
Classical program extraction
in the calculus of constructions

Alexandre Miquel

PPS & Université Paris 7
Case 7014, 2 Place Jussieu

75251 PARIS Cedex 05 – France.

alexandre.miquel@pps.jussieu.fr

Abstract. We show how to extract classical programs expressed in
Krivine λc-calculus from proof-terms built in a proof-irrelevant and clas-
sical version of the calculus of constructions with universes. For that, we
extend Krivine’s realisability model of classical second-order arithmetic
to the calculus of constructions with universes using a structure of Π-
set which is reminiscent of ω-sets, and show that our realisability model
validates Peirce’s law and proof-irrelevance. Finally, we extend the ex-
traction scheme to a primitive data-type of natural numbers in a way
which preserves the whole compatibility with the classical realisability
interpretation of second-order arithmetic.

Introduction

Program extraction has been a major concern from the early development of
the calculus of constructions (CC) [3] to its more recent extensions [13, 17] im-
plemented in proof assistants such as Coq [18], LEGO or Plastic. The first ex-
traction scheme implemented in Coq [16] was based on the dependency erasing
translation from CC to Fω [4], with a facility allowing to distinguish computa-
tionally relevant parts of the proof from the purely logical parts. (This facility
relied on a distinction between two impredicative sorts Prop and Set.) However,
as the system grew up, the initial mechanism became obsolete, so that in 2002
the extraction mechanism of Coq was completely redesigned [11]. The currently
implemented mechanism now extracts the constructive skeleton of terms (corre-
sponding to the parts built in the predicative universes Typei) while removing
their purely logical part (corresponding to the parts built in Prop).

In this paper we present another extraction mechanism, that extends the
extraction mechanism used in system AF2 [6] to the whole type system of Coq.
Moreover, this mechanism is able to extract programs from classical proofs (using
the control operator call/cc), and it is actually compatible with Krivine’s recent
results about realising different forms of the axiom of choice [9, 10].

The richness of the type system of CC naturally raises difficulties which do
not exist when program extraction is performed in second-order arithmetic only.
The first difficulty comes from the fact that in CC, types (and propositions) may

2

depend on proofs. The traditional way to solve this problem is to add an axiom
of proof-irrelevance (or to modify the conversion rule) in order to make all the
proofs of a given proposition equal. For a long time it has been believed that
proof-irrelevance was incompatible with an extraction à la AF2, where programs
are extracted from purely logical proofs (i.e. built in Prop).1 As we shall see, this
is not the case. Proof-irrelevance is not only compatible with classical program
extraction, but it also removes the need of introducing an equational theory for
each constant implementing classical reasoning, simply because such constants
become transparent in the conversion rule.

From ω-sets to Π-sets The classical extraction presented here is based on a
realisability model constructed with Π-sets, a structure which is directly inspired
from ω-sets [5, 12], D-sets [19] and saturated λ-sets [2, 14]. Historically, ω-sets
(and their generalisation to all partial combinatory algebras: D-sets) have been
used to define a realisability model of CC that provides a non-trivial interpreta-
tion of the impredicative sort Prop. (Such a model is extended to ECC in [13].)
The next improvement came with Altenkirch [2], who noticed that by adding
saturation conditions to λ-sets, the λ-set model of CC could be turned into a
strong normalisation model. (The structure of saturated λ-set was later reused
to extend this construction to a larger class of systems [14].)

However, recent works about normalisation stressed on the importance of
definitions by orthogonality in the design of reducibility candidates. Since clas-
sical realisability [8–10] also deeply relies on definitions by orthogonality, it is
natural to shift the point of view of realisability from the player (the λ-term) to
the opponent (the stack it is applied to). In this move, the realisability relation
becomes an orthogonality relation, and the structure of λ-set is turned into a
new structure: the structure of Π-set which is described in section 3.

Which target (classical) λ-calculus? Since the beginning of the 90’s, many
λ-calculi have been designed to extend the Curry-Howard correspondence to
classical logic. Although we are convinced that most (if not all) of them could
be used successfully as the target calculus of classical extraction, we focus here
to the λc-calculus for several reasons.

The first reason, which is pedagogical, is that it illustrates the combination
of two formalisms that are technically very different: on one side the calculus
of constructions, whose conversion rule is based on strong evaluation and whose
meta-theory deeply relies on the Church-Rosser property; on the other side the
λc-calculus, that only performs weak head evaluation and for which the notion
of normal form and the notion of confluence are simply irrelevant.

The second reason, and actually the main reason, is that λc can be ex-
tended with extra instructions allowing several forms of the axiom of choice to
be realised—and in particular the axiom of dependent choice [9, 10].2 By tak-
ing λc as the target calculus—and provided we ensure that the full realisability
1 Notice that since the currently extraction of Coq erases all proof-terms (in Prop), it

is de facto compatible with proof-irrelevance.
2 These results have not been ported yet to other classical calculi.

3

model of CC is compatible with Krivine’s realisability model of second-order
arithmetic—we thus allow the extraction mechanism to deal with axioms such
as the axiom of the dependent choice (now expressed in CC) and more generally
to benefit from the most advanced results of classical realisability.

1 A proof-irrelevant calculus of constructions

1.1 Syntax

The proof-irrelevant calculus of constructions with universes (CCirr
ω) is built from

the same syntax as the calculus of constructions with universes (CCω):

Sorts

Terms

s ∈ S ::= Prop | Typei (i ≥ 1)

M,N, T, U ::= x | s | Πx :T .U | λx :T .M | MN

Here, Prop denotes the sort of propositions (seen as the types of their proofs)
whereas Typei (i ≥ 1) denotes the ith predicative universe.

The set S of sorts is equipped with a set of axioms A ⊂ S 2 and with a set
of rules R ⊂ S 3 defined by

A = {(Prop : Type1); (Typei : Typei+1) | i ≥ 1}
R = {(Prop,Prop,Prop); (Typei,Prop,Prop);

(Prop,Typei,Typei); (Typei,Typei,Typei) | i ≥ 1}

as well as a (total) order s1 ≤ s2 (the cumulative order) which is generated from
the relations Prop ≤ Type1 and Typei ≤ Typei+1 (i ≥ 1).

In both constructions λx :T .M and Πx :T .U , the symbols λ and Π are
binders, which bind all the free occurrences of the variable x in M and U , but
no occurrence of x in T . The set of free variables of M is written FV (M). As
usual we write T → U ≡ Πx :T .U (when x /∈ FV (U)) the non-dependent
product. The external operation of substitution, written M{x := N}, is defined
as expected (taking care of renaming bound variables to avoid variable capture).
In what follows, we work with terms up to α-conversion.

Terms of CCirr
ω come with an untyped notion of β-reduction (defined as ex-

pected) which is confluent and enjoys Church and Rosser’s property. However,
we will not consider the untyped notion of β-reduction of CCirr

ω in what follows,
since we will identify β-equivalent terms (and more) in the conversion/subsum-
ption rule using a typed equality judgement Γ ` M = M ′ : T à la Martin-Löf.

1.2 Typing

A typing context (for short: a context) is a finite list of declarations of the form

Γ ≡ x1 : T1, . . . , xn : Tn

where x1, . . . , xn are pairwise distinct variables and where T1, . . . , Tn are ar-
bitrary terms. The domain of a context Γ = x1 : T1, . . . , xn : Tn is written

4

dom(Γ) and defined by dom(Γ) = {x1; . . . ;xn}. Given two contexts Γ and Γ ′,
we write Γ ⊆ Γ ′ when all the declarations that appear in Γ also appear in Γ ′,
not necessarily in the same order.

The type system of CCirr
ω is defined from four forms of judgements, namely:

` Γ ctx ‘Γ is a well-formed context’
Γ ` M : T ‘in the context Γ , the term M has type T ’
Γ ` T1 ≤ T2 ‘in the context Γ , T1 is a subtype of T2

Γ ` M1 = M2 : T ‘in Γ , M1 and M2 are equal terms of type T ’

The corresponding rules of inference are given in Fig. 1.
The main syntactic properties of this type system are the following (writing

J any of M : T or T1 ≤ T2 or M1 = M2 : T). We do not indicate the proofs,
that all proceed by induction on the suitable derivation.

Lemma 1 (Context well-formedness). From any derivation of Γ ` J , one
can extract a sub-derivation of ` Γ ctx.

Lemma 2 (Weakening). If Γ ` J and Γ ⊆ Γ ′ and ` Γ ′ ctx, then Γ ′ ` J .

Lemma 3 (Substitutivity). If Γ, x : T,∆ ` J and Γ ` N : T , then
Γ,∆{x := N} ` J{x := N}.

Lemma 4 (Type of types).

– If Γ ` M : T or Γ ` M1 = M2 : T , then Γ ` T : s for some s ∈ S .
– If Γ ` T ≤ T ′, then Γ ` T : s and Γ ` T ′ : s′ for some s, s′ ∈ S .

2 The language of realisers

2.1 Terms, stacks and processes

Terms of λc [7, 10] are simply the pure λ-terms enriched with infinitely many
constants taken in a denumerable set C:

Terms t, u ::= x | λx . t | tu | c (c ∈ C)

The notion of free and bound variable is defined as usual, as well as the external
operation of substitution. In what follows, we will only consider closed terms,
and write Λ for the set of all closed terms.

Stacks are built from a denumerable set B of stack constants (a.k.a. stack
bottoms). Formally, stacks are defined as lists of closed terms terminated by a
stack constant:

Stacks π ::= b | t · π (b ∈ B, t ∈ Λ)

(writing t · π the ‘consing’ operation). The set of stacks is written Π.

5

Context formation rules

` [] ctx

Γ ` T : s x /∈ dom(Γ)

` Γ, x : T ctx

Typing rules

` Γ ctx
Γ ` x : T

(x:T)∈Γ
` Γ ctx

Γ ` s1 : s2

(s1,s2)∈A
Γ ` M : T Γ ` T ≤ T ′

Γ ` M : T ′

Γ ` T : s1 Γ, x : T ` U : s2

Γ ` Πx : T . M : s3

(s1,s2,s3)∈R

Γ ` Πx : T . U : s Γ, x : T ` M : U

Γ ` λx : T . M : Πx : T . U
Γ ` M : Πx : T . U Γ ` N : T

Γ ` MN : U{x := N}

Subtyping rules

Γ ` T = T ′ : s

Γ ` T ≤ T ′
Γ ` T ≤ T ′ Γ ` T ′ ≤ T ′′

Γ ` T ≤ T ′′

` Γ ctx s1 ≤ s2

Γ ` s1 ≤ s2

Γ ` T = T ′ : s Γ ` U ≤ U ′

Γ ` Πx : T . U ≤ Πx : T ′ . U ′

Equality rules

Γ ` M : T
Γ ` M = M : T

Γ ` M = M ′ : T Γ ` M ′ = M ′′ : T

Γ ` M = M ′′ : T

Γ ` M = M ′ : T

Γ ` M ′ = M : T

Γ ` M = M ′ : T Γ ` T ≤ T ′

Γ ` M = M ′ : T ′

Γ ` T = T ′ : s1 Γ, x : T ` U = U ′ : s2 (s1, s2, s3) ∈ R

Γ ` Πx : T . U = Πx : T ′ . U ′ : s3

Γ ` T = T ′ : s Γ, x : T ` M = M ′ : U

Γ ` λx : T . M = λx : T ′ . M ′ : Πx : T . U

Γ ` M = M ′ : Πx : T . U Γ ` N = N ′ : T

Γ ` MN = M ′N ′ : U{x := N}

Γ ` Πx : T . U : s Γ, x : T ` M : U Γ ` N : T

Γ ` (λx : T . M)N = M{x := N} : U{x := N}

Γ ` T : Prop Γ ` M : T Γ ` M ′ : T

Γ ` M = M ′ : T

Fig. 1. Typing rules of CCω

6

To each stack π ∈ Π we associate a constant kπ ∈ C in such a way that (1)
the correspondence π 7→ kπ is injective, and (2) the set of all c 6= kπ (for all
π ∈ Π) is still a denumerably infinite subset of C.

In what follows, we call a quasi-proof any closed term containing none of the
constants kπ (π ∈ Π). Finally, we take a fresh constant cc ∈ C (‘call/cc’)3 such
that cc 6= kπ for all π ∈ Π, which we reserve to realise Peirce’s law.

Processes are then defined as pairs formed by a closed term and a stack:

Processes p, q ::= t ? π (t ∈ Λ, π ∈ Π)

2.2 Evaluation and realisability

Processes are equipped with a binary relation of one step evaluation, written
p � p′, which is defined by the following rules:

λξ . t ? u · π � t{ξ := u} ? π cc ? t · π � t ? kπ · π
tu ? π � t ? u · π kπ ? t · π′ � t ? π

The definition of a realisability model based on the language λc (for second-
order arithmetic or for CCω) is parameterised by a fixed set of processes ⊥⊥ that
we assume to be saturated, in the sense that:

p � p′ and p′ ∈ ⊥⊥ imply p ∈ ⊥⊥ (for all p, p′)

Intuitively, ⊥⊥ represents a set of accepting processes (w.r.t. some correctness
criterion), and the condition of saturation expresses that each processes that
evaluates to an accepting process is itself an accepting process. A typical candi-
date for ⊥⊥ is the set ⊥⊥0 of all terminating processes defined by:

⊥⊥0 = {p | ∃p′ (p �∗ p′ ∧ p′ 6�)} .

In classical realisability, sets of stacks are used as falsity values (that is, as
sets of potential refutations). Each falsity value S ⊂ Π defines by orthogonality
a truth value written S⊥⊥ and defined by

S⊥⊥ = {t ∈ Λ | ∀π ∈ S t ? π ∈ ⊥⊥} .

In section 4, we will construct a model where all the objects are annotated with
falsity values, using a structure of Π-set.

3 The Π-set structure

3.1 Definition

Definition 1 (Π-set). A Π-set is a pair X = 〈|X|,⊥X〉 formed by a set |X|
(called the carrier of X) equipped with a binary relation ⊥X ⊂ |X| ×Π (called
the local orthogonality relation of X).
3 From the Scheme operator ‘call-cc’ (call with current continuation)

7

Intuitively, the binary relation x ⊥X π expresses that the stack π is an
attempt to refute (or to attack, or to falsify) the denotation x ∈ |X|. Given an
element x ∈ |X|, we write x⊥X = {π | x ⊥X π} the orthogonal of x w.r.t. X.
From this we define the local realisability relation t X x by setting

t X x iff ∀π (x ⊥X π ⇒ t ? π ∈ ⊥⊥)
iff t ∈ (x⊥X)⊥⊥

for all t ∈ Λ and x ∈ |X|.

Remark. Unlike ω-sets, we do not require that each element of X is realised by at
least a quasi-proof—we do not even require that each element of X has a realiser.
However, all the elements of the carrier have realisers as soon as the set ⊥⊥ is
inhabited: given a fixed process t0 ? π0 ∈ ⊥⊥, it is easy to check that the term
kπ0t0 is orthogonal to any stack (w.r.t. ⊥⊥), and thus realises any denotation.

Coarse Π-sets We say that a Π-set X is coarse when ⊥X= ∅ (i.e. when the
orthogonality relation on X is empty). By duality, we get t X x for all t ∈ Λ
and x ∈ |X|, which means that any term realises any element of the carrier of X.

Notice that any set X can be given the structure of a coarse Π-set simply
by taking |X| = X and `X= ∅.

Pointed Π-sets In many situations, it is desirable to exclude the empty Π-set
and to work only with Π-sets whose carrier is inhabited. To avoid the cost of
introducing the axiom of choice in the meta-theory (typically to ensure that the
Cartesian product of a family of inhabited Π-sets is inhabited), we will only
consider Π-sets with a distinguished element of the carrier, that is: pointed Π-
sets. Formally, a pointed Π-set is a triple X = 〈|X|,⊥X , εX〉 where 〈|X|,⊥X〉 is
a Π-set and where εX ∈ |X|.

3.2 Cartesian product of a family of Π-sets

Let (Yx)x∈|X| be a family of Π-sets indexed by the carrier of a Π-set X. The
Cartesian product of the family (Yx)x∈|X| is the Π-set written Πx :X .Yx and
defined by:

|Πx :X .Yx| =
∏

x∈|X|

|Yx| and f⊥Πx:X.Yx =
⋃

x∈|X|

(
(x⊥X)⊥⊥ · (f(x)⊥Yx)

)
for all f ∈ |Πx :X .Yx|. Moreover if Yx is a pointed Π-set for all x ∈ |X|, then
the product Πx :X .Yx can be given the structure of a pointed Π-set by setting

εΠx : X . Yx = (x ∈ |X| 7→ εYx) .

Fact 1 If Yx is a coarse Π-set (resp. a coarse pointed Π-set) for all x ∈ |X|,
then Πx :X .Yx is a coarse Π-set (resp. a coarse pointed Π-set).

In section 4 we will interpret the sorts Prop, Typei by coarse pointed Π-sets;
hence the fact above will automatically imply that more generally, all types of
predicates will be interpreted by coarse pointed Π-sets.

8

3.3 Degenerated Π-sets

A Π-set is said to be degenerated when its carrier is a singleton: |X| = {εX}.
(In this case we can always consider X as a pointed Π-set by taking εX as the
unique element of its carrier.) A degenerated Π-set X is characterised by its
unique element εX and by the set of stacks ε⊥X

X that are orthogonal to this
element, which set of stacks will be written X⊥ (= ε⊥X

X).

Fact 2 (Product of degenerated Π-sets) If Yx is a degenerated Π-set for
all x ∈ |X|, then the Π-set Πx :X .Yx is degenerated too, and we have

(Πx :X .Yx)⊥ =
⋃

x∈|X|

(
(x⊥X)⊥⊥ · Y ⊥x

)
Moreover, if the Π-set X is degenerated, then the Cartesian product Πx :X .Yx

is non-dependent and (Πx :X .Yx)⊥ = (X → Y)⊥ = (X⊥)⊥⊥ · Y ⊥.

In what follows, degenerated Π-sets will be used to interpret propositions.

3.4 Subtyping

Given two Π-sets X and X ′, we write X ≤ X ′ (X is a subtype of X ′) when

|X| ⊆ |X ′| and x⊥X ⊇ x⊥X′ for all x ∈ |X| .

(Notice that the reverse inclusion above is necessary to ensure that t X x
implies t X′ x for all t ∈ Λ and x ∈ |X|.) When both X and X ′ are pointed
Π-sets, we also require that: εX′ = εX .

4 Constructing the model

In what follows, we work in ZF set theory extended with an axiom expressing
the existence of infinitely many inaccessible cardinals to interpret the hierarchy
of predicative universes.

4.1 An alternative encoding of functions

To achieve proof-irrelevance in the model, we will interpret all proof-objects by
a single value written • and all propositions by degenerated Π-sets based on the
singleton {•}. Since we want to keep the property of closure under Cartesian
products (Fact 2), it is necessary to identify all constant functions (x ∈ D 7→ •)
for the proof-object • itself. For that, we adopt a set-theoretic encoding of func-
tions (proposed by [1] and inspired from the notion of trace in domain theory)
in which functions are represented not as set of pairs 〈x, y〉 such that y = f(x),
but as set of pairs 〈x, z〉 such that z ∈ f(x).

9

Formally, we introduce the following abbreviations:

f function ≡ ∀p∈ f ∃x ∃y p = 〈x, y〉
(x ∈ D 7→ Ex) = {〈x, z〉 | x ∈ D ∧ z ∈ Ex}

f(x) = {z | ∃x 〈x, z〉 ∈ f}

This encoding is sound in the sense that given a function f = (x ∈ D 7→ Ex),
we have f(d) = Ed for all d ∈ D. However, the domain information is partially
lost since the encoding keeps no track of elements of the domain mapped to the
empty set. We can only define the support of a function

supp(f) = {x | ∃z 〈x, z〉 ∈ f} .

Apart from this (minor) difference, this alternative encoding of functions can be
used the same way as the traditional encoding. From now on we consider that
functions in the model are represented in this way, and we take • = ∅ so that
the equality (x ∈ D 7→ •) = • now holds for all D.

4.2 Interpreting sorts

Let (λi)i≥1 be an increasing sequence of inaccessible cardinals and set:

U0 = {{•}} ×P({•} ×Π)× {•}

Ui =
⋃

S∈Vλi
s0∈S

{S} ×P(S ×Π)× {s0} (⊂ Vλi)

By definition, U0 is the set of all degenerated pointed Π-sets based on the sin-
gleton {•} whereas Ui (i ≥ 1) is the set of all pointed Π-sets whose (nonempty)
carrier belongs to Vλi (i.e. the ith ZF-universe). Each set of Π-sets Ui (i ≥ 0)
can be given in turn the structure of a coarse pointed Π-set U ′i by setting:

U ′0 =
〈
U0, ∅, 〈{•}, ∅, •〉

〉
and U ′i = 〈Ui, ∅, U ′i−1〉 for i ≥ 1 .

Finally, the domain of all denotations M is taken as the union of all carriers of
the Π-sets in the universes Ui: M =

⋃
i∈ω

⋃
X∈Ui

|X|.

Fact 3 (Closure under Cartesian product) For all i ≥ 1:

1. If X ∈ Ui and Yx ∈ U0 for all x ∈ |X|, then Πx :X .Yz ∈ U0;
2. If X ∈ Ui and Yx ∈ Ui for all x ∈ |X|, then Πx :X .Yz ∈ Ui.

4.3 The interpretation function

A valuation in M is a partial function ρ : X → M (writing X the set of all
variables) whose domain dom(ρ) ⊂ X is finite. (Here, it is more convenient to
keep the traditional set-theoretic encoding of functions to represent valuations.)

10

The set of all valuations is written ValM. Given a valuation ρ, a variable x ∈ X
and a value v ∈M, we write (ρ, x← v) the valuation defined by

(ρ, x← v)(x) = v and (ρ, x← v)(y) = ρ(y) (y ∈ dom(ρ) \ {x})

To each term M we associate a partial function JMK : ValM ⇀M which is
inductively defined on M by the equations:

JxKρ = ρ(x) JΠx :T .UKρ = Πv : JT Kρ . JUKρ;x←v (product of Π-sets)
JPropKρ = U ′0 Jλx :T .MKρ = (v ∈ |JT Kρ| 7→ JMKρ;x←v)

JTypeiKρ = U ′i JMNKρ = JMKρ(JNKρ)

Since the function ρ 7→ JMKρ is partial, it is important to precise when the
denotation JMKρ is defined:

– JxKρ is defined when x ∈ dom(ρ);
– JPropKρ and JTypeiKρ are always defined;
– JΠx :T .UKρ is defined when
• JT Kρ is defined, and it is a pointed Π-set,
• For all v ∈ |JT Kρ|, JUKρ,x←v is defined, and it is a pointed Π-set,
• Πv : JT Kρ . JUKρ;x←v is an element ofM;

– Jλx :T .MKρ is defined when
• JT Kρ is defined, and it is a pointed Π-set,
• For all v ∈ |JT Kρ|, JMKρ,x←v is defined,
• (v ∈ |JT Kρ| 7→ JUKρ;x←v) is an element ofM;

– JMNKρ is defined when
• JMKρ and JNKρ are defined,
• JMKρ is a function, and JMKρ(JNKρ) is an element ofM.

The interpretation function is extended to all contexts by setting:

JΓ K =
{
ρ ∈ ValM | ∀(x : T) ∈ Γρ(x) ∈ |JT Kρ|

}
4.4 Soundness

Definition 2 (Soundness conditions).

1. A typing judgement Γ ` M : T is sound w.r.t. M if for all ρ ∈ JΓ K:
– The denotations JMKρ and JT Kρ are defined;
– JT Kρ is a Π-set; and
– JMKρ ∈ |JT Kρ|.

2. A subtyping judgement Γ ` T ≤ T ′ is sound w.r.t. M if for all ρ ∈ JΓ K:
– The denotations JT Kρ and JT ′Kρ are defined;
– JT Kρ and JT ′Kρ are Π-sets;
– JT Kρ ≤ JT ′Kρ.

3. An equality judgement Γ ` M = M ′ : T is sound w.r.t.M if for all ρ ∈ JΓ K:
– The denotations JMKρ, JM ′Kρ and JT Kρ are defined;
– JT Kρ is a Π-set; and
– JMKρ = JM ′Kρ ∈ |JT ′Kρ|.

Proposition 1 (Soundness). If a typing judgement, a subtyping judgement or
an equality judgement is derivable (Fig. 1), then it is sound w.r.t. M.

Proof. By induction of the derivation of the judgement. ut

11

4.5 Adequacy

The basic extraction scheme To each (raw-)term M of CCω we associate a
term M∗ of λc which is inductively defined from the equations

x∗ = x s∗ = (Πx :T .U)∗ = λz . z (or any quasi-proof)
(λx :T .M)∗ = λx .M∗ (MN)∗ = M∗N∗

Intuitively, this extraction function erases all non-computational information
related to types, but preserves all the computational contents of proof-terms.

Substitutions A substitution is a partial function σ : X 7→ Λ whose domain
dom(σ) ⊂ X is finite. Given an open term t of the λc-calculus and a substitu-
tion σ, we write t[σ] the result of applying the substitution σ to t.

Let Γ be a context, ρ a valuation and σ a substitution. We say that σ realises
ρ in Γ and write σ Γ ρ when

1. dom(σ) = dom(Γ)
2. ρ ∈ JΓ K
3. For all (x : T) ∈ Γ : σ(x) JT Kρ

ρ(x)

We can now extend the property of adequacy of second-order arithmetic [10]
to CCω as follows:

Proposition 2 (Adequacy). If Γ ` M : T , then for all valuations ρ ∈ Γ and
for all substitutions σ such that σ Γ ρ, we have

M∗[σ] JT Kρ
JMKρ .

Proof. By induction of the derivation of the judgement. ut

In particular, when the judgement `M : T is derivable in the empty context,
the extracted term M∗ realises the denotation of M : M∗ JT K JMK.

5 Extensions of the formalism

5.1 Peirce’s law and the excluded middle

Let us now extend CCirr
ω with a new constant

peirce : ΠA,B :Prop . (((A→ B)→ A)→ A)

that we interpret in the model M as JpeirceKρ = •. We then extend the basic
extraction scheme by setting peirce∗ = λ . λ . cc and check that this extension
is adequate in the sense of Prop. 2:

Fact 4 peirce∗ ∈ (JΠA, B :Prop . (((A→ B)→ A)→ A)K⊥)⊥⊥.

From this extension of the calculus, it is easy to derive the law of excluded
middle ΠA :Prop . (A∨¬A) at the level of propositions (defining disjunction and
negation by the mean of standard second-order encodings).

12

Remark. In the source calculus (CCirr
ω), it is not necessary to endow the extra

constant peirce with specific equality rules, since the rule of proof-irrelevance
already performs all possible identifications at the level of proof-terms. In the
target calculus (λc), the constant peirce is extracted to the λc-term λ . λ . cc that
evaluates as expected, by consuming two computationally irrelevant arguments
(corresponding to types) before capturing the current continuation.

5.2 Decomposing the propositional dependent product

In intuitionistic and classical realisability [10], (non relativised) first- and second-
order quantification is usually interpreted parametrically, that is, as an intersec-
tion (or as a union on the side of stacks). In CCirr

ω , universal quantification is
represented by a dependent-product Πx :T .U(x), that is, by a type of functions
taking a value x : T and returning a proof of U(x).

To bridge both interpretations of universal quantification, we first extend the
formalism with three new syntactic constructs, namely:

– An intersection type binder ∀x :T .U corresponding to the parametric in-
terpretation of the universal quantification. This construction is exactly the
implicit dependent product of the implicit calculus of constructions [15], but
here restricted to propositions.

– A construction M ∈ T representing the propositional contents of the typing
judgement M : T . As we shall see, the construction M ∈ T represents the
proposition whose proofs are the realisers of the term M in the type T .

– A constant > representing the proposition realised by all λ-terms.

Terms T,U ::= · · · | ∀x :T .U | M ∈ T | >

These new syntactic constructs that we interpret inM by

J∀x :T .UKρ =
〈
{•}, {•} ×

⋃
v∈JT Kρ

JUK⊥ρ,x←v, •
〉

JM ∈ T Kρ =
〈
{•}, {•} × JMK

⊥JT Kρ
ρ , •

〉
J>Kρ = 〈{•}, ∅, •〉

come with typing, subtyping and equality rules that are given in Fig. 2.

Fact 5 The typing rules, subtyping rules and equality rules of Fig. 2 are sound
w.r.t. the interpretation of the constructs ∀x :T .U , M ∈ T and > in M.

In the extended formalism, the propositional dependent product can now be
decomposed in terms of ∀ and ∈ as

Πx :T .U = ∀x :T . ((x ∈ T)→ U)

using the decomposition rule of Fig. 2. Intuitively, this equality rule expresses
that in CCirr

ω , the propositional dependent product corresponds exactly to the
relativised universal quantification in the sense of AF2. In subsection 5.3, we
will exploit this fact in order to recover the usual interpretation of the numeric
quantification in classical realisability.

13

Typing rules

Γ, x : T ` U : Prop

Γ ` ∀x : T . U : Prop
Γ ` M : T

Γ ` M ∈ T : Prop
` Γ ctx

Γ ` > : Prop

Subtyping rules

Γ ` T = T ′ : s Γ ` U ≤ U ′ Γ ` U ′ : Prop

Γ ` ∀x : T . U ≤ ∀x : T ′ . U ′

Γ ` M : T Γ ` T ≤ T ′

Γ ` (M ∈ T) ≤ (M ∈ T ′)

Γ ` T : Prop

Γ ` T ≤ >

Equality rules

Γ ` T = T ′ : s Γ, x : T ` U = U ′ : Prop

Γ ` ∀x : T . U = ∀x : T ′ . U ′ : Prop

Γ ` M = M ′ : T Γ ` T = T ′ : s

Γ ` (M ∈ T) = (M ′ ∈ T ′) : Prop

(Decomposition of Π)

Γ, x : T ` U : Prop

Γ ` Πx : T . U = ∀x : T . (x ∈ T → U) : Prop

Γ ` T : s
Γ ` Πx : T .> = > : Prop

(Simplification of ∈)

Γ ` T : s
Γ ` (T ∈ s) = > : Prop

Γ ` M : >
Γ ` (M ∈ >) = > : Prop

Γ ` M : Πx : T . U
Γ ` (M ∈ Πx : T . U) = ∀x : T . ((x ∈ T) → Mx ∈ U) : Prop

Γ ` M : ∀x : T . U
Γ ` (M ∈ ∀x : T . U) = ∀x : T . (M ∈ U) : Prop

Fig. 2. Typing, subtyping and equality rules of ∀, ∈ and >

14

5.3 Adding a primitive type of natural numbers

Let us now extend CCirr
ω with the following set of typed constants (i ≥ 1):

nat : Type1 0 : nat s : nat→ nat

nat ind : ΠX : nat→Prop . (X0→ Πy : nat . (Xy → X(s y))→ Πx : nat . Xx)
nat reci : ΠX : nat→Typei . (X0→ Πy : nat . (Xy → X(s y))→ Πx : nat . Xx)

The constants nat ind and nat reci (i ≥ 1) respectively implement the induction
principle and (dependently-typed) recursion in Typei.

Interpreting nat The constant nat is interpreted as the pointed Π-set defined
by |JnatK| = N, εJnatK = 0, and whose orthogonality relation is given by

n⊥JnatK = J∀X : nat→Prop . (X0→ ∀y : nat . (Xy → X(s y))→ Xx)K⊥x←n

for all n ∈ N. Notice that the definition above is not circular, since the r.h.s.
only depends on the definition of the carrier of nat, but not on its orthogonality
relation. The constants 0 and s are then interpreted as expected.

The interest of this definition is that the proposition x ∈ nat is interpreted
exactly as the relativisation predicate which is traditionally used in second-order
arithmetic to define numeric quantification:

Nat(x) ≡ ∀X : nat→Prop . (X0→ ∀y : nat . (Xy → X(s y))→ Xx)

Fact 6 The following equality rule is sound in M:

Γ ` M : nat
Γ ` (M ∈ nat) = Nat(M) : Prop

Combining the latter with the decomposition of the dependent product (cf sub-
section 5.2) we get the equality Πx : nat . P (x) = ∀x : nat . (Nat(x) → P (x))
expressing that the PTS-style quantification Πx : nat . P (x) is interpreted inM
exactly the same way as the numeric quantification in classical realisability [10].

Interpreting nat ind and nat reci The constant nat ind is interpreted as the
proof object • whereas the constants nat reci are interpreted the obvious way
(i.e. as the corresponding set-theoretic recursors in the universes Ui). From the
latter definition, it is immediate that:

Fact 7 The following equality rules are sound in M:

Γ ` P : nat→ Typei Γ ` N : nat
Γ ` M0 : P 0 Γ ` M1 : Πp : nat . P p→ P (s p)

Γ ` nat reci P M0 M1 0 = M0 : P 0
Γ ` nat reci P M0 M1 (s N) = M1 N (nat reci P M0 M1 N) : P (s N)

15

Extraction We finally extend the extraction mechanism to the new constants
nat, 0, s, nat ind and nat reci by setting:

nat∗ = λz . z (or any quasi-proof)
0∗ = λxf . x s∗ = λnxf . f(nxf) nat rec∗i = nat ind∗

nat ind∗ = λ xfn . n (λz . z 0∗x) (λp . p (λmyz . z (s∗m) (fmy))) (λxy . y)

Proposition 3. The extraction scheme extended to the constants nat, 0, s,
nat ind and nat reci is adequate w.r.t. M (in the sense of Prop. 2).

References

1. P. Aczel. On relating type theories and set theories. In Altenkirch, Naraschewski,
and Reus, editors, Proceedings of Types’98, 1999.

2. T. Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD
thesis, University of Edinburgh, November 1993.

3. T. Coquand and G. Huet. The calculus of constructions. Information and Com-
putation, 120(76):95, 1988.

4. J.H. Geuvers and M.J. Nederhof. A modular proof of strong normalization for the
calculus of constructions. In Journal of Functional Programming, volume 1,2(1991),
pages 155–189, 1991.

5. J. M. E. Hyland. The effective topos. In A. S. Troelstra and D. van Dalen, editors,
The L. E. J. Brouwer Centenary Symposium. North Holland, 1982.

6. J.-L. Krivine. Lambda-calcul, types et modèles. Masson, 1991.
7. J.-L. Krivine. A general storage theorem for integers in call-by-name lambda-

calculus. Th. Comp. Sc., 129:79–94, 1994.
8. J.-L. Krivine. Typed lambda-calculus in classical Zermelo-Fraenkel set theory.

Arch. Math. Log., 40(3):189–205, 2001.
9. J.-L. Krivine. Dependent choice, ‘quote’ and the clock. Th. Comp. Sc., 308:259–

276, 2003.
10. J.-L. Krivine. Realizability in classical logic. Unpublished lecture notes (available

on the author’s web page), 2005.
11. P. Letouzey. A new extraction for Coq. In H. Geuvers and F. Wiedijk, edi-

tors, TYPES, volume 2646 of Lecture Notes in Computer Science, pages 200–219.
Springer, 2002.

12. G. Longo and E. Moggi. A category-theoretic characterization of functional com-
pleteness. Theor. Comput. Sci., 70(2):193–211, 1990.

13. Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford
University Press, 1994.

14. P.-A. Melliès and B. Werner. A generic normalisation proof for pure type systems.
In E. Giménez and C. Paulin-Mohring, editors, TYPES, volume 1512 of Lecture
Notes in Computer Science, pages 254–276. Springer, 1996.

15. A. Miquel. Le calcul des constructions implicite: syntaxe et sémantique. PhD
thesis, Université Paris 7, 2001.

16. C. Paulin-Mohring. Extracting Fω’s programs from proofs in the calculus of con-
structions. In POPL’89, pages 89–104, 1989.

17. C. Paulin-Mohring. Définitions Inductives en Théorie des Types d’Ordre Supérieur.
Habilitation à diriger les recherches, Université Claude Bernard Lyon I, 1996.

18. The Coq Development Team (LogiCal Project). The Coq Proof Assistant Reference
Manual – Version 8.1. Technical report, INRIA, 2006.

19. T. Streicher. Semantics of Type Theory. Birkhäuser, 1991.

