
Under consideration for publication in Math. Struct. in Comp. Science

Forcing as a program transformation

A l e x a n d r e M I Q U E L1

1 École Normale Supérieure de Lyon – Laboratoire d’Informatique du Parallélisme
46, allée d’Italie – 69364 Lyon Cedex 07 – FRANCE

Received

This paper is a study of the forcing translation (in the sense of Cohen (Coh63; Coh64))

through the proofs as programs correspondence in classical logic, following the

methodology introduced by Krivine in (Kri08; Kri10). For that, we introduce an

extension of (classical) higher-order arithmetic suited to express the forcing translation,

called PAω+, as well as the corresponding proof system based on Curry-style proof

terms with call/cc. Then, given a poset of conditions (represented in PAω+ as an

upwards closed subset of a fixed meet semi-lattice), we define the forcing translation

A 7→ (p F A) (where A ranges over propositions) and show that the corresponding

transformation of proofs is induced by a simple program transformation t 7→ t∗ defined

on raw proof terms (i.e. independently from the derivation). From an analysis of the

computational behavior of transformed programs, we show how to avoid the cost of the

transformation by introducing an extension of Krivine’s abstract machine devoted to the

execution of proofs constructed by forcing. We show that this machine induces new

classical realizability models and present the corresponding adequacy results.

Contents

1 Introduction 2

2 An extension of higher-order arithmetic 5

2.1 Kinds 6

2.2 Higher-order terms 6

2.3 System T as a fragment of PAω+ 7

2.4 The congruence M ∼=E M ′ 8

2.5 The proof system of PAω+ 10

2.6 Expressiveness 12

2.7 Operational semantics of proof terms 14

2.8 Evaluation and typing 16

3 Representing forcing conditions 17

3.1 Forcing structures 18

3.2 Preorder on conditions 19

3.3 An example of a forcing structure 19

4 The forcing translation 20

4.1 The auxiliary translation M 7→M∗ 21



Alexandre Miquel 2

4.2 The forcing translation A 7→ (p F A) 23

4.3 Forcing logical constructions 24

4.4 Translating proof terms 26

4.5 Using the program transformation t 7→ t∗ 28

4.6 Invariance under forcing 29

4.7 An analysis of the computational behavior of transformed proofs 31

5 Classical realizability semantics 33

5.1 Environments 33

5.2 Classical realizability algebras 34

5.3 Λc-algebras 35

5.4 Interpreting kinds 36

5.5 Valuations and higher-order terms with parameters 36

5.6 Interpreting higher-order terms 37

5.7 The general property of adequacy 39

5.8 Adequacy w.r.t. the KAM 41

6 An abstract machine for forcing 41

6.1 Krivine’s Forcing Abstract Machine (KFAM) 42

6.2 Adequacy in regular mode 44

6.3 Adequacy in forcing mode 45

6.4 Combining the two execution modes together 46

7 The connection theorem 47

7.1 The algebra A ∗ induced by the forcing mode 47

7.2 The connection theorem 49

7.3 Proof of adequacy in forcing mode 53

References 55

1. Introduction

The method of forcing was introduced by Cohen (Coh63; Coh64) to prove the relative

consistency of the negation of the continuum hypothesis w.r.t. the axioms of set theory

(ZFC). (The relative consistency of the continuum hypothesis was already proved by

Gödel (Göd38) with the technique of constructible sets.) Since then, the forcing technique

has been widely investigated, and it now constitutes a standard item in the toolbox of set

theorists (Jec02). Cohen forcing is traditionally presented in a model-theoretic way, as a

method to extend a given model M of ZF/ZFC into a larger model M [G] obtained by

adding to M an ‘ideal object’ G (called a generic set) whose properties are deduced from

a poset of conditions (C,≤) given as a point of the initial model M . This point of view

is deeply connected to the construction of Boolean-valued models of ZF/ZFC (Bel85),

that can actually be seen as an alternative presentation of forcing.

But from a proof theoretic point of view, all these model theoretic constructions ulti-

mately rely on a formula translation mapping every formula A of a given theory T (typ-

ically: ZF, ZFC, or PAω+ in this paper) to another formula written p F A (‘p forces A’)

that depends on an extra parameter p representing a forcing condition (taken in the



Forcing as a program transformation 3

poset (C,≤) that parameterizes the construction). The formula translation A 7→ (1 F A)

(writing 1 the largest element of C) is actually a logical translation since it preserves

provability in the theory T , so that it can be used as a device to extend the notion of

provability that comes with T . Indeed, if we consider the theory T [C] formed by all

formulæ A such that T ` (1 F A), then T [C] is an extension—and in general a strict

extension—of the initial theory T that is consistent relatively to T . Depending on the

choice of the poset (C,≤) that parameterizes the construction, the extended theory T [C]

may prove interesting formulæ that are not provable in the initial theory T —for instance:

the continuum hypothesis or its negation.

Surprisingly, Cohen’s forcing has received much less attention in proof theory than in

model theory. One reason for this is that the forcing translation introduced by Cohen

is intrinsicly classical, whereas proof theory is in general much better understood in the

framework of intuitionistic logic, especially when working via the correspondence between

proofs and programs (i.e. the Curry-Howard correspondence). Due to this, proof-theoretic

analyses of Cohen forcing are usually carried out indirectly, through a suitable negative

translation from classical logic to intuitionistic logic (Avi04; CJ10). However, it seems to

be difficult to understand the computational meaning of the forcing translation—that is:

at the level of proof terms—when forcing is studied through a negative translation from

classical logic to intuitionistic logic.

In 1990, Griffin (Gri90) discovered that the control operator call/cc (‘call with current

continuation’) of the Scheme programming language could be given the type correspond-

ing to Peirce’s law, which provided an elegant way to extend the correspondence between

proofs and programs to classical logic. Since then, many classical λ-calculi have been in-

troduced in the literature, such as Parigot’s λµ-calculus (Par97), Barbanera and Berardi’s

symmetric λ-calculus (BB96) and Curien and Herbelin’s λ̄µµ̃-calculus (CH00), together

with type systems corresponding to classical logic. To analyze the computational behav-

ior of classical proof terms, Krivine introduced the theory of classical realizability (Kri01;

Kri03; Kri09), which is a reformulation of Kleene’s realizability (Kle45) in which the com-

putational contents of classical proofs can be analyzed directly, rather than through a

negative translation. More recently, Krivine showed (Kri08; Kri10) how to combine Co-

hen forcing with classical realizability, and discovered the existence of a simple program

transformation (defined on classical λ-terms) that turns any Curry-style proof term t of

a formula A (in PA2/PA3) into a classical realizer t∗ of the formula 1 F A in the suitable

realizability model. From this, he deduced a method to realize a theorem whose proof

relies on an axiom that can be forced using a suitable set of conditions.

The aim of this paper is to present and study in a more systematic way (a variant of)

this program transformation in higher-order arithmetic using a fully typed setting, and,

up to some extent, independently from the theory of classical realizability. For that, we

shall present an extension of higher-order arithmetic with classical proof terms, called

system PAω+, and define the forcing relation p F A in this framework. The subtle point

is that the forcing relation has to be designed carefully throughout the hierarchy of

finite types, so that the corresponding transformation of proofs can be lifted from the

level of typing derivations to the level of (raw) Curry-style proof terms, that contain

much less information. In this way, we shall deduce a program transformation t 7→ t∗ of



Alexandre Miquel 4

classical λ-terms, that can be studied per se independently from the forcing translation,

exactly the same way as CPS-translations can be studied independently from the negative

translations they correspond to via Curry-Howard.

From a fine-grained analysis of the computational behavior of transformed (classical)

proof terms in the Krivine Abstract Machine (KAM), we shall explain the computational

model underlying the forcing translation, showing that this computational model is rem-

iniscent from well-known techniques in computer architecture, such as virtualization and

protection rings. Exploiting this analogy, we shall see how to put the forcing translation

‘into the hardware’ in order to avoid the cost of the program transformation. For that, we

shall introduce a new abstract machine, the Krivine Forcing Abstract Machine (KFAM),

that extends Krivine’s machine with an alternative execution mode devoted to the eval-

uation of ‘proofs by forcing’, which is reminiscent from the protected mode of modern

computer architectures. We shall also present the realizability models coming with this

new abstract machine, together with the corresponding adequacy results.

This paper presents the global computational architecture underlying Cohen forcing,

but it does not yet explain how forced axioms may benefit from this particular architec-

ture in concrete examples. In a future paper, we plan to present case studies illustrating

how this architecture works for some forcing structures.

Outline of the paper

This article is divided into two parts.

The first part (Sections 2–4) is a purely syntactic study of the classical program trans-

formation underlying Cohen’s forcing, considering this transformation from the point of

view of typing in classical higher-order arithmetic.

The second part (Sections 5–7) is a semantic study of the forcing translation from

the point of view of classical realizability (Kri03; Kri09; Kri10), by introducing a new

abstract machine devoted to the execution of proofs by forcing.

Syntactic study In Section 2, we introduce an extension of (classical) higher-order

arithmetic, called PAω+, with a system of Curry-style proof terms enriched with a con-

trol operator call/cc to prove Peirce’s law (Gri90). We study the basic meta-theoretic

properties of this system, and present the operational semantics of proof terms in the

framework of Krivine’s Abstract Machine (KAM). In Section 3, we introduce the no-

tion of a forcing structure in system PAω+ (following (Kri10)) and relate it with the

traditional set-theoretic presentation of forcing from a poset of conditions. Given an ar-

bitrary forcing structure, we define in Section 4 the corresponding forcing translation

A 7→ (p F A) (where A is a proposition and p a forcing condition) and study its basic

properties. Then we introduce a program transformation t 7→ t∗ on the raw (Curry-style)

proof terms of system PAω+, and we show that this transformation maps every proof

term of a proposition A to a proof term of the proposition p F A. We conclude this section

by checking that all first-order propositions are invariant under the forcing translation,

and by analyzing the computational behavior of transformed programs.



Forcing as a program transformation 5

Semantic study In Section 5, we present (a variant of) the general notion of a classical

realizability algebra introduced in (Kri10). We show how to build a classical realizability

model MA of system PAω+ from an arbitrary algebra A , and prove the general theorem

of adequacy. From the computational analysis of the program transformation t 7→ t∗

presented in Section 4, we show in Section 6 how to hard-wire the program transformation

into the abstract machine. For that, we introduce a new abstract machine—the Krivine

Forcing Abstract Machine (KFAM)—that extends the usual KAM with an alternative

execution mode devoted to the execution of proofs by forcing. Then we present two

results of adequacy: one for the regular execution mode, and one for the forcing execution

mode. To prove the latter result of adequacy, we show in Section 7 that the two execution

modes of the KFAM are semantically reflected by two different ways of constructing a

classical realizability algebra from the KFAM, respectively written A (for the regular

mode) and A ∗ (for the forcing mode). We conclude by relating the denotations of a given

proposition A in the two realizability models MA and MA ∗ (induced by the algebras A

and A ∗) in the spirit of the definition of iterated forcing.

Contributions of the paper

This work is largely inspired by the methodology introduced by Krivine in (Kri08; Kri10).

The author’s own contributions are the following:

— A reformulation of the forcing translation in higher-order arithmetic (rather than

in PA2/PA3), and the design of an expressive type system (PAω+) in which the

transformation preserves typability on proof terms. (In (Kri08; Kri10), well-typed

proof terms are only transformed into classical realizers.)
— Some simplifications in the program transformation presented by Krivine. In particu-

lar, we get rid of the extra two instructions χ and χ′ used in (Kri08; Kri10) by putting

the computational condition on the top of the stack rather than at the bottom, as

done in (Kri10). The removal of these extra instructions also simplifies the expression

of the relationship with iterated forcing, that was already given in (Kri10).
— A slightly more abstract (but equivalent) presentation of classical realizability alge-

bras that does not rely on the combinators used in (Kri10), which makes the under-

lying computational architecture more transparent.
— Finally, the main contribution of the paper is the Krivine Forcing Abstract Machine

(KFAM), a new abstract machine specifically devoted to the evaluation of proofs by

forcing that is deduced from the computational analysis of the program transforma-

tion, as well as the corresponding realizability models.

This paper is an expanded version of (Miq11).

2. An extension of higher-order arithmetic

Throughout this paper, we work in a presentation of higher-order arithmetic called PAω+,

that is basically an extension of (Curry-style) system Fω. As for system Fω, system

PAω+ is stratified into three syntactic categories: kinds, higher-order terms (that corre-

spond to mathematical objects, including propositions) and (Curry-style) proof terms.



Alexandre Miquel 6

2.1. Kinds

Kinds (notation: τ , σ, etc.) of system PAω+ are simple types based on two ground kinds:

the kind ι of individuals and the kind o of propositions. We prefer here the terminology

of a kind since in system PAω+, the role of types is played by propositions, that belong

to the syntactic category of higher-order terms. Formally:

Definition 1 (Kinds). — Kinds are inductively defined from the following rules:

(1) The symbol ι is a kind.

(2) The symbol o is a kind.

(3) If τ and σ are kinds, then so is τ → σ.

As usual, we consider that the symbol → associates to the right, so that τ1 → τ2 → σ

denotes the kind τ1 → (τ2 → σ). We shall sometimes use the vector notation ~τ to denote

finite lists of kinds, and given a list ~τ ≡ τ1, . . . , τn and a kind σ, we write ~τ → σ for

τ1 → · · · → τn → σ. In what follows, we shall call a ι-kind (resp. an o-kind) any kind of

the form ~τ → ι (resp. any kind of the form ~τ → o).

2.2. Higher-order terms

We assume given an infinite set of variables (notation: xτ , yτ , zτ , etc.) for every kind τ .

Higher-order terms (notation: M , N , etc.) of PAω+ are ‘simply kinded’ λ-terms enriched

with extra constructions to represent arithmetic operations and logical constructions.

Every higher-order term M has a particular kind, which is unique. (There is no ‘kind’

ambiguity since each variable comes with its kind.) Formally:

Definition 2 (Higher-order terms). — Higher-order terms of all kinds are inductively

defined from the following rules:

Lambda-calculus:

(1) If xτ is a variable of kind τ , then xτ is a term of kind τ .

(2) If xτ is a variable of kind τ and if M is a term of kind σ, then λxτ .M is a term of

kind τ → σ.

(3) If M is a term of kind τ → σ and if N is a term of kind τ , then MN is a term of

kind σ.

Arithmetic constructions:

(4) The constant 0 (‘zero’) is a term of kind ι.

(5) The constant s (‘successor’) is a term of kind ι→ ι.

(6) For every kind τ , the constant recτ (‘recursor’) is a term of kind

τ → (ι→ τ → τ)→ ι→ τ .

Logical constructions:

(7) If M and N are terms of kind o, then M ⇒ N is a term of kind o.

(8) If M is a term of kind o possibly depending on a variable x of kind τ , then ∀xτM
is a term of kind o.

(9) If M and M ′ are terms of kind τ , and if N is a term of kind o, then M = M ′ 7→ N

is a term of kind o. This ternary construction represents an equational implication

whose meaning will be explained below.



Forcing as a program transformation 7

The notions of free and bound variables are defined as usual, keeping in mind that

the constructions λxτ .M and ∀xτM are binders, which bind all the free occurrences of

the variable xτ in the term M . In what follows, we shall write FV (M) the set of free

variables of M , and M{xτ := N} the term obtained by replacing in the term M (of some

kind σ) all the free occurrences of the variable xτ with the term N (of kind τ), possibly

renaming bound variables of M to prevent variable captures.

Propositions We call a proposition any term A of kind o, preferring the letters A, B,

C, etc. to denote them. Propositions of system PAω+ are ultimately built from the tra-

ditional constructions A ⇒ B (implication) and ∀xτA (universal quantification ranging

over the kind τ) of minimal higher-order logic.

In addition, system PAω+ provides a ternary construction written M = M ′ 7→ A and

called an equational implication, whose intuitive meaning is:

M = M ′ 7→ A ≡

{
A if M equals M ′

> otherwise

where > denotes the proposition proved by any proof term, that will be formally defined

in section 2.6. As suggested by its name, the equational implication M = M ′ 7→ A is

provably equivalent to the ‘regular’ implication M =τ M
′ ⇒ A, where the symbol =τ

stands for Leibniz equality (see below). In practice, the proposition M = M ′ 7→ A carries

over the same logical contents as the proposition M =τ M
′ ⇒ A, but with more compact

proof terms. While this compact form of an implication is not strictly needed to define

the forcing translation, it helps to make the translation more understandable at the level

of proof terms. However, the presence of this extra construction has a cost on the type

system of PAω+, since it makes the typing judgment E ; Γ ` t : A not only depend on a

typing context Γ, but also on an equational theory E (see Section 2.4).

In system PAω+, absurdity, conjunction, disjunction, existential quantification and

Leibniz equality on all kinds are defined using the standard second-order encodings:

⊥ ≡ ∀zo z
¬A ≡ A⇒ ⊥

A ∧B ≡ ∀zo ((A⇒ B ⇒ z)⇒ z)

A ∨B ≡ ∀zo ((A⇒ z)⇒ (B ⇒ z)⇒ z)

A⇔ B ≡ (A⇒ B) ∧ (B ⇒ A)

∃xτA(x) ≡ ∀zo (∀xτ (A(x)⇒ z) ⇒ z)

M =τ N ≡ ∀zτ→o(zM ⇒ z N)

(where zo and zτ→o are fresh variables).

2.3. System T as a fragment of PAω+

The purely computational fragment of system PAω+—which we obtain by excluding all

the constructions that deal with propositions while keeping all the constructions that

deal with individuals and functions—is actually isomorphic to Gödel’s system T.

In what follows, we shall thus use the terminology of a T-kind (resp. of a T-term)



Alexandre Miquel 8

to refer to a kind (resp. to a term) that belongs to the fragment of system PAω+ that

corresponds to Gödel’s system T. Formally, a T-kind is any kind τ that is either of the

form τ ≡ ι or of the form τ ≡ τ1 → τ2, where τ1 and τ2 are T-kinds; and a T-term is any

higher-order term M that has one of the following forms:

— M ≡ xτ , where τ is a T-kind,

— M ≡ λxτ .M , where τ is a T-kind, and where M is a T-term,

— M ≡MN , where M and N are T-terms,

— M is one of the constants 0, s or recτ , where τ is a T-kind.

Let us recall that the functions that can be implemented in system T (as terms of

kind ιk → ι) are exactly the recursive functions that are provably total in first-order

arithmetic, which includes all primitive recursive functions as well as many other total

recursive functions such as Ackermann’s.

Although T-terms may be computationally higher-order, they are logically first-order,

and they play in system PAω+ the same role as the terms of Gödel’s system T in the

arithmetic of finite types. (Intuitively, T-terms of functional kinds do not represent all

functions, but only computable ones.) In particular, we shall see in Section 4 that T-kinds

and T-terms are not affected by the forcing translation.

2.4. The congruence M ∼=E M ′

Definition 3 (Equational theories). — We call an equational theory any finite set of

equations written

E ≡ M1 = M ′1, . . . ,Mk = M ′k

where for all i ∈ [1..k], Mi and M ′i are (open) higher-order terms of the same kind τi.

(For simplicity, we assume that the equations (Mi = M ′i) ∈ E are non oriented.)

Given an equational theory and an equation M = M ′, we simply write E ,M = M ′

for E ∪ {M = M ′}. The notations FV (E) and E{xτ := N} are extended to equational

theories E in the obvious way.

Every equational theory E induces a binary relation M ∼=E M ′ between higher-order

terms M and M ′ of the same kind, that expresses that the terms M and M ′ are equal

modulo the equational theory E . Formally:

Definition 4 (The relation ∼=E). — The family of relations ∼=E (where E ranges over

all equational theories) is inductively defined from the rules given in Table 1.

In the particular case where E is empty, we simply write M ∼= M ′ for M ∼=E M ′.

Remarks 5. (1) Table 1 contains the expected inference rules expressing that the

relation M ∼=E M ′ is a congruence (cf Prop. 6 below). Note that the congruence rule for

equational implications provides a mechanism of discharge that permits to derive that

two equational implications M1 = M2 7→ A and M1 = M2 7→ A′ are congruent modulo

some equational theory E as soon as the propositions A and A′ are congruent modulo the

theory E extended with the equation M1 = M2. In practice, this means that the deeper



Forcing as a program transformation 9

Table 1. Inference rules of the relation M ∼=E M ′

Reflexivity, symmetry, transitivity and base case

M ∼=E M M ∼=E M ′
(M=M′)∈E

M ∼=E M ′

M ′ ∼=E M
M ∼=E M ′ M ′ ∼=E M ′′

M ∼=E M ′′

Context closure

M ∼=E M ′

λxτ .M ∼=E λxτ .M ′
M ∼=E M ′ N ∼=E N ′

MN ∼=E M ′N ′
A ∼=E A′ B ∼=E B′

A⇒ B ∼=E A′ ⇒ B′

A ∼=E A′

∀xτA ∼=E ∀xτA′
M1
∼=E M ′1 M2

∼=E M ′2 A ∼=E,M1=M2 A
′

M1 = M2 7→ A ∼=E M ′1 = M ′2 7→ A′

βηι-conversion

(λxτ .M)N ∼=E M{xτ := N} λxτ .Mx ∼=E M
xτ /∈FV (M)

recτ MM ′ 0 ∼=E M recτ MM ′ (sN) ∼=E M ′N (recτ MM ′N)

Semantically equivalent propositions

∀xτ∀yσA ∼=E ∀yσ∀xτA ∀xτA ∼=E A
xτ /∈FV (A)

A⇒ ∀xτB ∼=E ∀xτ (A⇒ B)
xτ /∈FV (A)

M = M 7→ A ∼=E A M = M ′ 7→ A ∼=E M ′ = M 7→ A

M = M ′ 7→ N = N ′ 7→ A ∼=E N = N ′ 7→M = M ′ 7→ A

A⇒M = M ′ 7→ B ∼=E M = M ′ 7→ A⇒ B

∀xτ (M = M ′ 7→ A) ∼=E M = M ′ 7→ ∀xτA
xτ /∈FV (M,M′)

we go through equational implications (in order to derive that two terms are congruent),

the more equations we add to the current equational theory.

(2) In addition to the expected rules of βηι-conversion, Table 1 provides many rules

to identify propositions that are semantically equivalent in a Curry-style framework.

These rules basically express the commutation properties of universal quantification and

of equational implication w.r.t. other logical constructions.

We easily check that:

Proposition 6 (Monotonicity, substitutivity and congruence).

(1) If M ∼=E M ′ and E ⊆ E ′, then M ∼=E′ M ′.
(2) If M ∼=E M ′ and N ∼=E N ′, then M{xτ := N} ∼=E{xτ :=N} M

′{xτ := N ′}
(where N and N ′ are arbitrary higher-order terms of kind τ).

(3) If the equational theory E is closed (i.e. FV (M1) = FV (M2) = ∅ for every equation

(M1 = M2) ∈ E), then the relation M ∼=E M ′ is a congruence.



Alexandre Miquel 10

Proof. (1) By a straightforward induction on the derivation of M ∼=E M ′.
(2) We first prove the result in the particular case where M ≡ M ′, reasoning by

induction on the structure of M . The general result then follows by induction on the

derivation of M ∼=E M ′, using (1) in the case where the derivation of M ∼=E M ′ ends

with the congruence rule for equational implications.

(3) We already know that the relation M ∼=E M ′ is an equivalence relation, and that

it is substitutive when E is closed, by (2). It suffices to show that it is context closed. Let

us treat the case of an equational implication: if M1
∼=E M ′1, M2

∼=E M ′2 and A ∼=E A′,
we have A ∼=E,M1=M2

A′ from (1), so that M1 = M2 7→ A ∼=E M ′1 = M ′2 7→ A′ from the

congruence rule of equational implications (Table 1). The other cases are obvious.

2.5. The proof system of PAω+

Proof terms (notation: t, u, etc.) of system PAω+ are pure λ-terms enriched with a con-

stant cc (call/cc, for call with current continuation). They are defined from an auxiliary

set of proof variables, that we still write using the letters x, y, z, etc. (But these variables

should not be confused with the higher-order variables xτ , yτ , zτ , etc. introduced in

Section 2.2.) Formally:

Definition 7 (Proof terms). — Proof terms are inductively defined from the rules:

(1) If x is a proof variable, then x is a proof term.

(2) If x is a proof variable and if t is a proof term, then λx . t is a proof term.

(3) If t and u are proof terms, then so is tu.

(4) The constant cc is a proof term.

The set of free variables of a proof term t is written FV (t) and the corresponding

operation of substitution, whose result is written t{x := u}, is defined as expected.

Given proof terms t1, t2, . . . , tn, we introduce the shorthand:

t1 ◦ t2 ◦ · · · ◦ tn ≡ λz . t1 (t2 · · · (tn z) · · · )

(where z is a fresh proof variable).

Definition 8 (Typing contexts). — A typing context, or simply a context (notation:

Γ, Γ′, etc.), is a finite ordered list of the form Γ ≡ x1 : A1, . . . , xn : An, where x1, . . . , xn
are pairwise distinct proof variables and where A1, . . . , An are arbitrary propositions.

The domain of a context Γ ≡ x1 : A1, . . . , xn : An is the set of proof variables

defined by dom(Γ) = {x1; . . . ;xn}. The notations FV (Γ) and Γ{xτ := N} (where N is

a higher-order term of kind τ) are extended to typing contexts by letting:

• FV (Γ) = FV (A1) ∪ · · · ∪ FV (An)

• Γ{xτ := N} ≡ x1 : A1{xτ := N}, . . . , xn : An{xτ := N}
Given two contexts Γ and Γ′, we write Γ ⊆ Γ′ when all declarations of Γ also appear

in Γ′ (not necessarily in the same order). Finally, the concatenation of two contexts Γ

and Γ′ such that dom(Γ) ∩ dom(Γ′) = ∅ is still a context, which we write Γ,Γ′. The

latter notation can be generalized to the case where Γ and Γ′ are compatible, in the sense



Forcing as a program transformation 11

Table 2. Deduction/typing rules of system PAω+

(Axiom), (Conversion) E; Γ ` x : A
(x:A)∈Γ

E; Γ ` t : A

E; Γ ` t : A′
A∼=EA′

(⇒-intro/elim)
E; Γ, x : A ` t : B

E; Γ ` λx . t : A⇒ B

E; Γ ` t : A⇒ B E; Γ ` u : A

E; Γ ` tu : B

( 7→-intro/elim)
E,M = M ′; Γ ` t : A

E; Γ ` t : M = M ′ 7→ A

E; Γ ` t : M = M 7→ A

E; Γ ` t : A

(∀-intro/elim)
E; Γ ` t : A

E; Γ ` t : ∀xτA
xτ /∈FV (E;Γ)

E; Γ ` t : ∀xτA
E; Γ ` t : A{xτ := N}

(Peirce’s law) E; Γ ` cc : ((A⇒ B)⇒ A)⇒ A

that (x : A) ∈ Γ and (x : A′) ∈ Γ′ implies A ≡ A′ (syntactic identity) for all x, A and A′.

In this case, the concatenation Γ,Γ′ is defined by removing duplicates (in Γ or in Γ′).

The proof system of system PAω+ is based on a typing judgment written E ; Γ ` t : A,

that expresses that the (raw) proof term t is actually a proof term of the proposition A

(i.e. of kind o) in the context Γ and in the equational theory E . Formally:

Definition 9 (Derivable judgments). — The class of derivable judgments E ; Γ ` t : A

of system PAω+ is inductively defined from the rules of Table 2.

Remarks 10. (1) The elimination rule of equational implication is actually a particular

case of the conversion rule, since the proposition M = M 7→ A is congruent to A modulo

any equational theory E . In what follows, we shall thus not consider the elimination rule

of equational implication as a primitive rule, but only as a derived rule.

(2) In Table 2, the only typing rules participating to the construction of the current

proof term are the axiom rule, the introduction and elimination rules of implication as well

as Peirce’s law. The remaining typing rules (conversion, introduction and elimination of

universal quantification, introduction of equational implication) do not affect the current

proof term, so that we shall say that they are computationally transparent.

We shall conclude this introduction to the proof system of PAω+ by presenting some

typing rules that are admissible in this system:



Alexandre Miquel 12

Proposition 11 (Admissible rules). — The following rules are admissible in sys-

tem PAω+:

(Weakening)
E ; Γ ` t : A

E ′; Γ′ ` t : A
E⊆E′, Γ⊆Γ′

(Term substitutivity)
E ; Γ ` t : A

E{xτ := N}; Γ{xτ := N} ` t : A{xτ := N}

(Proof substitutivity)
E ; Γ, z : B ` t : A E ′; Γ′ ` u : B

E , E ′; Γ,Γ′ ` t{z := u} : A
Γ and Γ′ compatible

Proof. The admissibility of the first two rules is proved by induction on the derivation

of E ; Γ ` t : A. The admissibility of the last rule is proved by induction on the derivation

of E ; Γ, z : B ` t : A, using the admissible rule of weakening in the case where the last

inference is an axiom introducing the variable z.

2.6. Expressiveness

From the rules of Table 2 one can derive the usual introduction and elimination rules of

falsity, negation, conjunction, disjunction, existential quantification and Leibniz equality

using the encodings given in the end of Section 2.2. The typing rule of cc implements

Peirce’s law, from which we can derive all the usual reasoning principles of classical logic

such as the excluded middle:

cc (λk . right (λx . k (leftx))) : ∀Xo (X ∨ ¬X) ,

where:

left ≡ λxfg . f x : ∀Xo ∀Y o (X ⇒ X ∨ Y )

right ≡ λyfg . g y : ∀Xo ∀Y o (Y ⇒ X ∨ Y )

Equational implication and the propositional constant > For all terms M , M ′ (of

kind τ) and A (of kind o), the propositions M = M ′ 7→ A and M =τ M ′ ⇒ A are

provably equivalent in PAω+ as shown by the following proof term:

〈λxy . y x, λx . x (λy . y)〉 : (M = M ′ 7→ A) ⇔ (M =τ M
′ ⇒ A)

(using the abbreviation 〈t1, t2〉 ≡ λz . z t1 t2). Moreover, we can define a proposition >
representing the type of all proof terms by letting

> ≡ tt = ff 7→ ⊥ ,

where tt ≡ λxoyo . x and ff ≡ λxoyo . y. Writing E ≡ tt = ff, we easily check that

A ∼=E ttAA′ ∼=E ff AA′ ∼=E A′

for all propositions A and A′, which means that all propositions A and A′ are congruent

modulo the equational theory E . From this, we immediately deduce that:

Lemma 12. — For all equational theories E , for all contexts Γ and for all proof terms t

such that FV (t) ⊆ dom(Γ), the judgment E ; Γ ` t : > is derivable.



Forcing as a program transformation 13

Proof. From the introduction rule of equational implication, it suffices to check that

the judgment E , tt = ff; Γ ` t : ⊥ is derivable. This is easily proved by induction on the

structure of t, using dummy conversions of the form A ∼=E,tt=ff ⊥ at each step.

As a consequence, the proof system of PAω+ enjoys no normalization property. Nev-

ertheless, system PAω+ is logically consistent as we shall see in Section 5.

Arithmetic reasoning The family of recursors recτ of system PAω+ allows to implement

the predecessor and nullity test functions

predι→ι ≡ recι 0 (λx . x)

nullι→o ≡ reco (⊥ ⇒ ⊥) (λ . λ .⊥)

from which one easily derives that the successor function is injective (Peano 3rd axiom)

and non surjective (Peano 4th axiom) using appropriate conversions:

λz . z : ∀xι ∀yι (s x =ι s y ⇒ x =ι y)

λz . z (λy . y) : ∀xι ¬(0 =ι s x)

(Note that these axioms are derivable without restriction on the objects of kind ι.)

To reason by induction, we proceed as in (GLT89; Kri93) by considering the relativiza-

tion predicate nat (of kind ι→ o) given by

nat ≡ λxι .∀zι→o (z 0⇒ ∀yι (z y ⇒ z (s y))⇒ z x) ,

that intuitively defines the smallest class of individuals containing zero and closed under

the successor function (i.e. Dedekind’s numerals). Provided we relativize all the quantifi-

cations over the kind ι to the class of Dedekind numerals using the shorthands†

∀xnatA(x) ≡ ∀xι (natx⇒ A(x))

∃xnatA(x) ≡ ∀zo (∀xι(natx⇒ A(x)⇒ z)⇒ z)

we can derive the induction principle in system PAω+:

∀zι→o [z 0⇒ ∀xnat(z x⇒ z (s x))⇒ ∀xnatz x] .

(Proof term: λxfn . n 〈0, x〉 (λp . p (λxy . 〈s x, f x y〉)) (λxy . y), where 0 ≡ λxf . x and

s ≡ λnxf . f(nxf) are Church’s encodings of zero and the successor function).

However, the systematic use of the relativized quantifications ∀xnatA(x) and ∃xnatA(x)

(instead of the non relativized ones) requires to prove that the individual N that is

substituted to the variable xι is a Dedekind numeral at each elimination step of ∀xnatA(x)

and at each introduction step of ∃xnatA(x):

` t : ∀xnatA(x) ` u : natN

` tu : A(N)

` t : A(N) ` u : natN

` λz . z u t : ∃xnatA(x)

† Through the proofs as programs correspondence, the relativized quantifications ∀xnat A(x) and
∃xnat A(x) play the same role as the dependent product Πx : nat . A(x) and the dependent sum
Σx : nat . A(x) in type theory. The only difference is that in our framework, these constructions are

not atomic anymore.



Alexandre Miquel 14

For that, we need to check that all the constructions of the syntax of higher-order terms

preserve this property, provided we assume that all the variables from which these terms

are built already fulfill the property. Technically, we proceed as follows: to every ι-kind τ

we associate a relativization predicate relτ of kind τ → o that is inductively defined by:

relι ≡ nat

relσ→τ ≡

{
λfσ→τ .∀xσ (relσx⇒ relτ (f x)) if σ is a ι-kind

λfσ→τ .∀xσ (relτ (f x)) if σ is an o-kind

(where τ is a ι-kind). Using these abbreviations, we easily prove that:

Proposition 13. — For all higher-order terms M whose kind σ is a ι-kind, there exists

a proof term M of free variables x1, . . . , xn such that the judgment

x1 : relτ1 x
τ1
1 ; . . . ;xn : relτn x

τn
n ` M : relσM

is derivable in system PAω+, where xτ11 , . . . , x
τn
n are the free variables of M whose kinds

τ1, . . . , τn are ι-kinds. (The other free variables of M do not need to be considered.)

Proof. For convenience, we associate a proof variable x to every higher-order variable

xτ of a ι-kind τ . The proof term M is defined by induction on M as follows:

(xτ ) ≡ x

λxσ .Mτ ≡ λx .M Mσ→τNσ ≡ M N (if σ is a ι-kind)

λxσ .Mτ ≡ M Mσ→τNσ ≡ M (if σ is an o-kind)

0 ≡ λxf . x s ≡ λnxf . f(nxf)

recτ ≡ λxfn . n 〈0, x〉 (λp . p (λxy . 〈s x, f x y〉)) (λxy . y)

(assuming that τ is a ι-kind in all the above equations).

2.7. Operational semantics of proof terms

Unlike intuitionistic proof terms, the classical proof terms we presented in Section 2.5 are

not subject to β-reduction, but they are intended to be evaluated (in front of a stack) in

Krivine’s Abstract Machine (KAM). Classical proof terms of system PAω+ actually form

a subset of the terms of Krivine’s λc-calculus (Kri09), and their operational semantics is

naturally described in the framework of the λc-calculus we shall now recall.

Formally, the λc-calculus distinguishes two kinds of syntactic expressions: terms—

that represent programs—and stacks—that represent evaluation contexts. The syntax of

terms and stacks is parameterized by two sets of symbols:

— A countable set K of instructions, that contains at least the instruction cc;

— A nonempty countable set Π0 of stack constants (a.k.a. stack bottoms).

Terms (notation: t, u, etc.) of the λc-calculus are ordinary λ-terms enriched with

constants of two forms: instructions κ ∈ K, including the instruction cc (‘call/cc’), and

continuation constants kπ, one for every stack π. Stacks (notation: π, π′, etc.) are finite

lists of closed λc-terms terminated by a stack constant α ∈ Π0. Formally:



Forcing as a program transformation 15

Definition 14 (Terms and stacks). — Terms and stacks of the λc-calculus are defined

by mutual induction from the following seven formation rules:

(1) If x is a proof variable, then x is a λc-term, and FV (x) = {x}.
(2) If κ ∈ K is an instruction, then κ is a λc-term, and FV (κ) = ∅.

(3) If π is a stack, then kπ is a λc-term, and FV (kπ) = ∅.

(4) If t and u are λc-terms, then tu is a λc-term, and FV (tu) = FV (t) ∪ FV (u).

(5) If x is a proof variable and if t is a λc-term, then λx . t is a λc-term, and FV (λx . t) =

FV (t) \ {x}.
(6) If α ∈ Π0 is a stack constant, then α is a stack.

(7) If t is a closed λc-term (i.e. a term such that FV (t) = ∅) and if π is a stack, then

t · π is a stack.

The set of closed terms (resp. the set of stacks) is denoted by Λ (resp. by Π).

In this definition, we introduce every λc-term with its set of free variables FV (t) so

that we can restrict the application of rule (7) to closed terms. As a consequence, stacks

only contain closed terms and can thus be seen as closed objects themselves (so that each

continuation constant kπ really deserves the name of a constant). It is immediate from

the above definition that raw proof terms of system PAω+ (Def. 7) constitute a strict

subset of the set of open λc-terms, namely: the λc-terms that contain no continuation

constant and no instruction but the control operator cc ∈ K.

Evaluation In the λc-calculus, terms and stacks are computationally inert when taken

separately, and computation only occurs through their interaction within processes:

Definition 15 (Processes). — A process is a pair formed by a closed λc-term t with

a stack π, which is written t ? π. The set of all processes is written Λ ? Π (which is just

another notation for the Cartesian product Λ×Π).

In the λc-calculus, computation is described by the means of a binary relation of

evaluation between processes. This binary relation, which is written p � p′, is not defined

but axiomatized as follows:

Definition 16 (Evaluation). — A relation of evaluation is any preorder p � p′ over

the set of processes that fulfils the following axioms:

(Push)

(Grab)

(Save)

(Restore)

tu ? π � t ? u · π
λx . t ? u · π � t{x := u} ? π

cc ? t · π � t ? kπ · π
kπ ? t · π′ � t ? π

In Krivine’s Abstract Machine, the usual β-reduction rule is decomposed into two

rules, called (Push) and (Grab). Note that these rules do not perform full β-reduction,

but only weak-head β-reduction. (Redexes in the stack or below abstractions are never

reduced until they come into head position.) Control is achieved via two rules (Save)

and (Restore), that respectively describe the creation of a continuation constant (using

the instruction cc) and its destruction.



Alexandre Miquel 16

Let us insist on the fact that we do not assume (in general) that the preorder p � p′ is

generated from the four rules (Push), (Grab), (Save) and (Restore). Instead, the

preorder � may be generated using additional rules—typically, evaluation rules de-

scribing the computational behavior of extra instructions κ ∈ K, such as ‘quote’, the

‘clock’ (Kri03), or the two instructions χ and χ′ described in (Kri10). Formally, the rela-

tion of evaluation � is thus another parameter of the definition of the calculus, just like

the sets K and Π0.

2.8. Evaluation and typing

The intuition behind the λc-calculus is that every classical proof term (and more gen-

erally: every realizer) of a proposition A is intended to be evaluated in front of a stack

arguing against the proposition A. In this framework, a process t ? π can be seen as a

particular state of the discussion about the truth of a proposition A, the term t arguing

for it while the stack π argues against it.

For instance, a proof term (or a realizer) t of the proposition A⇒ B is intended to be

executed in front of a stack arguing against the implication A ⇒ B, that is, a stack of

the form u · π, where u argues for A while π argues against B. In the case where t is a

λ-abstraction λx . t0, we can understand the evaluation rule

(Grab) λx . t0 ? u · π � t0{x := u} ? π

as the evolution of the discussion where the abstraction λx . t0 accepts the argument u

defending A to produce an argument t0{x := u} defending B that will be evaluated

against the stack π arguing against B. Note that although the proposition under discus-

sion may change at each evaluation step, the two components of the process always agree

on the currently discussed proposition at any time during evaluation.

It is possible to formalize these intuitions by extending the type system presented

in Section 2.5 to stacks and processes of the λc-calculus as follows. First, we extend the

definition of typing contexts by introducing new declarations of the form α : A⊥, where α

is a stack constant (i.e. an element of Π0) and where A is a proposition:

Contexts Γ ::= · · · | Γ, α : A⊥

Here, the superscript ⊥ is not an extra type former, but only a mark (belonging to the

declaration itself) intended to recall that the stack constant α argues against A. Then

we add two new typing judgments, namely:

— A typing judgment for stacks, written Γ ` π : A⊥.

(Again, the superscript ⊥ belongs to the judgment, not to the type.)

— A typing judgment for processes, written Γ ` t ? π : ⊥.

(Using the symbol ⊥ to denote the only possible type for processes.)

In this (extended) framework, we can introduce extra typing rules (such as given in

Table 3) to type all the basic constructions of the λc-calculus, including continuation

constants kπ in the syntactic category of terms. Thanks to this, we can type the four

basic evaluation rules as follows, putting on the right-hand side of each line the formula



Forcing as a program transformation 17

Table 3. Typing stacks, continuations and processes

E; Γ ` α : A⊥
(α:A⊥)∈Γ

E; Γ ` t : A E; Γ ` π : B⊥

Γ ` t · π : (A⇒ B)⊥

E; Γ ` π : (A{xτ := N})⊥

E; Γ ` π : (∀xτA)⊥
N of kind τ

E; Γ ` π : A⊥

Γ ` π : A′⊥
A∼=EA′

E; Γ ` π : A⊥

E; Γ ` kπ : A⇒ B

E; Γ ` t : A E; Γ ` π : A⊥

E; Γ ` t ? u : ⊥

that is currently debated:

(Push) tA⇒BuA ? πB
⊥

[B]

� tA⇒B ? uA · πB⊥ [A⇒ B]

(Grab) λxA . tB ? uA · πB⊥ [A⇒ B]

� t{xA := uA}B ? πB
⊥

[B]

(Save) cc ? t(A⇒B)⇒A · πA⊥ [((A⇒ B)⇒ A)⇒ A]

� t(A⇒B)⇒A ? (kπ)A⇒B · πA⊥ [(A⇒ B)⇒ A]

(Restore) (kπ)A⇒B ? tA · π′B
⊥

[A⇒ B]

� tA ? πA
⊥

[A]

Also notice that in this extended type system, the only objects that can be given

a type in the empty context are the closed (and well-typed) proof terms that contain

no continuation constant kπ. (The reason being that stacks, processes and continuation

constants all involve at least a stack constant that has to be declared in the context.)

We shall not study further this extension of the type system (whose purpose is mainly

pedagogical), but the reader is invited to check that the result of adequacy we shall prove

in Section 5.7 holds for the extended system too, provided we interpret the two extra

judgments E ; Γ ` π : A⊥ and E ; Γ ` t ? π : ⊥ the obvious way.

3. Representing forcing conditions

Let us recall that in set theory, the forcing translation is parameterized by a set of

forcing conditions which is traditionally given as a poset (C,≤) with a largest element

written 1 (Coh63; Coh64; Bel85; Jec02). In the framework of system PAω+, we shall

follow Krivine (Kri08; Kri10) by representing forcing conditions (intuitively) as the ele-

ments of an upwards closed subset C of a meet semi-lattice (κ, ·, 1), where κ is a fixed

kind. This slightly non standard presentation of forcing conditions will be justified by

the computational analysis of the underlying program transformation we will present in

section 4.7, and we shall give an example of such a structure in section 3.3.



Alexandre Miquel 18

3.1. Forcing structures

The parameters defining a notion of forcing in system PAω+ are collected in what we

call a forcing structure:

Definition 17 (Forcing structures). — A forcing structure is given by:

• A kind κ, whose elements are called forcing conditions, or simply conditions. In what

follows, we shall use the letters p, q, r, etc. to denote conditions.

• A closed predicate C of kind κ→ o delimiting well formed conditions. Given a condi-

tion p, the proposition C p is also written C[p] (‘p is well formed’).

• A closed term (·) of kind κ→ κ→ κ defining a binary operation of product. In what

follows, the product of two conditions p and q is simply written pq rather than p · q.
(But this notation should not be confused with application.)

• A closed term 1 of kind κ representing the largest condition.

• Nine closed proof terms α∗, α1, α2, α3, α4, α5, α6, α7 and α8 such that:

α∗ : C[1]

α1 : ∀pκ ∀qκ (C[pq]⇒ C[p])

α2 : ∀pκ ∀qκ (C[pq]⇒ C[q])

α3 : ∀pκ ∀qκ (C[pq]⇒ C[qp])

α4 : ∀pκ (C[p]⇒ C[pp])

α5 : ∀pκ ∀qκ ∀rκ (C[(pq)r]⇒ C[p(qr)])

α6 : ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[(pq)r])

α7 : ∀pκ (C[p]⇒ C[p1])

α8 : ∀pκ (C[p]⇒ C[1p])

Remarks 18. (1) The closed proof terms α∗, α1, . . . , α8—that are also called forcing

combinators—represent the axioms that must be fulfilled by the forcing structure. Intu-

itively, these axioms express that the set C is upwards closed w.r.t. the ordering induced

by the product (p, q) 7→ pq (seen as a meet operation). However, this ordering is not a

parameter of the forcing structure itself, but we shall see (Section 3.2) how to reconstruct

it from the forcing parameters C, 1, ·, etc.

(2) The set of combinators α∗, α1, . . . , α8 is not minimal: α2 can be defined from α1

and α3 by letting α2 ≡ α1 ◦ α3 (and vice-versa); α8 can be defined from α7 and α3 by

letting α8 ≡ α7 ◦ α3 (and vice-versa); and α6 can be defined from α5 and α3 by letting

α6 ≡ α3 ◦ α5 ◦ α3 ◦ α5 ◦ α3 (and vice-versa).

Given two conditions p and q, we say that p and q are compatible when C[pq] holds.

The proposition C[pq] (‘p and q are compatible’) obviously implies that both conditions p

and q are well formed (from axioms α1 and α2), but the converse is not true in general.

(This point is crucial in the definition of forcing.)

In what follows, we shall also need the following derived combinators:

α9 ≡ α3 ◦ α1 ◦ α6 ◦ α3 : ∀pκ ∀qκ ∀rκ (C[(pq)r]⇒ C[pr])

α10 ≡ α2 ◦ α5 : ∀pκ ∀qκ ∀rκ (C[(pq)r]⇒ C[qr])

α11 ≡ α9 ◦ α4 : ∀pκ ∀qκ (C[pq]⇒ C[p(pq)])

α12 ≡ α5 ◦ α3 : ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[q(rp)])

α13 ≡ α3 ◦ α12 : ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[(rp)q])

α14 ≡ α5 ◦ α3 ◦ α10 ◦ α4 ◦ α2 : ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[q(rr)])

α15 ≡ α9 ◦ α3 : ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[qp])

α16 ≡ α6 ◦ α10 ◦ α5 : ∀pκ ∀qκ ∀rκ ∀sκ (C[((pq)r)s]⇒ C[(qr)s])



Forcing as a program transformation 19

3.2. Preorder on conditions

Throughout this paper, we work with a fixed forcing structure (κ,C, ·, 1, α∗, α1, . . . , α8),

freely using the derived combinators α9–α16. The relation of (pre)ordering p ≤ q between

two conditions p and q is defined by

p ≤ q ≡ ∀rκ (C[pr]⇒ C[qr]) .

It is easy to check that:

— The binary relation ≤ is a preorder with largest element 1:

λc . c : ∀pκ (p ≤ p)
λxy . (y ◦ x) : ∀pκ ∀qκ ∀rκ (p ≤ q ⇒ q ≤ r ⇒ p ≤ r)
α8 ◦ α2 : ∀pκ (p ≤ 1)

The equivalence induced by the preorder p ≤ q is written p ≈ q and defined by

p ≈ q ≡ ∀rκ (C[pr]⇔ C[qr]) (⇔ p ≤ q ∧ q ≤ p)

— Non well formed conditions are smallest elements:

λx . (x ◦ α1) : ∀pκ ∀qκ (¬C[p]⇒ p ≤ q)

A consequence of this property is that all the non well formed conditions are actually

identified via the equivalence relation p ≈ q:

λxy . 〈x ◦ α1, y ◦ α1〉 : ∀pκ ∀qκ (¬C[p]⇒ ¬C[q]⇒ p ≈ q) .

— The product of two conditions is their greatest lower bound:

α9 : ∀pκ ∀qκ (pq ≤ p)
α10 : ∀pκ ∀qκ (pq ≤ q)

λxy . (α13 ◦ y ◦ α12 ◦ x ◦ α11) : ∀pκ ∀qκ ∀rκ (r ≤ p⇒ r ≤ q ⇒ r ≤ pq)

3.3. An example of a forcing structure

The typical—and historical—example of a set of forcing conditions (in set theory) is the

set of all finite functions from a given set X to the pair {0; 1}. When X is taken large

enough, the set of all finite functions from X to {0; 1} can be used to force the negation

of the continuum hypothesis (Coh63; Coh64; Bel85; Jec02).

In system PAω+, a set is naturally described as a triple (τ,X,=X) that is formed by:

• a kind τ , together with

• a relativization predicate X (of kind τ → o), and

• an equivalence relation =X (of kind τ → τ → o).

For instance, the set of Booleans {0; 1} is represented by the triple (ι, bool,=ι), where ι

is the kind of individuals, where bool is the predicate λxι .∀zι→o (z 0⇒ z 1⇒ z x), and

where =ι stands for Leibniz equality over individuals.

Given a fixed set X = (τ,X,=X), the set of all finite functions from X to {0; 1} can

be turned into a forcing structure (κ,C, ·, 1, α∗, α1, . . . , α8) by letting:

• κ ≡ τ → ι→ o (binary relations ⊆ τ × ι)



Alexandre Miquel 20

• C ≡ λpκ .C[p], where

C[p] ≡ ∀xτ ∀yι (p x y ⇒ X x ∧ bool y) ∧
∀xτ1 ∀xτ2 ∀yι (x1 =X x2 ⇒ p x1 y ⇒ p x2 y) ∧
∀xτ ∀yι1 ∀yι2 (p x y1 ⇒ p x y2 ⇒ y1 =ι y2) ∧
∀zκ→o

[
∀qκ (empty(q)⇒ z q) ⇒
∀qκ ∀q′κ (succ(q, q′)⇒ z q ⇒ z q′) ⇒ z p

]
(p ⊆ X × {0; 1})

(p compatible)

(p functional)

(p finite)

using the shorthands empty(q) ≡ ∀xτ ∀yι¬q x y and

succ(q, q′) ≡ ∃xτ0 ∃yι0
[
¬q x0 y0 ∧ ∀xτ ∀yι (q′ x y ⇔ q x y ∨ (x =X x0 ∧ y =ι y0))

]
.

• pq ≡ λxτ . λyι . p x y ∨ q x y (union of p and q)

• 1 ≡ λxτ . λyι .⊥ (empty relation)

Once the parameters κ, C, · and 1 have been defined, it is a standard exercise of

formalization to build closed proof terms α∗, α1, . . . , α8 expressing the desired axioms:

— α∗: The empty relation ∅ is a finite function from X to {0; 1};
— α1: If p ∪ q is a finite function from X to {0; 1}, then so is p:

— α2: If p ∪ q is a finite function from X to {0; 1}, then so is q;

— α3: If p ∪ q is a finite function from X to {0; 1}, then so is q ∪ p;
— α4: If p is a finite function from X to {0; 1}, then so is p ∪ p;
— α5: If (p ∪ q) ∪ r is a finite function from X to {0; 1}, then so is p ∪ (q ∪ r);
— α6: If p ∪ (q ∪ r) is a finite function from X to {0; 1}, then so is (p ∪ q) ∪ r;
— α7: If p is a finite function from X to {0; 1}, then so is p ∪∅;

— α8: If p is a finite function from X to {0; 1}, then so is ∅ ∪ p.
It is worth to notice that in this example, the ordering p ≤ q can be characterized by

p ≤ q ⇔ C[p]⇒ (C[q] ∧ q ⊆ p)

(writing q ⊆ p for ∀xτ ∀yι (q x y ⇒ p x y)), which means that for any two well formed

conditions p and q, the ordering p ≤ q defined in section 3.2 coincides with the reverse

inclusion p ⊇ q of finite functions:

C[p]⇒ C[q]⇒ (p ≤ q ⇔ p ⊇ q) .

Of course, the above equivalence only holds for well formed conditions, since non well

formed conditions are all identified via the equivalence relation p ≈ q.

4. The forcing translation

From the forcing structure (κ,C, ·, 1, α∗, α1, . . . , α8) introduced in Section 3, we shall now

define the forcing translation A 7→ (p F A) on propositions together with the correspond-

ing program transformation t 7→ t∗ on proof terms. Some care has to be taken when

defining the proposition p F A in PAω+, since we do not only want to define the corre-

sponding proof transformation at the level of derivations, but at the level of proof terms,

that contain much less information. In practice, this means that the proposition p F A

has to be defined in such a way that all the computationally transparent deduction steps

in the proof of A remain computationally transparent in the proof of p F A.



Forcing as a program transformation 21

For that we shall proceed in two steps. First, we shall define an auxiliary translation

M 7→ M∗ over all the higher-order terms, through which a proposition A will be trans-

lated into an arbitrary set A∗ of forcing conditions (i.e. a term A∗ of kind κ→ o). Then

we shall define the forcing relation p F A from the set of conditions A∗ in such a way

that the set of all conditions p such that p F A is an element of the complete Boolean

algebra generated by the set of forcing conditions (Bel85). (See Section 4.2.)

4.1. The auxiliary translation M 7→M∗

We first define a translation of kinds:

Definition 19 (Translation of kinds). — To every kind τ of system PAω+, we asso-

ciate a kind τ∗ that is defined by the equations

ι∗ ≡ ι, o∗ ≡ κ→ o, (τ → σ)∗ ≡ τ∗ → σ∗ .

From this definition, we can already see that the forcing translation will essentially affect

propositions (i.e. terms of kind o), that will be interpreted as sets of conditions (i.e. terms

of kind κ → o), while leaving individuals (of kind ι) unchanged. In particular, we have

τ∗ ≡ τ if and only if τ is a T-kind (cf Section 2.3).

The translation of higher-order terms is parameterized by a function mapping every

higher-order variable xτ of kind τ to another higher-order variable of kind τ∗ which we

write xτ
∗
, or more simply x∗. In the particular case where τ∗ ≡ τ (that is: when τ is a

T-kind), we shall even assume that xτ
∗ ≡ xτ .

Definition 20 (Translation of higher-order terms). — Every higher-order term M

of kind τ is translated into a higher-order term M∗ of kind τ∗ by letting:

(xτ )∗ ≡ xτ
∗

0∗ ≡ 0

(λxτ .M)∗ ≡ λxτ
∗
.M∗ s∗ ≡ s

(MN)∗ ≡ M∗N∗ (recτ )∗ ≡ recτ∗

(M1 = M2 7→ A)∗ ≡ λrκ .M∗1 = M∗2 7→ A∗ r (∀xτA)∗ ≡ λrκ .∀xτ∗A∗r
(A⇒ B)∗ ≡ λrκ .∀qκ ∀r′κ (r = qr′ 7→ (∀sκ (C[qs]⇒ A∗s))⇒ B∗r′)

(where q, r, r′ and s are fresh condition variables).

The translation M 7→M∗ immediately extends to equational theories componentwise,

by letting E∗ ≡M∗1 = M ′
∗
1, . . . ,M

∗
k = M ′

∗
k, where E ≡M1 = M ′1, . . . ,Mk = M ′k.

Remarks 21. From the above definition, we can see that:

(1) The translation M 7→M∗ simply propagates through abstractions and applications,

and it is trivial on arithmetic constructions. In particular, we have M∗ ≡M if and

only if M is a T-term (cf Section 2.3).

(2) Universal quantifications and equational implications—whose introduction and elim-

ination rules are computationally transparent in system PAω+—are translated as



Alexandre Miquel 22

sets of conditions in a quite obvious way, so that for all conditions r we have

(∀xτ A)∗ r ∼= ∀xτ∗ (A∗ r)

(M1 = M2 7→ A)∗ r ∼= M∗1 = M∗2 7→ (A∗ r)

(3) All the complexity of the translation actually lies in implication, which is the only

connective whose deduction rules have a real computational contents:

(A⇒ B)∗ r ≡ ∀qκ ∀r′κ (r = qr′ 7→ (∀sκ (C[qs]⇒ A∗s))⇒ B∗r′) .

The meaning of this definition will be explained in Section 4.3.

Let us now establish the basic properties of the auxiliary translation M 7→M∗:

Lemma 22 (Substitutivity and compatibility with the congruence M ∼=E M ′).

(1) (M{xτ := N})∗ ≡ M∗{xτ∗ := N∗}.
(2) If M ∼=E M ′, then M∗ ∼=E∗ M ′∗

Proof. (1) This property, which basically follows from the fact that variables of kind τ

are transformed into variables of kind τ∗, is proved by a straightforward induction on M .

(2) This property is proved by induction on the derivation of M ∼=E M ′, distin-

guishing cases according to the last applied rule. We only treat the rules identifying

semantically equivalent propositions (Table 1 p. 1) in the particular case where E ≡ ∅,

the general case following by monotonicity (Prop. 6 item (1)):

— Commutation ∀/∀:

(∀xτ ∀yσ A)∗ ≡ λrκ .∀xτ∗ (λr′
κ
.∀yσ∗ A∗ r′) r

∼= λrκ .∀xτ∗ ∀yσ∗ A∗ r
∼= λrκ .∀yσ∗ ∀xτ∗ A∗ r
∼= (∀yσ ∀xτ A)∗

(β)

(∀-commut.)

(β)

— Simplification of ∀ in the case where xτ /∈ FV (A):

(∀xτ A)∗ ≡ λrκ .∀xτ∗ A∗ r
∼= λrκ . A∗ r
∼= A∗

(since xτ
∗
/∈ FV (A∗))

(η)

— Commutation ⇒/∀ in the case where xτ /∈ FV (A):

(A⇒ ∀xτ B)∗

∼= λrκ .∀qκ ∀r′κ (r = qr′ 7→ (∀sκ (C[qs]⇒ A∗s))⇒ ∀xτ∗ B∗ r′)
∼= λrκ .∀xτ∗ ∀qκ ∀r′κ (r = qr′ 7→ (∀sκ (C[qs]⇒ A∗s))⇒ B∗ r′)
∼= (∀xτ (A⇒ B))∗

(β)

(β)

making ∀xτ∗ successively commute with ⇒ (since xτ
∗
/∈ FV (A∗)), 7→ and ∀.

— Simplification of 7→:

(M = M 7→ A)∗ ≡ λrκ .M∗ = M∗ 7→ A∗ r ∼= λrκ . A∗ r ∼= A∗ (η)



Forcing as a program transformation 23

— Re-orientation of 7→:

(M = M ′ 7→ A)∗ ≡ λrκ .M∗ = M ′
∗ 7→ A∗ r

∼= λrκ .M ′
∗

= M∗ 7→ A∗ r ≡ (M ′ = M 7→ A)∗

— Commutation 7→/7→:

(M = M ′ 7→ N = N ′ 7→ A)∗ ∼= λrκ .M∗ = M ′
∗ 7→ N∗ = N ′

∗ 7→ A∗ r
∼= λrκ . N∗ = N ′

∗ 7→M∗ = M ′
∗ 7→ A∗ r

∼= (N = N ′ 7→M = M ′ 7→ A)∗

(β)

(β)

— Commutation ⇒/7→:

(A⇒M = M ′ 7→ B)∗

∼= λrκ .∀qκ ∀r′κ (r = qr′ 7→ (∀sκ (C[qs]⇒ A∗ s))⇒M∗ = M ′
∗ 7→ B∗ r′)

∼= λrκ .M∗ = M ′
∗ 7→ ∀qκ ∀r′κ (r = qr′ 7→ (∀sκ (C[qs]⇒ A∗ s))⇒ B∗ r′)

∼= (M = M ′ 7→ A⇒ B)∗

(β)

(β)

using the commutation rules ⇒/7→, 7→/7→ and ∀/ 7→.

— Commutation ∀/7→, when xτ /∈ FV (M,M ′):

(M = M ′ 7→ ∀xτ A)∗ ∼= λrκ .M∗ = M ′
∗ 7→ ∀xτ∗ A∗ r

∼= λrκ .∀xτ∗ (M∗ = M ′
∗ 7→ A∗ r)

∼= (∀xτ (M = M ′ 7→ A))∗

(β)

(7→/∀-commut.)

(β)

The cases corresponding to the remaining rules of Table 1 are straightforward.

4.2. The forcing translation A 7→ (p F A)

Given a condition p and a proposition A, we define the forcing relation p F A by letting

p F A ≡ ∀rκ (C[pr]⇒ A∗r)

(where r is a fresh variable). This definition immediately extends to all typing contexts

Γ ≡ x1 : A1, . . . , xn : An by letting p F Γ ≡ x1 : (p F A1), . . . , xn : (p F An).

We easily check that the forcing relation is substitutive and compatible with the con-

gruence ∼=E , the latter property being crucial to ensure that any conversion step in the

proof of A will be translated into a conversion step in the corresponding proof of p F A:

Lemma 23 (Substitutivity and compatibility with the congruence M ∼=E M ′).

(1) p F (A{xτ := N}) ≡ (p F A){xτ∗ := N∗} (provided xτ /∈ FV (p))

(2) If A ∼=E A′, then (p F A) ∼=E∗ (p F A′).

Proof. Immediately follows from the definition of p F A and Lemma 22.

Remark 24. The meaning of the definition of p F A can be understood as follows.

Given two conditions p and q, we write p ⊥ q ≡ ¬C[pq] (‘p and q are incompatible’). The

orthogonal of a set of conditions S (of kind κ→ o) is defined by

S⊥ ≡ λqκ .∀pκ (S p⇒ p ⊥ q) ,



Alexandre Miquel 24

that is, as the set of all conditions that are incompatible with all the elements of S. In

the theory of Boolean valued models (Bel85), we know that the set of sets

B = {S ∈ P(C) : S = S⊥⊥}

formed by all the sets of conditions S ⊆ C that are equal to their bi-orthogonal forms a

complete Boolean algebra ordered by inclusion, which is known in the theory of forcing

as the Boolean algebra generated by the poset of conditions (C,≤)‡. Coming back to the

definition of the relation p F A in system PAω+, the following (classical) equivalence

p F A ≡ ∀rκ(C[pr]⇒ A∗r) ⇔ ∀rκ(¬A∗r ⇒ p ⊥ r)

shows that the set of all conditions p forcing A is nothing but the orthogonal of the

complement set of A∗, that is: {p : p F A} = ((A∗)c)⊥ (using suggestive notations).

Therefore the set of all conditions p such that p F A is equal to its bi-orthogonal, and

thus belongs to the complete Boolean algebra B. However, there is a small difference

w.r.t. the traditional definition of B, which is that in our framework, the elements of B
are not defined as subsets of C (i.e. as sets of well-formed conditions), but as subsets

of κ, which may contain ill-formed conditions as well. Technically, this extension slightly

changes the implementation of B—the bottom truth value of B is now represented by

the set of all ill-formed formed conditions rather than by the empty set of (well-formed)

conditions—but the underlying structure remains the same up to isomorphism. We can

also notice that the inclusion {p : p F A} ∩ C ⊆ A∗ always holds (by combinator α4).

Using the above intuitions, we can now build proof terms (in system PAω+) expressing

that the forcing relation p F A is anti-monotonic:

Proposition 25. — In system PAω+:

β1 ≡ λxyc . y (x c) : ∀pκ ∀qκ (q ≤ p⇒ (p F A)⇒ (q F A))

β2 ≡ λxc . x (α1 c) : ∀pκ (¬C[p]⇒ p F A)

β3 ≡ λxc . x (α9 c) : ∀pκ ∀qκ ((p F A)⇒ (pq F A))

β4 ≡ λxc . x (α10 c) : ∀pκ ∀qκ ((q F A)⇒ (pq F A))

The first proof term β1 expresses the desired property of anti-monotonicity: if a propo-

sition A is forced by some condition p, then A is forced by all the conditions q ≤ p. (In

other words: the set {p : p F A} is downwards closed.) Moreover, non well-formed condi-

tions force all propositions (proof term β2). Finally, the proof terms β3 and β4 express

particular cases of the property of anti-monotonicity that will be useful in the following.

4.3. Forcing logical constructions

Let us now see how the forcing relation p F A deals with the primitive logical con-

structions of PAω+. We first treat the case of universal quantification and equational

‡ The elements of this complete Boolean algebra are also known to be the regular open subsets of the

set of conditions (for the topology whose open sets are the downwards closed sets of conditions).



Forcing as a program transformation 25

implication, that are the logical constructions whose typing rules are computationally

transparent in system PAω+:

Fact 26 (Forcing universal quantification and equational implication).

(1) p F ∀xτ A ∼= ∀xτ∗(p F A) (if xτ /∈ FV (p))

(2) p FM = M ′ 7→ A ∼= M∗ = M ′
∗ 7→ p F A

Proof. The following conversions

p F ∀xτ A ∼= ∀rκ (C[pr]⇒ ∀xτ∗A∗ r)
∼= ∀xτ∗∀rκ (C[pr]⇒ A∗ r) ≡ ∀xτ∗ (p F A)

(β)

p FM = M ′ 7→ A ∼= ∀rκ (C[pr]⇒M∗ = M ′
∗ 7→ A∗ r)

∼= M∗ = M ′
∗ 7→ ∀rκ (C[pr]⇒ A∗ r)

≡ M∗ = M ′
∗ 7→ p F A

(β)

essentially rely on the commutation rules ⇒/∀, ⇒/7→ and 7→/∀ (Table 1).

Remark 27. The above statement expresses that the forcing relation p F A commutes

with universal quantification (and with equational implication as well). From a purely

logical point of view, this implies that the two propositions p F (∀xτA) and ∀xτ∗(p F A)

are provably equivalent in system PAω+—which is actually mandatory in any definition

of forcing (Coh63; Coh64; Bel85). But in the proof-theoretic perspective, the (stronger)

property of convertibility p F (∀xτA) ∼= ∀xτ
∗
(p F A) is much more interesting, since

it means that any introduction/elimination step of a universal quantification can be

translated into a similar deduction step (accompanied with a conversion step) during the

translation of a derivation. Here we only show the case of the ∀-elimination rule

.... d

Γ ` ∀xτ A
E ; Γ ` A{xτ := N}

∀-elim
;

.... d
∗

E∗(p F Γ) ` (p F ∀xτ A)

E∗; (p F Γ) ` ∀xτ∗ (p F A)
Conv.

E∗; (p F Γ) ` (p F A){xτ∗ := N∗}
∀-elim

E∗; (p F Γ) ` (p F A{xτ := N})

(leaving proof terms implicit), but it is clear that the introduction rules of ∀ and 7→ can

be translated in a similar way. When combined with Lemma. 23, the above conversions

thus make possible to translate any computationally transparent deduction step into

a combination of computationally transparent deduction steps during the translation of

derivations. This is actually the key ingredient that will permit us to turn the translation

d 7→ d∗ of derivations—which is induced by the purely logical properties of forcing—into

a translation t 7→ t∗ of proof terms—thus giving us the desired program transformation.

Let us now consider the case of implication, that concentrates all the computational

contents of the translation. The theory of forcing requires the logical equivalence

p F A⇒ B ⇔ ∀qκ ((q F A)⇒ (pq F B)) .



Alexandre Miquel 26

And from our definition of the forcing relation, we get:

p F A⇒ B ≡ ∀rκ (C[pr]⇒ (A⇒ B)∗r)
∼= ∀rκ (C[pr]⇒ ∀qκ ∀r′κ (r = qr′ 7→ (q F A)⇒ B∗r′))

⇔ ∀qκ ∀r′κ (C[p(qr′)]⇒ (q F A)⇒ B∗r′)

⇔ ∀qκ ((q F A)⇒ ∀r′κ (C[(pq)r′]⇒ B∗r′))
∼= ∀qκ ((q F A)⇒ (pq F B))

(using α5, α6)

Formally:

Proposition 28 (Forcing an implication). — In system PAω+ we have:

γ1 ≡ λxcy . x y (α6 c) : ∀q ((q F A)⇒ (pq F B)) ⇒ (p F A⇒ B)

γ2 ≡ λxyc . x (α5 c) y : (p F A⇒ B) ⇒ ∀q ((q F A)⇒ (pq F B))

γ3 ≡ λxyc . x (α11 c) y : (p F A⇒ B) ⇒ (p F A) ⇒ (p F B)

γ4 ≡ λxcy . x (y (α15 c)) : ¬A∗ p ⇒ (p F A⇒ B)

Intuitively, the proof term γ1 ‘folds’ a proof of the proposition ∀q ((q F A)⇒ (pq F B))

into a proof of p F A⇒ B, while γ2 performs the corresponding unfolding operation. The

proof term γ3 is a specialized form of γ2 corresponding to the modus ponens through the

forcing transformation. We also introduce a proof term γ4 that will be a key ingredient

of the translation of continuations.

Before presenting the proof transformation t 7→ t∗ induced by Lemma 23 and Prop. 28,

we can already see that Peirce’s law is forced by any condition p:

Proposition 29 (Forcing Peirce’s law). — In system PAω+ we have:

cc∗ ≡ λcx . cc (λk . x (α14 c) (γ4 k)) : p F ((A⇒ B)⇒ A)⇒ A .

4.4. Translating proof terms

We can now define the translation t 7→ t∗ on raw proof terms as follows:

Definition 30 (Translating proof terms). — Every (raw) proof term t is translated

as a proof term t∗ with the same free variables using the following equations:

x∗ ≡ x

(t u)∗ ≡ γ3 t
∗ u∗

(λx . t)∗ ≡ γ1 (λx . t∗{xi := β3xi}ni=1{x := β4x})
cc∗ ≡ λcx . cc (λk . x (α14 c) (γ4 k))

(where {x1; . . . ;xn} = FV (t) \ {x})

Remark 31. Basically, the translation t 7→ t∗ inserts the combinator γ1 (‘fold’) in front

of every abstraction, and the combinator γ3 (‘apply’) in front of every application, while

translating the call/cc constant into the proof term cc∗ introduced in Prop. 29.

The main subtlety of the translation lies in the treatment of free and bound variables:

at each abstraction, the translation inserts the combinator β3 in front of every free

occurrence of a variable xi that is not bound by the abstraction, while inserting the

combinator β4 in front of every free occurrence of the variable x (that is bound by the

abstraction) in the term t. It is easy to see that, when applied to a closed term t, the



Forcing as a program transformation 27

translation reveals the De Bruijn structure of t, since every occurrence of a variable x in

the term t is translated into the term βn3 (β4x), where n is the De Bruijn index of that

occurrence (starting indices from 0).

We can now check that the program transformation t 7→ t∗ is sound w.r.t. typing:

Theorem 32 (Soundness). — If the judgment E ; Γ ` t : A is derivable (in PAω+),

then for all conditions p, the sequent E∗; (p F Γ) ` t∗ : (p F A) is derivable too.

Proof. Without loss of generality, we can assume that p is a fresh condition variable,

that is, a variable of kind κ that does not occur in the derivation of E ; Γ ` t : A. (The

general case follows by substitutivity, second rule of Prop. 11.) The proof is done by

induction on the derivation of E ; Γ ` t : A, distinguishing the following cases:

— Axiom. Obvious, since x∗ ≡ x.

— Conversion. Immediate from Lemma. 23.

— ⇒-intro. The conclusion E ; Γ ` λx . t : A⇒ B comes from a unique premise E ; Γ, x :

A ` t : B. By IH, the judgment E∗; (p F Γ), x : (p F A) ` t∗ : (p F B) is derivable.

Let q be a fresh condition variable. By substituting p with pq in the latter judgment,

we get E∗; (pq F Γ), x : (pq F A) ` t∗ : (pq F B) (2nd rule of Prop. 11). Since

x : (q F A) ` β4 x : (pq F A), we get

E∗; (pq F Γ), x : (q F A) ` t∗{x := β4 x} : (pq F B)

using the 3rd rule of Prop. 11. Let us now write Γ ≡ x1 : A1, . . . , xn : An. Since the

judgment xi : (p F Ai) ` β3 xi : (pq F Ai) is derivable for all i ∈ [1..n], we get

E∗;x1 : (p F A1), . . . , xn : (p F An), x : (q F A)

` t∗{xi := β3 xi}ni=1{x := β4 x} : (pq F B)

by applying n times the third rule of Prop. 11, hence we can derive

....
E∗; (p F Γ), x : (q F A) ` t∗{xi := β3 xi}ni=1{x := β4 x} : (pq F B)

E∗; (p F Γ) ` λx . t∗{xi := β3 xi}ni=1{x := β4 x} : (q F A)⇒ (pq F B)
⇒-intro

E∗; (p F Γ) ` λx . t∗{xi := β3 xi}ni=1{x := β4 x} : ∀q ((q F A)⇒ (pq F B))
∀-intro

E∗; (p F Γ) ` γ1 (λx . t∗{xi := β3 xi}ni=1{x := β4 x}) : (p F A⇒ B)
⇒-elim

and conclude using the fact that γ1 (λx . t∗{xi := β3 xi}ni=1{x := β4 x}) ≡ (λx . t)∗.

— ⇒-elim. The conclusion E ; Γ ` tu : B comes from two premises E ; Γ ` t : A ⇒ B

and E ; Γ ` u : A. By IH, the two judgments E∗; (p F Γ) ` t∗ : (p F A ⇒ B) and

E∗; (p F Γ) ` u∗ : (p F A) are derivable, hence we can derive

....
E∗; (p F Γ) ` t∗ : (p F A⇒ B)

E∗; (p F Γ) ` γ3 t
∗ : (p F A)⇒ (p F B)

....
E∗; (p F Γ) ` u∗ : (p F A)

E∗; (p F Γ) ` γ3 t
∗ u∗ : (p F B)

and conclude using the fact that γ3 t
∗ u∗ ≡ (tu)∗.



Alexandre Miquel 28

— 7→-intro. The conclusion E ; Γ ` t : M = M ′ 7→ A comes from a unique premise

E ,M = M ′; Γ ` t : A. By IH, the judgment E∗,M∗ = M ′
∗
; (p F Γ) ` t∗ : (p F A) is

derivable, hence:
....

E∗,M∗ = M ′
∗
; (p F Γ) ` t∗ : (p F A)

E∗; (p F Γ) ` t∗ : M∗ = M ′
∗ 7→ (p F A)

7→-intro

E∗; (p F Γ) ` t∗ : (p FM = M ′ 7→ A)
Conv.

— 7→-elim. This rule is a particular case of conversion (Remarks 10 (1)).

— ∀-intro. The conclusion E ; Γ ` t : ∀xτ A comes from a unique premise E ; Γ ` t : A

such that xτ /∈ FV (E ; Γ). By IH, the judgment E∗; (p F Γ) ` t∗ : (p F A) is derivable,

hence:
....

E∗; (p F Γ) ` t∗ : (p F A)

E∗; (p F Γ) ` t∗ : ∀xτ∗ (p F A)
∀-intro

E∗; (p F Γ) ` t∗ : (p F ∀xτ A)
Conv.

— ∀-elim. The conclusion E ; Γ ` t : A{xτ := N} (where N is of kind τ) comes from a

unique premise E ; Γ ` t : ∀xτ A. By IH, the judgment E∗; (p F Γ) ` t∗ : (p F ∀xτ A)

is derivable, hence
....

E∗; (p F Γ) ` t∗ : (p F ∀xτ A)

E∗; (p F Γ) ` t∗ : ∀xτ∗ (p F A)
Conv.

E∗; (p F Γ) ` t∗ : (p F A){xτ∗ := N∗}
∀-elim

E∗; (p F Γ) ` t∗ : (p F A{xτ := N})
Prop. 23

— Peirce’s law. Immediate from Prop. 29.

4.5. Using the program transformation t 7→ t∗

Let us now see how the proof/program transformation t 7→ t∗ can be used in practice.

For that, let us imagine that we have a proof u of a theorem B that depends on an

assumption x : A, where A is an axiom—for instance the negation of the continuum

hypothesis expressed in system PAω+—that cannot be proved in PAω+:

x : A ` u : B .

On the other hand, let us imagine that we can ‘force’ the axiom A using a given forcing

structure (κ,C, ·, 1, α∗, α1, . . . , α8), so that there is a closed proof term s such that

` s : (1 F A) .

From Theorem 32 we get x : (1 F A) ` u∗ : (1 F B), so that using the property of proof

substitutivity in system PAω+ (Prop. 11) we can conclude that

` u∗{x := s} : (1 F B) .



Forcing as a program transformation 29

This gives us a uniform way to combine a proof of a theorem B depending on a

axiom A together with a proof that A is forced (by some forcing structure) in order to

get a proof that the theorem B is forced (by the same forcing structure). Moreover, the

proof term u∗{x := s} that we obtain in this way only depends on the proof terms u

and s themselves, but not on the propositions A and B. (The proof term u∗{x := s} also

depends on the forcing combinators α∗, α1, . . . , α8 underlying the translation u 7→ u∗.)

Of course, the resulting proof term u∗{x := s} is not a proof of the theorem B, but

only a proof of the proposition 1 F B, that is not equivalent to B in general. However,

there are many cases where the proposition 1 F B is actually equivalent to B, so that

the proof u∗{x := s} of the proposition 1 F B can be turned into a proof of B (using a

suitable ‘wrapper’), thus completely removing the need of the assumption A in the proof

of B. This is typically the case when B is a first-order proposition, as shown below.

4.6. Invariance under forcing

In this section, we are interested in the propositions A that are invariant under forcing,

in the sense that p F A is provably equivalent to C[p] ⇒ A. Notice that the equivalence

between p F A and C[p] ⇒ A has only a meaning when these two propositions have the

same free variables, which is the case when the free variables of A are T-variables (i.e.

whose kind is a T-kind), that are unaffected by the forcing translation.

Definition 33 (Invariance under forcing). — Let A(~x) be a proposition only de-

pending on T-variables ~x. We say that the proposition A(~x) is invariant under forcing

when there are two closed proof terms ξA and ξ′A such that both judgments

ξA : ∀~x ∀pκ [(p F A(~x)) ⇒ (C[p]⇒ A(~x))]

ξ′A : ∀~x ∀pκ [(C[p]⇒ A(~x)) ⇒ (p F A(~x))]

are derivable (in the empty context) in system PAω+.

The following result expresses that the class of propositions that are invariant under

forcing is closed under all first-order constructions, treating T-terms as first-order objects

and T-kinds as the kinds of first-order objects:

Proposition 34 (Invariance of first-order constructions).

(1) The proposition ⊥ ≡ ∀x0 x is invariant under forcing.

(2) Leibniz equality x =τ y is invariant under forcing, for every T-kind τ .

(3) If both propositions A(~x) and B(~x) are invariant under forcing (where ~x are T-

variables), then so is the proposition A(~x)⇒ B(~x).

(4) If the proposition A(xτ0 , ~x) is invariant under forcing (where xτ0 , ~x are T-variables),

then so is the proposition ∀xτ0A(xτ0 , ~x).

(5) The proposition relι x ≡ natx (Section 2.6) is invariant under forcing, and more

generally, the proposition relτ x is invariant under forcing for every T-kind τ .



Alexandre Miquel 30

Proof. (1) We let

and

ξ⊥ ≡ λzc . z (α7 c) : ∀pκ [(p F ⊥)⇒ (C[p]⇒ ⊥)]

ξ′⊥ ≡ λzc . z (α1 c) : ∀pκ [(C[p]⇒ ⊥)⇒ (p F ⊥)]

(2) Given a T-kind τ , we let

and

ξ=τ ≡ λzcx . γ3 z (λ . x) (α7 c)

: ∀xτ ∀yτ ∀pκ [(p F x =τ y)⇒ (C[p]⇒ x =τ y)]

ξ′=τ ≡ λz . γ1 (λxc . z (α1 (α1 c)) (x (α10 c)))

: ∀xτ ∀yτ ∀pκ [(C[p]⇒ x =τ y)⇒ (p F x =τ y)] .

(3) Given four closed proof terms

ξA : ∀~x ∀pκ [(p F A(~x))⇒ (C[p]⇒ A(~x))]

ξ′A : ∀~x ∀pκ [(C[p]⇒ A(~x))⇒ (p F A(~x))]

ξB : ∀~x ∀pκ [(p F B(~x))⇒ (C[p]⇒ B(~x))]

ξ′B : ∀~x ∀pκ [(C[p]⇒ B(~x))⇒ (p F B(~x))] ,

we let

and

ξA⇒B ≡ λzcx . ξB (γ3 z (ξ′A (λ . x))) c

: ∀~x ∀pκ [(p F A(~x)⇒ B(~x))⇒ (C[p]⇒ A(~x)⇒ B(~x))]

ξ′A⇒B ≡ λz . γ1 (λx . ξ′B (λc . z (α1 c) (ξA x (α2 c))))

: ∀~x ∀pκ [(C[p]⇒ A(~x)⇒ B(~x))⇒ (p F A(~x)⇒ B(~x))] .

(4) Given two closed proof terms

ξA : ∀xτ0 ∀~x ∀pκ [(p F A(xτ0 , ~x))⇒ (C[p]⇒ A(xτ0 , ~x))]

ξ′A : ∀xτ0 ∀~x ∀pκ [(C[p]⇒ A(xτ0 , ~x))⇒ (p F A(xτ0 , ~x))] ,

we let

and

ξ∀x0A ≡ λz . ξA z : ∀~x ∀pκ [(p F ∀xτ0 A(xτ0 , ~x))⇒ (C[p]⇒ ∀xτ0 A(xτ0 , ~x))]

ξ′∀x0A
≡ λz . ξ′A z : ∀~x ∀pκ [(C[p]⇒ ∀xτ0 A(xτ0 , ~x))⇒ (p F ∀xτ0 A(xτ0 , ~x))]

(5) We let

and

ξnat ≡ λzcxy . γ3 (γ3 z (λ . x)) (γ1 (λuc′ . y (u (α10 c
′)))) (α7 c)

: ∀xι ∀pκ [(p F natx)⇒ (C[p]⇒ natx)]

ξ′nat ≡ λz . γ1 (λx . γ1 (λyc . z (α3
1 c) (β3 x) (γ3 (β4 y)) (α16 c)))

: ∀xι ∀pκ [(C[p]⇒ natx)⇒ (p F natx)]

More generally, the closed proof terms ξrelτ and ξ′relτ
are built by induction on τ from

the proof terms ξnat and ξ′nat (corresponding to the base case) using the definition of the

predicate relτ (Section 2.6) and the constructions depicted in items (3) and (4).

The main consequence of the above proposition is that all first-order propositions are

invariant under the forcing translation. Formally:

Definition 35 (First-order propositions). — We call a first-order proposition any

proposition that is formed from the following grammar:

First-order propositions A,B ::= ⊥ | M =τ M
′ | relτM

| A⇒ B | ∀xτA



Forcing as a program transformation 31

where τ ranges over T-kinds and where M , M ′ range over T-terms of kind τ .

Remark 36. As a particular case, the class of first-order propositions contains the

(proper) subclass of arithmetic propositions, where all quantifications over a T-kind τ

are systematically relativized using the predicate relτ of kind τ → o:

Arithmetic propositions A,B ::= ⊥ | M =τ M
′

| A⇒ B | ∀xτ (relτ x⇒ A)

(with the same restrictions on τ , M and M ′).

Proposition 37 (Invariance of first-order propositions). — All first-order propo-

sitions are invariant under forcing (in the sense of Def. 33).

Proof. By induction on the structure of A, distinguishing the following cases:

— A ≡ ⊥. Obvious by Prop. 34 (1).

— A ≡M =τ M
′, where M,M ′ are T-terms of a T-kind τ . Follows from Prop. 34 (2)

by substitutivity (Lemma 23), using the fact that M∗ ≡M and M ′∗ ≡M ′.
— A ≡ relτM , where M is a T-term of a T-kind τ . Follows from Prop. 34 (5) by

substitutivity (Lemma 23), using the fact that M∗ ≡M .

— A ≡ A1 ⇒ A2, where A1 and A2 are first-order. Follows from Prop. 34 (3).

— A ≡ ∀xτ0A0, where A0 is first-order. Follows from Prop. 34 (4).

Theorem 38 (Elimination of a forced hypothesis). — If A and B are two closed

propositions such that

(1) PAω+ ` A⇒ B,

(2) PAω+ ` (1 F A),

(3) B is a first-order proposition, or more generally a proposition that is invariant under

forcing (in the sense of Def. 33);

then: PAω+ ` B.

Proof. Let u and s be proof terms such that u : A ⇒ B and s : (1 F A). Then from

Theorem 32, Def. 33 and Prop. 37 we get ξB(γ3 u
∗ s)α∗ : B.

4.7. An analysis of the computational behavior of transformed proofs

Let us first recall that the image of a proof term t via the transformation t 7→ t∗ is

another proof term t∗ that has a type of the form p F A ≡ ∀r (C[pr] ⇒ A∗r), which

means that t∗ is intended to be evaluated in front of a stack whose first argument c

has type C[pr] for some forcing conditions p and r. (See Section 2.8.) As we shall see,

the condition p represents logical invariants attached to the current proof term t∗ that

is currently evaluated, whereas the condition r represents logical invariants attached to

the stack facing t∗ during evaluation. In what follows, we shall call a computational

condition—as opposed to a logical condition—any closed term c of type C[pr] (or more

generally: any realizer of C[pr]) for some conditions p and r.

Using the definition of the combinators γ1, γ3, cc∗ and γ4, we easily discover the

following evaluation scheme for the translated program t∗:



Alexandre Miquel 32

Proposition 39 (Computational behavior of translated proof terms). — Let tx
be a proof term such that FV (tx) ⊆ {x}, and t, u two closed proof terms. For all c, v ∈ Λ

and π ∈ Π:

(λx . tx)∗ ? c · v · π �∗ t∗x{x := β4v} ? α6 c · π
(tu)∗ ? c · π �∗ t∗ ? α11c · u∗ · π

cc∗ ? c · v · π �∗ v ? α14c · k∗π · π
k∗π ? c · v · π′ �∗ v ? α15c · π

writing k∗π as a shorthand for γ4 kπ.

From this picture, we can see that the translated proof term t∗ essentially behaves the

same way as the initial proof term t, with the difference that the first slot of the stack

is now reserved to the computational condition that evolves during evaluation. All the

stack operations are thus performed one slot further in the stack (slots are thus intuitively

re-indexed), while each operation updates the current computational condition (in the

first slot of the stack) by inserting the appropriate combinator.

Most notably, the translated call/cc operator cc∗ does not save the current compu-

tational condition, while the translated continuation constant k∗π (that is dynamically

generated by cc∗) does not restore any formerly saved computational condition—it just

updates the current computational condition using the appropriate combinator. As no-

ticed by Krivine (Kri08; Kri10), the first slot of the stack§ is thus subtracted from the

normal save/restore mechanism induced by call/cc, and now behaves as a mutable refer-

ence (or as a ‘global memory’ according to Krivine’s terminology).

Let us now have a look at the types (cf Section 3.1) of the combinators α6, α11, α14

and α15 that are inserted in the first slot of the stack at each step of the evaluation of t∗:

(Grab)

(Push)

(Save)

(Restore)

α6 : C[p(qr)] ⇒ C[(pq)r]

α11 : C[pr] ⇒ C[p(pr)]

α14 : C[p(qr)] ⇒ C[q(rr)]

α15 : C[p(qr)] ⇒ C[qp]

These figures suggest the following scenario, which is that logical conditions are ac-

tually attached to pieces of data—and even to particular closures (as we shall see in

Section 6)—within the currently executed process, and that the evolution of the current

logical condition pr (which is given by the type C[pr] of the current computational con-

dition) simply reflects the move of these pieces of data during evaluation. More precisely:

— The type C[p(qr)]⇒ C[(pq)r] of combinator α6 reflects the fact that, during a (Grab)

step, the first element of the stack (the condition q is attached to) is removed from

the stack (the condition r is attached to) and then incorporated in the environment

of the term t (the condition p is attached to).

— The type C[pr]⇒ C[p(pr)] of combinator α11 reflects the fact that, during a (Push)

§ In Krivine’s work (Kri08; Kri10), the current computational condition c is actually stored in the very
last slot of the stack, using two specific instructions χ and χ′ swapping the first and last elements of

the current stack. Our work shows that we can do the same by reserving the first slot of the stack

instead of the last one, thus removing the need of the two extra instructions χ and χ′.



Forcing as a program transformation 33

step, the environment of the currently executed term (the condition p is attached to)

is duplicated and that a closure containing a copy of it is then put on the top of the

stack (the condition r is attached to).

— The type C[p(qr)]⇒ C[q(rr)] of combinator α14 reflects the fact that, during a (Save)

step, the first element of the stack (the continuation q is attached to) is given the con-

trol, while a continuation constant is built from the rest of the stack (the condition r

is attached to) and put on the top of the stack, while being labelled with the same

condition r the stack it comes from. Note that during this operation, the condition p

attached to cc is simply dropped.

— Finally, the type C[p(qr)] ⇒ C[qp] of combinator α15 reflects the fact that, during a

(Restore) step, the first argument of the stack (the condition q is attached to) is

given the control, while the rest of the stack is replaced by the stack embedded in

the continuation (the condition p is attached to). In particular, the initial stack (the

condition r is attached to) is dropped, as well as the corresponding condition r.

In the author’s opinion, all these features are reminiscent from well-known techniques

in computer architecture, such as virtualization or protection rings, that allow the system

to execute a program by only giving it access to a part of the resources (here: the tail of the

stack), thus allowing the system to maintain and update critical information (here: the

computational condition) in the back of the executed program. The difference is that in

our framework, these features are implemented via a particular program transformation,

whereas in most computer architectures, these features are hardwired using the memory

virtualization facilities and the multiple protection rings provided by modern processors.

In Section 6, we shall see how to put the forcing transformation ‘into the hardware’ in

order to avoid the cost of the program transformation t 7→ t∗. But before doing that, we

first need to present the classical realizability semantics of system PAω+.

5. Classical realizability semantics

In Sections 3 and 4, we have shown how to reformulate the theory of Cohen forcing in

system PAω+, and we analyzed the computational meaning on the underlying translation

at the level of proof terms. But in order to relate the computational behavior of proof

terms with their types—that is: with the propositions which they prove—we now need to

introduce the classical realizability semantics underlying system PAω+. For that, we shall

work in the general framework of classical realizability algebras, that has been introduced

in (Kri10) to study the connections between realizability and forcing.

Before introducing the notion of a classical realizability algebra, we first need to intro-

duce the notion of an environment.

5.1. Environments

Definition 40 (A-environments). — Given a fixed set A, we call an A-environment

any finite list of bindings of the form σ ≡ [x1 := a1, . . . , xn := an], where x1, . . . , xn are

proof variables and where a1, . . . , an are elements of A.



Alexandre Miquel 34

Note that in this definition, we do not require that the variables x1, . . . , xn are pair-

wise distinct, so that the same variable x can be bound several times within an A-

environment σ. In this case, we adopt the convention that only the rightmost binding

of x is active in σ, the previous bindings of x being hidden by the last one.

Given an A-environment σ, we denote by dom(σ) the (finite) set of variables that are

bound to an element of A in σ, and for every variable x ∈ dom(σ), we write σ(x) the

element of A that is bound to x in σ, always considering the rightmost binding when

the variable x is bound several times in σ. The empty A-environment is denoted by ∅,
whereas the concatenation of two A-environments σ and σ′ is written σ, σ′.

5.2. Classical realizability algebras

Classical realizability algebras generalize the λc-calculus in the same way as partial combi-

natory algebras generalize λ-terms (or Gödel codes of recursive functions) in intuitionistic

realizability. However, Krivine’s original presentation (Kri10) relies on a particular en-

coding of the λc-calculus to a variant of combinatory logic (with control operators) that

is suited to the call-by-name discipline of the KAM. In this section, we give a slightly

different presentation of classical realizability algebras where most of Krivine’s combina-

tors are abstracted via a compilation function (from proof terms to the elements of the

realizability algebra) that now constitutes a parameter of the algebra. Our presentation

is more suited to the abstract machine we shall present in Section 6, but it is a simple

exercise to show that it is equivalent to Krivine’s.

Definition 41 (Classical realizability algebras). — A classical realizability algebra

is a structure A given by:

— Three sets Λ, Π and Λ ?Π, whose elements are respectively called the A -terms, the

A -stacks and the A -processes.

— An operation (a, π) 7→ a · π from Λ×Π to Π (‘consing’).

— An operation (a, π) 7→ a ? π from Λ×Π to Λ ?Π (‘process formation’).

— An operation π 7→ kπ from Π to Λ (‘continuation formation’).

— A compilation function (t, σ) 7→ t[σ] that takes an open proof term t together with a

Λ-environment σ such that FV (t) ⊆ dom(σ), and builds an A -term t[σ] ∈ Λ.

— A set of processes ⊥⊥ ⊆ Λ ?Π, called the pole of A , such that:

– σ(x) ? π ∈ ⊥⊥ implies x[σ] ? π ∈ ⊥⊥; (if x ∈ dom(σ))

– t[σ] ? u[σ] · π ∈ ⊥⊥ implies (tu)[σ] ? π ∈ ⊥⊥; (if FV (tu) ⊆ dom(σ))

– t[σ, x := a] ? π ∈ ⊥⊥ implies (λx . t)[σ] ? a · π; (if FV (λx . t) ⊆ dom(σ))

– a ? kπ · π ∈ ⊥⊥ implies cc[σ] ? a · π ∈ ⊥⊥; and

– a ? π ∈ ⊥⊥ implies kπ ? a · π′ ∈ ⊥⊥
for all (open) terms t, u, for all substitutions σ, and for all a ∈ Λ, π, π′ ∈ Π.

Remarks 42.

(1) The above definition generalizes the λc-calculus by abstracting the syntactic con-

stituents of the calculus via three (abstract) sets Λ, Π, Λ ?Π and three (abstract)



Forcing as a program transformation 35

operations (t, π) 7→ t · π, (t, π) 7→ t ? π and π 7→ kπ. Thanks to this abstrac-

tion, classical realizability algebras can be used to encapsulate other classical λ-

calculi such as Parigot’s λµ-calculus (Par97), Barbanera and Berardi’s symmetric

λ-calculus (BB96) or Curien and Herbelin λ̄µ-calculus (CH00), so that the theory

of classical realizability can be extended to these classical λ-calculi as well.

(2) However, the above definition does not assume that the sets Λ, Π and Λ ? Π are

denumerable. Indeed, classical realizability algebras are not limited to the encapsu-

lation of syntactic entities, and they can be used to encapsulate semantic entities as

well. We shall see in Section 7.1 an important example of a classical realizability al-

gebra A ∗ whose constituents (A ∗-terms, A ∗-stacks and A ∗-processes) encapsulate

semantic forcing conditions coming from a (previously defined) realizability model.

(3) The compilation function (t, σ) 7→ t[σ] comes with no particular equation. Even in

the case where the proof term t is closed, the compiled A -term t[σ] ∈ Λ may still

depend on the environment σ—and even on the ordering of the bindings in σ. (Such

dependencies will naturally appear in the classical realizability algebra A defined

from the KFAM in regular mode, cf Section 6.2.)

(4) Unlike the λc-calculus, the set Λ ? Π of A -processes does not formally come with

a binary relation of evaluation. (Remember that A -processes are not necessarily

syntactic entities.) To understand the conditions on the pole ⊥⊥ ⊆ Λ?Π, it is however

convenient to introduce a binary relation �A of (pseudo-)evaluation between A -

processes, that is the preorder generated from the five rules

(LookupA )

(PushA )

(GrabA )

(SaveA )

(RestoreA )

x[σ] ? π �A σ(x) ? π

(tu)[σ] ? π �A t[σ] ? u[σ] · π
(λx . t)[σ] ? a · π �A t[σ, x := a] ? π

cc[σ] ? a · π �A a ? kπ · π
kπ ? a · π′ �A a ? π

(x ∈ dom(σ))

(FV (tu) ⊆ dom(σ))

(FV (λx . t) ⊆ dom(σ))

With this definition, the conditions on the pole ⊥⊥ simply express the fact that the

set ⊥⊥ ⊆ Λ ?Π is saturated w.r.t. the relation �A , in the following sense:

Definition 43 (Saturated sets). — Given a set P equipped with a binary relation �,

we say that a subset ⊥⊥ ⊆ P is saturated (w.r.t. the relation �) when the two conditions

p � p′ and p′ ∈ ⊥⊥ together imply p ∈ ⊥⊥ for all p, p′ ∈ P.

In the case where the binary relation � denotes some notion of evaluation, we also say

that the subset ⊥⊥ ⊆ P is closed under anti-evaluation.

5.3. Λc-algebras

In traditional presentations of classical realizability (Kri03; Kri09; Miq10), realizability

models are parameterized by a particular instance of the λc-calculus (defined from the

sets K, Π0 and the binary relation �) and by a saturated set of processes ⊥⊥ ⊆ Λ ? Π

(w.r.t. the relation �) that is used as the pole of the construction.

This construction of a classical realizability model from the λc-calculus—and formally:



Alexandre Miquel 36

from the four parameters K, Π0, � and ⊥⊥—is actually a particular case of the con-

struction we shall present in Section 5.6, that corresponds to the choice of a classical

realizability algebra A = (Λ,Π,Λ ?Π, . . . ,⊥⊥) defined as follows:

— The sets Λ, Π and Λ ?Π are respectively defined as the sets Λ, Π and Λ ?Π induced

by the set of instructions K and the set of stack bottoms Π0 (Def. 14 and 15).

— The three operations (t, π) 7→ t · π, (t, π) 7→ t ? π and π 7→ kπ are defined in the

realizability algebra A as in the λc-calculus.

— The compilation function (t, σ) 7→ t[σ] of the algebra A is defined by

t[σ] ≡ t{x1 := σ(x1); . . . ;xn := σ(xn)} ,

where x1, . . . , xn are the free variables of t.

— The pole of A is the saturated set ⊥⊥.

In what follows, we shall call a λc-algebra any classical realizability algebra of this form.

5.4. Interpreting kinds

From now on, we work in a fixed algebra A = (Λ,Π,Λ ?Π, . . . ,⊥⊥).

We call a falsity value any set of A -stacks S ⊆ Π. Every falsity value S ⊆ Π induces

a truth value S⊥⊥ ⊆ Λ that is the set of A -terms defined by

S⊥⊥ = {a ∈ Λ : ∀π ∈ S (a ? π) ∈ ⊥⊥} .

From this definition, it is clear that the larger the falsity value S, the smaller the corre-

sponding truth value S⊥⊥, and vice-versa.

In classical realizability, individuals are interpreted as natural numbers, propositions

as falsity values and higher-order functions as set-theoretic functions, that is:

JιK = N, JoK = P(Π), Jτ → σK = JσKJτK .

Since the denotation of a kind τ depends on the choice of the classical realizability

algebra A , we shall write if sometimes JτKA to recall the dependency.

The classical realizability model MA induced by the classical realizability algebra A

is defined as the union of the sets JτKA for all kinds τ .

5.5. Valuations and higher-order terms with parameters

A valuation (in the model MA ) is a partial function ρ from the set of higher-order

variables to MA such that ρ(xτ ) ∈ JτK for every variable xτ ∈ dom(ρ). We say that

a valuation ρ is finite when its domain dom(ρ) is finite, and that it is total when its

domain is the set of all higher-order variables. Given a valuation ρ, a variable xτ and a

denotation v ∈ JτK, we write

ρ, xτ ← v = ρ|dom(ρ)\{xτ} ∪ {xτ ← v}

the valuation obtained by rebinding the variable xτ to the denotation v ∈ JτK in ρ,

possibly erasing the value formerly bound to xτ in the case where xτ ∈ dom(ρ).

A higher-order term with parameters in MA is a pair M [ρ] formed by a higher-order



Forcing as a program transformation 37

term M and a valuation ρ. A higher-order term M [ρ] with parameters in MA is closed

when all the free variables of M are bound in ρ, in the sense that FV (M) ⊆ dom(ρ).

It is convenient to think of higher-order terms with parameters in MA as higher-order

terms enriched with a constant symbol v̇ of kind τ for every denotation v ∈ JτK and

for every kind τ . The constant symbol v̇ can be seen as a notation for the higher-order

term xτ [xτ ← v] with a single parameter v ∈ JτK (where xτ is a fresh variable of kind τ),

and we shall more generally use the notation

Ḟ v̇1 ⇒ Ḟ v̇2 (F ∈ Jτ → oK, v1, v2 ∈ JτK)

to denote the higher-order term with parameters in MA

(yτ→o xτ1 ⇒ yτ→o xτ2)[yτ→o ← F, xτ1 ← v1, x
τ
2 ← v2] .

With these notations, we can work with higher-order terms with parameters in MA using

the same notations as for higher-order terms, thus leaving the valuation implicit.

In what follows, we shall say that a valuation ρ closes a higher-order term M (resp. an

equational theory E , a context Γ) when the higher-order term M [ρ] with parameters is

closed (resp. when M1[ρ] and M2[ρ] are closed for every equation (M1 = M2) ∈ E , when

A[ρ] is closed for every declaration (x : A) ∈ Γ).

5.6. Interpreting higher-order terms

Every closed higher-order term M [ρ] of kind τ with parameters in M
A

is interpreted as

an element JM [ρ]K ∈ JτK that is defined by induction on the structure of the underlying

higher-order term M . Variables are interpreted the obvious way whereas abstractions,

applications and arithmetic constructions are interpreted by their obvious set-theoretic

equivalents:

Jx[ρ]K = ρ(x) J0[ρ]K = 0

J(λxτ .M)[ρ]K = (v ∈ JτK 7→ JM [ρ, xτ ← v]K) Js[ρ]K = n 7→ n+ 1

J(MN)[ρ]K = JM [ρ]K
(
JN [ρ]K

)
Jrecτ [ρ]K = recJτK

(where recJτK denotes the expected set-theoretic recursor over the set JτK). Implication

and universal quantification (at every kind τ) are given their standard negative interpre-

tation following (Kri09), whereas equational implication is interpreted as expected:

J(A⇒ B)[ρ]K = JA[ρ]K⊥⊥ · JB[ρ]K =
{
a · π : a ∈ JA[ρ]K⊥⊥, π ∈ JB[ρ]K

}
J(∀xτA)[ρ]K =

⋃
v∈JτK

JA[ρ, xτ ← v]K

J(M1 = M2 7→ A)[ρ]K =

{
JA[ρ]K if JM1[ρ]K = JM2[ρ]K (equality of denotations)

∅ otherwise (true formula)

We immediately check the following:

Lemma 44 (Dependence w.r.t. free variables). — Let M be a higher-order term



Alexandre Miquel 38

of kind τ , and ρ, ρ′ two valuations closing M . If ρ(xσ) = ρ′(xσ) for every free variable

xσ ∈ FV (M), then JM [ρ]K = JM [ρ′]K.

Proof. Obvious, by induction on the structure of M .

Lemma 45 (Substitutivity). — Let M of kind τ and N of kind σ. For all valuations ρ

closing M{xσ := N} and N : J(M{xσ := N})[ρ]K = JM [ρ, xσ ← JN [ρ]K]K.

Proof. By induction on the structure of M .

Using our abbreviations for higher-order terms with parameters in MA (Section 5.5),

we can rephrase the interpretation function of closed higher-order terms (with parameters

in MA ) using the following lighter notations:

Jv̇K = v J0K = 0

Jλxτ .MK = (v ∈ JτK 7→ JM{xτ := v̇}K) JsK = n 7→ n+ 1

JMNK = JMK
(
JNK

)
Jrecτ K = recJτK

JA⇒ BK = JAK⊥⊥ · JBK =
{
a · π : a ∈ JAK⊥⊥, π ∈ JBK

}
J∀xτAK =

⋃
v∈JτK

JA{xτ := v̇}K

JM1 = M2 7→ AK =

{
JAK if JM1K = JM2K (equality of denotations)

∅ otherwise (true formula)

Note that in the interpretation of λxτ .M and ∀xτ A, we substitute the variable xτ with

the constant v̇ associated to every denotation v ∈ JτK instead of rebinding xτ with v in

the hidden valuation. Of course, this abuse of notations is legitimated by Lemma 45.

Again, the denotation JM [ρ]K of the closed higher-order term M [ρ] with parameters

in MA depends on the choice of the classical realizability algebra A , so that we shall

write it sometimes JM [ρ]KA to recall the dependency. Given a closed proposition A (with

parameters in MA ) and an A -term a ∈ Λ, we say that a realizes A and write a 
A A

when a ∈ JAK⊥⊥, that is:

a 
A A ≡ ∀π ∈ JAKA a ? π ∈ ⊥⊥

With these notations, we can already check that the instruction cc, when compiled

in the algebra A using an arbitrary Λ-environment σ, provides an A -term cc[σ] that

realizes Peirce’s law. (Note that the A -term cc[σ] may depend on the environment σ,

depending on the actual implementation of the compilation function (t, σ) 7→ t[σ].)

Lemma 46 (Realizing Peirce’s law). — Let A and B be two closed propositions

with parameters in MA .

(1) For every A -stack π ∈ JAK, we have kπ 
A A⇒ B.

(2) For every Λ-environment σ, we have cc[σ] 
A ((A⇒ B)⇒ A)⇒ A.

Proof. (1) Let π ∈ JAK. To prove that kπ 
A A ⇒ B, it suffices to check that



Forcing as a program transformation 39

kπ ? a ·π′ ∈ ⊥⊥ for all a ∈ JAK⊥⊥ and π′ ∈ JBK. But since kπ ? a ·π′ �A a ? π (RestoreA )

and since a ? π ∈ ⊥⊥, we get kπ ? a · π′ ∈ ⊥⊥ by saturation.

(2) To prove that cc[σ] 
 ((A ⇒ B) ⇒ A) ⇒ A (where σ is any Λ-environment), we

need to check that cc[σ] ? a · π ∈ ⊥⊥ for all a ∈ J(A⇒ B)⇒ AK⊥⊥ and π ∈ JAK. From (1)

we get kπ ∈ JA ⇒ BK⊥⊥, hence kπ · π ∈ J(A ⇒ B) ⇒ AK, and thus a ? kπ · π ∈ ⊥⊥. But

since cc[σ] ? a · π �A a ? kπ · π ∈ ⊥⊥ (SaveA ), we get cc[σ] ? a · π ∈ ⊥⊥ by saturation.

Finally, we say that a valuation ρ models an equational theory E (Def. 3) and write

ρ |= E when ρ closes E and when JM1[ρ]K = JM2[ρ]K for every equation (M1 = M2) ∈ E .

Lemma 47 (Soundness of conversion). — If the conversion M1
∼=E M2 is derivable

from the rules of Table. 1, then for every valuation ρ closing M1 and M2 and such that

ρ |= E , we have JM1[ρ]K = JM2[ρ]K.

Proof. By induction on the derivation of M1
∼=E M2, using Lemma 45.

5.7. The general property of adequacy

Given a closed context Γ with parameters in MA , we say that a Λ-environment σ realizes

the closed context Γ (with parameters in MA ) and write σ 
A Γ when:

— dom(σ) ⊇ dom(Γ), and
— σ(x) 
A A for every declaration (x : A) ∈ Γ.

With this notation, the general property of adequacy w.r.t. an arbitrary classical realiz-

ability algebra A can be stated as follows:

Proposition 48 (Adequacy). — If the typing judgement E ; Γ ` t : A is derivable

from the rules of Table 2, then for all total valuations ρ such that ρ |= E and for all

Λ-environments σ 
A Γ[ρ], we have t[σ] 
A A[ρ].

Proof. We prove the property by induction on the derivation of Γ ` t : A, distinguishing

cases depending on the last applied rule.

— Axiom. The conclusion E ; Γ ` x : A comes from the side condition (x : A) ∈ Γ. Let

us consider a total valuation ρ such that ρ |= E and a Λ-environment σ 
A Γ[ρ].

To show that x[σ] 
A A[ρ], let take an A -stack π ∈ JA[ρ]K and let us show that

x[σ] ? π ∈ ⊥⊥. From the side condition (x : A) ∈ Γ and the assumption σ 
A Γ[ρ], we

have σ(x) 
A A[ρ], so that σ(x) ? π ∈ ⊥⊥. But since

x[σ] ? π �A σ(x) ? π (LookupA )

and since σ(x) ? π ∈ ⊥⊥, we get x[σ] ? π ∈ ⊥⊥ by saturation.

— Conversion. This case immediately follows from Lemma 47.

— Introduction of⇒. The judgment E ; Γ ` λx . t : A⇒ B comes from a unique premise

E ; Γ, x : A ` t : B. Let us consider a total valuation ρ such that ρ |= E and a Λ-

environment σ 
A Γ[ρ]. To show that (λx . t)[σ] 
A (A ⇒ B)[ρ], take an arbitrary

A -stack in J(A⇒ B)[ρ]K—that is, an A -stack of the form a ·π where a 
A A[ρ] and

π ∈ JB[ρ]K—and let us show that (λx . t)[σ] ? a · π ∈ ⊥⊥. We have:

(λx . t)[σ] ? a · π �A t[σ, x := a] ? π . (GrabA )



Alexandre Miquel 40

It is easy to check that (σ, x := a) 
A (Γ, x : A)[ρ], and since π ∈ JB[ρ]K we get

t[σ, x := a] ? π ∈ ⊥⊥ from the induction hypothesis. We can then conclude that

(λx . t)[σ] ? a · π ∈ ⊥⊥ by saturation.

— Elimination of ⇒. The judgment E ; Γ ` tu : B ending the derivation comes from

two premises E ; Γ ` t : A ⇒ B and E ; Γ ` u : A. Let us consider a total valuation ρ

such that ρ |= E and a Λ-environment σ 
A Γ[ρ]. To show that (tu)[σ] 
A B[ρ], take

an arbitrary A -stack π ∈ JB[ρ]K, and let us show that (tu)[σ] ? π ∈ ⊥⊥. We have

(tu)[σ] ? π �A t[σ] ? u[σ] · π . (PushA )

From the induction hypothesis applied to the second premise, we have u[σ] 
A A[ρ],

and since π ∈ JB[ρ]K we get u[σ] · π ∈ J(A ⇒ B)[ρ]K. Now applying the induction

hypothesis to the first premise, we get t[σ] 
 (A⇒ B)[ρ], so that t[σ] ? u[σ] · π ∈ ⊥⊥.

Hence (tu)[σ] ? π ∈ ⊥⊥ by saturation.

— Introduction of 7→. The judgment E ; Γ ` t : M1 = M2 7→ A comes from a unique

premise (E ,M1 = M2); Γ ` t : A. Let us consider a total valuation ρ such that ρ |= E
and a Λ-environment σ 
A Γ[ρ]. To show that t[σ] 
A (M1 = M2 7→ A)[ρ], we

distinguish the following two cases:

– JM1[ρ]K = JM2[ρ]K. In this case, we have J(M1 = M2 7→ A)[ρ]K = JA[ρ]K. But

since ρ |= (E ,M1 = M2), we get t[σ] 
A A[ρ] from the induction hypothesis,

hence t[σ] 
A (M1 = M2 7→ A)[ρ].

– JM1[ρ]K 6= JM2[ρ]K. In this case, we have J(M1 = M2 7→ A)[ρ]K = ∅, so that the

desired relation t[σ] 
A (M1 = M2 7→ A)[ρ] holds vacuously.

— Elimination of 7→. This case is a particular case of conversion.

— Introduction of ∀. The judgment E ; Γ ` t : ∀xτA comes from a premise E ; Γ ` t : A,

where xτ /∈ FV (E ; Γ). Let us consider a total valuation ρ such that ρ |= E and

a Λ-environment σ 
A Γ[ρ]. To show that t[σ] 
A (∀xτA)[ρ], take an A -stack

π ∈ J(∀xτA)[ρ]K—that is, a stack π ∈ JA[ρ, xτ ← v]K for some v ∈ JτK—and let

us show that t[σ] ? π ∈ ⊥⊥. Let us consider the valuation ρ′ = ρ, xτ ← v. Since

xτ /∈ FV (E), we have JM1[ρ′]K = JM1[ρ]K = JM2[ρ]K = JM2[ρ′]K for every equation

(M1 = M2) ∈ E , so that ρ′ |= E . And since xτ /∈ FV (Γ), we have JB[ρ′]K = JB[ρ]K for

every declaration (z : B) ∈ Γ, hence σ 
A Γ[ρ′]. By induction hypothesis we thus get

t[σ] 
A A[ρ′], hence t[σ] ? π ∈ ⊥⊥.

— Elimination of ∀. The judgment E ; Γ ` t : A{xτ := N} comes from a unique premise

E ; Γ ` t : ∀xτA, where N is of kind τ . Let us consider a total valuation ρ such that

ρ |= E and Λ-environment σ 
A Γ[ρ]. To show that t[σ] 
A (A{xτ := N})[ρ], take

an arbitrary A -stack π ∈ J(A{xτ := N})[ρ]K = JA[ρ, xτ ← JN [ρ]K]K (by Lemma 45),

and let us show that t[σ] ? π ∈ ⊥⊥. We have

π ∈
⋃
v∈JτK

JA[ρ, xτ ← v]K = J(∀xτA)[ρ]K

(taking v = JN [ρ]K), so that by induction hypothesis we get t[σ] ? π ∈ ⊥⊥.

— Peirce’s law. Obvious by Lemma 46.



Forcing as a program transformation 41

5.8. Adequacy w.r.t. the KAM

In the particular case where the classical realizability algebra A is a λc-algebra (Sec-

tion 5.3) induced by a particular instance (K,Π0,�) of the λc-calculus and by a particu-

lar saturated set ⊥⊥ ⊆ Λ ?Π, the general property of adequacy (Prop. 48) reduces to the

following statement:

Corollary 49 (Adequacy w.r.t. the KAM). — If the judgment

E ;x1 : A1, . . . , xn : An ` t : A

is derivable in system PAω+, then for all total valuations ρ such that ρ |= E and for all

realizers u1 
A A1[ρ], . . . , un 
A An[ρ], we have

t{x1 := u1; . . . ;xn := un} 
A A[ρ] .

Up to the fact that we work in higher-order arithmetic (rather than in second-order

arithmetic) and that the typing judgment E ; Γ ` t : A now depends on an equational

theory E , the above statement is exactly the property of adequacy in the sense of the

traditional presentation of classical realizability (Kri03; Kri09; Miq10).

Coming back to the forcing translation defined in Section 4, we can combine the above

corollary with Theorem 32, so that we get:

Corollary 50 (Adequacy w.r.t. forcing). — If the judgment

E ;x1 : A1, . . . , xn : An ` t : A

is derivable in system PAω+, then for all total valuations ρ such that ρ |= E∗ and for all

realizers u1 
A (p F A1)[ρ], . . . , un 
A (p F An)[ρ], we have

t∗{x1 := u1; . . . ;xn := un} 
A (p F A)[ρ]

(where p is a fresh condition variable).

However, the main drawback of the above result is that we need to transform the proof

term t of A in order to turn it into a realizer of the proposition p F A. If we want to see

forcing as an extension of provability in system PAω+, we should not change the proof

term t, but we should rather extend the KAM to make it understand forcing directly.

Let us now see how forcing can be hard-wired into Krivine’s Abstract Machine.

6. An abstract machine for forcing

We now present an extension of Krivine’s Abstract Machine (with explicit environments)

that is devoted to the evaluation of proofs by forcing, which we call the Krivine Forcing

Abstract Machine (KFAM). The main novelty of this new abstract machine is that it

distinguishes two kinds of closures:

— regular closures, that are intended to be executed the usual way, and

— forcing closures (bearing a star as a superscript), that are intended to be executed as

through the program transformation t 7→ t∗ defined in section 4.4.



Alexandre Miquel 42

At each evaluation step, the current execution mode of the abstract machine is given by

the mode of the currently executed closure. In particular, there is no need to introduce

a special instruction to switch from one mode to the other.

6.1. Krivine’s Forcing Abstract Machine (KFAM)

Formally, the KFAM manipulates five kinds of syntactic entities: terms, environments,

closures, stacks and processes, whose BNF is given in Table 4.

Table 4. Syntax and evaluation rules of the KFAM

Syntax of the KFAM

Terms t, u ::= x | λx . t | tu | cc

Environments e ::= ∅ | e, x := c

Closures c ::= t[e] | kπ | t[e]∗ | k∗π (FV (t) ⊆ dom(e))

Stacks π ::= � | c · π
Processes P ::= c ? π

Evaluation rules for regular closures

(Skip) x[e, y := c] ? π � x[e] ? π (y 6≡ x)

(Access) x[e, x := c] ? π � c ? π
(Grab) (λx . t)[e] ? c · π � t[e, x := c] ? π

(Push) (tu)[e] ? π � t[e] ? u[e] · π
(Save) cc[e] ? c · π � c ? kπ · π
(Restore) kπ ? c · π′ � c ? π

Evaluation rules for forcing closures

(Skip∗) x[e, y := c]∗ ? c0 · π � x[e]∗ ? α9 c0 · π (y 6≡ x)

(Access∗) x[e, x := c]∗ ? c0 · π � c ? α10c0 · π
(Grab∗) (λx . t)[e]∗ ? c0 · c · π � t[e, x := c]∗ ? α6 c0 · π
(Push∗) (tu)[e]∗ ? c0 · π � t[e]∗ ? α11c0 · u[e]∗ · π
(Save∗) cc[e]∗ ? c0 · c · π � c ? α14c0 · k∗π · π
(Restore∗) k∗π ? c0 · c · π′ � c ? α15c0 · π

— The terms of the KFAM are simply the proof terms of system PAω+ (Def. 7), that

is: pure λ-terms enriched with the constant cc.

— The environments of the KFAM are finite association lists mapping closures to proof

variables. Note that the same variable x can be bound several times in an environ-

ment e, but in this case, only the rightmost binding will be considered during evalu-

ation, the other bindings being hidden. Actually, the environments of the KFAM are

exactly the A-environments of Def. 40 when taking the set of all closures as A—with

this subtlety that environments and closures are defined here by mutual induction.



Forcing as a program transformation 43

— The KFAM distinguishes two forms of regular closures, as well as two forms of forcing

closures. Regular closures are either term closures of the form t[e], where t is a term

and e an environment that closes t (in the sense that FV (t) ⊆ dom(e)), or contin-

uation closures of the form kπ, where π is a stack. Forcing closures are just starred

versions t[e]∗ and k∗π of regular closures. (Here, the star ‘∗’ in superscript is just a

mark indicating that the closure is intended to be executed in forcing mode.)
— The stacks of the KFAM are finite lists of closures, whereas processes are pairs c ? π

formed by a closure c and a stack π.

In what follows, we shall write Λ (resp. Π, Λ ? Π) the set of all closures (resp. of all

stacks, of all processes) in the sense of the KFAM.

The set Λ ? Π of all processes is equipped with a preorder P � P ′ that is generated

from the evaluation rules given in Table 4. Evaluation may proceed in regular mode or in

forcing mode depending on whether the currently evaluated closure is a regular closure

or a forcing closure.

Evaluation in regular mode The evaluation rules for regular closures (Table 4) are

the standard evaluation rules of the KAM with continuations and explicit environ-

ments. Here we can find the usual evaluation rules (Grab), (Push), (Save) and

(Restore) (adapted to the presence of explicit environments) as well as two specific

rules (Skip) and (Access) to lookup a variable in the current environment.
Evaluation in forcing mode The evaluation rules for forcing closures (Table 4) are

similar to the evaluation rules for regular closures, except that in forcing mode, the

first slot of the stack is now reserved for the computational condition, represented

here as a closure c0. This computational condition is updated at each evaluation step

by the insertion of one of the six combinators α6, α9, α10, α11, α14 and α15. These

combinators are now fixed closures—or closed proof terms—that are parameterizing

the abstract machine. (At this stage, these parameters can be taken arbitrarily.)

The insertion of a particular combinator αi on the top of the current computational

condition c0 is achieved using closure application, which is defined by

αi c0 ≡ (yx)[y := αi, x := c0] .

(Or as αi c0 ≡ (αi x)[x := c0] in the case where αi is a closed proof term.)

The four evaluation rules (Grab∗), (Push∗), (Save∗) and (Restore∗) mimic the

computational behavior of transformed programs such as described by Prop. 39 in

Section 4.7, using the same combinators α6, α11, α14 and α15 as before. Also note

that lookup operations (Skip∗) and (Access∗) also insert their own combinators α9

and α10 in the first slot of the stack. These extra two combinators—that were actually

hidden in the proof terms β3 and β4 defined in Prop. 25 and used in the translation

of abstraction (Def. 30)—simply reflect the destruction of the current environment

during lookup:

α9 : C[(pq)r]⇒ C[pr] ‘skip the rightmost closure’

α10 : C[(pq)r]⇒ C[qr] ‘extract the rightmost closure’

(Here, the condition pq is attached to the environment of the currently evaluated

closure while the condition r is attached to the current stack.)



Alexandre Miquel 44

Switching between the two execution modes The KFAM provides no instruc-

tion to switch between the two execution modes; instead, every closure bears its

own execution mode. However, environments may contain both regular closures and

forcing closures, so that each access to a closure in the current environment is an

opportunity to switch from one execution mode to the other. In practice, this may

only occur in the following two situations:

— When, during an (Access) step, the regular closure x[e, x := c] gives the control

to the closure c that is bound to x in the current environment. In the case where c

is a regular closure, evaluation continues in regular mode. But when c is a forcing

closure, the abstract machine switches to the forcing mode.

— When, during an (Access∗) step, the forcing closure x[e, x := c]∗ gives the control

to the closure c that is bound to x in the current environment. In the case where c

is a forcing closure, evaluation continues in forcing mode. But when c is a regular

closure, the abstract machine switches back to the regular mode.

As we shall see below, the main interest of the KFAM is that it allows us to use the

same proof term t of a proposition A both as a realizer of A and as a realizer of p F A,

depending on whether we embed t into a regular closure t[e] or into a forcing closure

t[e]∗. To prove this, we need to present the realizability semantics of the KFAM.

6.2. Adequacy in regular mode

The same way as the λc-calculus induces a particular family of classical realizability

algebras (Section 5.2), called the λc-algebras (Section 5.3), the KFAM also induces its

own family of classical realizability algebras.

Formally, every set of processes ⊥⊥ ⊆ Λ ?Π of the KFAM that is saturated w.r.t. the

evaluation rules of Table 4 induces a classical realizability algebra A whose components

Λ, Π, Λ ?Π, etc. are defined as follows:

— The set Λ of A -terms is the set of all closures (in the sense of the KFAM).
— The set Π of A -stacks is the set of all stacks (ditto).
— The set Λ ?Π of A -processes is the set of all processes (ditto).
— The three operations π 7→ kπ, (c, π) 7→ c · π and (c, π) 7→ c ? π are defined in the

algebra A the same way as they are defined in the KFAM.
— The compilation function (t, σ) 7→ t[σ] is simply the operation that consists to form

a regular term closure t[σ] from a proof term t and an environment σ such that

FV (t) ⊆ dom(σ). (Remember that the environments of the KFAM are the same as

the Λ-environments in the sense of Def. 40.)
— The pole of A is the saturated set ⊥⊥ ⊆ Λ ?Π.

Proposition 51. — The structure A defined above is a classical realizability algebra.

Proof. If suffices to check that the set ⊥⊥ ⊆ Λ ?Π (which is saturated w.r.t. the rules

of Table 4) is also saturated w.r.t. the pseudo-evaluation preorder �A that is generated

from A (cf Section 5.2). But this is obvious, since the preorder �A is included into the

relation of evaluation defined from the rules of Table 4—simulating the pseudo-evaluation

rule (LookupA ) by the real rules (Skip) and (Access).



Forcing as a program transformation 45

The classical realizability algebra A induces a classical realizability model MA (Sec-

tion 5) and a relation of realizability c 
A A between a closure c and a closed propo-

sition A (with parameters in MA ). In this realizability model, the general property of

adequacy (Prop. 48) instantiates as follows:

Proposition 52 (Adequacy in regular mode). — If the judgment

E ;x1 : A1, . . . , xn : An ` t : A

is derivable in system PAω+, then for all total valuations ρ such that ρ |= E and for all

closures c1 
A A1[ρ], . . . , cn 
A An[ρ], we have:

t[x1 := c1, . . . , xn := cn] 
A A[ρ] .

Intuitively, the above result expresses that a proof term t : A behaves as a realizer

of the proposition A as soon as we embed it into a regular closure (using a suitable

environment). We can notice that this adequacy result only relies on the operational

semantics of regular closures, which is defined from the rules (Skip), (Access), (Push),

(Grab), (Save) and (Restore). At this stage, the operational semantics of forcing

closures is simply irrelevant, and we could have replaced the starred rules (Skip∗)–

(Restore∗) by completely different rules without altering the property of adequacy

in regular mode. In particular, we do not need to make any assumption on the six

combinators α6, α9, α10, α11, α14 and α15 which parameterize the abstract machine.

However, things become different when considering adequacy in forcing mode.

6.3. Adequacy in forcing mode

For each combinator αi (where i ∈ {∗; 1; . . . ; 15}), let us write type(αi) the ‘type of αi’

such as given in Section 3.1. In particular, we have:

type(α6) ≡ ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[(pq)r])

type(α9) ≡ ∀pκ ∀qκ ∀rκ (C[(pq)r)]⇒ C[p(qr)])

type(α10) ≡ ∀pκ ∀qκ ∀rκ (C[(pq)r)]⇒ C[qr])

type(α11) ≡ ∀pκ ∀qκ (C[pq]⇒ C[p(pq)])

type(α14) ≡ ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[q(rr)])

type(α15) ≡ ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[qp])

From now on, we assume that the six combinators α6, α9, α10, α11, α14 and α15

parameterizing evaluation in the forcing mode of the KFAM are closures that realize the

corresponding types, in the sense that αi 
A type(αi) for all i ∈ {6; 9; 10; 11; 14; 15}.
From the property of adequacy in regular mode (Prop. 52), such closures can be easily

built from closed proof terms (also named α6, . . . , α15 in Section 3) of the propositions

type(α6), . . . , type(α15), simply by turning these proof terms into regular closures.

Proposition 53 (Adequacy in forcing mode). — Under the assumption that the

closures α6, α9, α10, α11, α14 and α15 realize their types, if the judgment

E ;x1 : A1, . . . , xn : An ` t : A



Alexandre Miquel 46

is derivable in system PAω+, then for all total valuations ρ such that ρ |= E∗ and for all

closures c1 
A (p1 F A1)[ρ], . . . , cn 
A (pn F An)[ρ], we have:

t[x1 := c1, . . . , xn := cn]∗ 
A

(
((p0p1) · · · pn) F A

)
[ρ] ,

where p0, p1, . . . , pn are n+ 1 fresh condition variables.

In particular, the above proposition expresses that if t is a closed proof term of a

closed proposition A, then the corresponding forcing closure t[]∗ is now a realizer of the

proposition p F A (for an arbitrary condition p).

Remark 54. We can notice that in the case where the context is not empty, the free

variables of t are not treated exactly the same way as in Corollary 50 (for the usual

KAM), which is due to the fact that we now work with explicit environments (i.e. de-

layed substitutions) rather than with ordinary parallel substitutions. In the above ade-

quacy result, each free variable xi : Ai of the proof term t : A has to be bound (in the

current environment) to a closure ci realizing the proposition pi F Ai, where pi is an ar-

bitrary condition attached to the particular hypothesis Ai. The resulting forcing closure

t[x1 := c1, . . . , xn := cn]∗ is then a realizer of the proposition ((p0p1) · · · pn) F A, where

((p0p1) · · · pn) denotes the (left-associative) product of the conditions p0, p1, . . . , pn, and

where p0 is an arbitrary extra condition attached to the proof term t itself.

We could readily prove the above property of adequacy in forcing mode (Prop. 53) by

adapting the ingredients of the proof of Theorem 32 to the framework of the realizability

model MA induced by the algebra A . However, it is much more interesting to deduce

Prop. 53 from the general property of adequacy (Prop. 48), by introducing a classical

realizability algebra A ∗ describing the forcing mode of the KFAM, and by studying the

relationship between the two realizability models MA and MA ∗ that are induced by the

two algebras A and A ∗. This is what we shall do in Section 7, and for this reason, the

proof of Prop. 53 is postponed to the end of Section 7.

6.4. Combining the two execution modes together

To illustrate the use of the KFAM, let us come back to the situation depicted in Sec-

tion 4.5 and consider two proof terms terms u (‘user program’) and s (‘system program’)

such that x : A ` u : B and ` s : (1 F A). (Recall that B is the theorem we want to

prove from an axiom A that is forced using a suitable forcing structure.)

From the property of adequacy in regular mode (Prop. 52), we know that the regular

closure s[] is a realizer of the proposition 1 F A. Now using the property of adequacy in

forcing mode (Prop. 53), we thus deduce that the forcing closure u[x := s[]]∗ is a realizer

of the proposition 11 F B. Intuitively, the forcing closure u[x := s[]]∗ is obtained by

embedding the system program s (that is intended to be evaluated in regular mode) into

the environment of the user program u (intended to be evaluated in forcing mode)¶.

¶ Here, the regular mode corresponds to the supervisor mode of modern CPUs (also called the real

mode in x86-compatible CPUs from the 286 architecture), whereas the forcing mode corresponds to
the user mode (or the protected mode in x86-compatible CPUs).



Forcing as a program transformation 47

If moreover the proposition B is invariant under forcing (which is automatically the

case if B is a first-order proposition by Prop. 37), then we easily derive

z : (11 F B) ` ξB z (α7 α∗) : B

(using the proof term ξB introduced in Def. 33), so that we can again embed the forcing

closure u[x := s[]]∗ into a regular closure (ξ′B z (α7 α∗))[z := u[x := s[]]∗] and deduce

from the property of adequacy in regular mode (Prop. 52) that:

(ξ′B z (α7 α∗))[z := u[x := s[]]∗] 
A B .

7. The connection theorem

In Section 6.2, we have seen that every saturated set of processes ⊥⊥ ⊆ Λ ?Π (w.r.t. the

evaluation rules of Table 4) induces a classical realizability algebra A whose A -terms,

A -stacks and A -processes are precisely the closures, the stacks and the processes of

the KFAM, and whose pole ⊥⊥ is the saturated set ⊥⊥. We shall now see that the same

saturated set ⊥⊥ ⊆ Λ ?Π induces another classical realizability algebra written A ∗ and

whose components are built from the forcing mode of the KFAM.

7.1. The algebra A ∗ induced by the forcing mode

Formally, the classical realizability algebra A ∗ induced by the forcing mode is defined

from the forcing structure (κ,C, ·, 1, α∗, α1, . . . , α8) introduced in Section 3, and more

precisely: from the semantics of this structure in the realizability model MA induced by

the classical realizability algebra A corresponding to the regular execution mode.

In what follows, we shall write J K = J KA the interpretation function that comes

with the realizability model MA , and we shall extend the syntactic product pq of two

conditions p, q to all pairs of semantic conditions p, q ∈ JκK (writing them using bold

letters p, q, r, etc.), letting pq = J(·)K(p)(q), where (·) denotes the binary product (of

kind κ→ κ→ κ) that comes with the forcing structure parameterizing the construction.

(We shall also write 1 = J1KA the denotation of the top condition 1 in MA .) Notice

that this semantic product is in general neither associative, commutative nor idempotent

in the model MA , although we can realize the equivalences ∀p∀q ∀r ((pq)r ≈ p(qr)),

∀p ∀q (pq ≈ qp) and ∀p (p ≈ pp) (cf Section 3.2).

The components of the algebra A ∗ are formally defined as follows:

— The sets of A ∗-terms, of A ∗-stacks and of A ∗-processes—which we now respectively

write Λ∗, Π∗ and (Λ ?Π)∗—are defined by

Λ∗ = Λ× JκK, Π∗ = Π× JκK and (Λ ?Π)∗ = (Λ ?Π)× JκK .

Notice that every element of the above sets is an order pair formed by a syntactic

object (a closure, a stack, a process of the KFAM) together with a semantic condition

in the set JκK. (So that the sets Λ∗, Π∗ and (Λ ?Π)∗ are in general not countable.)



Alexandre Miquel 48

— The three operations (a, π) 7→ a · π (‘consing’), (a, π) 7→ a ? π (‘process formation’)

and π 7→ kπ (‘continuation formation’) are defined in the algebra A ∗ by letting

(c,p) · (π, r) = (c · π, pr) ∈ Π∗

(c,p) ? (π, r) = (c ? π, pr) ∈ (Λ ?Π)∗

k(π,r) = (k∗π, r) ∈ Λ∗

for all (c,p) ∈ Λ∗ and (π, r) ∈ Π∗.

— The compilation function (t, σ) 7→ t[σ] of the algebra A ∗ is defined by letting

t[x1 := (c1,p1), . . . , xn := (cn,pn)] =(
t[x1 := c1, . . . , xn := cn]∗, ((1p1) · · ·pn)

)
for all proof terms t such that FV (t) ⊆ {x1; . . . ;xn} and for all Λ∗-environments

σ ≡ [x1 := (c1,p1), . . . , xn := (cn,pn)].

— Finally, the pole of the algebra A ∗, which we write ⊥⊥∗, is defined by:

⊥⊥∗ =
{

(c ? π,p) ∈ (Λ ?Π)∗ : ∀c0 ∈ (JCK(p))⊥⊥ (c ? c0 · π) ∈ ⊥⊥
}
.

We first need to check that:

Proposition 55. — The structure A ∗ defined above is a classical realizability algebra.

Proof. As noticed in Section 5.2, it suffices to show that the set of A ∗-processes ⊥⊥∗

defined above is saturated (Def. 43) w.r.t. the preorder �A ∗ generated from the five

rules (LookupA ∗), (PushA ∗), (GrabA ∗), (SaveA ∗) and (RestoreA ∗) as shown in

Remark 42(4). To prove this, we shall not directly work with the preorder �A ∗ induced

by the operations of A ∗, but we shall consider instead another (finer) preorder �• that

is generated from the following six rules:

(Skip•)

(Access•)

(Push•)

(Grab•)

(Save•)

(Restore•)

(x[e, y := c]∗ ? π, (pq)r) �• (x[e]∗ ? π, pr) (y 6≡ x)

(x[e, x := c]∗ ? π, (pq)r) �• (c ? π, qr)

((tu)[e]∗ ? π, pr) �• (t[e]∗ ? u[e]∗ · π, p(pr))

((λx . t)[e]∗ ? c · π, p(qr)) �• (t[e, x := c]∗ ? π, (pq)r)

(cc[e]∗ ? c · π, p(qr)) �• (c ? k∗π · π, q(rr))

(k∗π ? c · π′, p(qr)) �• (c ? π, qp)

(for all c ∈ Λ, π ∈ Λ and p, q, r ∈ JκK.)

Remark 56. The six rules (Skip•)–(Restore•) closely reflect the structure of the eval-

uation rules (Skip∗)–(Restore∗) defining the forcing mode of the KFAM (Table 4). In

particular, notice that for each of these rules, the semantic condition evolves accordingly

to the type of the combinator αi attached to the corresponding evaluation rule in the

forcing mode of the KFAM—which is crucial in the proof of Prop. 58 below.

Lemma 57. — The preorder �A ∗ induced by the structure A ∗ (as shown in Re-

mark 42(4)) is included in the preorder �• defined above.

Proof. Unfolding the definition of the compilation function (t, σ) 7→ t[σ] provided with



Forcing as a program transformation 49

the structure A ∗, we simply notice that:

(LookupA ∗) ⊆ (Skip•)∗; (Access•)

(PushA ∗) ⊆ (Push•)

(GrabA ∗) ⊆ (Grab•)

(SaveA ∗) ⊆ (Save•)

(RestoreA ∗) ⊆ (Restore•)

From the above inclusion, it is obvious that every set of A ∗-processes that is saturated

w.r.t. the preorder �• is also saturated w.r.t. the preorder �A ∗ . To conclude the proof

of Prop. 55, we just need to check that:

Proposition 58. — The set of A ∗-processes

⊥⊥∗ =
{

(c ? π,p) ∈ (Λ ?Π)∗ : ∀c0 ∈Λ ((c0 
A C[ṗ]) ⇒ (c ? c0 · π) ∈ ⊥⊥
}

is saturated w.r.t. the preorder �•.

Proof. The six cases corresponding to the rules (Skip•)–(Restore•) follow the same

pattern, using Remark 56. Let us treat for instance the case of rule (Skip•). For that,

let us assume that (x[e]∗ ? π, pr) ∈ ⊥⊥∗, which means that:

∀c0 ∈Λ
(
(c0 
A C[ṗṙ]) ⇒ (x[e]∗ ? c0 · π) ∈ ⊥⊥

)
. (1)

Applying Prop. 52 (adequacy in regular mode) to the derivable judgment

y : type(α9), x : C[(pq)r] ` yx : C[pr] ,

we deduce that

∀c0 ∈Λ
(
(c0 
A C[(ṗq̇)ṙ]) ⇒ (α9 c0 
A C[ṗṙ])

)
. (2)

(Recall that the closure α9 c0 is implemented as α9 c0 ≡ (yx)[y ← α9, x← c0].) Combin-

ing (1) and (2), we deduce that

∀c0 ∈Λ
(
(c0 
A C[(ṗq̇)ṙ]) ⇒ (x[e]∗ ? α9 c0 · π) ∈ ⊥⊥

)
.

But since the set ⊥⊥ ⊆ Λ ?Π is saturated w.r.t. the rule (Skip∗), we get

∀c0 ∈Λ
(
(c0 
A C[(ṗq̇)ṙ]) ⇒ (x[e, y := c]∗ ? c0 · π) ∈ ⊥⊥

)
,

which precisely means that (x[e, y := c]∗ ? π, (pq)r) ∈ ⊥⊥∗.

The proof that A ∗ is a classical realizability algebra (Prop. 55) is now complete.

In what follows, we shall call the forcing model and write MA ∗ the realizability model

induced by the algebra A ∗, as opposed to the regular model MA induced by the alge-

bra A . The interpretation function J KA ∗ of kinds and higher-order terms of PAω+ in

the forcing model MA ∗ will be simply written J K∗.

7.2. The connection theorem

The property of adequacy in forcing mode (Prop. 53) follows from the general property

of adequacy (Prop. 48) instantiated to the algebra A ∗ by noticing that a A ∗-term



Alexandre Miquel 50

(c,p) ∈ Λ∗ realizes a (closed) proposition A in the forcing model MA ∗ if and only if the

closure c ∈ Λ realizes the proposition ṗ F A in the regular model MA :

(c,p) 
A ∗ A ⇔ c 
A (ṗ F A) .

Making explicit the underlying valuations, we formally get:

Proposition 59 (Realizability equivalence). — For all propositions A, for all valu-

ations ρ closing A in the forcing model MA ∗ and for all (c,p) ∈ Λ∗, we have

(c,p) 
A ∗ A[ρ] ⇔ c 
A (p F A)[ψ(ρ), p← p] ,

where ψ(ρ) is the valuation in MA that is defined from ρ as shown in Def. 62 below.

Remark 60. As suggested by Krivine (Kri10), the above equivalence is reminiscent of

the method of iterated forcing (Jec02, p. 267). Intuitively, the forcing algebra A ∗ plays

here the same role as the set of conditions D ∗ Ċ we obtain by iterating two notions of

forcing D and C, with this difference that the outermost notion of forcing D is replaced

here by the classical realizability algebra A describing the KFAM (in regular mode).

The above result (Prop. 59) is actually a particular case of a more general result—

the connection theorem (Theorem 63 below)—that relates the forcing model MA ∗ to

the regular model MA throughout the hierarchy of kinds using the auxiliary translation

M 7→M∗ (Def. 20). Basically, this theorem says that the denotation JMK∗ ∈ JτK∗ of any

higher-order term M of kind τ in the forcing model MA ∗ is the same as the denotation

JM∗K ∈ Jτ∗K of the translated term M∗ of kind τ∗ in the regular model MA , through a

natural isomorphism ψτ : JτK∗ ∼→ Jτ∗K (Fact 61 below). In other words, the connection

theorem establishes that the following diagram commutes for every kind τ :

Syntax of system PAω+ Realizability semantics

Term(τ)
J KA∗

//

∗

��

JτK∗

ψτ

��
Term(τ∗)

J KA

// Jτ∗K

To establish this theorem, we first need to notice that:

Fact 61 (Isomorphism between JτK∗ and Jτ∗K). — For every kind τ of PAω+, there

is a natural isomorphism ψτ : JτK∗ ∼→ Jτ∗K, which is defined from the equations

ψo(S) = (p ∈ JκK 7→ {π ∈ Π : (π, p) ∈ S})
ψι(n) = n

ψτ→σ(f) = ψσ ◦ f ◦ ψ−1
τ

(for all S ∈ P(Π∗))

(for all n ∈ N)

(for all f ∈ Jτ → σK∗)

The family of isomorphisms (ψτ )τ∈Kind induces a mapping ρ 7→ ψ(ρ) between the

valuations in MA ∗ and the valuations in MA that is defined as follows:



Forcing as a program transformation 51

Definition 62 (Mapping valuations from MA ∗ to MA ). — To every valuation ρ

in MA ∗ , we associate a (partial) valuation ψ(ρ) in MA that is defined by

— dom(ψ(ρ)) = {xτ∗ : xτ ∈ dom(ρ)};
— ψ(ρ)(xτ

∗
) = ψτ (ρ(xτ )) for every xτ ∈ dom(ρ).

With this notation, the connection theorem states as follows:

Theorem 63 (Connection theorem). — Let M be a higher-order term of kind τ .

(1) For all valuations ρ closing M in the forcing model MA ∗ , we have:

ψτ
(
JM [ρ]K∗

)
= JM∗[ψ(ρ)]K .

(2) If moreover M ≡ A is a proposition, then for all valuations ρ closing A in the forcing

model MA ∗ and for all (c,p) ∈ Λ∗ we have

(c,p) 
A ∗ A[ρ] ⇔ c 
A (p F A)[ψ(ρ), p← p] ,

where p is a fresh condition variable (bound to the semantic condition p).

Proof. We first show that (2) follows from (1) in the case where M ≡ A is a proposition.

Let us assume that ψo(JA[ρ]K∗) = JA∗[ψ(ρ)]K, so that for all (π, r) ∈ Π∗ we have

(π, r) ∈ JA[ρ]K∗ ⇔ π ∈ ψo(JA[ρ]K∗)(r)

⇔ π ∈ JA∗[ψ(ρ)]K(r)

⇔ π ∈ J(A∗r)[ψ(ρ), r ← r]K

(Def. of ψo)

(from (1))

(where r is a fresh condition variable). Therefore, for all (c,p) ∈ Λ∗, we get:

(c,p) 
A ∗ A[ρ]

⇔ ∀(π, r)∈ JA[ρ]K∗ (c ? π,pr) ∈ ⊥⊥∗

⇔ ∀r∈ JκK ∀π ∈ J(A∗r)[ψ(ρ), r ← r]K ∀c0 ∈ (JCK(pr))⊥⊥ (c ? c0 · π) ∈ ⊥⊥
⇔ ∀r∈ JκK ∀c0 ∈ J(C[pr])[p← p, r ← r]K⊥⊥ ∀π ∈ J(A∗r)[ψ(ρ), r ← r]K (c ? c0 · π) ∈ ⊥⊥
⇔ ∀r∈ JκK c 
A (C[pr]⇒ A∗r)[ψ(ρ), p← p, r ← r]

⇔ c 
A (∀rκ(C[pr]⇒ A∗r))[ψ(ρ), p← p]

⇔ c 
A (p F A)[ψ(ρ), p← p]

Let us now prove (1) by induction on M , distinguishing the following cases:

— Variable. Given a variable xτ of kind τ and a valuation ρ in the forcing model MA ∗

such that xτ ∈ dom(ρ), we have

ψτ (Jxτ [ρ]K∗) = ψτ (ρ(xτ )) = (ψ(ρ))(xτ
∗
) = J(xτ )∗[ψ(ρ)]K

— Zero, Successor. The equalities ψι(J0K∗) = J0∗K and ψι→ι(JsK∗) = Js∗K are obvious,

since both interpretation functions J K∗ and J K coincide on the T-kinds ι and ι→ ι.

— Recursor. Writing σ ≡ τ → (ι → τ → τ) → ι → τ , we want to prove the equality

ψσ(Jrecτ K∗) = J(recτ )∗K. For that, it suffices to check the equality

ψσ(Jrecτ K∗)(v)(f)(n) = Jrecτ∗K(v)(f)(n)

for all v ∈ Jτ∗K, f ∈ Jι→ τ∗ → τ∗K and n ∈ N, which is done by induction on n.



Alexandre Miquel 52

— Abstraction. Let us assume that the property (1) holds for a term M of kind σ (IH),

and consider a valuation ρ that closes the term λxτ .M in the forcing model MA ∗ .

For all v ∈ Jτ∗K, we have

ψτ→σ(J(λxτ .M)[ρ]K∗)(v) = ψσ
(
J(λxτ .M)[ρ]K∗(ψ−1

τ (v))
)

= ψσ
(
JM [ρ, xτ ← ψ−1

τ (v)]K∗
)

= JM∗[ψ(ρ), xτ
∗ ← v]K

= J(λxτ
∗
.M∗)[ψ(ρ)]K(v)

= J(λxτ .M)∗[ψ(ρ)]K(v) ,

(Def. of ψτ→σ)

(IH)

hence ψτ→σ(J(λxτ .M)[ρ]K∗) = J(λxτ .M)∗[ψ(ρ)]K.
— Application. Let us assume that the property (1) holds for a term M of kind τ → σ

and for a term N of kind τ (IH), and consider a valuation ρ that closes the term MN

in the forcing model MA ∗ . We have

ψσ
(
J(MN)[ρ]K∗) = ψσ

(
JM [ρ]K∗(JN [ρ]K∗)

)
= ψτ→σ(JM [ρ]K∗)

(
ψτ (JN [ρ]K∗)

)
= JM∗[ψ(ρ)]K

(
JN∗[ψ(ρ)]K

)
= J(M∗N∗)[ψ(ρ)]K = J(MN)∗[ψ(ρ)]K

(Def. of ψτ→σ)

(IH)

— Universal quantification. Let us assume that the property (1) holds for a proposi-

tion A (IH), and consider a valuation ρ that closes the proposition ∀xτA in the forcing

model MA ∗ . For all π ∈ Π and r ∈ JκK, we have

π ∈ ψo
(
J(∀xτA)[ρ]K∗

)
(r)

⇔ (π, r) ∈ J(∀xτA)[ρ]K∗

⇔ ∃v ∈ JτK∗ (π, r) ∈ JA[ρ, x← v]K∗

⇔ ∃v ∈ JτK∗ π ∈ ψo(JA[ρ, xτ ← v]K∗)(r)

⇔ ∃v ∈ JτK∗ π ∈ JA∗[ψ(ρ), xτ
∗ ← ψτ (v)]K(r)

⇔ ∃v′ ∈ Jτ∗K π ∈ JA∗[ψ(ρ), xτ
∗ ← v′]K(r)

⇔ ∃v′ ∈ Jτ∗K π ∈ J(A∗r)[ψ(ρ), r ← r, xτ
∗ ← v′]K

⇔ π ∈ J(∀xτ∗(A∗r))[ψ(ρ), r ← r]K
⇔ π ∈ J(λrκ .∀xτ∗(A∗r))[ψ(ρ)]K(r)

⇔ π ∈ J(∀xτA)∗[ψ(ρ)]K(r) ,

(Def. of ψo)

(Def. of ψo)

(IH)

hence ψo(J(∀xτA)[ρ]K∗) = J(∀xτA)∗[ψ(ρ)]K.
— Equational implication. Let us assume that the property (1) holds for two terms M1

and M2 of kind τ and for a proposition A (IH), and consider a valuation ρ that closes

the proposition M1 = M2 7→ A in the forcing model MA ∗ . For all π ∈ Π and r ∈ JκK



Forcing as a program transformation 53

we have the equivalences:

π ∈ ψo
(
J(M1 = M2 7→ A)[ρ]K∗

)
(r)

⇔ (π, r) ∈ J(M1 = M2 7→ A)[ρ]K∗

⇔ JM1[ρ]K∗ = JM2[ρ]K∗ ∧ (π, r) ∈ JA[ρ]K∗

⇔ JM1[ρ]K∗ = JM2[ρ]K∗ ∧ π ∈ ψo(JA[ρ]K∗)(r)

⇔ ψτ (JM1[ρ]K∗) = ψτ (JM2[ρ]K∗) ∧ π ∈ ψo(JA[ρ]K∗)(r)

⇔ JM∗1 [ψ(ρ)]K = JM∗2 [ψ(ρ)]K ∧ π ∈ JA∗[ψ(ρ)]K(r)

⇔ JM∗1 [ψ(ρ)]K = JM∗2 [ψ(ρ)]K ∧ π ∈ J(A∗r)[ψ(ρ), r ← r]K
⇔ π ∈ J(M∗1 = M∗2 7→ A∗r)[ψ(ρ), r ← r]K
⇔ π ∈ J(λrκ .M∗1 = M∗2 7→ A∗r)[ψ(ρ)]K(r)

⇔ π ∈ J(M1 = M2 7→ A)∗[ψ(ρ)]K(r) .

(Def of ψo)

(Def of ψo)

(ψτ into)

(IH)

Hence ψo(J(M1 = M2 7→ A)[ρ]K∗) = J(M1 = M2 7→ A)∗[ψ(ρ)]K.
— Implication. Let us assume that the property (1) (and thus also (2)) holds for two

propositions A and B (IH), and consider a valuation ρ that closes the proposition

A⇒ B in the forcing model MA ∗ . We first notice that

((c, q) 
A ∗ A[ρ]) ∧ (π′, r′) ∈ JB[ρ]K∗

⇔ ((c, q) 
A ∗ A[ρ]) ∧ π′ ∈ ψo(JB[ρ]K∗)(r′)
⇔ (c 
A (q F A)[ψ(ρ), q ← q]) ∧ π′ ∈ JB∗[ψ(ρ)]K(r′)
⇔ (c 
A (q F A)[ψ(ρ), q ← q]) ∧ π′ ∈ J(B∗r′)[ψ(ρ), r′ ← r′]K
⇔ (c · π′) ∈ J((q F A)⇒ B∗r′)[ψ(ρ), q ← q, r′ ← r′]K

(Def. of ψo)

(IH)

(∗)

for all c ∈ Λ, π′ ∈ Π and q, r′ ∈ JκK. From the above equivalence (∗), we deduce that

for all π ∈ Π and r ∈ JκK, we have

π ∈ ψo
(
J(A⇒ B)[ρ]K∗

)
(r)

⇔ (π, r) ∈ J(A⇒ B)[ρ]K∗

⇔ ∃(c, q)∈Λ∗ ∃(π′, r′)∈Π∗ [π ≡ c · π′ ∧ r = qr′ ∧
((c, q) 
A ∗ A[ρ]) ∧ (π′, r′) ∈ JB[ρ]K∗]

⇔ ∃(c, q)∈Λ∗ ∃(π′, r′)∈Π∗ [π ≡ c · π′ ∧ r = qr′ ∧
(c · π′) ∈ J((q F A)⇒ B∗r′)[ψ(ρ), q←q, r′←r′]K]

⇔ ∃q ∈ JκK ∃r′ ∈ JκK [r = qr′ ∧
π ∈ J((q F A)⇒ B∗r′)[ψ(ρ), q ← q, r′ ← r′]K]

⇔ ∃q ∈ JκK ∃r′ ∈ JκK
π ∈ J(r = qr′ 7→ (q F A)⇒ B∗r′)[ψ(ρ), r ← r, q ← q, r′ ← r′]K

⇔ π ∈ J(∀qκ ∀r′κ (r = qr′ 7→ (q F A)⇒ B∗r′))[ψ(ρ), r ← r]K
⇔ π ∈ J(λrκ .∀qκ ∀r′κ (r = qr′ 7→ (q F A)⇒ B∗r′))[ψ(ρ)]K(r)

⇔ π ∈ J(A⇒ B)∗[ψ(ρ)]K(r) ,

(Def. of ψo)

(∗)

hence ψo
(
J(A⇒ B)[ρ]K∗

)
= J(A⇒ B)∗[ψ(ρ)]K.

7.3. Proof of adequacy in forcing mode

We now have all the ingredients to prove the property of adequacy in forcing mode:



Alexandre Miquel 54

Proof of Prop. 53 p. 45. Let us assume that the judgment

E ;x1 : A1, . . . , xn : An ` t : A

is derivable in system PAω+, and consider:

— a total valuation ρ in the model MA such that ρ |= E∗;
— n fresh condition variables p1, . . . , pn;

— n closures c1, . . . , cn ∈ Λ such that c1 
A (p1 F A1)[ρ], . . . , cn 
A (pn F An)[ρ].

Let us write pi = ρ(pi) for all i ∈ [1..n], and consider the total valuation ρ∗ in the forcing

model MA ∗ that is defined by ρ∗(x
τ ) = ψ−1

τ (ρ(xτ
∗
)) ∈ JτK∗ for all xτ . By construction,

the two valuations ψ(ρ∗) and ρ coincide on the set of all transformed variables xτ
∗
.

Therefore, for each i ∈ [1..n], the valuations ρ and ψ(ρ∗), pi ← pi coincide on the set of

free variables of the proposition pi F Ai, so that by Lemma 44 we have

ci 
A (pi F Ai)[ψ(ρ∗), pi ← pi] , (i ∈ [1..n])

hence from the connection theorem (Theorem 63) we get

(ci,pi) 
A ∗ Ai[ρ∗] (i ∈ [1..n]) .

To apply the property of adequacy (Prop. 48) in the algebra A ∗, we still need to check

that ρ∗ |= E . For that, we notice that for every equation (M1 = M2) ∈ E (where M1, M2

are of kind τ), we have

JM∗1 [ρ]K = JM∗2 [ρ]K

hence (by Lemma 44)

JM∗1 [ψ(ρ∗)]K = JM∗2 [ψ(ρ∗)]K

so that from the connection theorem we get

ψτ (JM1[ρ∗]K∗) = ψτ (JM2[ρ∗]K∗) ,

and thus

JM1[ρ∗]K∗ = JM2[ρ∗]K∗

since ψτ is bijective. Therefore ρ∗ |= E (in the realizability algebra A ∗). Applying the

general property of adequacy (Prop. 48) in this algebra A ∗, we thus have:

t[x1 := (c1,p1), . . . , xn := (cn,pn)] 
A ∗ A[ρ∗] ,

that is:

(t[x1 := c1, . . . , xn := cn]∗, ((1p1) · · ·pn)) 
A ∗ A[ρ∗]

unfolding the definition of the compilation function in the algebra A ∗. Applying the

connection theorem again, we deduce that

t[x1 := c1, . . . , xn := cn]∗ 
A (p F A)[ψ(ρ∗), p← ((1p1) · · ·pn)] ,

(where p is a fresh condition variable), so that

t[x1 := c1, . . . , xn := cn]∗ 
A (((1p1) · · · pn) F A)[ψ(ρ∗), p1 ← p1, . . . , pn ← pn]



Forcing as a program transformation 55

by Lemma 45. But since the two valuations ρ and ψ(ρ∗), p1 ← p1, . . . , pn ← pn coincide

on all the free variables of the proposition ((1p1) · · · pn) F A, we conclude that

t[x1 := c1, . . . , xn := cn]∗ 
A (((1p1) · · · pn) F A)[ρ]

by Lemma 44.

Remark 64. The statement we gave in Prop. 53 is actually slightly more general than

the statement we proved above, since its conclusion is

t[x1 := c1, . . . , xn := cn]∗ 
A (((p0p1) · · · pn) F A)[ρ]

where p0 is an extra condition variable attached to the proof term t. We thus only proved

the desired result in the particular case where ρ(p0) = 1 = J1K. To generalize the above

proof to the case where ρ(p0) is an arbitrary semantic condition p0 ∈ JκK, we need to

alter the definition of the compilation function in the algebra A ∗, letting

t[x1 := (c1,p1), . . . , xn := (cn,pn)] =(
t[x1 := c1, . . . , xn := cn]∗, ((p0p1) · · ·pn)

)
,

where p0 ∈ JκK is a fixed semantic condition that is now uniformly attached to all proof

terms. Formally, we thus get another forcing algebra written A ∗p0 , whose compilation

function is parameterized by the semantic condition p0 ∈ JκK. (The other components of

the algebra A ∗p0 are defined as in the algebra A ∗ = A ∗1.) It is then a simple exercise

to check that Prop. 55 and the connection theorem (Theorem 63) still hold if we replace

the algebra A ∗ = A ∗1 by the algebra A ∗p0 . The general case of Prop. 53 is then proved

as above, simply by working in the forcing algebra A ∗p0 where p0 = ρ(p0).

References

J. Avigad. Forcing in proof theory. Bulletin of Symbolic Logic, 10(3):305–333, 2004.

F. Barbanera and S. Berardi. A symmetric lambda calculus for classical program extraction.

Inf. Comput., 125(2):103–117, 1996.

J. L. Bell. Boolean-Valued Models and Independence Proofs in Set Theory. Oxford, 1985.

P.-L. Curien and H. Herbelin. The duality of computation. In ICFP, pages 233–243, 2000.

T. Coquand and G. Jaber. A note on forcing and type theory. Fundam. Inform., 100(1-4):43–52,

2010.

P. J. Cohen. The independence of the continuum hypothesis. Proceedings of the National

Academy of Sciences of the United States of America, 50(6):1143–1148, December 1963.

P. J. Cohen. The independence of the continuum hypothesis II. Proceedings of the National

Academy of Sciences of the United States of America, 51(1):105–110, January 1964.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press, 1989.

K. Gödel. Consistency of the axiom of choice and of the generalized continuum-hypothesis with

the axioms of set theory. Proceedings of the National Academy of Sciences of the United States

of America, 24(12), 1938.

T. Griffin. A formulae-as-types notion of control. In Principles Of Programming Languages

(POPL’90), pages 47–58, 1990.

T. Jech. Set theory, third millennium edition (revised and expanded). Springer, 2002.



Alexandre Miquel 56

S. C. Kleene. On the interpretation of intuitionistic number theory. Journal of Symbolic Logic,

10:109–124, 1945.

J. L. Krivine. Lambda-calculus, types and models. Masson, 1993.

J.-L. Krivine. Typed lambda-calculus in classical Zermelo-Fraenkel set theory. Arch. Math.

Log., 40(3):189–205, 2001.

J.-L. Krivine. Dependent choice, ‘quote’ and the clock. Theor. Comput. Sci., 308(1-3):259–276,

2003.

J.-L. Krivine. Structures de réalisabilité, RAM et ultrafiltre sur N. Manuscript, available on the

author’s web page, 2008.

J.-L. Krivine. Realizability in classical logic. In Interactive models of computation and program

behaviour, volume 27 of Panoramas et synthèses, pages 197–229. Société Mathématique de

France, 2009.

J.-L. Krivine. Realizability algebras : a program to well order R. Manuscript, available on the

author’s web page, 2010.

A. Miquel. Existential witness extraction in classical realizability and via a negative translation.

Logical Methods for Computer Science, 2010.

Alexandre Miquel. Forcing as a program transformation. In LICS, pages 197–206. IEEE Com-

puter Society, 2011.

M. Parigot. Proofs of strong normalisation for second order classical natural deduction. J. Symb.

Log., 62(4):1461–1479, 1997.

C. Raffalli and F. Ruyer. Realizability of the axiom of choice in HOL (An analysis of Krivine’s

work). Fundamenta Informaticae, 84(2):241–258, 2008.


