
A Model for Impredicative Type Systems,
Universes, Intersection Types and Subtyping

Alexandre Miquel
Projet Coq,

INRIA Rocquencourt BP 105
78 153 Le Chesnay cedex, France

Alexandre.Miquel@inria.fr

Abstract

We introduce a new model based on coherence spaces
for interpreting large impredicative type systems such as the
Extended Calculus of Constructions (ECC). Moreover, we
show that this model is well-suited for interpreting intersec-
tion types and subtyping too, and we illustrate this by in-
terpreting a variant of ECC with an additional intersection
type binder. Furthermore, we propose a general method
for interpreting the impredicative level in a non-syntactical
way, by allowing the model to be parametrized by an ar-
bitrarily large coherence space in order to interpret inhab-
itants of impredicative types. As an application, we show
that uncountable types such as the type of real numbers or
Zermelo-F el sets can safely be axiomatized on the im-
predicative level of, say, ECC, without harm for consistency.

1 Introduction

In this paper, we set out a new model based on coherence
spaces for interpreting and proving the consistency of large
impredicative type theories. Originally, this model was de-
signed for proving the consistency of the Implicit Calculus
of Constructions [10], a Curry-style variant of ECC with an
additional intersection type binder. Nevertheless, it is pow-
erful enough for proving the consistency of a large class
of impredicative type systems, since it makes it possible to
interpret universes, intersection types and subtyping in the
same framework.

But the most interesting feature of the model is that the
inhabitants of impredicative types are not interpreted in a
syntactical way, but by the points of an arbitrary coherence
space, provided it is a -model. Since the cardinality of
such a -model may be arbitrarily large, we can show that
in type theories like ECC, uncountable types can be axiom-

atized in a consistent way on the impredicative level.

Outline

In section 2, we start by introducing the Implicit Calcu-
lus of Constructions, since its interpretation will illustrate
most of the capacities of the model.

Section 3 is devoted to the interpretation of types in co-
herence spaces. We also show how dependent products, in-
tersection types, subtyping and universes can be interpreted
within that framework.

After explaining a general method for interpreting im-
predicativity in coherence spaces (section 4), we finally
build the model in section 5, and we use it for proving the
consistency of a restriction of the Implicit Calculus of Con-
structions, which contains ECC.

2 The implicit calculus

2.1 Presentation

Basically, the Implicit Calculus of Constructions ()
or, shortly, the implicit calculus, is a variant of ECC [9]
in which we distinguish two kinds of products: the explicit
product and the implicit product, denoted by and

respectively.
The explicit product is the usual dependent product of

Pure Type Systems (PTS), whereas the implicit product is
much more an intersection type binder, like the impredica-
tive product of the Curry-style system and its extensions,
such as the Type Assignment Systems [3].

But in contrast to these calculi, the implicit product can
be used at any level—which may be impredicative or pred-
icative. Since the two products are distinguished by the
syntax and not only by the typing rules, they can freely be
mixed in writing terms.

1

We also use a Curry-style -abstraction, since the PTS-
style -abstraction la Church would prevent us from writ-
ing implicitly polymorphic terms such as the identity .

Initially, the Implicit Calculus of Constructions was in-
troduced to give an answer to the problem of ‘implicit ar-
guments’1 in the framework of proof assistants based on
variants of the Calculus of Constructions such as the Coq
system [2]. However, we strongly conjecture that the typ-
ing relation of (which contains the Curry-style system
F) is undecidable, so this calculus seems to be a bad candi-
date for solving our initial problem, at least from a practical
point of view.

Nevertheless, a study of the syntactical and semantical
properties of the implicit calculus is still interesting, since
this calculus enjoys a rich subtyping relation which might
be useful to understand subtyping in a framework that ex-
tends the scope of usual functional programming languages
such as ML.

In the following, we will only recall some basic defini-
tions and results whose proofs are detailed in [10].

2.2 Basic notations

In this section, we shall assume that the reader is familiar
with PTS [5]. The set of sorts used in the implicit calculus
is defined by

where and denote the impredicative sorts, and
the usual universe hierarchy of ECC.

Notice that here, we have two impredicative sorts, since
it is convenient to distinguish a sort for propositional types
() from a sort for impredicative data types (). Al-
though they are completely isomorphic for the typing rules,
it will be interesting to interpret them differently when
building the corresponding model.

The terms of the implicit calculus are given by the fol-
lowing syntax:

As usual, we will consider terms up to -conversion. In
the following, we will denote by the set of free
variables of a term , and by the term built by
substituting the term to each free occurrence of in the
term .

1That is arguments of functions that can be automatically infered by the
system, and that the user does not wish to write, especially when develop-
ing large proofs.

Reduction rules of the implicit calculus are the usual
and -reduction rules of the -calculus. For each rule

, denotes the one-step -reduction re-
lation, while denotes the reflexive and transitive closure
of and denotes the -convertibility equivalence re-
lation.

Proposition 2.1 (Church-Rosser) — The , and -
reduction rules are Church-Rosser.

Notice that the -reduction is confluent since we have
no type annotation on the .2

2.3 Typing rules

Before introducing typing rules, we have to define two
sets and . The set ,
defined by

is used for typing sorts, whereas the set , defined by

is used for typing products. Note that the same set is used
for typing both explicit products and implicit products.

We also need to define an ordering relation between
sorts, which is called the cumulative order. This ordering
relation, denoted by , is defined by

if

The typing rules of the implicit calculus involve two
judgments:

a judgment denoted by , which says: “the context
is well-formed”;

a judgment denoted by , which says: “under
the context , the term has type ”.

Both judgments are defined by mutual induction with the
rules written in figure 1. These rules include:

Rules for well-formed contexts (WF-E) and (WF-S).

Logical rules (VAR), (SORT), (EXPPROD), (IMPPROD),
(LAM) and (APP).

2It is well-known[4] that the -reduction is not confluent on raw terms
in a Church-style PTS.

2

Rules for well-formed contexts

(WF-E) (WF-S)

Rules for well-typed terms

(VAR) (SORT)

(EXPPROD)

(IMPPROD)

(LAM) (APP)

(GEN)

(INST)

(CONV) (CUM)

(EXT) (STR)

Figure 1. Typing rules of the implicit calculus

3

A cumulativity rule (CUM) and a convertibility rule
(CONV) for .

Four specific rules (GEN), (INST), (EXT) and (STR)
which are explained with more details below.

The logical rules are the usual logical rules of ECC, ex-
cept that we have an extra rule for the implicit product—
which shares the same premises and side-condition as the
rule for the explicit product—and that the rule (LAM) now
involves a Curry-style -abstraction, instead of the Church-
style -abstraction of ECC. Another difference between
ECC and ICC is that in the latter, the convertibility rule
(CONV) identifies types up to -convertibility.

The rules (GEN) and (INST) are respectively the intro-
duction and elimination rules for implicit product types. In
contrast to the rules (LAM) and (APP), the rules (GEN) and
(INST) have no associated constructors. Remark that the rule
(GEN) involves a side-condition ensuring that the variable
whose type has to be generalized does not appear free in the
term .

The purpose of the next rule, called (EXT) for ‘extension-
ality’, is to enforce the -subject reduction property in the
implicit calculus.3 This rule is desirable here, since it gives
smoother properties for the subtyping relation, such as the
contravariant/covariant subtyping rules in products.

The last rule, called (STR) for ‘strengthening’, gives the
semantic of the non-dependent implicit product, by saying
that a term of type also has type when does
not occur free in . The main reason for adding this rule is
that it is necessary for deriving the usual strengthening rule
(hence its name), which would not hold without it.

2.4 Typing properties

The implicit calculus enjoys the -subject reduction
property:

Proposition 2.2 (Subject reduction) — If ,
then

Such a result is not so easy to prove [10], because of
all the rules which are not syntax-directed in the implicit
calculus.

Besides the subject reduction property, one of the main
properties of the implicit calculus is that typing rules induce
a rich subtyping relation. This subtyping relation, which is
denoted by , can be defined directly from the
typing judgment as follows:

3Such a rule cannot be derived from the other rules, for the same rea-
sons that it cannot be derived in the Curry-style system which is included
in ICC.

(where is a fresh variable).
For each context , the relation is a pre-

ordering over well-formed types. Its main properties, pre-
sented here as admissible rules, are the following:

The rule of subtyping:

(SUB)

Contravariance/covariance in products:

The first of these rules is an immediate consequence of the
(EXT) rule, and could not be derived without it.4 Other in-
teresting admissible rules concerning subtyping are given
in [10].

In the implicit calculus, the ‘false’ proposition can be
represented either by or by .
However, both propositions are provably equivalent in the
calculus. We have the following result:

Proposition 2.3 — If the implicit calculus is strongly nor-
malizing, then it is consistent.

The proof is done as usual by considering a proof of
‘false’ reduced in head normal form, by discriminating
cases and reasoning using inversion lemmas.

2.5 Restricting the calculus

The main limitation of the model that we will build in
section 5 is that it cannot interpret the (STR) rule. For this
reason, we will only prove the consistency of the restricted
implicit calculus (), which is the implicit calculus
without the (STR) rule.

Indeed, the reader may have noticed that the (STR) rule
is really needed when is empty, since it can be derived
by using the (INST) rule when is not empty. One may
fear that such a rule could jeopardize the consistency of the
whole theory. Although we do not have actually any proof
of the consistency of the whole system, we have several rea-
sons to hope that this rule does not endanger the consistency
of . The first reason is that the strong normalization
of ICC—still conjectured—implies the consistency of the
whole system. Another reason is that we can prove in a

4In fact, the rule for contravariance/covariance in explicit products is
equivalent to (EXT).

4

pure syntactical way that is strongly normalizing iff
is strongly normalizing—in other words, the strong

normalization of does not depend on the presence of
the (STR) rule (see the discussion about strong normaliza-
tion in section 6).

3 Types in coherence spaces

In this section, we shall assume that the reader is familiar
with coherence spaces [6], and more generally with domain
theory. So we will only recall some basic definitions and
notations.

3.1 Coherence spaces

A coherence space is a set of sets satisfying the fol-
lowing criterions:

1. if is an element of then every subset of is also an
element of ;

2. if is a subset of such that for every
, then .

Elements of a coherence space are called points.
Points of also are sets, whose elements are called atoms,
or tokens. The set of atoms of is called the web of and
denoted by .

In the following, points will be denoted by lowercase
latin letters , , , and atoms by lowercase greek letters

, , .
The web of has a graph structure given by the reflexive

and symmetric relation denoted by and
defined by

This graph structure completely determines the coherence
space , whose points are exactly the cliques of , that is
full subgraphs of .

Coherence spaces can be considered as a special case of
Scott domains whose elements are ordered by inclusion. In
particular, finite elements (at the sense of domain theory)
are precisely the finite points. But in contrast to Scott do-
mains, coherence spaces are not equipped with continuous
functions, but with stable functions.

Let and be coherence spaces. A function
is said to be stable if it is Scott-continuous, and if

for all . If is a stable function,
we denote by its trace, which is formed by the set of
pairs such that

The trace of uniquely determines , so it is common
to identify with . The set of stable functions

is also identified with the set of their traces,
which is denoted by . With such a representa-
tion, the set of (traces of) stable functions form a coherence
space, whose web is given by

where denotes the set of finite points of , and whose
coherence relation is defined by

Notice that inclusion ordering over traces does not corre-
spond to the usual point-wise ordering over functions, but
to Berry’s order, which is stronger.

Let and be coherence spaces. A stable function
is called a rigid embedding if there is a graph

embedding such that

for all . By identifying each atom to its
image , we can see any rigid embedding as a
rigid inclusion between coherence spaces, that is an inclu-
sion such that

for all . In the following, we will denote by
the fact that is rigidly embedded into , and we

will say that is an extension of .

3.2 Stability revisited

Since the presence of a universe hierarchy in our cal-
culus, the usual continuity requirement appears to be too
strong, especially for interpreting the two products. So we
need to weaken this condition the following way:

Let be an infinite cardinal. We denote by the set of
all points such that . A map
is said to be

-continuous if

quasi-stable if

for every family such that ;

5

-stable if it is -continuous and quasi-stable.

Notice that both conditions of -continuity and quasi-
stability separately imply monotonicity. It is also straight-
forward to check that the usual notions of continuity and
stability are special cases of -continuity and -stability cor-
responding to the case where .

As for stable functions, quasi-stable and -stable func-
tions are determined by their traces, so we will identify
such functions with their traces. In the following, we de-
note by the set of (traces of) quasi-stable functions

, and by the set of (traces of) -stable
functions . We have the following proposition:

Proposition 3.1 — The sets and are co-
herence spaces whose webs are given by

and

and whose coherence relation is given by the same formula
used for stable functions (see 3.1).

In fact, we have the following infinite sequence of rigid
embeddings:

In other words, the greater the cardinal , the weaker the
corresponding notion of -stability, the weakest case corre-
sponding to the coherence space of quasi-stable functions,
when all continuity requirement has disappeared. In the
following, we will call the category of -coherence spaces
the category whose objects are coherence spaces and whose
morphisms are -stable functions.

Proposition 3.2 — For a given infinite cardinal , the cat-
egory of -coherence spaces is a Cartesian closed category.

3.3 Types and type bases

Let be a coherence space, and a set of points
of . We say that

is a type basis of if implies
for all ;

is a semantical type of if is upwards closed in
, and if for each subset , implies

.

If is a type basis, then its upwards closure is a
semantical type of , denoted by and called the type gen-
erated by in . Conversely, if is a semantical type of

, then the set of its minimal elements form a type basis of
, denoted by and called the type basis of . Moreover,

these two maps are reciprocal, and they induce a one-to-one
correspondence between type bases and semantical types of
the coherence space .

Intuitively, a type basis can be thought as a specifi-
cation, whereas the semantical type generated by in

extensionally represents all the points of that meet this
specification.

In the following, we will represent types intensionally
by using the notion of type basis. The main reason for this
choice is that type bases are invariant by rigid embeddings,
which is not the case for semantical types.

Indeed, consider two coherence spaces and such
that . A semantical type is not in general
a semantical type of , since is not necessary upwards
closed in . But if we consider the type basis ,
the set is also a type basis in . Hence, generates
a semantical type of , say , which is nothing else but
the upwards closure of in . In such a situation, we will
say that is the natural extension of in .

In other words, a type basis does not only repre-
sent a unique semantical type , but it also represents
all its natural extensions in coherence spaces extending .

Finally, another link between a semantical type and its
type basis is the existence of a coercion from the former to
the latter. More formally, consider a type basis and
an element of the type generated by into . Since ele-
ments of are mutually incompatible, there exists exactly
one element such that . Such an element,
which is denoted by , is called the coercion of
into .

3.4 Types as values

In the implicit calculus, types do not only appear at the
right side of judgments, but may also appear in well-typed
terms. Hence, we also need a method for encoding a type
basis into a single point of a coherence space (i.e. a type as
a value). As we will see later, continuity reasons make that
such an encoding has no sense for all type bases, but only
for small ones.

Let be an infinite cardinal, and a -coherence space.
We say that a type basis is small (with respect to)
if we have

and

where denotes the set of all atoms which appear in
points belonging to . In the same way, a semantical type
is said to be small if its type basis is small. Notice that the
cardinal of a small type may be arbitrarily big.

For each small type basis , we introduce a new
atom, denoted by , for representing the semantical
types that are generated by in coherence spaces extend-
ing .

6

By definition, the space of small types of is the co-
herence space denoted by , whose web is the set of
atoms where ranges over the set of small type bases
of , and whose coherence relation is the equality. The
coherence space is a flat coherence space, whose
points are either the empty set (the undefined type) or
singletons in the form where is a small type ba-
sis of . In the following, we will denote
the value associated to the small type basis .

Since type bases are invariant by rigid embeddings,
implies . In other words, we have:

Proposition 3.3 — The correspondence is a
covariant endofunctor in the category of coherence spaces
equipped with rigid embeddings.

In the following, we will denote the set defined
by

Notice that is a semantical type of , which
is equal to its type basis.

3.5 Product and intersection

Let and be coherence spaces, a type basis of ,
and a family of type bases of indexed over .
The set of all -stable functions such that

is a semantical type of , whose type basis is denoted

by . In the same way, the intersection of
the semantical types for is a semantical type of

, whose type basis is denoted by .
Notice that the notation makes sense

even if , by assuming that the intersection of an
empty family is equal to .5 In that particular case, we have

, which is the type basis representing
the whole space .

We have the following independence result:

Lemma 3.4 — Let , , and be coherence spaces
such that and . If is a type basis of
and a family of type bases of indexed over ,
then we have

5Notice that this case can be inconsistent with the meaning of the
(STR) rule, hence the reason for not interpreting it.

This allows us to drop the superscripts in the notations
above, by writing shortly and .

In general, type smallness is not preserved by dependent
product and intersection, except if the cardinal is either
countable or inaccessible.

The cardinal is said to be inaccessible if it satisfies:

1. ;

2. for all cardinal , implies ;

3. for each family indexed over a cardinal
such that for all , we have .

Although the existence of inaccessible cardinals cannot
be proven in the ZF-set theory [8]6, such ‘big’ cardinals
have been used for a while, especially for building set-
theoretical models of type theories [9].

Lemma 3.5 — Let and be two coherence spaces
equipped with -stable functions, where is either count-
able or inaccessible. If is a small type basis of and if

is a family of small type bases of indexed over
, then the sets and are small

type bases of and respectively.

In the following, we will assume that is either countable
or inaccessible.

Now, we can transpose the dependent product and type
intersection operators at the level of types-as-values by in-
troducing the functions

defined by:

1. if and if for all , then

2. in all other cases,

Lemma 3.6 — The functions and are -stable func-
tions from to and

respectively.

Quasi-stability of and is straightforward, and the
-continuity of these functions comes from the fact that

and are small types for all .

6Unless it turns out inconsistent.

7

3.6 Subtyping

Let be a coherence space. It is natural to order the set
of all type bases of by the relation defined by:

Notice that because of the second equivalence, this order-
ing does not depend on the coherence space in which
the semantical types generated by and are considered.
Moreover, dependent product and intersection satisfy the
expected property with respect to this ordering:

Lemma 3.7 Let and be two coherence spaces, ,
two type bases of and , two families
of type bases of indexed over and respectively. If

and for all , then

and

4 Impredicativity

4.1 A trivial encoding

In every coherence space , there exists at least two dif-
ferent types which are:

The empty type , whose type basis is equal to and
denoted by .

The type of all objects, whose type basis is equal to
and denoted by .

Notice that the denotations and do not
depend on the coherence space . Moreover, and are
respectively the smallest and the largest type bases of for
the subtyping ordering. These types are good candidates
for interpreting in a proof-irrelevant way the propositional
types:

Lemma 4.1 — Let and be two coherence spaces
equipped with -stable functions, a type basis of and

a family of type bases of indexed over . If
for all , then

if for all ;

if for some .

Remark that and are small type basis for all (infinite)
cardinal , even if the type basis represents all the points
in all the coherence spaces.

4.2 The space of computational values

Although the trivial interpretation of impredicativity is
sufficient for interpreting (and proving its consis-
tency), we need to refine the ideas expressed above if we
want to interpret impredicativity in a non trivial way. Re-
mark that such a requirement is necessary if we want to
reuse our model for type systems with strong elimination,
such as the Calculus of Inductive Constructions [11, 12].

Usually, impredicative types are interpreted by PER’s or
saturated sets, and proof terms are interpreted by syntactic
constructs such as recursive functions or -terms. Although
such an interpretation keeps quite close to the ‘proofs-as-
programs’ paradigm, it is hard to use it—for not saying
impossible—to interpret uncountable types at the impred-
icative level.

For that, a simple solution is to interpret the programs at
the impredicative level not by syntax, but by the points of a

-model in the category of coherence spaces that will play
the same

Now, we will assume that is an infinite cardinal, and

that is a coherence space such that . Such
a -model (for the -reduction only) can be easily built by

solving for example the equation , where
denotes a coherence space used for representing ground

values.
In the following, the coherence space will be refered

to as the space of computational values, and its points and
atoms will be called the computational points and the com-
putational atoms of respectively.

4.3 -coherence spaces

A -coherence space is a coherence space equipped
with a coherence space , called its computational part,
and two rigid embeddings

Atoms and points of are respectively called the compu-
tational atoms and the computational points of . Because
of the two rigid embeddings, any atom (or point) of
can be seen both as an atom (or point) of and as an atom
(or point) of . In the following, we will often identify each
atom of to its images and in and
respectively.

For all , we denote by the computational con-
tents of , which is defined by

where denotes the retraction associated to
the rigid embedding .

8

In the following, will be considered as a -coherence
space itself, simply by setting , both associated
rigid embeddings being defined as the identity function.

4.4 -morphisms

Let be an infinite cardinal greater or equal to , and
, two -coherence spaces. A -morphism—or,

shortly, a -morphism—is a -stable function
such that there exists a -stable map
such that the following diagram commutes

that is:

Intuitively, the existence of means that

1. for all , the computational contents of only
depends on the computational contents of , and

2. the function which expresses that dependency is
a -stable function

Also notice that , if it exists, is unique.

Fact 4.1 — A function is a -morphism iff all
the atoms satisfy the condition

Informally, a -morphism is an -stable function such
that every computational atom in its range is produced only
by computational atoms in its domain, in a -continuous
way. As a consequence, the set of (traces of) -morphisms
forms a coherence space, which is denoted by .

Moreover, this coherence space is also a -coherence
space, whose computational part is given by

By definition, the category of -coherence spaces
is the category whose objects are -coherence spaces and
whose morphisms are -morphisms.

Proposition 4.2 — For all infinite cardinal , the cat-
egory of -coherence spaces is a Cartesian closed cat-
egory.

In the following, we will work in the category of -
coherence spaces. Consequently, we need to do some minor
changes in the definitions and results of section 3, by re-
placing ‘ -stable function’ by ‘ -morphism’—this es-
sentially concerns the definition of the dependent product

, which now contains only -morphisms.
We also need to give the structure of a -coherence space
to , by simply setting , which means
that the computational contents of types as values is empty.

All the results stated in that section remain true in the cat-
egory of -coherence spaces. In particular, lemma 3.6
remains true in the new category: the functions and
are -morphisms, since they have no computational con-
tents (i.e.).

Proposition 4.3 — Let and be two coherence spaces
equipped with -morphisms, a type basis of and

a family of type bases of indexed over . If
for all , then

and

In other words, type bases of are the good candidates
for interpreting impredicativity.

5 A model for

5.1 Building the model

Using the ideas expressed above, it is now quite simple
to build a model of the restricted implicit calculus in which

will be interpreted in a non-trivial way, by looking for
solutions of the equation

Intuitively, this equation says that a point of is either a
computational value, a function, or a small type of . No-
tice that in the first coalesced sum, we need to identify the

copies of points of which are both in and in
.

Proposition 5.1 — For each infinite cardinal , the equa-
tion has solutions.

We now need to give some lower bound on the cardinal .
In the following, we will assume that there is an -sequence

of inaccessible cardinals such that:

1. ;

2. for all .

9

Theorem 5.2 — If is a cardinal such that for each
, then each solution of is a model for .

For proving that result, we essentially have to interpret
the universe hierarchy and both products. For that, we need
to introduce for each the coherence space defined
as the smallest solution of the equation

Intuitively, each is a partial model corresponding to the
first -levels of the universe hierarchy. In particular, we have

Moreover, it is easy to check that for each level we
have , hence

Now, we can interpret universes as follows:

;

;

.

Notice that because , each type basis of
is a small type w.r.t . Hence contains the

value associated to any type basis of , without regard-
ing its cardinal. This point is important, since we can not
predict in advance which types of will be useful in the
construction, due to the impredicative nature of in the
model—remember that type bases of can be built by
explicit/implicit quantifications over types living in higher
levels in the hierarchy. Also notice that the condition

implies that

Products are interpreted at each level by constants
defined the same way as in paragraph 3.5.

Then we have and for all ,
so we can set

and

(Note that we can not define and once for all for the
whole model, since is not necessary closed by de-
pendent product and intersection—remember that is not
necessary an inaccessible cardinal, contrary to the interme-
diate cardinals .)

5.2 Interpreting terms

For defining the interpretation of terms, it is conve-
nient to consider the denotations and
as shorthands for

by viewing as a Curry-style -calculus with constants
, , , and .

As usual, the interpretation of a term is parametrized by
a valuation, which is a map from the set of variables to
the model . If is a valuation, a variable and a point
of , then denotes the valuation obtained by
remapping to in .

The interpretation is defined induc-
tively on as follows :

Notice that here, we interpret terms—even ill-typed ones—
instead of interpreting judgments or derivations

Lemma 5.3 (-reduction) — Let and be terms,
and a valuation. Then

implies ;

implies ;

It is important to note here that -convertible terms have
not necessary the same denotation in the model, even if they
are well-typed (consider and). Neverthe-
less, the situation becomes simpler if when
both denotations and are types-as-values in
the model: in that case, we have the equality

due to the trivial ordering between types-as-values.
This argument will allow us to interpret the convertibility
rule of in the model, which asserts the extensional
equivalence of -convertible types.

Let be a context. A valuation
is said to be adapted to if for all there exists a

type basis such that and .

Proposition 5.4 (Soundness) — In , im-
plies that for each valuation adapted to there exists a
type basis such that

and

Corollary 5.5 — is consistent.

10

Proof. Check that .

Since this model is clearly a model of ECC too, the proof
outlined above is also another proof of the consistency of
ECC.

5.3 Choosing the space

Interpreting uncountable impredicative types As no-
ticed in paragraph 4.2, a simple way for building the co-
herence space is to solve the equation

parametrized by a coherence space . A convenient choice
for is to take , where denotes the flat coher-
ence space7 built by lifting an arbitrary set . The main ad-
vantage of this construction is that any function
can be lifted to an -morphism , without

assuming any requirement on .
By this way, it is quite simple to prove that we can safely

axiomatize, say, the theory of real numbers at the impred-
icative level8 without breaking the consistency of the under-
lying theory (here, ECC or), by taking and
by checking carefully that all the primitive predicates and
axioms of real number theory are realized by some points
in the model—which is here the case.

ZF-set theory at the impredicative level A more ambi-
tious example is to consider a set satisfying the following
criterions:

1. if and then ;

2.

3. if then ;

4. if is a family of elements of indexed over an
element , then .

In set theory [8], we can prove that such a set exists provided
we assume the existence of an inaccessible cardinal. In fact,
such a set is a model of ZF-set theory, since it is stable by
‘all the operations’ that we can define in the usual set theory
(i.e. without any inaccessible cardinal). Consequently, if
we use for building , and for building , then we
can show that is a model of an axiomatization of ZF-set
theory on the impredicative level (within ECC or).

7 is defined as the coherence space whose web is equal to , and
whose coherence relation is the identity. Points of are the singletons
and the empty set.

8By this, we mean that the type of real numbers is declared in ,
whereas the axioms of real numbers are declared in

Nevertheless, this result is not so immediate, since this
axiomatization of set theory in type theory leads to a higher-
order set-theory, which is logically stronger than ZF-set the-
ory. The key point is that we used here a set-theoretical
model of ZF, which is known to be not only a model of
the usual first-order ZF-set theory, but also a model for the
higher-order set theory.

This result would not hold if we had replaced by a
countable model of ZF-set theory given by the enheim-
Skolem theorem for example. Such an attempt would fail
immediately for the interpretation of the comprehension
scheme. Indeed, the interpretation of the comprehension
scheme requires that for all and for all predicate

ZF , there exists a denotation
which represents the set . But in the count-
able model of ZF given by the enheim-Skolem theorem,
such a denotation exists if and only if is (the denotation
of) a predicate of first-order set-theory, which is far from
being the case for all belonging to ZF , which
also contains all the (denotations of) higher-order predicates
built by using quantifications on higher-order types in the
universe hierarchy.

Beware of dangerous skolemizations When axiomatiz-
ing ZF-set theory on the impredicative level of ECC (or

), one must introduce skolemization symbols with the
utmost care. Although usual skolem symbols for denoting
the powerset or the union of (the elements of) a given set
can be easily interpreted in our model, it is not possible to
interpret in our framework a symbol

ZF ZF ZF

such that represents the set . In-
deed, our interpretation of impredicativity is based on the
fact that the computational contents of only depends
on the computational contents of . For that reason, the
denotation of such a symbol must be constant w.r.t its
second argument—which has no computational contents—
which is clearly impossible if is intended to interpret a
skolem symbol for the comprehension scheme.9 However,
the problem disappears by writing the axioms of ZF in the
style of first-order theories.

6 Future work

Connections with Ludics At the time we discovered this
model, we didn’t know anything about Ludics [7]. Never-
theless, it turns out that many notions defined in section 3

9The same problem arises if we want to introduce a symbol express-
ing the l.u.b of a bounded subset of given by a predicate over the real
numbers, in order to express the completeness axiom.

11

are very close to ideas developed by Girard in that theory.10

For this reason, there is no doubt that a better understand-
ing of the relationship between the present work and Ludics
could help us to improve the model.

Strong normalization It is reasonable to think that the
ideas introduced in this paper could be used also for build-
ing strong normalization models. Technically, we can add
normalization information in the atoms representing
types as values, by giving to them a -set structure [1]. But
for achieving this goal, we first need to modify the model in
such a way that all types becomes inhabited, since we want
to interpret terms in all contexts. Actually, such a modifica-
tion seems to be difficult, mainly in presence of intersection
types. Finally, it is interesting to notice that within a strong
normalization model of , the (STR) rule becomes a
special case of the (INST) rule—due to the fact that the in-
terpretations of all types are inhabited—hence such a model
is also a normalization model for the whole system .

Interpreting inductive types A major improvement of
our work would be the interpretation of a calculus with in-
ductive types, such as the Calculus of Inductive Construc-
tions (CIC) [11, 12]. Yet, we don’t have any precise result
concerning that point, but it seems that the model already
contains all the material necessary for achieving such an in-
terpretation.

7 Conclusion

In this paper, we have described a new model for inter-
preting impredicative type universe. We have shown that
types, universes, dependent products, intersection types and
subtyping can be easily interpreted in coherence spaces.

Our main result is that the impredicative level of large
type theories like ECC can be interpreted in a parametrized
way, by using an arbitrary -model in the category of co-
herence spaces for representing inhabitants of impredicative
types.

On the other hand, the whole model is itself a model for
the untyped -calculus (for the -rule) if we consider types-
as-values simply as ground values by forgetting the logical
information that they carry.

Finally, the fact that this model allows us to prove the
consistency of non-trivial axiomatizations on the impred-
icative level of type theories with universes illustrates the
best its strength.

10In particular, the definition of semantical types is very close to the def-
inition of behaviours in Ludics, and the relation between a semantical type
and its type basis is exactly the same as the relation between a behaviour
and its incarnation.

References

[1] T. Altenkirch. Constructions, Inductive types and
Strong Normalization. Ph.D. Thesis, University of
Edinburgh, 1993.

[2] B. Barras, S. Boutin, C. Cornes, J. Courant, J. Filli-
atre, E. H. Herbelin, G. Huet, C.
C. Murthy, C. Parent, C. Paulin, A. B. Werner.
The Coq Proof Assistant Reference Manual - Version
V6.1, research report No0203, INRIA, 1997.

[3] P. Giannini, F. Honsell, S. Ronchi. Type inference:
some results, some problems. Fundamenta Informati-
cae, 19(1,2):87–126, 1993.

[4] J.H. Geuvers, The Church-Rosser property for -
reduction in typed lambda calculi. In Proceedings of
the seventh annual symposium on Logic in Computer
Science, Santa Cruz, Cal., IEEE, pp 453–460.

[5] J. H. Geuvers, M. J. Nederhof. A modular proof of
Strong Normalization for the Calculus of Construc-
tions. Journal of Functional Programming 1,2(1991),
155-189.

[6] J.-Y. Girard, Y. Lafont, P. Taylor. Proofs and Types.
Cambridge University Press, 1989.

[7] J.-Y. Girard. Locus Solus. 1999. Private communica-
tion.

[8] J.-L. Krivine. des ensembles. Cassini, 1998.

[9] Z. Luo. Computation and Reasoning: A Type Theory
for Computer Science. Oxford University Press, 1994.

[10] A. Miquel. Arguments implicites dans le Calcul des
Constructions: d’un formalisme la Curry.
moire de DEA. Univ Paris VII, 1998.
http://pauillac.inria.fr/~miquel/

[11] C. Paulin-Mohring. inductives en
des Types d’Ordre . Habilitation diriger des
recherches, Univ Claude Bernard, Lyon I, 1996.

[12] B. Werner. Une des Constructions Inductives.
PhD Thesis, Univ Paris VII, 1994.

12

