
The experimental effectiveness

of mathematical proof

Alexandre Miquel

1 Introduction

The aim of this paper is twofold. First, it is an attempt to give an answer
to the famous essay of Eugene Wigner about the unreasonable effectiveness of
mathematics in the natural sciences [25]. We will argue that mathematics are
not only reasonably effective, but that they are also objectively effective in a sense
that can be given a precise meaning. For that—and this is the second aim of this
paper—we shall reconsider some aspects of Popper’s epistemology [23] in the
light of recent advances of proof theory [8, 20], in order to clarify the interaction
between pure mathematical reasoning (in the sense of a formal system) and the
use of empirical hypotheses (in the sense of the natural sciences).

The technical contribution of this paper is the proof-theoretic analysis of
the problem (already evoked in [23]) of the experimental modus tollens, that
deals with the combination of a formal proof of the implication U ⇒ V with
an experimental falsification of V to get an experimental falsification of U in
the case where the formulæ U and V express empirical theories in a sense
close to Popper’s. We propose a practical solution to this problem based on
Krivine’s theory of classical realizability [20], and describe a simple procedure
to extract from a formal proof of U ⇒ V (formalized in classical second-order
arithmetic) and a falsifying instance of V a computer program that performs a
finite sequence of tests on the empirical theory U until it finds (in finite time)
a falsifying instance of U .

1.1 In which sense are mathematics effective?

Questioning the effectiveness of mathematics—especially through their interac-
tions with other scientific fields—raises at least three different problems.

The first problem is the problem of the expressiveness of the mathematical
language, its ability to formulate the concepts and problems of scientific theories
other than mathematics. The massive development of sciences in the past two
centuries has shown that the mathematical language is well-suited to formulate
the theories and concepts of (at least some of) the natural sciences. But this
is much less clear for the human sciences, where the traditional constructions
of mathematical logic are too coarse to express subtle statements such as ‘A
despite B’, ‘A instead of B’ or even ‘the behavior X is typical among the popu-
lation Y ’. Considering the problem of expressiveness, natural languages appear
to be much more effective than mathematics to express the majority of scientific
concepts—and not only the purely technical aspects of astronomy, physics or
chemistry. Expressiveness is not the distinctive feature of mathematics.

1

The second problem—that is purely subjective—is the ability of mathemat-
ics and of mathematical reasoning to integrate within the structures of human
reasoning, their compatibility with our ‘intellectual habits’, their ability to stim-
ulate our imagination by taking intuitions and mental representations in our cul-
tural and historical background, and above all: their ability to be easily grasped
by our mind. This problem is strongly related to the question of ‘aesthetics’
in mathematics. Mathematicians take a great care in finding elegant proofs
for their theorems, in organizing their proofs into definitions, lemmas, proposi-
tions and corollaries, in designing theories with the highest level of generality.
If mathematicians prefer conceptual and elegant proofs to more ad hoc proofs,
this is not because elegant proofs make theorems more true. This is because
these proofs (or these theories) are more easily grasped by our mind, so that
their constituents are more likely to be assimilated by mathematicians and later
reused in other parts of mathematics. Again, this form of effectiveness (and the
accompanying aesthetics) is not distinctive of mathematics. One can find it in
mythology, in religions, in poetry, in philosophy and in psychoanalysis. And
this is surely not a coincidence that mathematics borrows part of its vocabulary
to philosophy and religion: ‘canonical’, ‘transcendental’, ‘faithful’, ‘universal’
(in Greek: καθoλικóς) and more recently: ‘category’.

The third problem—which is actually the only problem we want to address
in this paper—is the objectivity of mathematical reasoning, that is: the ability
of mathematical reasoning to interact with non-mathematical objects, especially
through the experimental method. To understand the difference between the
subjective effectiveness and the objective effectiveness of mathematics, let us
propose the following analogy. Mathematics can be viewed as a tool, like a
hammer, a spoon or even a car. Most tools built by and for human beings have
two sides: one side that is intended to be grasped by the hand, and another
side that is intended to interact with other objects depending on the function of
the tool. Without a side that is adapted to our hand, we could not manipulate
the tool. But without the side that operates on the world, our tool would be
useless. The only difference between mathematics and concrete tools is that
mathematics are grasped not by our hand but by our mind.

A common view among pure mathematicians is that mathematics are devel-
oped ‘for the honor of the human spirit’ (Jacobi). But looking at how math-
ematics where used through ages and considering their prominent role in the
technology of the twentieth century, it should be clear that mathematics are
not only developed for this purpose. Through applied mathematics, the most
abstract mathematical theories succeed to find their applications in the every-
day life. For instance, the design of the profile of the wing of a plane involves
complex mathematical models. But this is not because these models are aes-
thetic, or because the underlying theories are cleverly organized into definitions,
lemmas and corollaries that we use them here. We use them because they help
us to determine the profile of the wing that will make the plane fly.1

1In this example, the corresponding mathematical models are implemented in computer
simulations that are able to predict—up to some extent—the behavior of the wing in the
atmosphere. Using these simulations, it is possible to correct the most obvious defects of
the profile before doing a real test in a wind tunnel, thus reducing the number of such tests.
Here, the objective effectiveness of mathematical models is their ability to produce correct
predictions (by the only mean of calculations) of what will happen in the wind tunnel.

2

1.2 The interface with natural sciences

The distinctive feature of applied mathematics is that they combine pure math-
ematical reasoning with symbols, concepts and hypotheses that are external to
pure mathematics2, such as the notions of time, velocity, magnetic field, inten-
sity, etc. In the language of mathematics, these external notions are expressed
by the means of function and predicate symbols that are simply added to the
core language of mathematics. This extra symbols also come with hypotheses
(equations, relations, etc.) expressing the assumptions of the applied theory, for
instance the equations of fluid mechanics or Maxwell’s equations. But the im-
portant point here is that neither the symbols nor the accompanying hypotheses
constitute a definition of these concepts. The real definition of these concepts
lies outside mathematics, in the physical (and experimental) interpretation we
decide to give to the corresponding symbols.

For instance, Euler’s equation of inviscid motion

∂u
∂t

+ (u · ∇) u = − ∇P
ρ

that relates the velocity u of an uncompressible fluid of density ρ with its pres-
sure P (in some domain D ⊆ R4) does not constitute a definition of the func-
tions u : D → R3 and P : D → R (assuming that we know the quantity ρ)3.
Here, the real definition of P lies outside mathematics. It lies in the decision
to interpret the symbol P in the physical world as the local pressure in func-
tion of the position and the time within the domain D (that also needs to be
interpreted, for example by expliciting a system of coordinates).

In the same way, the equation above cannot be proved4 within mathematics,
since it contains undefined symbols (u and P) and since it is obviously not
true for every pair of functions (u, P). But on the other hand, we can test
the equation above using the physical interpretation of the symbols u and P
as well as the physical interpretation of the derivative. Given a finite set of
points in the domain and fixing a precision for our measures, we can measure
the quantities above and check whether they are equal or not at the required
precision. But such a test is necessarily finite in nature (including the precision)
and cannot constitute a proof that the equation holds everywhere in the domain
at an arbitrary precision. Nevertheless, the equation above can be falsified by
a test showing that both members of the equation differ at some point of the
domain. (Typically: by showing that the difference between the values given by
the measure exceeds the given precision.)

This example should clarify the nature of the interface between mathematics
and the natural sciences. This interface has two sides:

• A mathematical side, that consists of a finite number of new mathematical
symbols accompanied with hypotheses describing (some of) the relations
between these symbols. Formally, these hypotheses are expressed as for-
mulæ in the language of mathematics extended by the new symbols.

2By pure mathematics, we mean mathematics that can be expressed in the language of
(say) set theory and that can be proved in the corresponding system of axioms.

3It is well known that such an equation has infinitely many solutions in mathematics.
4It is actually possible to prove this equation from the particle model of uncompressible

fluids. But in this case, our proof relies on new (still undefined) symbols and new assumptions
coming from the particle model and from Newtonian mechanics. Doing this, we reduce fluid
mechanics to Newtonian mechanics, but the situation is epistemologically the same.

3

• A non mathematical side, formed by the ‘real world’ interpretation of the
new symbols together with the procedures by which the relations expressed
by these symbols can be tested. Let us insist on the fact that this side of
the interface is by nature completely informal.

In what follows, we shall assume that the accompanying hypotheses are falsi-
fiable in a sense close to Popper’s [23]. Technically, this assumption will be
enforced by putting severe restrictions on the kind of formulæ which may be
used as empirical hypotheses (cf section 2.4).

1.3 The experimental modus tollens

The interest of expressing a scientific theory using the mathematical language
(through an interface such as described above) is that we can benefit of the
whole strength of mathematical reasoning to deduce consequences of our extra-
mathematical assumptions. Among these consequences, some of them may fulfill
the requirement of falsifiability, which means that they can be tested, using the
same interpretation as before for the extra-mathematical symbols. In this way,
mathematical reasoning appears to be an extraordinary device to extend the
empirical basis of a theory: starting from a small set of empirical hypotheses—
which may be difficult to test directly—we can use mathematical reasoning to
derive a much larger set of empirical formulæ, thus offering more possibilities
to test the theory, and more opportunities to falsify it.

The logical rule by which we deduce the falsity of an empirical theory U
from the falsity of an empirical theory V that is a mathematical consequence
of U is the rule of modus tollens: from U ⇒ V and ¬V , deduce ¬U . But if
we look closely at how this rule is used in the process of indirect falsification
of U through a direct falsification of V , then we see that the corresponding
inference combines two premises of a different nature: a mathematical proof
of the implication U ⇒ V—that we can think as a formal object expressed
in some formal system—and an empirical falsification of V—given by a set of
parameters for which the corresponding test fails. The situation is illustrated
with the following (tentative) inference rule

math. ` U ⇒ V exp. 6|= V

exp. 6|= U

where mathematical provability (written ‘math. ` · · · ’) is explicitly distin-
guished from experimental falsification (written ‘exp. 6|= · · · ’).

Clearly, the combination of both premises does not constitute a mathemat-
ical proof: it contains an object—the experimental falsification of V—that is
external to mathematical reasoning. On the other hand, the combination of
both premises does not obviously lead to an experimental falsification of U : we
have a set of parameters for which the corresponding test on V fails, but how
to deduce from it (and from the proof of U ⇒ V) another set of parameters
for which the corresponding test on U will fail? Actually, we do not even know
which statement of the theory U is responsible for the failure.

We are thus set in a very uncomfortable epistemological situation in which
the falsification of U is purely logical—we know that U is wrong (because we
believe in mathematics5), but we do not know where. The problem comes

5We shall come back to this belief in section 6.

4

here from the fact that mathematical reasoning seems to destroy the empirical
connection between hypotheses and conclusions. The proof of U ⇒ V may rely
on mathematical abstractions (functional spaces, measurable sets, categories,
etc.) as well as on reasoning principles (reductio ad absurdum, the axiom of
choice) that have no obvious ‘real world’ interpretation. So, how to keep track
of the empirical falsification of V through all these abstractions?

In this situation, Popper notices that we can first remove from the theory U
all the statements from which V is independent (that is: all the statements that
are not involved in the proof of U ⇒ V), while insisting on the fact that the re-
maining sub-system U ′ is still falsified as a whole, since the indirect falsification
of U ′ gives us no clue on which statement of U ′ has to be rejected:

Thus we cannot at first know which among the various statements
of the remaining sub-system U ′ (of which V is not independent)
we are to blame for the falsity of V ; which of these statements we
have to alter, and which we should retain. (I am not here discussing
interchangeable statements.) It is often only the scientific instinct of
the investigator (influenced, of course, by the results of testing and
re-testing) that makes him guess which statements of U ′ he should
regard as innocuous, and which he should regard as being in need
of modification. (...) [23, footnote 2 p. 56]6

However, Popper’s analysis of the problem is limited by the fact that it
does not take into account what is actually the key ingredient of an effective
solution: the formal proof of the implication U ⇒ V . In the light of the recent
developments of proof theory (especially in the theory of realizability), we shall
see that this formal proof does not only contain a program (according to the
correspondence between proofs and programs [8, 16]), but that this program—
when combined with an experimental falsification of V and when executed in
a suitable environment—constitutes a procedure of tests of the theory U that
eventually reaches an explicit falsification of this theory.

The problem of experimental effectiveness To perform our proof-theo-
retic analysis of the problem of the experimental modus tollens, we shall focus
on an apparently simpler—but actually equivalent—problem, which we call the
problem of experimental effectiveness. This problem is the following: given an
empirical theory U with a mathematical proof of the formula ¬U (expressing
that U is contradictory), how to find an experimental falsification of the the-
ory U , that is: a particular instance of a statement of the theory U that is
experimentally false?

math. ` ¬U
exp. 6|= U

This problem is clearly an instance of the problem of the experimental modus
tollens, corresponding to the case where V is the absurd formula ⊥. (Remember
that in logic, the negation ¬U can be defined as a shorthand for U ⇒ ⊥.) Note
that the statement expressed by the formula ⊥ can be considered as an empirical
statement, namely, as the statement which is always false, by convention.

6We changed the letters used by Popper to denote the initial system and its falsified
consequence to agree with our notations in this paper.

5

Conversely, it is not difficult to see that the principle of experimental ef-
fectiveness actually implies the principle of the experimental modus tollens, in
the sense that we can transform any procedure solving the problem of experi-
mental effectiveness into a procedure solving the problem of the experimental
modus tollens. Since this transformation relies on the particular way empirical
statements are represented in the mathematical language (that will be given in
section 2.4), we postpone the description of this transformation to section 4.6.

1.4 From proofs to programs

We already noticed that Popper’s analysis of the problem of the experimental
modus tollens does not take into account the mathematical proof of the impli-
cation U ⇒ V . In Popper’s epistemology, mathematical proofs are only formal
objects: they are useful to convey truth between premises and conclusions (pro-
vided the theory is consistent), but they have no real operational meaning, they
are computationally inert.

The proof-theoretic point of view However, the last century—especially
its second half—saw a large development of proof theory [3, 6, 14, 15, 10, 7, 21]
which shed a new light on the operational contents of mathematical proofs. The
main discovery was that every formal mathematical proof contains a program7

that embodies the operational contents of the proof. One of the fascinating
aspects of this correspondence between proofs and programs—a.k.a. the Curry-
Howard correspondence [5, 13, 8]—is that the program contained in the proof
is not constructed from the formulæ constituting the proof (which represent the
‘idealistic’ part of the proof), but from the deduction steps themselves, from the
very hinges of the reasoning. For example, if we want to extract the program
hidden in the following proof of the syllogism Barbara

[∀x (B(x)⇒ C(x))]
g

B(x)⇒ C(x)

[∀x (A(x)⇒ B(x))]
f

A(x)⇒ B(x) [A(x)]
u

B(x)
apply

C(x)
apply

A(x)⇒ C(x)
λu

∀x (A(x)⇒ C(x))
∀x (B(x)⇒ C(x))⇒ ∀x (A(x)⇒ C(x))

λg

∀x (A(x)⇒ B(x))⇒ ∀x (B(x)⇒ C(x))⇒ ∀x (A(x)⇒ C(x))
λf

(here expressed in natural deduction style), we have to read between the lines of
the proof, considering each axiom and each inference step as a single program-
ming construct (depicted here on the right hand side of the corresponding rule).
Collecting all these programming constructs, we thus get the program

λf . λg . λu . g (f u)

(expressed in the λ-calculus [4, 1]) that performs the composition of two func-
tions f and g, which program constitutes the procedural explanation of the
proof of transitivity of inclusion.

7In the sense of computer science.

6

From intuitionistic logic to classical logic For a long time, the proofs-as-
programs correspondence was confined to intuitionistic (or constructive) math-
ematics, and was unable to interpret classical reasoning principles such as the
law of excluded middle, Peirce’s law, or the principle of reductio ad absurdum.
The breakthrough came in 1990, when Griffin [11] discovered that Peirce’s law
(that intuitionistically implies the law of excluded middle) could be interpreted
in terms of the control operator call/cc (‘call with current continuation’). By en-
riching the λ-calculus with such control operators, it became possible to extend
the proofs-as-programs correspondence to classical logic.

Technically, control operators permit to save the current execution context,
thus allowing programs to restart computation at a formerly saved point. In
practice, programs extracted from classical proofs use this feature to implement
the trial and error method: when asked a question, a program can give a first
(and possibly incorrect) answer while saving the current context. If the sequel
of the execution reaches a contradiction (because the answer was wrong), the
program may backtrack (by restoring the context that asked the question) and
provide a new answer, typically using information given by the computation
that reached the contradiction. In this way, the flow of information becomes
more symmetric: it does not only go from premises to the conclusion, but it can
also go back from the conclusion to premises.8

The model-theoretic point of view The traditional notion of a model is
based on Tarski’s semantics of truth9: the interpretation of a formula has only
two possible outcomes: 0 (the formula is false) and 1 (the formula is true). A
formal system is said to be sound (w.r.t. a given class of models) when every
formula that is provable in this system is interpreted by the truth value 1 in
every model (belonging to the given class).

This simple picture is sufficient to grasp the main limit of traditional mod-
els: they are designed in order to interpret provability, not to interpret proofs.
Indeed, a formula that has a complex proof (say: Fermat’s last theorem) will be
interpreted the very same way as a formula having simple proofs (say: 2+2 = 4),
that is: by the truth value 1. Traditional models can only distinguish between
truth and falsity, and this distinction is definitely too coarse to convey more
elaborate invariants, such as the computational contents of proofs.

To analyze the computational contents of intuitionistic proofs, Kleene in-
troduced the notion of realizability [14], that can be seen (at a first glance) as
a generalization of the notion of a model where the truth values 0 and 1 are
replaced by all the possible sets of programs. Through Kleene’s realizability
interpretation (a.k.a. the Brouwer-Heyting-Kolmogorov interpretation), a for-
mula A is interpreted as a type, that is: as a set |A| of programs which share
a common computational behavior—such a computational behavior being usu-
ally called a specification. For instance, the implication A⇒ B is interpreted as
the set of all programs (or computable functions) that transform any program
belonging to |A| into to a program belonging to |B|. Similarly, the conjunction

8Of course, there is a striking analogy between Popper’s epistemology and the modern
understanding of the computational contents of classical reasoning in terms of the trial and
error method (which is technically implemented using control operators). One of the aims of
this paper is to help to clarify this connection, which is by no means coincidental.

9One of the main sources of inspiration of Popper’s theory of ‘truth as a correspondence’.

7

A∧B is interpreted as the set of all programs computing an ordered pair 〈t1, t2〉
whose components t1 and t2 belong to |A| and |B|, respectively.

In realizability, the model-theoretic property of soundness becomes the fol-
lowing property of adequacy : if d is a formal proof (i.e. a derivation) of a
formula A in a suitable formal system, then the program d∗ extracted from d
(i.e. the computational contents of d) belongs to the set |A|. Which means that
the program d∗ that has been mechanically constructed from the formal proof d
precisely satisfies the specification induced by the formula A seen as a type,
thus allowing various predictions about the execution of this program. For ex-
ample, if d is a derivation of the formula ∃x∈N f(x) = 0, then we can predict
(using the specification associated with the formula ∃x∈N f(x) = 0) that the
execution of the extracted program d∗ will produce an ordered pair whose first
component is a natural number n such that f(n) = 0.10

As shown by the above example, the theory of realizability reveals that
mathematical proofs are more than formal descriptions of mathematical entities:
they actually give us procedures to compute with such entities. Far from being
only descriptive, mathematical proofs are also prescriptive.

From Kleene realizability to Krivine realizability However, the notion
of realizability such as introduced by Kleene is technically limited to intuitionis-
tic mathematics11. For this reason we shall not consider Kleene’s theory in the
sequel, but Krivine’s theory of classical realizability [20] that was developed in
the 90’s to take into account Griffin’s discovery about the connection between
classical logic and control operators. More than an extension of Kleene’s the-
ory, the theory of classical realizability is a complete reformulation of the very
principles of realizability in order to cope with the full strength of (classical)
mathematical reasoning, including several forms of the axiom of choice [19].

Krivine’s theory is a powerful tool that is able to deal with very strong
mathematical theories such as Zermelo-Fraenkel set theory [18] or the calculus
of constructions with universes [22] (the underlying formalism of the Coq proof
assistant). To avoid unnecessary complication, we shall only consider Krivine’s
theory in the framework of second-order Peano arithmetic (PA2), and we will
show how the corresponding realizability interpretation can be used to give a
procedural solution to the problem of the experimental modus tollens in the
case where the proof of U ⇒ V is entirely formalized in PA2. Nevertheless, the
methodology described in this paper is not limited to this particular formalism,
and it remains valid in the case where the proof of U ⇒ V is formalized in any
of the aforementioned stronger theories.

Outline of the paper

In section 2 we introduce the syntax and deduction rules of the extension of
second-order Peano arithmetic (PA2) we shall use throughout the paper. In

10This prediction only holds for constructive proofs. The prediction of the computational
behavior of programs extracted from classical existential proofs is much more subtle, since
these programs are based on the trial and error method.

11It follows from the very definition of Kleene realizability that the law of excluded middle
cannot be realized. This argument (combined with the property of adequacy) can be used to
show that the law of excluded middle is not derivable in most constructive systems.

8

section 3, we introduce an extension of Krivine’s language λc with extra in-
structions to perform experimental tests, and we show how to extract programs
written in this language from derivations formalized in PA2. The corresponding
realizability model is introduced in section 4, which provides (via the property of
adequacy) a model-theoretic justification of the extraction procedures presented
in the previous section. From this we deduce procedural ways to solve the prob-
lem of experimental effectiveness as well as the problem of the experimental
modus tollens. In section 5 we present two execution methods for the corre-
sponding programs and give an application to computer science. We finally
conclude in section 6 by discussing several proof-theoretic aspects about the
concerned procedures, including the empirical and non empirical assumptions
underlying the proposed methodology.

2 An experimental arithmetic

We now present a formalism which we call the experimental arithmetic, whose
syntax and deduction rules are summarized in Fig. 1. Basically, this formalism
is an extension of second-order Peano arithmetic (PA2) with primitive predicate
symbols (written p, q, r, etc.) expressing experimentally testable facts. By this,
we mean that each atomic formula p(x, y, z, . . .) associated with an experimental
predicate symbol p comes with a ‘real world’ interpretation such as

The animal in box No. x is a cat

or

The concentration of alcohol in tube No. x is comprised between y
and z percent

or even

The 2nd-coordinate of the magnetic field in the universe cube No. x
has an average value comprised between y/w and z/w (in Tesla).

Since we work in arithmetic, sets of parameters of an experimental predicate p
are naturally expressed as tuples of natural numbers, hence the need for more
or less clever codings to address the physical reality.12 (For instance in the 3rd
example, the use of a fixed sequence of universe cubes with discrete bounds to
address portions of the space, and the introduction of a precision parameter w
to approximate continuous quantities.) On the other hand, experimental predi-
cates come with no special meaning as mathematical entities, that is, they come
with no specific axiom or computational rule attached to them.

2.1 The language

The language of experimental arithmetic (cf Fig. 1) is defined from the following
sets of symbols:

• An infinite set of first-order variables (written x, y, z, etc.), that is: vari-
ables denoting individuals (i.e. natural numbers).

12We could easily enrich the language to express richer kinds of parameters such as relative
integers, rational numbers, lists, trees, etc. However, the parameters of a testable predicate p
should always remain discrete, independently from their representation.

9

• For each arity k ≥ 0, an infinite set of second-order variables of arity k,
(written X, Y , Z, etc.), that is: variables denoting kary relations over
individuals.

• For each primitive recursive definition of a function—including zero and
successor—a function symbol (written f , g, h, etc.) representing the func-
tion described by the given definition. In particular, we respectively de-
note by 0 and s the constant symbol representing zero and the unary
function symbol representing the successor function. We will also freely
use well-known symbols such as + (addition), × (multiplication), etc.

• A finite set of predicate symbols (written p, q, r, etc.) representing exper-
imental predicates, each of them given with its arity.

The language of experimental arithmetic distinguishes two kinds of expres-
sions: numeric expressions (written e, e1, e′, etc.) that represent individuals;
and formulæ (written A, B, C, etc.) that represent facts—possibly true or
false—built from the experimental predicates.

Numeric expressions The language of numeric expressions is inductively
defined from the following two construction rules:

• If x is a first-order variable, then x is a numeric expression.

• If f is a kary function symbol and if e1, . . . , ek are k numeric expressions,
then f(e1, . . . , ek) is a numeric expression.

The set of free variables of a numeric expression e is written FV (e). Given
a numeric expression e, a variable x and a numeric expression e′, we denote by
e{x := e′} the numeric expression obtained by replacing in e every occurrence
of the variable x by e′.

For each closed numeric expression e, we call the value of e and write ↓e
the natural number computed by the expression e using the computation rules
attached to the (primitive recursive) function symbols f contained in e. In
model-theoretic terms, the value of e is but the denotation of e in the standard
model of arithmetic (i.e. N), interpreting function symbols the obvious way.

Formulæ The language of formulæ is inductively defined from the following
five construction rules:

• If p is a kary experimental predicate symbol and if e1, . . . , ek are k numeric
expressions, then p(e1, . . . , ek) is a formula.

• If X is a kary second-order variable and if e1, . . . , ek are k numeric ex-
pressions, then X(e1, . . . , ek) is a formula.

• If A and B are formulæ, then A⇒ B is a formula.

• If x is a first-order variable and if B is a formula, then ∀xB is a formula.

• If X is a kary second-order variable and if B is a formula, then ∀XB is a
formula.

The set of free (first- and second-order) variables of a formula A is writ-
ten FV (A). As usual, formulæ are considered up to α-conversion, regardless
from the names of bound variables. Formulæ are equipped with two different
operations of substitution:

10

• (First-order substitution) Given a formula A, a variable x and a numeric
expression e, we write A{x := e} the formula obtained by replacing in A
every free occurrence of the variable x by e, taking care of renaming bound
first-order variables in A in order to prevent variable captures. More
generally, we denote by

A{x1 := e1; . . . ;xk := ek}

the formula obtained by simultaneously replacing in the formula A every
free occurrence of a variable xi (among x1, . . . , xk) by the corresponding
numeric expression ei. (Again: one has to take care of renaming bound
variables in A when needed.)

• (Second-order substitution) Given a formula A, a kary second-order vari-
able X, a list of k variables x1, . . . , xk and a formula B, we denote by

A{X(x1, . . . , xk) := B} (or A{X := x̂1 · · · x̂k.B})

the formula obtained by replacing in A every atomic subformula of the
form X(e1, . . . , ek) (corresponding to a free occurrence of X in A) by the
formula B{x1 := e1; . . . ;xk := ek}, while taking care of renaming bound
(first- and second-order) variables when necessary. Intuitively, this opera-
tion describes the instantiation of the indefinite predicate X of arity k by
the actual predicate x̂1 · · · x̂k.B (‘B of x1, . . . , xk’) of the same arity.

The language of formulæ we actually presented is the language of minimal
second-order logic: its only nonatomic constructions are implication, first-order
universal quantification and second-order universal quantifications for all ari-
ties. However, this core language is expressive enough to encode all the other
constructions of logic: absurdity, negation, conjunction, disjunction, first- and
second-order existential quantifications — and even Leibniz equality — using
the so-called ‘second-order encodings’ recalled in Fig. 1. In the sequel, we shall
freely use the constructions ⊥, ¬A, A ∧ B, A ∨ B, ∃xA, ∃X A and e1 = e2 as
abbreviations in the core language.

2.2 Deduction rules and derivations

The language defined above is equipped with the standard notion of provability
in second order arithmetic (PA2), using a presentation based on intuitionistic
natural deduction extended with Peirce’s law to recover classical logic. Formally,
we work with asymmetric sequents of the form

Γ ` A (‘under the assumptions Γ, A holds’)

where Γ ≡ A1, . . . , An is a finite list of formulæ used as hypotheses — called
the context — and where A is a formula.

The notations FV (Γ), Γ{x := e}, Γ{X(x1, . . . , xn) := B}, etc. are extended
to lists of formulæ Γ = A1, . . . , An by setting:

FV (A1, . . . , An) = FV (A1) ∪ · · · ∪ FV (An)
(A1, . . . , An){x := e} ≡ A1{x := e}, . . . , An{x := e}

(And similarly for the notation Γ{X(x1, . . . , xn) := B}.)
The deduction rules of the system are given in Fig. 1. They consist of:

11

• The deduction rules of minimal intuitionistic second-order logic, namely:
the axiom rule, plus the introduction and elimination rules of implication,
first- and second-order universal quantification.

• A specific rule for Peirce’s law, that entails all the other classical reasoning
principles: the excluded middle (A ∨ ¬A), double negation elimination
(¬¬A⇒ A) and the rule of reductio ad absurdum.

The axiom rule is extended with all the axioms of arithmetic, namely:

• The axioms expressing that the successor function is injective (3rd Peano
axiom) and that zero is not in its image (4th Peano axiom). Notice that
the formulation of these axioms relies on the encoding of equality and
negation given in Fig. 1 (‘abbreviations’).

• The defining equalities of the function symbols f representing primitive
recursive definitions of functions. Example of such equalities defining ad-
dition, multiplication, exponentiation, the factorial function, etc. are:

0 + y = y 0× y = 0
s(x) + y = s(x+ y) s(x)× y = (x× y) + y

x ↑ 0 = s(0) 0! = s(0)
x ↑ s(y) = (x ↑ y)× x s(x)! = s(x)× x!

Once deduction rules have been defined, we can construct proofs by assem-
bling instances of these rules such as in the following example:

∀x (Y (x)⇒ Z), Y (s(0)) ` ∀x (Y (x)⇒ Z)

∀x (Y (x)⇒ Z), Y (s(0)) ` Y (s(0))⇒ Z ∀x (X(x)⇒ Y (z + x)), Y (s(0)) ` Y (s(0))

∀x (Y (x)⇒ Z), Y (s(0)) ` Z

Formally, we call a derivation (or a proof) any finite tree d whose nodes are
labelled with sequents, and such that for each node of d labelled with sequent S
and whose children are labelled with sequents S1, . . . , Sn (n ≥ 0), there is a
deduction rule such that the inference S1···Sn

S is an instance of this rule.
Given a derivation d, the sequent S that labels the root of d is called the

conclusion of d, and d is called a derivation of S. When a sequent S has a
derivation d, we say that S is derivable. In particular, when a sequent of the
form ` A (without assumption, A being a closed formula) is derivable, we say
that the formula A is a theorem (of second-order arithmetic).

2.3 Arithmetic reasoning

The reader may have noticed that we presented axioms (cf Fig. 1) expressing
that the successor function is injective (Peano 3rd axiom) and non-surjective
(Peano 4th axiom), but that there is no axiom for the induction principle on
natural numbers (Peano 5th axiom). It would be a bad idea to consider this
principle in our axioms, since it is impossible to associate a program to the
induction principle through program extraction.13 To circumvent this difficulty,
we shall use the following trick (well-known in second-order logic [8, 16, 20]).

13The reason for this is that the induction principle has no realizer in Krivine realizabil-
ity [20]. The extraction mechanism must preserve the invariant that a program extracted
from any proof of a formula A should be a realizer of the formula A. (See section 4 for more
details.)

12

Syntax

(Numeric expressions) e, e′ ::= x | f(e1, . . . , ek)

(Formulæ) A,B ::= p(e1, . . . , ek) | X(e1, . . . , ek)
| A⇒ B | ∀xA | ∀X A

Abbreviations

(Contradiction) ⊥ ≡ ∀Z Z
(Immediate truth) > ≡ ∀Z (Z ⇒ Z)

(Negation) ¬A ≡ A⇒ ⊥

(Conjunction) A ∧B ≡ ∀Z ((A⇒ B ⇒ Z)⇒ Z)
(Disjunction) A ∨B ≡ ∀Z ((A⇒ Z)⇒ (B ⇒ Z)⇒ Z)

(1st order existence) ∃xA[x] ≡ ∀Z (∀x (A[x]⇒ Z) ⇒ Z)
(2nd order existence) ∃X A[X] ≡ ∀Z (∀X (A[X]⇒ Z) ⇒ Z)

(Leibniz equality) e1 = e2 ≡ ∀Z (Z(e1)⇒ Z(e2))
e1 6= e2 ≡ ¬(e1 = e2)

Deduction rules

(Axiom) Γ ` A
(A∈Γ∪A)

(⇒-intro,-elim)
Γ, A ` B

Γ ` A⇒ B
Γ ` A⇒ B Γ ` A

Γ ` B

(∀1-intro,-elim)
Γ ` B

Γ ` ∀xB
(x /∈FV (Γ))

Γ ` ∀xB
Γ ` B{x := e}

(∀2-intro,-elim)
Γ ` B

Γ ` ∀X B
(X /∈FV (Γ))

Γ ` ∀X B
Γ ` B{X(x1, . . . , xk) := A}

(Peirce’s law) Γ ` ((A⇒ B)⇒ A)⇒ A

where A denotes the set of all axioms of arithmetic, that consists of:
• The axiom of injectivity: ∀x ∀y (s(x) = s(y)⇒ x = y)
• The axiom of non confusion: ∀x s(x) 6= 0
• The defining equalities attached to the function symbols f

(that recursively define the corresponding primitive recursive functions)

Figure 1: Language and deduction rules of PA2

13

Given a numeric expression e, we write

Nat(e) ≡ ∀Z (Z(0) ⇒ ∀x(Z(x)⇒ Z(s(x))) ⇒ Z(e))

the formula expressing that (the number denoted by) e belongs to the smallest
class containing zero and closed under the successor function. It is easy to
check that the class delimited by the predicate Nat(x) contains zero and is
closed under the successor function, in the sense that the following formulæ are
derivable in PA2:

1. Nat(0) (Peano 1st axiom)

2. ∀x(Nat(x)⇒ Nat(s(x))) (Peano 2nd axiom)

To relativize universal and existential first-order quantifications to the predi-
cate Nat(x), we introduce the abbreviations

and

∀Nx A[x] ≡ ∀x (Nat(x)⇒ A[x])

∃Nx A[x] ≡ ∀Z (∀x (Nat(x)⇒ A(x)⇒ Z) ⇒ Z)
⇔ ∃x (Nat(x) ∧A[x])

defining what will be called numeric quantifications in the sequel—as opposed
to first-order quantifications. Using these notations, it is a simple exercise to
check that the induction principle holds provided we express it using numeric
quantifications instead of first-order quantifications:

∀Z
(
Z(0) ⇒ ∀Nx (Z(x)⇒ Z(s(y))) ⇒ ∀Nx Z(x)

)
Using this principle, we can more generally show that the class delimited by

the predicate Nat(x) is closed under every function symbol of the signature:

Proposition 1 — For every function symbol f of arity k, the formula

∀Nx1 · · · ∀Nxk Nat(f(x1, . . . , xk))

is derivable in PA2.

Proof. The derivation of the formula above is constructed using the defining
equations of the symbol f combined with the induction principle (relativized to
the predicate Nat(x)) according to the primitive recursive definition of f . 2

As a consequence, a numeric expression e belongs to the class delimited by
the predicate Nat(x) as soon as all its free variables belong to this class:

Proposition 2 — For every numeric expression e[x1, . . . , xk] of free variables
x1, . . . , xk, the formula

∀Nx1 · · · ∀Nxk Nat(e[x1, . . . , xk])

is derivable in PA2.

Proof. By structural induction on e. 2

Using Prop. 1 and 2, we can mimic full second-order arithmetic — that
is: second-order arithmetic with the induction principle — simply by replacing
first-order quantifications by numeric quantifications everywhere in formulæ.

14

Remark. The trick presented above is based on the intuition that numeric
expressions such as defined in section 2.1 do not exactly represent natural num-
bers, but only individuals that we can think of natural numbers without the
knowledge that they are natural numbers. The purpose of the predicate Nat(x)
is precisely to delimit the class of natural numbers, i.e. the class of individuals
that are reached by any form of reasoning by induction. The knowledge that
a numeric expression e is a natural number is represented here by a proof of
the formula Nat(e). Such proofs play an important role during program ex-
traction, since they correspond to the programs that compute the value of the
corresponding numeric expression in a sense that will be precised in section 4.5.

2.4 Experimental formulæ

Within the language of formulæ, we distinguish three classes of formulæ repre-
senting experimental statements, namely: the class of elementary formulæ, the
class of testable formulæ and the class of testable universal formulæ (Fig. 2).

Elementary formulæ. We call an elementary formula any (open or closed)
formula E that has of the following two forms:

(Experimentation)
(Equality test)

E ≡ p(e1, . . . , ek)
E ≡ e1 = e2 ≡ ∀X (X(e1)⇒ X(e2))

Intuitively, elementary formulæ are atomic formulæ built from experimental
predicates in a broader sense that includes the equality test (seen as a purely
mathematical experiment).

Testable formulæ. They are inductively built from the following construc-
tion rules:

• The formlula ⊥ ≡ ∀XX is a testable formula.

• If E is an elementary formula, then E is a testable formula.

• If E is an elementary formula and if T is a testable formula, then the
formula E ⇒ T is a testable formula.

• If E is an elementary formula and if T is a testable formula, then the
formula ¬E ⇒ T is a testable formula.

In other words, a testable formula is a formula of the form

T ≡ ± E1 ⇒ · · · ⇒ ±Ek ⇒ E0 ,

where E1, . . . , Ek are elementary formulæ (here, the notation ±Ei refers to one
of both formulæ Ei or ¬Ei indifferently) and where E0 is an elementary formula
or the formula ⊥. From the point of view of classical logic, a testable formula
is thus nothing but a (disjunctive) clause formed from the elementary formulæ:

T ⇔ ∓ E1 ∨ · · · ∨ ∓Ek ∨ E0 .

Closed testable formulæ are called testable singular formulæ

15

Testable universal formulæ. Finally, we call a testable universal formula
any closed formula of the form

U ≡ ∀Nx1 · · · ∀Nxk T [x1, . . . , xk]

where T [x1, . . . , xk] is a testable formula whose free variables occur among the
set of variables {x1, . . . , xk}. The natural number k is called the arity of U .
Notice that every testable singular formula (as well as every closed elementary
formula) is a testable universal formula with a null arity.

Testable universal formulæ are testable in the sense that all their instances
(corresponding to all the possible combinations of parameters in Nn) can be
tested separately. Of course, a testable universal formula cannot be verified
globally—which would require an infinite number of tests—but it can be falsified
with a single test corresponding to a single set of parameters.

Epistemologically, the notion of testable universal formula corresponds to
Popper’s notion of empirical (or falsifiable) statement [23].

(Elementary formulæ) E ::= p(e1, . . . , ek) | e1 = e2

(Testable formulæ) T ::= ⊥ | E | E ⇒ T | ¬E ⇒ T

(Testable universal formulæ) U ::= ∀Nx1 · · · ∀Nxk T [x1, . . . , xk]

Figure 2: The language of experimental formulæ

2.5 The experimental theory and the tools to test it

The notion of an experimental theory We call an experimental theory any
finite list U1, . . . , U` of testable universal formulæ. In practice, such a theory
will be formed with three kinds of statements:

(1) Currently accepted scientific laws (according to a given theory)

(2) Initial conditions (of a particular experiment)

(3) Observed effects (of the experiment)

Typically, statements of the first kind will be formalized as testable universal
formulæ whereas statements of the second and third kinds will be formalised as
testable singular formulæ.

The situation we are interested in occurs when the experimental theory is
contradictory. In practice, the contradiction arises when an observed effect (3)
does not match a prediction derived from the initial conditions (2) using the
universal laws given by the theory (1). Our aim is to define an effective proce-
dure that selects particular instances of the formulæ U1, . . . , U` and test them
successively until one of them fails—typically, an instance of one of the universal
statements of the accepted theory.

In what follows, we assume given an experimental theory U1, . . . , U`.

16

Test functions To test the experimental theory, we assume that each exper-
imental predicate symbol p comes with a test function

Val(p) : Nk → {0; 1}

which maps each k-tuple of parameters (ν1, . . . , νk) ∈ Nk to a boolean value
representing the success (1) or the failure (0) of the experiment associated to
the atomic formula p(ν1, . . . , νk).

From an experimental point of view, we assume that the computation of
Val(p)(ν1, . . . , νk) can be achieved using a finite amount of resources for all
tuples of parameters (ν1, . . . , νk) ∈ Nk. In particular, we assume that this
computation can always be done (at least potentially) in finite time.

From a mathematical point of view, we make the only assumption that the
function Val(p) : Nk → {0; 1} is total. In particular:

1. We do not assume that the function Val(p) : Nk → {0; 1} is decidable,
or even semi-decidable. Effectiveness has to be understood here in the
(informal) sense of physics, not in the (formal) sense of recursion theory.
In this work, we never need the assumption that physically computable
functions are Turing computable—the physical version of Church’s thesis.

2. More important, we do not assume that the set of test functions Val(p)
constitutes a model of the experimental theory, which means that we do
not assume that the experimental theory is valid. The extracted program
of tests has to be correct independently from the validity of the exper-
imental theory—it must perform correct computations even from wrong
experimental assumptions.

Evaluating testable singular formulæ From the test functions Val(p)
we define a generalized test function T 7→ Val(T) that associates a boolean
value Val(T) ∈ {0; 1} to every testable singular formula T , indicating whether
the experiment associated to T succeeds or fails. Formally, the boolean value
Val(T) ∈ {0; 1} is recursively defined on the structure of T by the equations

Val(e1 = e2) =

{
1 if ↓e1 = ↓e2

0 otherwise

Val(p(e1, . . . , ek)) = Val(p)(↓e1, . . . , ↓ek)

Val(⊥) = 0

Val(E ⇒ T) = sup(1−Val(E), Val(T))

Val(¬E ⇒ T) = sup(Val(E), Val(T))

Of course, if we assume that the test functions Val(p) are physically com-
putable, then the evaluation function T 7→ Val(T) for testable singular formulæ
is physically computable too, using a simple recursive procedure ultimately
based on the test functions Val(p), the equality test, and on the computation
rules of primitive recursive functions inside numeric expressions.

In what follows, we will say that a tuple (ν1, . . . , νk) ∈ Nk is a falsification
of a testable universal formula of the form

U ≡ ∀Nx1 · · · ∀Nxk T [x1, . . . , xk] ,

when Val(T [ν1, . . . , νk]) = 0.

17

3 Extracting a program from a proof

3.1 The programming language

We use here an extension of Krivine’s language λc [20] with a small set of
extra instructions to test the experimental theory and to report a failure when
necessary. This language is defined from three kinds of syntactic entities:

• Terms (written t, u, etc.), that represent programs defined independently
from their evaluation context. From the point of view of logic, terms are
the computational equivalents of proofs.

• Stacks (written π, π′, etc.), that represent evaluation contexts of programs.
Formally, stacks are defined as finite lists of closed terms (representing
function arguments) of the form π = u1 · . . . · un · �, where � denotes
the bottom of the stack. From the point of view of logic, stacks are the
computational equivalents of counter-proofs (or refutations). Notice that
stacks are only formed with closed terms, and thus are closed objects (i.e.
with no free occurrence of a term variable).

• Processes, written t ? π, that are just formed by putting a term t in front
of a stack π. From the point of view of logic, processes represent the
interaction (i.e. the ‘debate’) between a proof and a counter-proof within
a contradictory situation.

The formal definition of terms, stacks and processes of the programming lan-
guage is given in Fig. 3. The set of all closed terms is written Λ whereas the set
of all (closed) stacks is written Π. The set of all processes is written Λ ? Π.

Given two terms t, u and a term variable ξ, we write t{ξ := u} the term
obtained by replacing in t every free occurrence of the term variable ξ by the
term u. In practice, we will only use this operation when u is a closed term.
Term substitution immediately generalises to a notion of parallel substitution
written t{ξ1 := u1; . . . ; ξn := un}. Notice that when u1, . . . , un are closed terms,
parallel substitution may be computed sequentially by the equation

t{ξ1 := u1; . . . ; ξn := un} = (· · · t{ξ1 := u1} · · ·){ξn := un} .

Syntax of terms The language of terms includes all the constructions of
Krivine’s language λc, namely:

• The usual constructions of the λ-calculus: variables (written ξ, ζ, φ, etc.),
function abstractions (λξ . t) and function applications (tu). From the
point of view of logic, these constructions correspond to intuitionistic rea-
soning principles, and thus suffice to extract the computational contents
of all proofs of HA2, the intuitionistic fragment of PA2.

• Specific instructions to manipulate continuations: the constant cc (call
with current continuation, or call/cc, for short) and for each stack π, a
constant kπ representing the corresponding continuation. From the point
of view of logic, the constant cc (that generates constants kπ during the
evaluation process) implements Pierce’s law, from which we recover all
classical logic, and thus the full strength of PA2.

18

Syntax of the language

Terms t, u ::= ξ | λξ . t | tu | kπ | cc | testU | stop

Stacks π ::= � | t · π (t closed)
Processes p ::= t ? π (t closed)

Evaluation rules (test instructions excepted)

(Push) tu ? π � t ? u · π
(Grab) λξ . t ? u · π � t{ξ := u} ? π

(Save) cc ? t · π � t ? kπ · π
(Restore) kπ ? t · π′ � t ? π

stop ? π 6�

Evaluation rules for test instructions testi

Ui ≡ ∀Nx1 · · · ∀Nxk T [x1, . . . , xk]
T [x1, . . . , xk] ≡ L1[x1, . . . , xk]⇒ · · · ⇒ Ln[x1, . . . , xk]⇒ R[x1, . . . , xk]

ν̄1, . . . , ν̄k ≡ Krivine numerals associated to the numbers ν1, . . . , νk

1. Case where Val(Lj [ν1, . . . , νk]) = 0 (1 ≤ j ≤ n)

testi ? ν̄1 · · · ν̄k · π � (λξ1 · · · ξn . ξj I) ? π

2. Case where Val(R[ν1, . . . , νk]) = 1

testi ? ν̄1 · · · ν̄k · π � (λξ1 · · · ξn . I) ? π

3. Case where Val(T [ν1, . . . , νk]) = 0

testi ? ν̄1 · · · ν̄k · π � stop ? ī · ν̄1 · . . . · ν̄k · π

(writing I ≡ λφ . φ)

Figure 3: The language λc with test instructions

19

This core language is extended with the following extra instructions:

• For each formula Ui of the experimental theory, a constant testi that tests
an instance of Ui (whose parameters are given as arguments) and whose
evaluation depends on the outcome of the experiment (cf Fig. 3).

• A constant stop with no associated evaluation rule, and whose only pur-
pose is to report the failure of a test of the experimental theory.

Following the terminology of Krivine, we call a quasi-proof any term which
is built only from variables, abstractions, applications and the constant cc. In
other words, a quasi-proof is a term that contains neither the continuation
constants kπ nor the extra constants testi or stop. (The terminology of a ‘quasi-
proof’ comes from the fact that programs extracted from proofs in pure classical
second-order arithmetic are all of this form.)

Krivine numerals To represent natural numbers in the λc-calculus, we do
not adopt Church’s encoding, but a minor variant of it by letting

(Krivine numeral n) n̄ = s̄ (· · · (s̄︸ ︷︷ ︸
n

0̄) · · ·)

for every natural number n ∈ N, where 0̄ = λξφ . ξ and s̄ = λνξφ . φ (νξφ).
Note that Krivine numeral n̄ is not in normal form (except when n = 0) but
still remains β-equivalent to the corresponding Church numeral. The reason for
adopting this particular representation is due to the use of storage operators (cf
section 4.4) that cannot work with Church’s encoding directly [12].

In the sequel, terms of the form n̂ (for some n ∈ N) will be considered as
values, and during evaluation, sets of parameters will be communicated to the
test instructions testU using this representation of natural numbers.

3.2 The relation of evaluation

The set of all processes is equipped with a binary relation of (one step) evalu-
ation written p � p′, whose rules are given in Fig. 3. These rules comprise the
usual evaluations rules of abstraction (Grab), application (Push) and of the
constants cc (Save) and kπ (Restore), plus specific evaluation rules for the
constants testi we will describe with more details in section 4.5.

Notice that evaluation is deterministic, at least for a program that does not
use test instructions: for each process t ? π where t is not a test instruction,
there is at most one process t′ ? π′ such that (t ? π) � (t′ ? π′). (We shall
momentarily consider the possible cases where there is no such process.)

On the other hand, the evaluation rules of test instructions testi such as
presented in Fig. 3 are not deterministic (strictly speaking) since the three
cases that define the outcome of the evaluation are not mutually exclusive:
case 1 may happen for several values of j simultaneously, whereas case 2 may
happen simultaneously with case 1. (Only case 3 is exclusive from cases 1 and 2.)
However, it is always possible to define a priority between case 1 and case 2 (and
inside case 1) in order to make the evaluation process completely deterministic.
A possible policy is to give the highest priority to case 1, and inside case 1, to
give the highest priority to the smallest index j. We will not discuss further the

20

different evaluation policies for the instructions testi: this is simply irrelevant
in the realizability model defined in section 4, where all policies are supported
indifferently (even the non deterministic one). Nevertheless, we will assume
that evaluation is deterministic in the sequel, since it simplifies the analysis of
extracted programs and avoids the introduction of extra terminology.

In what follows, we write �∗ the reflexive-transitive closure of �. We say
that a process p is terminal when there is no process p′ such that p � p′. From
the definition of the relation of evaluation, a process p is terminal if and only if
it is of one of the following forms:

1. p ≡ stop ? π. Here, evaluation terminates because the instruction stop
has no evaluation rule. Since this is the intended meaning of the instruc-
tion stop, we consider this case as the ‘normal’ case of termination. All
the other cases of termination are considered as errors.

2. p ≡ t ? �, where t is an abstraction or one of the constants cc or kπ.
Here, evaluation terminates since the term t in head position expects an
argument in the stack, but the stack is empty. In stack-based languages
(Forth, RPL, PostScript, etc.), this situation is known as ‘stack underflow’,
and means that something went wrong during evaluation.

3. p ≡ testU ? π, where π does not start with k values ν̄1, . . . , ν̄k that are
needed to perform the corresponding experiment (writing k the number of
parameters expected by U). This may happen when the stack π contains
less than k arguments (‘too few arguments’), or when one of its first k
arguments is not a Krivine numeral (‘bad argument’). Again, this should
be considered as an error.

Finally, we say that a process p′ is a terminal state of a process p when p′ is
terminal and p �∗ p′. Under the assumption of determinism, the terminal state
of a given process, when it exists, is unique.

3.3 Extracting a program from a proof

The extraction mechanism actually consists of two extraction functions:

• A generic extraction function d 7→ d∗ that extracts an open term d∗ from
a derivation d of an arbitrary sequent Γ ` A in PA2. The term d∗ is
actually a quasi-proof (containing no test instruction) whose free variables
represent the hypotheses in Γ.

• A specific extraction function d 7→ d̃ (defined from the latter) that ex-
tracts a closed term d̃ from a derivation of the sequent U1, . . . , U` ` ⊥
(where U1, . . . , U` is the experimental theory). Unlike the (open) term d∗,
the (closed) term d̃ contains test instructions corresponding to the exper-
imental hypotheses that are used to derive the contradiction. This term
is ready to be evaluated against the empty stack.

The generic extraction function The generic extraction function d 7→ d∗

is recursively defined on the structure of the derivation using the equations of
Fig. 4. To define this function, we first need to label the hypotheses of the
sequents that appear in the derivation with term variables in such a way that:

21

1. The hypotheses A1, . . . , An of a sequent A1, . . . , An ` B are labelled with
pairwise distinct term-variables ξ1, . . . , ξn. In particular, we require that
two occurrences of the same formula (in the context A1, . . . , An) are la-
beled with distinct term-variables.

2. The labeling is consistent across deduction steps: if a formula A that
appears in the context of the conclusion of a deduction step is labeled
with a term-variable ξ, then the corresponding occurrence of A is labeled
with the same proof-variable ξ in every premise of the deduction step.

A simple way to define such a labeling is the following: for every sequent
A1, . . . , An ` B, we label the hypotheses A1, . . . , An with the term-variables
ξ1, . . . , ξn respectively, where (ξi)i≥1 denotes a fixed enumeration of all term-
variables. Note that here, the term-variable associated to an hypothesis only
depends on its position in the context (starting from the left).

In Fig. 4, we (ab)use the notation ξA to denote the term-variable associated
to the considered occurrence of the formula A in the context. In the case of
an axiom Γ ` A (where A ∈ Γ), there might be several occurrences of the
formula A in the context Γ, so that the chosen variable ξA actually depends on
the occurrence we focus on. In the case of the introduction of an implication,
the term-variable variable ξA refers to the rightmost hypothesis in Γ, A.

(
Γ ` A

)∗
=

ξA if A ∈ Γ
λξ . ξ if A ∈ A \ {4th Peano axiom}
λξ . ξ I if A = 4th Peano axiom

.... d
Γ, A ` B

Γ ` A⇒ B

∗

= λξA . d
∗

 d1

Γ ` A⇒ B

.... d2

Γ ` A
Γ ` B

∗ = d∗1d
∗
2

 d
Γ ` A

Γ ` ∀xB

∗ = d∗

 d
Γ ` ∀xB

Γ ` ∀B{x := e}

∗ = d∗

 d
Γ ` A

Γ ` ∀X B

∗ = d∗

 d
Γ ` ∀X B

Γ ` ∀B{X(x1, . . . , xn) := A}

∗ = d∗

(
Γ ` ((A⇒ B)⇒ A)⇒ A

)∗
= cc

Figure 4: Extraction of a term d∗ from a derivation d in PA2

The specific extraction function Given a derivation d (in PA2) of the
sequent U1, . . . , U` ` ⊥ expressing that the experimental theory is contradictory,

22

we let
d̃ := d∗{ξ1 := Mk1testU1 ; . . . ; ξ` := Mk`

testU1}

where

• ξ1, . . . , ξ` are the term variables associated to the experimental hypotheses
U1, . . . , U` in the derivation d;

• k1, . . . , k` are the arities of the hypotheses U1, . . . , U`, respectively;

• For every k ≥ 0, Mk is a closed quasi-proof, called a storage operator of
arity k, that we will define and discuss in subsection 4.4.

We can now state the theorem of experimental effectiveness:

Theorem 1 (Experimental effectiveness) — If d is a derivation of the se-
quent U1, . . . , U` ` ⊥ (in PA2), then the evaluation of the process d̃ ? � eventu-
ally reaches a terminal state of the form

stop ? ī · ν̄1 · · · ν̄ki
· π

where i ∈ [1..`] is the index of an hypothesis Ui of the experimental theory and
where (ν1, . . . , νki

) is a falsification of Ui.

Under the assumption of determinism (which is not used in the proof), this
theorem tells us several things about the evaluation of the process d̃ ? �.

First, it tells us that the evaluation of the process d̃ ? � is finite and reaches
a terminal state containing all the parameters of an experimental falsification
of the theory U1, . . . , U` (including the index of the falsified hypothesis). In
particular, test instructions (that are present in the term d̃) are only invoked a
finite number of times during the evaluation of d̃ ? �.

Second, we know that nothing goes wrong during evaluation, since an error
(whose possible forms have been analyzed above) would produce a terminal
state whose form would be incompatible with the one that is predicted by the
theorem. In particular, the test instruction testi is always invoked in front
of a stack starting with (at least) ki values ν̄1, . . . , ν̄ki

defining the particular
instance of Ui that is to be tested. It is worth to recall that the outcome of the
intermediate process testi ? ν̄1 · · · ν̄ki · π does not only depend on whether the
set of parameters (ν1, . . . , νki) corroborates or falsifies the hypothesis Ui, but
that it also depends on the truth values of the clauses that compose the tested
instance of Ui—as well as on the evaluation policy for test instructions.

The next section is devoted to the proof of Theorem 1.

4 The classical realizability model

The two extraction mechanisms depicted in section 3 are justified by the con-
struction of a classical realizability model following the method introduced by
Krivine [20]. Our interpretation of second-order classical arithmetic is com-
pletely standard, the sole addition being the (quite natural) interpretation of
experimental predicates in this framework.

23

The big picture The idea of realizability is to associate a set of closed terms
|A| ⊆ Λ to every (closed) formula A by following the formulæ-as-types interpre-
tation (a.k.a. the Curry-Howard correspondence). The elements of |A| are then
called the realizers of the formula A. In particular:

• The formula A ⇒ B is interpreted as the set of all closed terms that
compute a realizer of B when applied to an arbitrary realizer of A. Thus
|A⇒ B| can be seen as a function space from |A| to |B|.

• The formula ∀xA[x] is interpreted as the set of all closed terms that realize
the formula A[n] for every n ∈ N. Thus |∀xA[x]| is the intersection of the
sets |A[n]| when n ranges over N. Second-order universal quantification
∀XA[X] is interpreted similarly, with this difference that the intersection
is taken on a much larger domain (cf section 4.2).

• The formula Nat(n) is interpreted as the set of all closed terms that com-
pute the value n̄ (i.e. Krivine numeral n) in some way. In classical realiz-
ability, the relationship between a realizer of A(n) and the value n̄ is not
immediate, and the extraction of the latter from the former relies on the
notion of a storage operator we will introduce in section 4.4.

• The formula ∀NxA[x] ≡ ∀x (Nat(x)⇒ A[x]) is thus interpreted as a mix-
ture of an intersection and a function space, namely, as the set of all terms
that compute a realizer of A[n] when applied to an arbitrary realizer of
Nat(n) (i.e. a term computing the value n̄ in some way) for every n ∈ N.14

The main property of the generic extraction function d 7→ d∗ defined in
section 3.3—which we call the property of adequacy—is that it transforms any
derivation d of a closed formula A (without hypotheses) into a realizer d∗ of the
formula A, i.e. d∗ ∈ |A|. When the derived formula depends on hypotheses,
the property of adequacy more generally expresses that the extracted term d∗

defines a realizer of the formula A provided we substitute in d∗ all the term-
variables attached to the hypotheses by arbitrary realizers of these hypotheses:

If d is a derivation of B1, . . . , Bn ` A and if ui ∈ |Bi| for i ∈ [1..n],
then d∗{ξ1 := u1; . . . ; ξn := un} ∈ |A|.

(Assuming that the formulæ B1, . . . , Bn, A are closed.)
Through the generic extraction function d 7→ d∗, the deduction rules of PA2

(Fig. 1) can thus be seen as typing rules for the program d∗. For instance, the
introduction and elimination rules of implication can be seen as the typing rules
for abstraction and application:

.... d
Γ, ξ : A ` d∗ : B

Γ ` λξ . d∗ : A⇒ B

.... d1

Γ ` d∗1 : A⇒ B

.... d2

Γ ` d∗2 : A
Γ ` d∗1 d∗2 : B

(using the notation ξ : A to indicate that ξ is attached to the formula A).
In proof theory, the relationship between typing and realizability is exactly

the same as between provability and validity in model theory, and the property
of adequacy is the proof-theoretic equivalent of the property of soundness, saying
that derivable formulæ (in PA2) are valid in the standard model of PA2.

14The numeric universal quantification ∀NxA[x] has thus roughly the same meaning as the
dependent product Πx : Nat . A[x] in type theory and in the calculus of constructions.

24

Taking the point of view of the opponent The informal presentation
above actually describes the point of view of intuitionistic realizability (that is:
realizability in HA2). Classical realizability in PA2 follows a similar picture, but
with a major twist: the interpretation of formulæ is no more defined (at least
directly) from the point of view of terms—the ‘defenders’ of formulæ—but from
the point of view of stacks—the ‘opponents’ of formulæ. This change of point
of view is crucial to interpret classical reasoning principles (excluded middle,
Peirce’s law, etc.) in terms of control primitives (call/cc).

Formally, every closed formula A of PA2 is interpreted as a set of stacks
‖A‖ ⊆ Π which we call here the falsity value of A.15 Intuitively, the falsity
value of A defines the set of all possible ways to ‘attack’ the formula A: the
larger the falsity value ‖A‖, the falser the formula A. Technically, the falsity
value ‖A‖ is defined by induction on the formula A, and the definition (that
will be given in section 4.2) follows the same intuitions as for intuitionistic
realizability—but transposed on the side of stacks.

The truth value |A| ⊆ Λ of the formula A is then defined as the set of all
closed terms that can ‘resist’ (in a sense we shall momentarily precise) to all
the attacks by the stacks π ∈ ‖A‖: the smaller the falsity value ‖A‖, the larger
the truth value |A|, and the truer the formula A. Formally, the truth value |A|
is defined by

|A| = {t ∈ Λ : ∀π ∈‖A‖ (t ? π) ∈ ⊥⊥}

where ⊥⊥ is a set of processes which we call the pole of the model. Intuitively,
the pole ⊥⊥ defines the notion of contradiction in the model (or a particular
‘challenge’ between terms and stacks), and the equality above expresses that a
term t realizes a formula A (i.e. t ∈ |A|) if t successfully contradicts any attack
to the formula A (i.e. t ? π ∈ ⊥⊥ for all π ∈ ‖A‖).

Of course, the structure of the classical realizability model deeply depends
on the choice of the pole ⊥⊥, and there are as many classical realizability models
as there are poles. Although the correctness of the generic extraction function
d 7→ d∗ (the property of adequacy we already mentioned above) holds in all
classical realizability models [20], we shall see that the correctness of the specific
extraction function d 7→ d̃ only holds w.r.t. a specific pole ⊥⊥0 that is defined
from the notion of experimental falsification.

4.1 Definitions

Saturated sets A set of processes ⊥⊥ ⊆ Λ ? Π is said to be saturated (or
closed under anti-evaluation) if both conditions p � p′ and p′ ∈ ⊥⊥ imply p ∈ ⊥⊥
for all processes p and p′. In what follows, saturated sets of processes will be
used as the poles for constructing classical realizability models. (The condition
that the pole is saturated is crucial to establish the property of adequacy.)

Given a saturated set ⊥⊥ ⊆ Λ ? Π and a set of stacks S ⊆ Π (a falsity value),
we denote by S⊥⊥ the set of closed terms defined by

S⊥⊥ = {t ∈ Λ : ∀π ∈S (t ? π) ∈ ⊥⊥} .
15In Krivine’s works, the set ‖A‖ is called the truth value of A, but we prefer to adopt here

the terminology of falsity value to keep the intuition that larger falsity values correspond to
falser formulæ. The notion of falsity value has to be related with Popper’s notion of falsity
contents for an empirical theory [23, ?], which is the set of all possible (finite conjunctions of)
singular statements that are contradictory with the theory.

25

It is clear from the definition that the operation S 7→ S⊥⊥ is antimonotonic, in
the sense that S1 ⊆ S2 implies S⊥⊥2 ⊆ S⊥⊥1 for all S1, S2 ∈ P(Π).

In what follows, this operation will be used to transform a falsity value into
the corresponding truth value, letting |A| = ‖A‖⊥⊥.

The pole ⊥⊥0 A simple way to define a pole is to start from an arbitrary set
of processes P ⊆ Λ ? Π and to close this set under anti-evaluation, letting

⊥⊥ = {p ∈ Λ ? Π : ∃p′ ∈ P p �∗ p′} .

Intuitively, the pole ⊥⊥ generated by P is formed by all the processes that fall
in the set P after zero, one or several evaluation steps.

The correctness of the specific extraction function d 7→ d̃ (cf section 3.3)
relies on the pole ⊥⊥0 that is precisely defined as the pole generated by all the
processes of the form

stop ? ī · ν̄1 · · · ν̄ki
· π

where 1 ∈ [1..`] and (ν1, . . . , νki
) is a falsification of the hypothesis Ui, the

stack π being arbitrary. Note that the elements of ⊥⊥0 are the processes that
evaluate to a terminal state containing a falsification of the experimental the-
ory U1, . . . , U` in the form prescribed by Theorem 1. Proving Theorem 1 thus
amounts to prove that (d̃ ? �) ∈ ⊥⊥0 for every derivation d of the sequent
U1, . . . , U` ` ⊥. We can also notice that in the case where the experimental
theory U1, . . . , U` is valid, the pole ⊥⊥0 is empty.16

Extending the language of formulæ To define the interpretation of for-
mulæ, it is convenient to enrich the language of formulæ by adding a new pred-
icate symbol Ḟ of arity k for every falsity value function F : Nk → P(Π):

Formulæ A,B ::= · · · | Ḟ (e1, . . . , ek) (F : Nk → P(Π))

(While doing this extension, the cardinality of the language of formulæ jumps
from the denumerable to the power of continuum.)

Valuations We call a valuation any function ρ that associates a natural
number ρ(x) ∈ N to every first-order variable x and a falsity value function
ρ(X) : Nk → P(Π) to every second-order variable X of arity k.

In what follows, we write > the formula of the enriched language defined by
> = ∅̇. Notice that the formula > (whose truth value will be |>| = ∅⊥⊥ = Λ)
is different from the formula ∀X (X ⇒ X) that we shall write 1 in the sequel.

Given an open formula A (possibly in the enriched language) and a valua-
tion ρ, we write A[ρ] the closed formula of the enriched language obtained by
replacing in the formula A every free occurrence of a first-order variable x by
the natural number ρ(x) ∈ N (seen as a numeric expression) and every free
occurrence of a second-order variable X of arity k by the predicate symbol Ḟ
associated to the function F = ρ(X) : Nk → P(Π).

16In which case the corresponding classical realizability model is isomorphic to the standard
(full) model of second-order arithmetic [20].

26

4.2 Interpreting formulæ

Let ⊥⊥ be a fixed pole. Every closed formula of the enriched language is in-
terpreted as two sets: a falsity value ‖A‖ ⊆ Π and a truth value |A| ⊆ Λ.
The falsity value ‖A‖ ⊆ Π is defined by induction on the size of the (closed)
formula A by

‖Ḟ (e1, . . . , ek)‖ = F (↓e1, . . . , ↓en)

‖p(e1, . . . , ek)‖ =

{
{t · π : t ? π ∈ ⊥⊥} if Val(p)(↓e1, . . . , ↓ek) = 1
Λ ·Π if Val(p)(↓e1, . . . , ↓ek) = 0

‖A⇒ B‖ = |A| · ‖B‖ = {t · π : t ∈ |A|, π ∈ ‖B‖}

‖∀XA‖ =
⋃

F :Nk→P(Π)

‖A{X := Ḟ}‖

whereas the truth value |A| ⊆ Λ is defined by

|A| = ‖A‖⊥⊥ = {t ∈ Λ : ∀π ∈‖A‖ (t ? π) ∈ ⊥⊥} .

Since the two sets |A| and ‖A‖ associated to the formula A depend on
the pole ⊥⊥, we will sometimes write them |A|⊥⊥ and ‖A‖⊥⊥ to indicate this
dependency explicitly. Given a closed term t and a closed formula A, we say
that t realizes A and write t A when t ∈ |A| (relatively to a fixed pole ⊥⊥). In
the case where ⊥⊥ = ⊥⊥0, we write t 0 A for t ∈ |A|⊥⊥0 .

Finally, we say that a closed term t is a universal realizer of a formula A
when t ∈ |A|⊥⊥ for every pole ⊥⊥. We shall see in section 4.3 that the generic
extraction function associates a universal realizer d∗ of the formula A to every
derivation d of the formula A (without hypotheses).

Remarks Putting aside the realizability interpretation of experimental pred-
icates, the definition above is the standard interpretation of the formulæ of
second-order arithmetic in classical realizability [20]. In particular:

• The falsity value of the implication A ⇒ B is defined as the set of all
stacks of the form t · π, where t defends A and π attacks B. Intuitively,
these stacks are the natural opponents of the terms of type A → B, that
expect an argument of type A (here: t ∈ |A|) and return a result of type B
that will contradict the rest of the stack (here: π ∈ ‖B‖). From the point
of view of logic, the falsity value ‖A⇒ B‖ = |A| · ‖B‖ corresponds to the
conjunction A ∧ ¬B, the negation of the implication A⇒ B.

• The falsity value of the formula ∀xA is defined as the union of all falsity
values ‖A{x := n}‖ where n ∈ N. In terms of truth values, we have

|∀xA| =
(⋃
n∈N
‖A{x := n}‖

)⊥⊥
=
⋂
n∈N
‖A{x := n}‖⊥⊥ =

⋂
n∈N
|A{x := n}| ,

which is the expected interpretation of first-order universal quantification.
The same remark applies for second-order universal quantification.

To understand the interpretation of the atomic formulæ formed from the
experimental predicates, let us first notice that

27

Lemma 3 (Interpretation of Leibniz equality) — If e1 and e2 are two
closed numeric expressions, then

‖e1 = e2‖ =

{
{t · π : t ? π ∈ ⊥⊥} = ‖1‖ if ↓e1 = ↓e2

Λ ·Π = ‖> ⇒ ⊥‖ if ↓e1 6= ↓e2

This lemma expresses that true equalities are interpreted the same way as the
(obviously true) formula 1 ≡ ∀X (X ⇒ X) whereas false equalities are inter-
preted the same way as the (obviously false) formula > ⇒ ⊥ (where > = ∅̇).

The characterization of the falsity values of (true and false) equalities is the
key of the realizability interpretation of experimental predicates: true experi-
mental atomic formulæ are interpreted the same way as true equalities whereas
false experimental atomic formulæ are interpreted the same way as false equal-
ities. So that we can treat both forms of elementary formulæ (i.e. experimental
atomic formulæ and equalities) the very same way in the realizability model:

Fact 4 (Interpretation of elementary formulæ) — If E is a closed ele-
mentary formula, then

‖E‖ =

{
{t · π : t ? π ∈ ⊥⊥} = ‖1‖ if Val(E) = 1
Λ ·Π = ‖> ⇒ ⊥‖ if Val(E) = 0

4.3 Adequacy

We can now state the property of adequacy for the generic extraction function
d 7→ d∗ defined in Fig. 4:

Proposition 5 (Adequacy) — If d is a derivation of B1, . . . , Bn ` A in PA2
(using the rules of Fig. 1), then for all valuations ρ and for all closed terms
u1, . . . , un such that u1 B1, . . . , un Bn, we have

d∗{ξ1 := u1; . . . ; ξn := un} A

where ξ1, . . . , ξn are the term-variables attached to the hypotheses B1, . . . , Bn.

Proof. The proof is done by structural induction on the derivation d. The
cases corresponding to purely logical rules is standard (see for instance [17, 20]).
Regarding the axioms of PA2, it suffices to check that the term I = λξ . ξ is
a realizer of Peano’s third axiom (injectivity of successor) and of all defining
equalities of primitive recursive function symbols, whereas the term λξ . ξI is a
realizer of Peano’s fourth axiom (non surjectivity). 2

Notice that the property of adequacy does not depend on the choice of the
pole ⊥⊥. In particular, when d is the derivation of a closed formula A (without
hypotheses), the closed quasi-proof d∗ is a universal realizer of A.

4.4 Storage operators

It is easy to check that for all n ∈ N, the quasi-proof n̄ (Krivine numeral n) is a
universal realizer of the formula Nat(n). A simple way to prove it is to build (by
induction on n) a derivation dn of the formula Nat(n) in PA2 such that d∗n ≡ n̄,

28

and to conclude using Prop. 5 [20]. On the other hand, the formula Nat(n) has
many more realizers than the value n̄.

To understand how it is possible to extract the value n̄ from an arbitrary
realizer of Nat(n), we extend the language of formulæ with a new syntactic
construct written {e} ⇒ B where e is a numeric expression and where B is an
arbitrary formula of the language:

Formulæ A,B ::= · · · | {e} ⇒ B

We then extend the realizability interpretation of section 4.2 by letting

‖{e} ⇒ B‖ = ↓e · ‖B‖

in the case where both e and B are closed.
From this definition, it is clear that ‖{e} ⇒ B‖ ⊆ ‖Nat(e)⇒ B‖ (hence the

inclusion of truth values |Nat(e)⇒ B| ⊆ |{e} ⇒ B|), which means that the for-
mula Nat(e)⇒ B can be seen as a subtype of the formula {e} ⇒ B. Intuitively,
this expresses that any term that is able to produce a realizer of B when applied
to an arbitrary realizer of Nat(e) is also able to produce a realizer of B when
applied to the particular realizer n̄ Nat(e), where n = ↓e. Consequently, the
identity term λφ . φ is a universal realizer of the implication

∀x ∀Z ((Nat(x)⇒ Z)⇒ ({x} ⇒ Z)) .

By definition, we call a storage operator (of arity 1) any closed quasi-proof M
that is a universal realizer of the converse implication

∀x ∀Z (({x} ⇒ Z)⇒ (Nat(x)⇒ Z)) .

Intuitively, a storage operator is a function17 M that takes a realizer of {n} ⇒ Z
(for an arbitrary n ∈ N) and a realizer of Nat(n), extracts the value n̄ from the
latter and then passes this value to the realizer of {n} ⇒ Z to produce a Z. (In
practice the computation can be much more complex than this simple picture
due to the presence of continuations in the realizers, but the basic intuition is
important to understand how storage operators work.)

More generally, a closed quasi-proof Mk is called a storage operator of arity k
(k ≥ 0) if it is a universal realizer of the formula

∀x1 · · · ∀xk ∀Z
(
({x1} ⇒ · · · ⇒ {xk} ⇒ Z) ⇒

Nat(x1)⇒ · · · ⇒ Nat(xk)⇒ Z
)
.

It can be shown [17, 20] that such quasi-proofs Mk exist for all arities k ≥ 0.
For instance, we can take

M0 ≡ λφ . φ
M1 ≡ λφν . ν φ (λψξ . ψ (s̄ ξ)) 0̄
Mk ≡ λφ .M1(λν .Mk−1(φ ν)) (k ≥ 2)

Lemma 6 — If Mk is a storage operator of arity k (k ≥ 0), then for every
formula A[x1, . . . , xk] depending on k first-order variables x1, . . . , xk we have

Mk ∀x1 · · · ∀xk ({x1} ⇒ · · · ⇒ {xk} ⇒ A[x1, . . . , xk])
⇒ ∀Nx1 · · · ∀Nxk A[x1, . . . , xk]

17In programming, such a function is called a ‘wrapper’.

29

Proof. It suffices to notice that the formula that specifies storage operators of
arity k is a subtype of the formula above. 2

In the sequel, we shall use the lemma above to show that storage opera-
tors transform each test instruction testi into a realizer of the corresponding
hypothesis Ui (w.r.t. the pole ⊥⊥0).

4.5 Evaluating test instructions

Let us now study the behaviour of the instruction testi (i ∈ [1..`]) associated to
an experimental hypothesis Ui ≡ ∀Nx1 · · · ∀Nxk T [x1, . . . , xk] where

• T [x1, . . . , xk] ≡ L1[x1, . . . , xk]⇒ · · · ⇒ Ln[x1, . . . , xk]⇒ R[x1, . . . , xk].

• Lj [x1, . . . , xk] is an elementary formula or its negation (for j ∈ [1..n]).

• R[x1, . . . , xk] is an elementary formula or the formula ⊥.

When the instruction testi is evaluated in front of an arbitrary stack π0 (cf
the corresponding evaluation rules in Fig. 3), it first checks whether the stack π0

is of the form π0 ≡ ν̄1 · · · ν̄k · π or not. If this is not the case (either because π0

contains less than k elements or because one of the first k elements of π0 is not
a Krivine numeral), no evaluation rule applies and the process testi ? π0 is a
terminal state. If π0 is of the form π0 ≡ ν̄1 · · · ν̄k · π, then either:

1. testi ? ν̄1 · · · ν̄k · π evaluates to (λξ1 · · · ξn . ξj I) ? π for some j ∈ [1..n]
because Val(Lj [ν1, . . . , νk]) = 0 (falsity of the jth premise);

2. testi ? ν̄1 · · · ν̄k · π evaluates to (λξ1 · · · ξn . I) ? π
because Val(R[ν1, . . . , νk]) = 1 (truth of the conclusion); or

3. testi ? ν̄1 · · · ν̄k · π evaluates to stop ? ī · ν̄1 · · · ν̄k · π
because Val(T [ν1, . . . , νk]) = 0 (falsity of the implication).

The reason for putting in head position the magic terms λξ1 · · · ξn . ξj I (when
the jth premise Lj [ν1, . . . , νk] is false) and λξ1 · · · ξn . I (when the conclusion
R[ν1, . . . , νk] is true) is revealed by the following lemma:

Lemma 7 — Let (ν1, . . . , νk) ∈ Nk such that Val(T [ν1, . . . , νk]) = 1.

1. In the case where Val(Lj [ν1, . . . , νk]) = 0 for some j ∈ [1..`], the quasi-
proof λξ1 · · · ξn . ξj I is a universal realizer of the formula T [ν1, . . . , νk].

2. In the case where Val(R[ν1, . . . , νk]) = 1, the quasi-proof λξ1 · · · ξn . I is a
universal realizer of the formula T [ν1, . . . , νk].

Proof. Let ⊥⊥ be a fixed pole. We distinguish the following two cases:

1. Val(Lj [ν1, . . . , νk]) = 0 for some j ∈ [1..n]. We distinguish two cases de-
pending on whether Lj [x1, . . . , xk] is an elementary formula or the nega-
tion of an elementary formula.

30

• Lj [x1, . . . , xk] ≡ E[x1, . . . , xk] where E[x1, . . . , xk] is an elementary
formula. Since Val(E[ν1, . . . , νk]) = 0, we know from Fact 4 that

‖Lj [ν1, . . . , νk]‖ = ‖E[ν1, . . . , νk]‖ = ‖> ⇒ ⊥‖ = Λ ·Π .

To show that λξ1 · · · ξn . ξj I realizes the implication T [ν1, . . . , νk], let
us consider realizers u1 ∈ |L1[ν1, . . . , νk]|, . . . , un ∈ |Ln[ν1, . . . , νk]| as
well as a stack π ∈ ‖R[ν1, . . . , νk]‖, and let us prove that the process
(λξ1 · · · ξn . ξj I) ? u1 · · ·un · π belongs to the pole ⊥⊥. We have

(λξ1 · · · ξn . ξj I) ? u1 · · ·un · π �∗ uj ? I · π .

But since (I · π) ∈ (Λ · Π) = ‖Lj [ν1, . . . , νk]‖, we have uj ? I · π ∈ ⊥⊥
and thus (λξ1 · · · ξn . ξj I) ? u1 · · ·un · π ∈ ⊥⊥ by anti-evaluation.

• Lj [x1, . . . , xk] ≡ ¬E[x1, . . . , xk] where E[x1, . . . , xk] is an elementary
formula. Since Val(E[ν1, . . . , νk]) = 1, we know from Fact 4 that

‖Lj [ν1, . . . , νk]‖ = ‖¬E[ν1, . . . , νk]‖ = ‖1⇒ ⊥‖ = |1| ·Π .

The rest of the proof is similar to the above case, noticing that I ∈ |1|.

2. Val(R[ν1, . . . , νk]) = 1. In this case, we know from Fact 4 that

‖R[ν1, . . . , νk]‖ = ‖1‖ .

To show that λξ1 · · · ξn . I realizes the implication T [ν1, . . . , νk], let us con-
sider realizers u1 ∈ |L1[ν1, . . . , νk]|, . . . , un ∈ |Ln[ν1, . . . , νk]| as well as a
stack π ∈ ‖R[ν1, . . . , νk]‖, and let us prove that the process (λξ1 · · · ξn . I) ?
u1 · · ·un · π belongs to the pole ⊥⊥. We have

(λξ1 · · · ξn . ξj I) ? u1 · · ·un · π �∗ I ? π .

But since I ∈ |1| = |R[ν1, . . . , νk]|, we have I ? π ∈ ⊥⊥, and the desired
result follows from the usual argument of anti-evaluation.

The lemma above shows that in all cases where the implication T [ν1, . . . , νk]
is true, the instruction testi consumes the parameters ν̄1, . . . , ν̄k on the top
of the stack and puts in head position a universal realizer of the implication
T [ν1, . . . , νk] (which realizer depends on the way the implication is true). Hence:

Lemma 8 — For all k-tuples of parameters (ν1, . . . , νk) ∈ Nk such that the
implication T [ν1, . . . , νk] is true, the instruction testi is a universal realizer of
the formula

{ν1} ⇒ · · · ⇒ {νk} ⇒ T [ν1, . . . , νk] .

Proof. Let ⊥⊥ be a fixed pole. To show that testi realizes the formula above,
consider a stack π ∈ ‖T [ν1, . . . , νk]‖ and let us show that testi ? ν̄1 · · · ν̄k ·π ∈ ⊥⊥.
From the assumption that Val(T [ν1, . . . , νk]) = 1 combined with the evaluation
rules of the instruction testi, we know that

testi ? ν̄1 · · · ν̄k · π � t ? π

for some quasi-proof t that realizes the formula T [ν1, . . . , νk] (Lemma 7). Hence
t ? π ∈ ⊥⊥ and thus testi ? ν̄1 · · · ν̄k · π ∈ ⊥⊥ by anti-evaluation. 2

31

On the other hand, the instruction testi is not a universal realizer of the
formula {ν1} ⇒ · · · ⇒ {νk} ⇒ T [ν1, . . . , νk] when Val(T [ν1, . . . , νk]) = 0.18

To ensure that the instruction testi still realizes the desired formula when
Val(T [ν1, . . . , νk]) = 0, we have to focus on a particular pole that has been
especially tailored for this task: the pole ⊥⊥0 defined in section 4.1:

Lemma 9 — In the realizability model induced by the pole ⊥⊥0:

testi 0 {ν1} ⇒ · · · ⇒ {νk} ⇒ T [ν1, . . . , νk]

for all k-tuples of parameters (ν1, . . . , νk) ∈ Nk.

Proof. This is clear from Lemma 8 in the case where Val(T [ν1, . . . , νk]) = 1,
so let us assume that Val(T [ν1, . . . , νk]) = 0. To show that testi realizes the
formula above, consider a stack π ∈ ‖T [ν1, . . . , νk]‖ and let us show that the
process testi ? ν̄1 · · · ν̄k · π belongs to the pole ⊥⊥0. Since the testable formula
T [ν1, . . . , νk] is false (from our assumption), we have

testi ? ν̄1 · · · ν̄k · π � stop ? ī · ν̄1 · · · ν̄k · π ∈ ⊥⊥0

(from the definition of ⊥⊥0), hence testi ? ν̄1 · · · ν̄k · π ∈ ⊥⊥0. 2

From this lemma we immediately deduce the proposition:

Proposition 10 (Realization of the experimental hypothesis Ui) — In
the realizability model induced by the pole ⊥⊥0, the instruction testi is a realizer
of the formula ∀x1 · · · ∀xk ({x1} ⇒ · · · ⇒ {xk} ⇒ T [x1, . . . , xk]), hence

Mk testi 0 ∀Nx1 · · · ∀Nxk T [x1, . . . , xk] ≡ Ui ,

where Mk is a storage operator of arity k (by Lemma 6).

We can now complete the

Proof of Theorem 1. Consider a derivation d of the sequent U1, . . . , U` ` ⊥ (in
PA2). From Prop. 5 (Adequacy) we know that

d̃ ≡ d∗{ξ1 := Mk1testi; . . . ; ξ` := Mk`
test`} 0 ⊥

since Mki
testi 0 Ui for all i ∈ [1..`] (by Prop. 10). Since � ∈ ‖⊥‖ = Π, we

have d̃ ? � ∈ ⊥⊥0, which means that d̃ ? � eventually reaches a terminal state
containing a falsification of the experimental theory U1, . . . , U`. 2

4.6 The experimental modus tollens

Let us now consider an experimental theory formed with testable universal for-
mulæ U1, . . . , U` as well as a testable universal formula V that is a consequence
of the theory U1, . . . , U` in PA2.

18Actually, the formula {ν1} ⇒ · · · ⇒ {νk} ⇒ T [ν1, . . . , νk] has no universal realizer in the
case where Val(T [ν1, . . . , νk]) = 0. This is due to the fact that when the pole ⊥⊥ is empty,
the truth value of a formula is inhabited if and only if this formula is true in the full standard
model of PA2 [20]. A formlula which is false in the full standard model of PA2 (which is the
case of the formula we consider here) has thus no universal realizer.

32

Theorem 2 (Experimental modus tollens) — From a derivation (in PA2)
of the sequent U1, . . . , U` ` V and a falsification of the formula V , it is possible
to construct a λc-term t such that the evaluation of the process t ? � eventu-
ally reaches a terminal state containing a falsification of one of the formulæ
U1, . . . , U` in the sense of Theorem 1.

Proof. Let us write V ≡ ∀Nx1 · · · ∀Nxk T [x1, . . . , xk] where

• T [x1, . . . , xk] ≡ L1[x1, . . . , xk]⇒ · · · ⇒ Ln[x1, . . . , xk]⇒ R[x1, . . . , xk];

• Li[x1, . . . , xk] is either an elementary formula or its negation (i ∈ [1..n]);

• R[x1, . . . , xk] is an elementary formula. (If R[x1, . . . , xk] is the formula ⊥,
we can replace it by the provably equivalent equality 0 = 1.)

From the derivation of the sequent U1, . . . , U` ` V , we easy build (in PA2) a
derivation d of the sequent

U1, . . . , U`, L1[ν1, . . . , νk], . . . , Ln[ν1, . . . , νk], ¬R[ν1, . . . , νk] ` ⊥

Applying Theorem 1 to the above sequent (whose hypotheses are testable uni-
versal formulæ), we know that the evaluation of the process d̃ ? � eventually
reaches a finite state containing a falsification (in the sense of Theorem 1) of
the hypotheses of the sequent, that is

1. either a falsification of one of the formulæ U1, . . . , U`;

2. either a falsification of one of the formulæ Li[ν1, . . . , νk] (1 ≤ i ≤ n);

3. either a falsification of the formula ¬R[ν1, . . . , νk].

But since Val(T [ν1, . . . , νk]) = 0, we know that Val(Li[ν1, . . . , νk]) = 1 for all
1 ≤ i ≤ n and that Val(R[ν1, . . . , νk]) = 0. Hence cases 2 and 3 are impossible.
Therefore the falsification coming from the evaluation of d̃ ? � is a falsification
of one of the formulæ U1, . . . , U` (case 1). 2

5 Applications

5.1 Extraction of an Herbrand tree

There are essentially two ways of executing the extracted program d̃ such as
given by Theorem 1 or Theorem 2: the sequential mode, and the treelike mode.

Sequential execution In the sequential execution mode, the process d̃ ? �
is evaluated linearly, step by step. Each time a test instruction is invoked with
a given set of parameters (corresponding to a testable singular formula), the
investigator performs a finite sequences of experiments to determine whether
the formula under consideration is true or not. Depending on the outcome of
the test, the evaluation may stop on an explicit falsification of the theory, or it
may continue using the suitable evaluation rule. From Theorem 1 we know that
evaluation eventually terminates on an explicit falsification of the theory.

However, this execution mode relies on a strong assumption, which is that
all the experiments proposed during the evaluation of the process d̃ ? � can

33

be performed in practice, which may be unrealistic in some circumstances. To
circumvent this difficulty, it is possible to perform the execution without doing
a single experiment by using an alternative method which is the following.

Treelike execution and construction of an Herbrand tree The idea
of the treelike execution mode is to consider all the possible outcomes of the
intermediate experiments proposed during the evaluation of the process d̃ ? π
(without actually performing these experiments) by organizing the computation
into a finite binary tree whose inner nodes are labeled with atomic formulæ of
the form p(~ν) (the intermediate experiments) and whose leaves are labelled with
processes:

p0(~ν0)

p1(~ν1)

1 jjjjjjjj
p2(~ν2)

0TTTTTTTT

p3(~ν3)

1 vvv
t3 ? π3

0IIII
t4 ? π4

1 vvvv
t5 ? π5

0HHHH

t1 ? π1

1 uuu
t2 ? π2

0III

Every process that is attached to a leaf of the tree is evaluated (independently
from the other processes) by considering the partial truth value function given
by the corresponding path to the root of the tree. In the above picture for
instance, the process t3 ? π3 is evaluated by considering the partial truth value
function that maps p0(~ν0) to 1 and p1(~ν1) to 0, the truth values of all the other
atomic formulæ being undefined. Note that all these processes are independent,
so that we can evaluate them in any order (or in parallel).

When at a given leaf a test instruction needs to know the truth value of an
atomic formula p(~ν) that is not given by the current path, the current leaf is
replaced by an inner node with label p(~ν) whose children are two copies of the
current process:

testi ? π ; p(~ν)

testi ? π

1 uuu
testi ? π

0III

This mechanism of duplication repeats until the current path contains enough
information to determine how to evaluate the current test instruction.19

By fully evaluating the process d̃ ? � in this way (seeing this process as a
tree with exactly one leaf) we thus get a possibly infinite binary tree, as the
limit of the computation. But from Theorem 1 it is clear that this limit tree has
no infinite branches, so that it is actually finite (by Koenig’s lemma). More-
over, every leaf of this limit tree is labelled by a terminal process that contains
the parameters of a falsification of the corresponding branch. As a result of
this (finite) treelike computation, we thus get an Herbrand tree falsifying the
experimental theory as a whole.

Let us insist on the fact that this way of executing the process d̃ ? � does
not require to perform a single experiment. However, the price to pay is that

19Considering the way test instructions are evaluated (section 4.5), the complete evaluation
of a test instruction may insert up to n inner nodes, where n is the number of atomic formulæ
of the form p(~ν) contained in the closed testable formula that is currently tested.

34

the result is not given as a single falsification, but as a finite set of potential
falsifications attached to the leaves of the resulting Herbrand tree. We can then
decide to accept the Herbrand tree itself as a falsification, or we can give this
tree to the investigator, who will use it as a binary decision tree to guide her in
the choice of crucial experiments.

A remark about efficiency It is interesting to compare the method de-
scribed above with Herbrand’s theorem, that precisely states that a contradic-
tory experimental theory20 has an Herbrand tree which falsifies it. The standard
proof of this result is the following: consider a fixed enumeration (An)n∈N of all
atomic formulæ of the form p(~ν) (i.e. all the possible experiments) and build
the infinite binary tree whose inner nodes at depth n are labelled with the for-
mula An. Using a similar argument as above, we can cut every infinite branch
of this tree at the point where the information given by the current path is
sufficient to falsify the theory. In this way, we get a finite binary tree whose
leaves correspond to falsifications of the corresponding branches.

However, the tree given by the proof of Herbrand’s theorem is based on a
blind enumeration of all the possible experiments. Intuitively, this tree corre-
sponds to an investigator that would sequentially perform all the possible ex-
periments in a random order—without taking into account the outcomes of the
already performed experiments—until she would acquire enough information to
conclude that the theory has been falsified.

Instead, our method proposes to use the proof of inconsistency as a guide
to chose the sequence of crucial experiments, using the outcomes of the already
performed experiments to determine the next experiment. Even in the worst
case, we can reasonably think that a method that is directly guided by clever
arguments contained in a formal mathematical proof will be not less efficient
than the blind method suggested by Herbrand’s result.21

5.2 An application to software certification

The development of proof assistants such as Coq [24, 2] has shown the practical
relevance of formal proofs in the perspective of software certification. The idea
is to completely formalize the correctness proof of a piece of software by using
a proof assistant, and then to let the system check that the proof is well formed
and exhaustive. If we trust the proof checker, then we can trust the software
whose correctness proof has been checked by the machine.

However, the certification of a piece of software can never be absolute, since
it always relies on explicit or implicit assumptions about the correctness of the
low-level components upon which the software is implemented. In the case
where a certified piece of software P fails—because one of its low-level compo-
nents does not meet its specification—we can use our methodology to combine
the correctness proof of P (that depends on assumptions U1, . . . , U` expressing
the correctness of its low-level components) with the falsification of the proved
specification V (i.e. a ‘bug report’ for P) in order to extract a program that
produces a series of tests for the low-level components, which is entirely guided

20In the sense that it has no model.
21We tested our method with several toy examples. For some of them, the method directly

produces an Herbrand tree of minimal size. With the same examples, the blind method can
produce arbitrarily large trees, depending on the enumeration of all possible experiments.

35

by the proof. In this way, we get a ‘static debugger’ that is able to track the
defective low-level component without re-executing the certified piece of code.
The only requirement for applying our method is that both the global spec-
ification V of the software P and the specifications U1, . . . , U` of its low-level
components should be universal testable formulæ in the sense of section 2.4. On
the other hand, the method is especially well-suited to the case where some of
the low-level components are black boxes (typically: external devices, processing
units, etc.) with no clear mathematical definition.

6 Conclusion

In this paper, we have shown how to transform a formal inconsistency proof of
a given experimental theory into a computer program that performs a series of
tests on the theory until it reaches an explicit falsification. With little modifica-
tion the same method can be used to extract a program that solves the problem
of the experimental modus tollens discussed in section 1.3.

We presented our results in the case where proofs are formalized in clas-
sical second-order arithmetic (PA2), also known as classical analysis22, but
the same methodology works when proofs are formalized in stronger theories
(Zermelo-Fraenkel set theory or the calculus of constructions with universes),
using suitable extensions [18, 22] of the realizability model of section 4.

The existence of the aforementioned procedures strongly argues in favor of
what we see as the distinctive feature of mathematical reasoning: the fact that
it is effectively accountable for the failure of a (testable) prediction. More than
philosophy and religion, the mathematical discourse involves a deep nesting of
abstractions tending to produce conceptual entities that seem to be alien to our
sensitive experience. But unlike many other forms of reasoning, the intensive
use of abstractions in mathematics does not break the empirical connection
between premises and conclusions, since it is always possible to keep track of an
experimental falsification through an entire mathematical proof.

However, the correctness of the procedure given by Theorem 1 relies on a
model-theoretic construction that requires a strong mathematical framework
involving programs and infinite sets of programs (see section 4). The fact that
the extracted program is correct and terminates as described by Theorem 1
relies on implicit hypotheses about mathematics we now need to determine. In
other words, we need to determine the proof-theoretic strength of Theorem 1.

From now on, we take the statement of Theorem 1 as an assumption about
the computational behavior of the programs that are extracted from derivations
in PA2—an assumption which we call the hypothesis of experimental effective-
ness for PA2 —and investigate some of its consequences.

6.1 Experimental effectiveness and consistency

A mathematical theory is logically consistent when the formula ⊥ representing
absurdity cannot be derived in the theory. It is easy to check that:

22In PA2, unary second-order variables denote sets of natural numbers that can be used to
represent (using standard coding techniques) any kind of continuous entities: real numbers,
complex numbers, continuous functions, Borel sets, etc.

36

Proposition 11 — The hypothesis of experimental effectiveness for PA2 im-
plies the logically consistency of PA2.

Proof. Let us assume that the sequent ` ⊥ has a derivation d in PA2. This
assumption precisely means that the empty experimental theory (i.e. ` = 0)
is inconsistent in PA2. From the hypothesis of experimental effectiveness for
PA2, the execution of the process d̃ ? � eventually reaches an experimental
falsification of a particular formula Ui (1 ≤ i ≤ `) of the experimental theory.
But this is impossible since ` = 0, hence the assumption is absurd. 2

It is important to understand that the above ‘proof’ is completely elemen-
tary, and that it hardly uses any argument that is specific to mathematics. (In
this aspect, it is very different from the proof of Theorem 1 such as presented in
section 4.) A similar argument could be used in any scientific field and even in
the everyday life. From an epistemologic point of view, we can thus argue that
the above proof is not essentially a mathematical proof, but a simple rational
argument that the convergence of the procedure described by Theorem 1 implies
the absence of any derivation of the sequent ` ⊥ in PA2.

It is well known that the consistency of a theory such as PA2 cannot be
proved within the theory itself.23 From the elementary argument of Prop. 11,
it follows that the proof of Theorem 1 has to be developed in a mathematical
framework that is strictly stronger than PA2. On the other hand, the consis-
tency of a mathematical theory is a universal statement that can be considered
as an empirical statement in the sense of Popper: it can be tested, corroborated,
and above all, it can be falsified with a single ‘experiment’, namely: by produc-
ing a (finite) derivation whose conclusion is the sequent ` ⊥. In the sequel,
we will argue that the property of logical consistency is crucial to grasp the
relationship between mathematics and the natural sciences, provided we do not
understand consistency as a purely formal property, but as the very empirical
hypothesis that is underlying all mathematical activity, especially when con-
sidering applied mathematics. For that, we need to relate the notion of logical
consistency with the notion of computational consistency.

6.2 Logical consistency and computational consistency

A statement such as Fermat’s last theorem

∀x, y, z, n∈N (x 6= 0, y 6= 0, n > 2 ⇒ xn + yn 6= zn)

is usually understood by mathematicians and non mathematicians as the fact
that if we take two natural numbers x and y different from zero, then the sum
of the nth powers of x and y (where n is greater than two) is not the nth
power of a natural number. As is, this property is an empirical statement: it
can be tested, corroborated and falsified by the means of simple calculations.
And this is precisely because all the attempts to falsify this property repeatedly
failed (and because all the attempts to prove it repeatedly failed too) that
mathematicians relentlessly tried to prove the theorem during more than three
centuries, until Wiles and Taylor succeeded in 1995.

23From Gödel’s second incompleteness theorem, stating that a recursive theory containing
first-order arithmetic cannot prove its own consistency [9].

37

But did Wiles and Taylor really prove this property for all x, y and n? Did
they take every triple (x, y, n), compute the sum xn+yn and check that the result
is not the nth power of a natural number? No. What they did is that they wrote
a mathematical proof of Fermat’s last theorem, that is, a text giving enough
explanations to convince the reader that she could build a formal derivation
of this formula in a suitable formal system (say: Zermelo-Fraenkel set theory).
From the point of view of the natural sciences, they proved the existence of a
derivation of Fermat’s last theorem. According to Popper’s terminology, they
established the truth of a particular (i.e. existential) statement, by exhibiting
the sketch of what could be a formal derivation (or, if we prefer, by performing
the appropriate experiment about derivability).

However, there is a huge epistemological gap between the particular state-
ment ‘Fermat’s last theorem has a derivation’ (which is the only statement ac-
tually established by Wiles and Taylor) and the usual interpretation of Fermat’s
last theorem as a universal empirical statement: ‘the sum of two nth powers of
positive integers is not the nth power of an integer’. To deduce the latter from
the former, we need to set an important hypothesis about mathematics, which
is that they are computationally consistent, in the sense that:

Every computable equality (or inequality) that is derivable in math-
ematics holds by computation.

Considering the formal system PA2, this hypothesis becomes:

If the sequent ` e1 = e2 is derivable in PA2 (where e1 and e2 are two
closed numeric expressions), then the expressions e1 and e2 have the
same value by computation24.

The hypothesis of computational consistency is the implicit hypothesis that
is underlying all mathematical activity, especially when considering the appli-
cations of mathematics to other fields of the human knowledge. Without this
hypothesis, nobody would be interested in applying mathematical theorems to
physics, astronomy, economics and even to bookkeeping. Without such an hy-
pothesis, there would actually be little epistemologic difference between math-
ematics and numerology. In a Popperian perspective, the property of computa-
tional consistency is a universal empirical statement that can be falsified with a
single test, namely, by exhibiting a derivation of a computable (in)equality that
appears to be wrong by computation. This property actually constitutes one
of the most well corroborated empirical hypotheses of science, since it is daily
tested in schools, in bookkeeping, in computers, etc.

We can thus argue (against Popper) that mathematics fulfill the demarcation
criterion that makes mathematics an empirical science. The only specificity of
mathematics is that the universal empirical hypothesis underlying mathematics
is (almost) never stated explicitly. On the other hand, mathematical theo-
rems do not constitute universal empirical statements themselves; they only
constitute what Popper calls ‘particular statements’ expressing the existence of
a derivation of a particular formula. This is only by combining the existence
of a derivation of a formula (seen as an initial condition) with the hypothesis
of computational consistency that we can deduce the universal empirical con-
tents of this formula. Also notice that this combination is only possible for

24This notion is not altered by replacing equalities with inequalities.

38

the theorems expressing universally quantified computable (in)equalities—that
is: Π0

1-formulæ—such as Fermat’s last theorem for instance. Most theorems
of mathematics are not of this shape, and these theorems cannot be given a
universal empirical contents as for Π0

1-theorems, besides their obvious empir-
ical contents as particular statements about derivability. However, these non
Π0

1-theorems remain useful to derive other Π0
1-theorems, and thus indirectly

contribute to the growth of the empirical basis of mathematics.25

It is well known that the property of computational consistency is elemen-
tarily equivalent to the property of logical consistency:

Proposition 12 — A mathematical theory T that contains (at least) the com-
putation rules of arithmetic (including Peano’s 3rd and 4th axioms) is compu-
tationally consistent if and only if it is logically consistent.

Proof. We only do the proof for PA2, but the same argument holds for any for-
mal system that contains the computation rules of arithmetic, including Peano’s
3rd and 4th axioms. We actually prove that the logical inconsistency of PA2
is equivalent to the computational inconsistency of PA2. Let us assume that
PA2 is logically inconsistent. Then the sequent ` 0 = 1 is derivable in PA2 (ex
falso quod libet), so that PA2 is computationally inconsistent. Conversely, let
us assume that PA2 is computationally inconsistent. This means that there is
a derivation d of ` e1 = e2 where e1 and e2 are two closed numeric expressions
that have different values n1 and n2. Since PA2 contains the computation rules
of arithmetic (i.e. the definitional equalities of primitive recursive functions),
we can turn the computations showing that e1 yields n1 and e2 yields n2 into
derivations d1 of ` e1 = n1 and d2 of ` e2 = n2. And since n1 and n2 are
different natural numbers, we can build a derivation d3 of ` n1 6= n2 (using
Peano’s 3rd and 4th axioms). By combining the derivations d, d1, d2 and d3 we
easily get a derivation of the sequent ` ⊥ in PA2. 2

We can thus consider logical consistency and computational consistency as
one and the same empirical hypothesis about mathematics. The former formu-
lation is more compact and conceptual, and thus more suited to the needs of
proof theory. But the practical interest of the notion of consistency mainly lies
in the latter formulation. From an epistemological point of view, the hypothesis
of computational consistency is precisely the hypothesis that is needed in order
to legitimate the use of mathematical theorems (given by formal derivations) to
concrete problems of computing and bookkeeping.

6.3 Experimental effectiveness and 1-consistency

However, the hypothesis of computational consistency alone is not sufficient
to describe the connection between mathematical deductions and empirical as-
sumptions when these assumptions deal with non mathematical entities (which
is not the case of computations). To describe this connection, we have proposed
the hypothesis of experimental effectiveness for PA2 (stated in Theorem 1), that
gives an effective solution to the problem of tracking the empirical contents of a
falsification through a mathematical derivation built in PA2. And from Prop. 11

25This is the case for instance of all the theorems about elliptic curves (usually non Π0
1)

that are involved in Ribet, Wiles and Taylor’s proof of Fermat’s last theorem.

39

and 12, it is clear that this hypothesis is at least as strong as the hypothesis of
computational consistency of PA2, since it implies it.

It is now time to explain why the hypothesis of experimental effectiveness
for PA2 is actually strictly stronger than the consistency of PA2. For that, we
need to relate this hypothesis with the 1-consistency of PA2.

Let T be a mathematical theory that contains the symbols and computation
rules of arithmetic (such as PA or PA2 for example). We say that the theory T
is 1-consistent when for all primitive recursive function symbols f such that
the sequent ` ∃Nx f(x) = 0 is derivable in T , there exists a natural number n
such that f(n) equals 0 by computation. In other words, a 1-consistent theory
is a theory in which all the derivable Σ0

1-formulæ are true. It is well known
that 1-consistent theories are also consistent (or 0-consistent). The converse is
false in general, since it is possible to artificially build theories that are logically
consistent but not 1-consistent26. In the case of PA2, we easily check that:

Proposition 13 — The hypothesis of experimental effectiveness for PA2 im-
plies the 1-consistency of PA2.

Proof. Let us assume that the sequent ` ∃Nx f(x) = 0 is derivable in PA2.
Then there is a derivation d of the sequent U ` ⊥ in PA2, where U is the
universal testable formula ∀Nx (f(x) = 0 ⇒ ⊥). By applying the hypothesis
of experimental effectiveness to the experimental theory U , we know that the
process d̃ ? � eventually reaches a falsification of U , which means that this
process finds a natural number n such that f(n) equals 0 by computation. 2

It is actually possible to prove (by elementary means) that the converse
implication holds, so that the hypothesis of experimental effectiveness is actually
equivalent to the 1-consistency of PA2. We shall not present here the proof
of the converse implication, since this proof is based on standard but tricky
arithmetization techniques whose level of technicality goes beyond the scope
of the present paper. The basic idea is to rephrase the realizability model of
section 4 within the language of second-order arithmetic, and to show that given
a derivation d of the sequent U1, . . . , U` ` ⊥ in PA2, the existence of the finite
Herbrand tree whose construction has been described in section 5.1 is derivable
in PA2. From the hypothesis of 1-consistency we deduce that this Herbrand
tree exists outside PA2, which tree can be used as a certificate indicating that
the evaluation of the process d̃ ? � eventually reaches a falsification of the
experimental theory U1, . . . , U` independently from the truth value functions
attached to the experimental predicates of the theory.

According to Popper’s terminology [23, ch. 8, § 66], the 1-consistency of
PA2 and the hypothesis of experimental effectiveness for PA2 are ‘universalized
existential statements’, that is, statements of the form ‘for all x there is some y
with the observable property P (x, y)’.27 As such, these (equivalent) hypotheses

26For instance, the theory PA + ¬ConsPA (where ConsPA is the formula expressing the
consistency of PA) is 0-consistent but not 1-consistent, provided PA itself is consistent.

27Provided we understand the hypothesis of experimental effectiveness for PA2 as: ‘for all
finite sequences of universal testable formulæ U1, . . . U` and for all derivations d of the sequent
U1, . . . U` ` ⊥ (in PA2), there is a number n such that the process d̃ ? � reaches a falsification
of the theory U1, . . . U` after n evaluation steps’. Note that this statement does not correspond
to a Π0

2-formula of logic, since the observable property (‘the process d̃ ? � reaches a falsification
of the theory U1, . . . U` after n evaluation steps’) depends on the experimental interpretation
of the predicates p, q, r, etc. mentioned in the experimental theory.

40

are neither verifiable, nor falsifiable. However, there are good reasons to accept
the hypothesis of experimental effectiveness (or the 1-consistency of PA2 that
is equivalent), despite the fact that it is not falsifiable, strictly speaking.28 The
first reason is that the hypothesis of experimental effectiveness can be tested,
by checking that the extracted program terminates according to the prediction
of Theorem 1 for particular experimental theories U1, . . . , U` and for particular
derivations d of the sequent U1, . . . , U` ` ⊥. The second reason is that the
hypothesis of experimental effectiveness has a falsifiable consequence, which is
the (logical and computational) consistency of PA2.

References

[1] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of
Studies in Logic and The Foundations of Mathematics. North-Holland, 1984.

[2] Y. Bertot and P. Castran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

[3] L. E. J. Brouwer. Intüıtionistische splitsing van mathematische grondbegrippen.
Nederl. Akad. Wetensch. Verslagen, 32:877–880, 1923.

[4] A. Church. The calculi of lambda-conversion, volume 6 of Annals of Mathematical
Studies. Princeton, 1941.

[5] H. B. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland, 1958.

[6] G. Gentzen. Untersuchungen über das logische Schließen. I. Mathematische
Zeitschrift, 39(1):176–210, 1935.

[7] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de l’arith-
métique d’ordre supérieur. Doctorat d’État, Université Paris VII, Juin 1972.

[8] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University
Press, 1989.

[9] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme, I. Monatshefte für Mathematik und Physik, 38:173–198,
1931.

[10] K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Stand-
punktes. Dialectica, 12:280–287, 1958.

[11] T. Griffin. A formulae-as-types notion of control. In Principles Of Programming
Languages (POPL’90), pages 47–58, 1990.

[12] M. Guillermo. Jeux de réalisabilité en arithmétique classique. PhD thesis, Uni-
versité Paris 7, 2008.

[13] W. A. Howard. The formulae-as-types notion of construction. Privately circulated
notes, 1969.

[14] S. C. Kleene. On the interpretation of intuitionistic number theory. Journal of
Symbolic Logic, 10:109–124, 1945.

[15] G. Kreisel. On the interpretation of non-finitist proofs, part I. Journal of Symbolic
Logic, 16:241–267, 1951.

[16] J. L. Krivine. Lambda-calculus, types and models. Masson, 1993.

[17] J.-L. Krivine. A general storage theorem for integers in call-by-name lambda-
calculus. Th. Comp. Sc., 129:79–94, 1994.

28Popper faces a similar difficulty [23, ch. 8] when considering the interpretation of proba-
bilistic statements.

41

[18] J.-L. Krivine. Typed lambda-calculus in classical Zermelo-Fraenkel set theory.
Arch. Math. Log., 40(3):189–205, 2001.

[19] J.-L. Krivine. Dependent choice, ‘quote’ and the clock. Theor. Comput. Sci.,
308(1-3):259–276, 2003.

[20] J.-L. Krivine. Realizability in classical logic. Panoramas et synthèses, Société
Mathématique de France, 2004.

[21] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

[22] A. Miquel. Classical program extraction in the calculus of constructions. In
Jacques Duparc and Thomas A. Henzinger, editors, CSL, volume 4646 of Lecture
Notes in Computer Science, pages 313–327. Springer, 2007.

[23] K. R. Popper. The Logic of Scientific Discovery. Routledge, 1992.

[24] The Coq Development Team. The Coq Proof Assistant Reference Manual –
version v8.2. Technical report, INRIA, 2009.

[25] E. Wigner. The unreasonable effectiveness of mathematics in the natural sciences.
Communications in Pure and Applied Mathematics, 13(1), February 1960.

42

