ ∈ JΣK and
to the identity substitution (adapted to Γ) we conclude that:

Corollary 7 (Strong normalisation) — In Fω.2, all the typable proof-terms
are strongly normalising λ-terms.

Truth in the Model Although the strong normalisation model M is quite close
of a realisability model (think of the interpretation of ∀, ∃ and ⇒), an important
difference with the standard realisability approach is that in M, the denotation
of a proposition is never empty, since a saturated set contains at least all the
neutral terms. To define a suitable notion of truth in the model, one has to
exclude such ‘paraproofs’ by only considering closed terms.

Formally, we will say that a proposition A is true in the model M if its
denotation JAK ∈ SAT contains at least a closed proof-term. Notice that the
proposition ⊥ = ∀p :Prop . p (whose denotation is Neut) is false in the model,
which shows that system Fω.2 is logically consistent.

4.3 Axiom of Choice and Uniform Collection

An example of a true but non-provable proposition is the following formulation
of the axiom of choice in Fω.2:

(∀x :T .∃x :U .A(x, y)) ⇒ ∃f :T → U . ∀x :T .A(x, f(x))

where T and U are arbitrary data-types. Although this proposition is not prov-
able in Fω.2, it is straightforward to check that in the model M, its denotation
contains the closed proof-term λξ . ξ since both members of the corresponding
implication have the very same denotation, namely:⋂

x∈T

⋃
y∈U

A(x, y) =
⋃

f∈UT

⋂
x∈T

A(x, f(x)) .

(In the model of course, the left-to-right inclusion relies on the axiom of choice.)
This fact suggests that we can add the following proof principle

〈Σ〉Γ ` t : ∀x :T .∃y :U .A(x, y)
〈Σ〉Γ ` t : ∃f : (T→U) .∀x :T .A(x, f(x))

to our system without breaking the normalisation invariant.

The Uniform Collection Scheme Coming back to our translation of set theory, it
is interesting to notice that this additional rule is actually sufficient for proving
a weak form of collection scheme—that will be called here the uniform collection
scheme—whose statement is the following:

(∀x ∃y φ(x, y)) ⇒ ∀a ∃b ∀x∈a ∃y∈b φ(x, y)

This statement is weaker than the collection scheme since it relies on a totality
assumption which is stronger than that of collection, by requiring that the binary
relation φ(x, y) should be total not only on a, but on the whole universe. (Of
course, the uniform collection is classically equivalent to the collection scheme.)

4.4 An Intuitionistic Choice Operator

The difficulty in realising the full collection scheme is that for any x ∈ a, the
implicit witness y given by the proof of ∃y φ(x, y) does not only depend on x,
but also on the proof of the relativisation x ∈ a. To overcome this difficulty,
we propose to express this dependency by using a trick inspired by Krivine’s
interpretation of the denumerable axiom of choice [6, 7].

For that, we extend system Fω.2 with an intuitionistic choice operator that
associates to any predicate A(x) a sequence of objects εx :T .A(x) : Nat→T
whose intended meaning is: if A holds for some x : T , then A holds for some
element of the sequence εx :T .A(x).

Formally, the interpretation of this new construction in the model M relies
on a fixed enumeration (tn)n∈ω of all the λ-terms. The construction εx :T .A(x)
is then interpreted as a function f ∈ Tω (defined by using the axiom of choice)
such that for all n ∈ ω, either:

1. f(n) is some x ∈ T such that tn ∈ A(x) if such an element exists; or
2. f(n) is an arbitrary element of T otherwise.

Once the function f ∈ Tω that interprets the construction εx :T .A(x) has
been defined, it is straightforward to check that

⋃
x∈T A(x) ⊂

⋃
n∈ω A(f(n)).

(The converse inclusion also holds, but is not of interest.) Coming back to our
logical framework, this inclusion means that the model validates the typing rule

〈Σ〉Γ ` t : ∃x :T .A(x)

〈Σ〉Γ ` t : ∃n :Nat . A
(
(εx :T .A(x))(n)

)
which can thus be added to our type system without harm for the strong nor-
malisation property.

5 The Extended Framework Fω.2++

Using the material we presented above, we can now define an extended Curry-
style framework called Fω.2++ that actually contains enough proof principles
to allow the (translation of the) collection scheme to be derived.

5.1 Syntax and Typing Rules

Object-Terms and Signatures The syntax and typing rules of object-terms and
signatures of system Fω.2++ are the one of system Fω.2 extended with primi-
tive numerals and the intuitionistic choice operator discussed in paragraph 4.4
(see Fig. 3). The corresponding reduction rules are the usual β-rule and the
reduction rules of the constants pred and null that we gave in paragraph 3.2.

Judgements Σ `, Σ ` M : T and Σ ` Γ ctx

Rules of Fig. 1 p. 3 + constants Nat, 0, S, pred, null

+

Σ; [x : T] ` A : Prop

Σ ` εx : T . A : Nat → T

Propositional subtyping: Σ ` A ≤ B

Σ ` A : Prop Σ ` A′ : Prop

Σ ` A ≤ A′ A=βA′ Σ ` A ≤ B Σ ` B ≤ C

Σ ` A ≤ C

Σ ` A′ ≤ A Σ ` B ≤ B′

Σ ` A ⇒ B ≤ A′ ⇒ B′

Σ; [x : T] ` A ≤ B

Σ ` A ≤ ∀x : T . B
x/∈FV (A)

Σ; [x : T] ` A : Prop Σ ` N : T

Σ ` ∀x : T . A ≤ A{x := N}

Σ; [x : T] ` A : Prop Σ ` N : T

Σ ` A{x := N} ≤ ∃x : T . A

Σ; [x : T] ` A ≤ B

Σ ` ∃x : T . A ≤ B
x/∈FV (B)

Σ; [x : T] ` A : Prop Σ ` B : Prop

Σ ` ∀x:T . (A ⇒ B) ≤ (∃x:T . A) ⇒ B

Σ; [x : T ; y : U] ` A : Prop

Σ ` ∀x:T .∃y:U . A ≤ ∃f : (Πx:T .U) .∀x:T . A{y:=f(x)}

Σ; [x : T] ` A : Prop

Σ ` ∃x : T . A ≤ ∃n :Nat . A{x := (εx : T . A)(n)}

Typing rules of proofs-terms: 〈Σ〉Γ ` t : A

Σ ` Γ ctx
〈Σ〉Γ ` ξ : A

(ξ:A)∈Γ
〈Σ〉Γ ; [ξ : A] ` t : B

〈Σ〉Γ ` λξ . t : A ⇒ B

〈Σ〉Γ ` t : A ⇒ B 〈Σ〉Γ ` u : A

〈Σ〉Γ ` tu : B

〈Σ; [x : T]〉Γ ` t : A

〈Σ〉Γ ` t : ∀x : T . A
x/∈FV (Γ)

〈Σ〉Γ ` t : A Σ ` A ≤ A′

〈Σ〉Γ ` t : A′

Fig. 3. Rules of inference of system Fω.2++

Logical Contexts and Proof-Terms Logical contexts have the same syntax and
formation rules as in system Fω.2, and proof-terms are still pure λ-terms.

The main novelty of system Fω.2++ is the introduction of a new form
of judgement called propositional subtyping and written Σ ` A ≤ B. This
judgement—whose logical meaning is a direct implication—is intended to capture
the different inclusions between saturated sets that we pointed out throughout
section 4. In particular, this judgement (whose rules of inference are given in
Fig. 3) now incorporates the introduction and elimination rules for both quan-
tifiers, as well as a very natural rule that expresses the contravariance of the
domain of implication (and the covariance of its codomain) w.r.t. subtyping.
The last two subtyping rules express both intuitionistic forms of axiom of choice
discussed in paragraphs 4.3 and 4.4. (Notice that the latter is actually sufficient
to derive the collection scheme.)

In this framework, the proof-typing rules become simpler than in system
Fω.2, for that many logical rules have been incorporated in the propositional
subtyping judgement, and are now accessed via a standard subsumption rule.

5.2 Strong Normalisation

From the results of section 4, it is clear that M is still a strong normalisa-
tion model for Fω.2++. The proofs of propositions 5 and 6 are easily adapted
to system Fω.2++ by interpreting the new construction εx :T .A as explained
in 4.4. Notice that in order to prove the strong normalisation invariant for system
Fω.2++, we first have to check the soundness of propositional subtyping:

Proposition 8 — If Σ ` A ≤ B, then for all ρ ∈ JΣK one has JAKρ ⊂ JBKρ.

From this, we easily deduce that all the well-formed proof-terms of system
Fω.2++ are strongly normalising, and that the system is logically consistent.

5.3 Deriving the Collection Scheme

Of course, the main interest of using system Fω.2++ is that we can now realise
the collection scheme, by the means of the intuitionistic choice operator:

Proposition 9 (Collection scheme) — The translation of each instance of
(Coll) is provable in system Fω.2++.

Notice that this result entails that the proof-theoretical strength of system
Fω.2++ is at least the one of IZF/ZF.

5.4 Extracting Functions from Proofs

In this paragraph, we aim to show that from any proof (in IZF) of a statement
φ of the form

φ ≡ ∀x∈ω ∃y∈ω ψ(x, y)

(where ψ is an arbitrary formula s.t. FV (ψ) = {x; y}) we can extract a strongly
normalising λ-term that computes the corresponding function.

The extraction process relies on the fact that, internally, the set ω of von
Neumann numerals is implemented [11] as a pointed graph (X,A, a) equipped
with an injection i : Nat→X that associates to any object n : Nat such that
wf nat(n) the vertex i(n) : X which represents the corresponding von Neumann
numeral in the graph (X,A). Using this, it is easy to derive from a proof of φ
(in IZF) a proof-term (in Fω.2++) of the statement:

∀n :Nat . wf nat(n) ⇒ ∃p :Nat . wf nat(p) ∧ φ∗(X,A, i(n), X,A, i(p))

(where ψ∗ denotes the translation of the binary relation ψ in Fω.2++). By
dropping the second component of the conjunction, we thus get a proof-term

λξ . t′ξ(λξ1, ξ2 . ξ1) : (∃n :Nat .wf nat(n)) ⇒ (∃p :Nat .wf nat(p))

that obviously computes the desired function, since:

Fact 10 — The closed inhabitants of the saturated set Jwf nat(x)Kx←n (for a
given n ∈ ω) are the SN -terms whose normal form is Church numeral dne.

References

1. P. Aczel. Non well-founded sets. Center for the Study of Language and Information,
1988.

2. H. Barendregt. Introduction to generalized type systems. Technical Report 90-8,
University of Nijmegen, Department of Informatics, May 1990.

3. B. Barras, S. Boutin, C. Cornes, J. Courant, J.C. Filliâtre, E. Giménez, H. Herbelin,
G. Huet, C. Muñoz, C. Murthy, C. Parent, C. Paulin, A. Säıbi, and B. Werner.
The Coq Proof Assistant Reference Manual – Version V6.1. Technical Report 0203,
INRIA, August 1997.

4. H. Friedman. Some applications of Kleene’s methods for intuitionistic systems. In
Cambridge Summer School in Mathematical Logic, volume 337 of Springer Lecture
Notes in Mathematics, pages 113–170. Springer-Verlag, 1973.

5. J.H. Geuvers and M.J. Nederhof. A modular proof of strong normalization for the
calculus of constructions. In Journal of Functional Programming, volume 1,2(1991),
pages 155–189, 1991.

6. J.-L. Krivine. Typed lambda-calculus in classical Zermelo-Fraenkel set theory.
Archive for Mathematical Logic, 40(3):189–205, 2001.

7. J.-L. Krivine. Dependent choice, ‘quote’ and the clock. Theoretical Computer
Science, 2003.

8. P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.
9. D. McCarty. Realizability and Recursive Mathematics. PhD thesis, Ohio State

University, 1984.
10. P.-A. Melliès and B. Werner. A generic normalization proof for pure type systems.

In Proceedings of TYPES’96, 1997.
11. A. Miquel. Le calcul des constructions implicite: syntaxe et sémantique. PhD

thesis, Université Paris VII, 2001.
12. J. Myhill. Some properties of intuitionistic Zermelo-Fraenkel set theory. In Cam-

bridge Summer School in Mathematical Logic, volume 337 of Springer Lecture Notes
in Mathematics, pages 206–231. Springer-Verlag, 1973.

