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Abstract. This paper deals with the specification problem in classical realizability (such
as introduced by Krivine [17]), which is to characterize the universal realizers of a given
formula by their computational behavior. After recalling the framework of classical realiz-
ability, we present the problem in the general case and illustrate it with some examples. In
the rest of the paper, we focus on Peirce’s law, and present two game-theoretic characteri-
zations of its universal realizers. First we consider the particular case where the language
of realizers contains no extra instruction such as ‘quote’ [16]. We present a first game G0
and show that the universal realizers of Peirce’s law can be characterized as the uniform
winning strategies for G0, using the technique of interaction constants. Then we show that
in presence of extra instructions such as ‘quote’, winning strategies for the game G0 are
still adequate but no more complete. For that, we exhibit an example of a wild realizer of
Peirce’s law, that introduces a purely game-theoretic form of backtrack that is not captured
by G0. We finally propose a more sophisticated game G1, and show that winning strategies
for the game G1 are both adequate and complete in the general case, without any further
assumption about the instruction set used by the language of classical realizers.

1. Introduction

The correspondence between proofs and programs—also known as the Curry-Howard
correspondence [5, 12, 9]—has brought a deep renewal in proof theory, by establishing
strong connections between the concepts of proof theory and the concepts of functional
programming. For a long time, the computational interpretation of proofs induced by this
correspondence was strictly limited to intuitionistic logic and to constructive mathematics,
and the computational contents of classical proofs could only be studied indirectly, via
clever translations—the so called negative translations—from classical logic to intuition-
istic logic [7] or to linear logic [8].

In 1990, Griffin discovered [10] that in the programming language Scheme [25], the
control operator call/cc (for ‘call with current continuation’) could be given the type
((A → B) → A) → A corresponding to Peirce’s law through the formulas-as-types inter-
pretation [12]. Since Peirce’s law constructively implies all the other forms of classical
reasoning (excluded middle, double negation elimination, reductio ad absurdum, de Mor-
gan laws, etc.), this discovery opened the way to a direct computational interpretation of
all classical proofs, using control operators and their ability to implement backtrack to
interpret classical reasoning principles. Many classical λ-calculi have been introduced
from these ideas, such as Parigot’s λµ-calculus [24], Barbanera and Berardi’s symmetric
λ-calculus [1], Krivine’s λc-calculus [17] or Curien and Herbelin’s λ̄µ-calculus [4].

However, the analysis of the computational behavior of programs extracted from clas-
sical proofs quickly proved to be difficult. One reason for this was the presence of control
operators, which naturally break the linearity of the execution flow of programs. But the
main reason was the lack of a theory relating the point of view of typing (which cor-
responds to deduction in logic) with the point of view of computation. Such a theory
already existed for intuitionistic logic: the theory of realizability, that was initially in-
troduced by Kleene [13] to interpret the computational contents of the proofs of Heyting
arithmetic, and later extended to more expressive frameworks, including intuitionistic set
theories [22, 6, 19]. Alas, the theory of realizability such as designed by Kleene and his
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successors was not only limited to intuitionistic logic, but it was also fundamentally in-
compatible with classical logic1.

1.1. The theory of classical realizability. To address this problem, Krivine introduced in
the middle of the nineties the theory of classical realizability [17], which is a complete re-
formulation of the very principles or realizability to make them compatible with classical
reasoning. (As noticed in [23, 21], classical realizability can be seen as a reformulation
of Kleene’s realizability through Friedman’s A-translation [7].) Although it was initially
introduced to interpret the proofs of classical second-order arithmetic, the theory of clas-
sical realizability can be scaled to more expressive theories such as Zermelo-Fraenkel set
theory [15] or the calculus of constructions with universes [20].

As in intuitionistic realizability, every formula A is interpreted in classical realizability
as a set |A| of programs called the realizers of A, that share a common computational
behavior dictated by the structure of the formula A. This point of view is related to the
point of view of deduction (and of typing) via the property of adequacy, that expresses that
any program extracted from a proof of A—that is: any program of type A—realizes the
formula A, and thus has the computational behavior expected from the formula A.

But the difference between intuitionistic and classical realizability is that in the latter,
the set of realizers of A is defined indirectly, that is: from a set ‖A‖ of execution contexts
(represented as argument stacks) that are intended to challenge the truth of A. Intuitively,
the set ‖A‖—which we shall call the falsity value of A—can be understood as the set of
all possible counter-arguments to the formula A. In this framework, a program realizes
the formula A—i.e. belongs to the truth value |A|—if and only if it is able to defeat all the
attempts to refute A using a stack in ‖A‖. (The definition of the classical notion of a realizer
is also parameterized by a pole representing a particular challenge, that we shall define and
discuss in Section 4.1.1.)

By giving an equal importance to programs—or terms—that ‘defend’ the formula A,
and to execution contexts—or stacks—that ‘attack’ the formula A, the theory of classical
realizability is thus able to describe the interpretation of classical reasoning in terms of
manipulation of whole stacks (as first class citizens) using control operators.

1.2. The λc-calculus. The language of realizers that is traditionally used in classical re-
alizability is Krivine’s λc-calculus [17], an extension of Church’s λ-calculus [3] with an
instruction cc (representing the control operator call/cc) together with the machinery for
manipulating continuations constants embedding stacks. Unlike the traditional λ-calculi,
the λc-calculus relies on a particular reduction strategy—the call by name strategy—which
is implemented using Krivine’s Abstract Machine (KAM). As a consequence, the property
of confluence—which plays a central role in traditional λ-calculi—does not make sense
anymore in this architecture. In the KAM, the property of confluence is replaced by the
property of determinism, which is not only simpler, but which is also closer to the point of
view of real programming languages.

An important feature of the λc-calculus is that it can be freely enriched with extra in-
structions that can be used to optimize extracted programs (for instance: instructions ma-
nipulating primitive numerals [21]) or even to realize additional reasoning principles. The
emblematic example is given by the instruction ‘quote’, that computes the Gödel code of
a stack (according to a fixed enumeration of stacks), and that is used in [16] to realize the
axiom of dependent choices2. In this paper, we shall also consider two other extra instruc-
tions: the instruction ‘eq’, that tests the syntactic equality between two (closed) λc-terms,
and the non deterministic choice operator t (‘fork’).

1For instance, the formula ∀x (H(x) ∨ ¬H(x))—where H(x) denotes the halting predicate—is classically
provable, but its negation is intuitionistically realizable [13]. The same holds for the formula ∀X (X ∨ ¬X)
expressing the law of excluded middle in second-order logic, whose negation is intuitionistically realizable.

2In analysis, this axiom is crucial to prove Baire’s lemma—which is actually equivalent.
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1.3. The specification problem. A fundamental problem of classical realizability is the
specification problem, which is to characterize the (universal) realizers of a given formula A
from their computational behavior. This problem has received little attention in intuition-
istic realizability, mainly because the specification attached to a formula A can be directly
inferred from the definition of the set of realizers of A. For instance, intuitionistic realizers
of the formula ∃Nx A(x) are exactly the programs reducing to a pair whose first component
is a witness n ∈ N and whose second component is a realizer of the formula A(n) [14]. In
intuitionistic realizability, formulas already constitute specifications.

The situation is much more subtle in classical realizability. This subtlety does not only
come from the particular architecture of classical realizability (that involves notions such
as a falsity value or a pole that are alien to Kleene’s realizability), but it primarily comes
from the fact that the underling programming language λc contains the control operator
call/cc, so that realizers can embed continuation constants that may issue a backtrack at
any time. Of course, these features are essential to interpret classical reasoning principles
such as the excluded middle, but on the other hand, we cannot hope anymore that the first
projection of a classical realizer of ∃Nx A(x) will give us the desired witness for free. (For
an account of witness extraction techniques in classical realizability, see [21].)

As we shall see in Sections 6.4 and 6.5, the problem becomes even more difficult when
considering extensions of the λc-calculus with instructions such as ‘quote’ or ‘eq’, that
are able to discriminate programs from their syntactic differences, and not only from their
computational behavior.

1.4. Specifying Peirce’s law. The opposition between λc-terms (seen as defenders) and
stacks (seen as attackers) constitutes the heart of classical realizability, and it naturally
suggests that the specification problem has to be studied in game-theoretic terms.

In this paper, we shall study the specification problem for the (fundamentally classical)
law of Peirce, whose second-order formulation is ∀X ∀Y (((X ⇒ Y)⇒ X)⇒ X)—namely:
the type of call/cc. This problem was given a first and partial solution by the first au-
thor [11], who proposed a game-theoretic characterization G0 of the universal realizers
of Peirce’s law in the particular case where the underlying calculus of realizers is deter-
ministic and contains infinitely many interaction constants, a notion we shall define in
Section 5.3. (We shall present here a simplified proof of this first solution that does not
rely on the assumption of determinism.)

However, the presence of interaction constants—which is crucial in the proof of com-
pleteness presented in [11]—is known to be incompatible with the presence of instructions
such as ‘quote’ or ‘eq’, that are able to detect syntactic differences in λc-terms that would
be otherwise considered as computationally equivalent. This first result thus left open the
specification problem for Peirce’s law in the general case, where the calculus of realiz-
ers may rely on an arbitrary set of instructions—including the instruction ‘quote’ used to
realize the axiom of dependent choices [16].

In this paper, we shall see that the first specification G0 remains adequate in the general
case (in the sense that any term captured by the game G0 is a realizer of Peirce’s law),
but that it is not complete anymore. Indeed, we shall exhibit a closed λc-term (that can be
implemented either from ‘eq’ or from ‘quote’) that constitutes a wild realizer of Peirce’s
law in the sense that it is not captured by the game G0. We shall see that this counter-
example introduces a new—and purely game-theoretic—form of backtrack that does not
come from control operators, but from the fact that realizers can now test (using syntac-
tic equality) whether a position already appeared before in the play. From the point of
view of meta theory, we shall also see that this new form of backtrack is treated in the
corresponding proof of adequacy by using the meta-theoretic law of Peirce, thus making
the proof classical. (This contrasts to the traditional proof of adequacy of the domestic
realizer call/cc, which is purely intuitionistic.)
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To capture our (counter-)example of a wild realizer, we shall present a second game G1
that takes into account the second form of backtrack. Then we shall prove that this second
game G1 is both adequate and complete in the general case (i.e. without any assumption on
the instruction set), thus constituting the definitive specification of Peirce’s law.

2. The language λc

2.1. Terms and stacks. The λc-calculus distinguishes two kinds of syntactic expressions:
terms, that represent programs, and stacks, that represent evaluation contexts. The terms
of the λc-calculus are pure λ-terms [3, 2] enriched with two kinds of constants:

• Continuation constants kπ, one for every stack π;
• Instructions, such as the control operator call/cc (written here cc), that are taken

in a fixed set C of constants.
The stacks of the λc-calculus are finite lists of closed terms terminated by a stack constant
taken in a fixed set B of stack constants, also known as stack bottoms.

Formally, terms and stacks of the λc-calculus are thus defined from three auxiliary sets
of symbols, that are pairwise disjoint:

• A denumerable setVλ of λ-variables (notation: x, y, z, etc.)
• A countable set C of instructions, that contains at least an instruction cc ∈ C

(‘call/cc’, for: call with current continuation).
• A nonempty countable set B of stack constants, also called stack bottoms (nota-

tion: α, β, γ, etc.)

Definition 1 (Terms and stacks). — Terms and stacks of the λc-calculus are defined by
mutual induction from the following formation rules:

(1) If x ∈ Vλ is a λ-variable, then x is a term, and FV(x) = {x}.
(2) If c ∈ C is an instruction, then c is a term, and FV(c) = ∅.
(3) If π is a stack, then kπ is a term, and FV(kπ) = ∅.
(4) If t and u are terms, then tu is a term, and FV(tu) = FV(t) ∪ FV(u).
(5) If x ∈ Vλ is a λ-variable and if t is a term, then λx . t is a term, and FV(λx . t) =

FV(t) \ {x}.
(6) If α ∈ B is a stack constant, then α is a stack.
(7) If t is a closed term (i.e. FV(t) = ∅) and if π is a stack, then t · π is a stack.

In this definition, we define every λc-term t together with its set of free variables FV(t),
so that we can restrict the application of rule (7) to closed terms t. Thanks to this restriction,
stacks are always closed objects and continuation constants kπ are actually constant.

In what follows, we adopt the same writing conventions as in the pure λ-calculus, by
considering that application is left-associative and has higher precedence than abstraction.
We also allow several abstractions to be regrouped under a single λ, so that the closed term
λx . λy . λz . ((zx)y) can be more simply written λxyz . zxy.

As usual, terms and stacks are considered up to α-conversion [2], and we denote by
t{x := u} the term obtained by replacing every free occurrence of the variable x by the
term u in the term t, possibly renaming the bound variables of t to prevent name clashes.
The sets of all closed terms and of all (closed) stacks are respectively denoted by Λ and Π.

Definition 2 (Proof-like terms). — We say that a λc-term t is proof-like if t contains no
continuation constant kπ.

The above terminology comes from the fact that every realizer coming from the proof
of a theorem of PA2 is of this form (as we shall see in Theorem 1 p. 14).

Finally, every natural number n ∈ N is represented in the λc-calculus as the closed
proof-like term n defined by

n ≡ sn0 ≡ s(· · · (s︸ ︷︷ ︸
n

0) · · · ) ,
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where 0 ≡ λx f . x and s ≡ λnx f . f (nx f ) are Church’s encodings of zero and the successor
function in the pure λ-calculus. Note that this encoding slightly differs from the traditional
encoding of numerals in the λ-calculus, although the term n ≡ sn0 is clearly β-convertible
to Church’s encoding λx f . f nx—and thus computationally equivalent. The reason for pre-
ferring this modified encoding is that it is better suited to the call-by-name discipline of
Krivine’s Abstract Machine (KAM) we shall now present.

2.2. Krivine’s Abstract Machine. In the λc-calculus, computation occurs through the
interaction between a closed term and a stack within Krivine’s Abstract Machine (KAM).
Formally, we call a process any pair t ? π formed by a closed term t and a stack π. The set
of all processes is written Λ ? Π (which is just another notation for the Cartesian product
of Λ by Π).

Definition 3 (Relation of evaluation). — We call a relation of one step evaluation any
binary relation �1 over the set Λ ? Π of processes that fulfils the following four axioms:

(Push)
(Grab)
(Save)
(Restore)

tu ? π �1 t ? u · π
(λx . t) ? u · π �1 t{x := u} ? π
cc ? t · π �1 t ? kπ · π
kπ ? t · π′ �1 t ? π

The reflexive-transitive closure of �1 is written �.

One of the specificities of the λc-calculus is that it comes with a binary relation of
(one step) evaluation �1 that is not defined, but axiomatized via the rules (Push), (Grab),
(Save) and (Restore). In practice, the binary relation �1 is simply another parameter of
the definition of the calculus, just like the sets C and B. Strictly speaking, the λc-calculus
is not a particular extension of the λ-calculus, but a family of extensions of the λ-calculus
parameterized by the sets B, C and the relation of one step evaluation �1. (The set Vλ of
λ-variables—that is interchangeable with any other denumerable set of symbols—does not
really constitute a parameter of the calculus.)

2.3. Adding new instructions. The main interest of keeping open the definition of the
sets B, C and of the relation evaluation �1 (by axiomatizing rather than defining them) is
that it makes possible to enrich the calculus with extra instructions and evaluation rules,
simply by putting additional axioms about C, B and �1. On the other hand, the definitions
of classical realizability [17] as well as its main properties do not depend on the particular
choice of B, C and �1, although the fine structure of the corresponding realizability models
is of course affected by the presence of additional instructions and evaluation rules.

For the needs of the discussion in Section 5, we shall sometimes consider the following
extra instructions in the set C:

• The instruction quote, that comes with the evaluation rule

(Quote) quote ? t · π �1 t ? nπ · π ,

where π 7→ nπ is a recursive injection from Π to N. Intuitively, the instruction
quote computes the ‘code’ nπ of the stack π, and passes it (using the encoding
n 7→ n described in Section 2.1) to the term t. This instruction was introduced
in [16] to realize the axiom of dependent choices.

• The instruction eq, that comes with the evaluation rule

(Eq) eq ? t1 · t2 · u · v · π �1

u ? π if t1 ≡ t2
v ? π if t1 . t2

Intuitively, the instruction eq tests the syntactic equality of its first two argu-
ments t1 and t2 (up to α-conversion), giving the control to the next argument u
if the test succeeds, and to the second next argument v otherwise. In presence of
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the quote instruction, it is possible to implement a closed λc-term eq′ that has the
very same computational behavior as eq, by letting

eq′ ≡ λx1x2 . quote (λn1y1 . quote (λn2y2 . eq nat n1 n2) x2) x1 ,

where eq nat is any closed λ-term that tests the equality between two numerals
(using the encoding n 7→ n).

• The instruction t (‘fork’), that comes with the two evaluation rules

(Fork) t ? t0 · t1 · π �1 t0 ? π and t ? t0 · t1 · π �1 t1 ? π .

Intuitively, the instruction t behaves as a non deterministic choice operator, that
indifferently selects its first or its second argument. The main interest of this in-
struction is that it makes evaluation non deterministic, in the following sense:

Definition 4 (Deterministic evaluation). — We say that the relation of evaluation �1 is
deterministic when the two conditions p �1 p′ and p �1 p′′ imply p′ ≡ p′′ (syntactic
identity) for all processes p, p′ and p′′. Otherwise, �1 is said to be non deterministic.

The smallest relation of evaluation, that is defined as the union of the four rules (Push),
(Grab), (Save) and (Restore), is clearly deterministic. The property of determinism still
holds if we enrich the calculus with an instruction eq (. cc) together with the aforemen-
tioned evaluation rules, or with the instruction quote (. cc).

On the other hand, the presence of an instruction t with the corresponding evaluation
rules definitely makes the relation of evaluation non deterministic.

2.4. The thread of a process and its anatomy. Given a process p, we call the thread of p
and write th(p) the set of all process p′ such that p � p′:

th(p) = {p′ ∈ Λ ? Π : p � p′} .

This set has the structure of a finite or infinite (di)graph whose edges are given by the rela-
tion �1 of one step evaluation. In the case where the relation of evaluation is deterministic,
the graph th(p) can be either:

• Finite and cyclic from a certain point, because the evaluation of p loops at some
point. A typical example is the process I?δδ ·α (where I ≡ λx . x and δ ≡ λx . xx),
that enters into a 2-cycle after one evaluation step:

I ? δδ · α �1 δδ ? α �1 δ ? δ · α �1 δδ ? α �1 · · ·

• Finite and linear, because the evaluation of p reaches a state where no more rule
applies. For example:

II ? α �1 I ? I · α �1 I ? α .

• Infinite and linear, because p has an infinite execution that never reaches twice the
same state. A typical example is given by the process δ′δ′?α, where δ′ ≡ λx . x x I:

δ′δ′ ? α �3 δ′δ′ ? I · α �3 δ′δ′ ? I · I · α �3 δ′δ′ ? I · I · I · α �3 · · ·

2.5. Substituting term and stack constants. In some situations, it is desirable to substi-
tute a closed term u to a particular constant c ∈ C throughout the structure of a term t or
of a stack π. Unlike the traditional form of substitution t{x := u} (which is only defined
for terms), the substitutions t{c := u} and π{c := u} propagate through the continuation
constants kπ as well. Formally, these substitutions are defined as follows:

x{c := u} ≡ x
(λx . t){c := u} ≡ λx . t{c := u}

(t1t2){c := u} ≡ t1{c := u}t2{c := u}
kπ{c := u} ≡ kπ{c:=u}

c{c := u} ≡ u
c′{c := u} ≡ c′ (if c′ . c)
α{c := u} ≡ α

(t · π){c := u} ≡ t{c := u} · π{c := u}
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Similarly, we also define two operations of substitutions t{α := π0} and π{α := π0} where a
stack constant α ∈ B is replaced by a given stack π0 throughout the structure of a term t or
of a stack π, by letting:

x{α := π0} ≡ x
(λx . t){α := π0} ≡ λx . t{α := π0}

(t1t2){α := π0} ≡ t1{α := π0}t2{α := π0}

kπ{α := π0} ≡ kπ{α:=π0}

c{α := π0} ≡ c
α{α := π0} ≡ π0
α′{α := π0} ≡ α′ (if α′ . α)

(t · π){α := π0} ≡ t{α := π0} · π{α := π0}

3. Classical second-order arithmetic

In Section 2 we have presented the computing facet of the theory of classical realizabil-
ity. In this section, we shall now present its logical facet, by introducing the language of
classical second-order logic with the corresponding type system. In section 3.3, we shall
focus to the particular case of second-order arithmetic, and present its axioms.

3.1. The language of second-order logic. The language of second-order logic distin-
guishes two kinds of expressions: first-order expressions3, that represent individuals, and
formulas, that represent propositions about individuals and sets of individuals (represented
using second-order variables as we shall see below).

3.1.1. First-order expressions. First-order expressions are formally defined from the fol-
lowing sets of symbols:

• A first-order signature Σ defining function symbols with their arities, and consid-
ering constant symbols as function symbols of arity 0.

• A denumerable setV1 of first-order variables. For convenience, we shall still use
the lowercase letters x, y, z, etc. to denote first-order variables, but these variables
should not be confused with the λ-variables introduced in Section 2.

Definition 5 (First-order expressions). — First-order expressions are inductively defined
from the following two rules:

(1) If x ∈ V1 is a first-order variable, then x is a first-order expression.
(2) If f ∈ Σ is a function symbol of arity k ≥ 0 and if e1, . . . , ek are first-order expres-

sions, then f (e1, . . . , ek) is a first-order expression.

The set FV(e) of all (free) variables of a first-order expression e is defined as expected,
as well as the corresponding operation of substitution, that we still write e{x := e′}.

3.1.2. Formulas. Formulas of second-order logic are defined from an additional set of
symbols V2 of second-order variables (or predicate variables), using the uppercase let-
ters X, Y , Z, etc. to represent such variables. We assume that each second-order variable X
comes with an arity k ≥ 0 (that we shall often leave implicit, since it can be easily in-
ferred from the context), and that for each arity k ≥ 0, the subset of V2 formed by all
second-order variables of arity k is denumerable.

Intuitively, second-order variables of arity 0 represent (unknown) propositions, unary
predicate variables represent predicates over individuals (or sets of individuals) whereas
binary predicate variables represent binary relations (or sets of pairs), etc.

Definition 6 (Formulas). — Formulas of second-order logic are inductively defined from
the following four rules:

(1) If X ∈ V2 is a predicate variable of arity k ≥ 0 and if e1, . . . , ek are first-order
expressions, then X(e1, . . . , ek) is a formula.

(2) If A and B are formulas, then A⇒ B is a formula.

3Here we prefer the terminology of a first-order expression to the more standard terminology of a first-order
term to avoid a possible confusion with λc-terms.
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(3) If x ∈ V1 is a first-order variable and if A is a formula, then ∀x A is a formula.
(4) If X ∈ V2 is a second-order variable and if A is a formula, then ∀X A is a formula.

The set of free variables of a formula A is written FV(A). (This set may contain
both first-order and second-order variables.) As usual, formulas are identified up to α-
conversion, neglecting differences in bound variable names. Given a formula A, a first-
order variable x and a closed first-order expression e, we denote by A{x := e} the formula
obtained by replacing every free occurrence of x by the first-order expression e in the for-
mula A, possibly renaming some bound variables of A to avoid name clashes.

3.1.3. Predicates and second-order substitution. We call a predicate of arity k any ex-
pression of the form P ≡ λx1 · · · xk .C where x1, . . . , xk are k pairwise distinct first-order
variables and where C is an arbitrary formula. Here, we (ab)use the λ-notation to indicate
which variables x1, . . . , xk are abstracted in the formula C, but this notation should not be
confused with the abstraction of the λc-calculus.

The set of free variables of a k-ary predicate P ≡ λx1 · · · xk .C is defined by FV(P) ≡
FV(C) \ {x1; . . . ; xk}, and the application of the predicate P ≡ λx1 · · · xk .C to a k-tuple of
first-order expressions e1, . . . , ek is defined by letting

P(e1, . . . , ek) ≡ (λx1 · · · xk .C)(e1, . . . , ek) ≡ C{x1 := e1; . . . ; xk := ek}

(by analogy with β-reduction). From this definition, it is clear that every predicate vari-
able X of arity k can be seen as a k-ary predicate as well, namely, as the k-ary predicate
λx1 · · · xk . X(x1, . . . , xk), whose only free variable is X. The reader can easily check that
the meaning of the notation X(e1, . . . , ek) does not depend on whether we read it as an
atomic formula (considering X as a predicate variable) or as the application of the predi-
cate X ≡ λx1 · · · xk . X(x1, . . . , xk) to the k-tuple of first-order expressions e1, . . . , ek.

Given a formula A, a k-ary predicate variable X and an actual k-ary predicate P, we
finally define the operation of second-order substitution A{X := P} as follows:

X(e1, . . . , ek){X := P} ≡ P(e1, . . . , ek)
Y(e1, . . . , em){X := P} ≡ Y(e1, . . . , em)

(A⇒ B){X := P} ≡ A{X := P} ⇒ B{X := P}
(∀x A){X := P} ≡ ∀x A{X := P}
(∀X A){X := P} ≡ ∀X A
(∀Y A){X := P} ≡ ∀Y A{X := P}

(Y . X)

(x < FV(P))

(Y . X, Y < FV(P))

3.1.4. Second-order encodings. Although the formulas of the language of second-order
logic are constructed from atomic formulas only using implication and first- and second-
order universal quantifications, we can define other logical constructions (negation, con-
junction disjunction, first- and second-order existential quantification as well as Leibniz
equality) using the so called second-order encodings:

⊥ ≡ ∀Z Z
¬A ≡ A⇒ ⊥

A ∧ B ≡ ∀Z ((A⇒ B⇒ Z)⇒ Z)
A ∨ B ≡ ∀Z ((A⇒ Z)⇒ (B⇒ Z)⇒ Z)

A⇔ B ≡ (A⇒ B) ∧ (B⇒ A)
∃x A(x) ≡ ∀Z (∀x (A(x)⇒ Z)⇒ Z)
∃X A(X) ≡ ∀Z (∀X (A(X)⇒ Z)⇒ Z)

e1 = e2 ≡ ∀Z (Z(e1)⇒ Z(e2))

(where Z is a fresh second-order variable).

3.2. A type system for classical second-order logic. Through the formulas-as-types cor-
respondence [12, 9], we can see any formula A of second-order logic as a type, namely, as
the type of its proofs. We shall thus present the deduction system of classical second-order
logic as a type system based on a typing judgment of the form Γ ` t : A, where

• Γ is a typing context of the form Γ ≡ x1 : B1, . . . , xn : Bn, where x1, . . . , xn are
pairwise distinct λ-variables and where B1, . . . , Bn are arbitrary propositions;

• t is a proof-like term, i.e. a λc-term containing no continuation constant kπ;
• A is a formula of second-order logic.
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The type system of classical second-order logic is then defined from the typing rules of
Fig. 1. These typing rules are the usual typing rules of AF2 [14], plus a specific typing rule
for the instruction cc that permits to recover the full strength of classical logic.

Γ ` x : A
(x:A)∈Γ

Γ, x : A ` t : B
Γ ` λx . t : A⇒ B

Γ ` t : A⇒ B Γ ` t : A
Γ ` tu : B

Γ ` t : A
Γ ` t : ∀x A

x<FV(Γ)
Γ ` t : ∀x A

Γ ` t : A{x := e}
Γ ` t : A

Γ ` t : ∀X A
X<FV(Γ)

Γ ` t : ∀X A
Γ ` t : A{X := P}

Γ ` cc : ((A⇒ B)⇒ A)⇒ A

Figure 1. Typing rules of second-order logic

Using the encodings of Section 3.1.4, we can derive from the typing rules of Fig. 1
the usual introduction and elimination rules of absurdity, conjunction, disjunction, (first-
and second-order) existential quantification and Leibniz equality [14]. The typing rule for
call/cc (law of Peirce) allows us to construct proof-terms for classical reasoning principles
such as the excluded middle, reductio ad absurdum, de Morgan laws, etc.

3.3. Classical second-order arithmetic (PA2). From now on, we consider the particular
case of second-order arithmetic (PA2), where first-order expressions are intended to rep-
resent natural numbers. For that, we assume that every k-ary function symbol f ∈ Σ comes
with an interpretation in the standard model of arithmetic as a function ~ f � : Nk → N, so
that we can give a denotation ~e� ∈ N to every closed first-order expression e.

For convenience, we assume that the signature Σ contains a constant symbol 0 (‘zero’),
a unary function symbol s (‘successor’) as well as a function symbol f for every primitive
recursive function (including symbols +, ×, etc.), each of them being given its standard
interpretation in N. In this way, every numeral n ∈ N is represented in the world of first-
order expressions as the closed expression sn(0) that we still write n, since ~sn(0)� = n.

3.3.1. Induction. Following Dedekind’s construction of natural numbers, we consider the
predicate Nat(x) [9, 14] defined by

Nat(x) ≡ ∀Z (Z(0)⇒ ∀y (Z(y)⇒ Z(s(y)))⇒ Z(x)) ,

that defines the smallest class of individuals containing zero and closed under the succes-
sor function. One of the main properties of the logical system presented above is that the
axiom of induction, that we can write ∀x Nat(x), is not derivable from the rules of Fig. 1.
As proved in [17, Theorem 12], this axiom is even not (universally) realizable in gen-
eral. To recover the strength of arithmetic reasoning, we need to relativize all first-order
quantifications to the class Nat(x) of Dedekind numerals using the shorthands for numeric
quantifications4

∀Nx A(x) ≡ ∀x (Nat(x)⇒ A(x))
∃Nx A(x) ≡ ∀Z (∀x(Nat(x)⇒ A(x)⇒ Z)⇒ Z)

so that the relativized induction axiom becomes provable in second-order logic [14]:

∀Z (Z(0)⇒ ∀Nx (Z(x)⇒ Z(s(x)))⇒ ∀NZ(x)) .

4From a computational point of view, the numeric quantifications ∀N x A(x) and ∃N x A(x) play the same role
as the dependent product Πx : Nat . A(x) and the dependent sum Σx : Nat . A(x) in type theory [18], putting aside
the subtleties coming from the fact that we work here in a system that is both classical and impredicative.
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3.3.2. The axioms of PA2. Formally, a formula A is a theorem of second-order arithmetic
(PA2) if it can be derived (using the rules of Fig. 1) from the two axioms

• ∀x∀y (s(x) = s(y)⇒ x = y) (Peano 3rd axiom)
• ∀x¬(s(x) = 0) (Peano 4th axiom)

expressing that the successor function is injective and not surjective, and from the defini-
tional equalities attached to the (primitive recursive) function symbols of the signature:

• ∀x (x + 0 = x), ∀x∀y (x + s(y) = s(x + y))
• ∀x (x × 0 = 0), ∀x∀y (x × s(y) = (x × y) + x)
• etc.

Unlike the non relativized induction axiom—that requires a special treatment in PA2—we
shall see in Section 4.6 that all these axioms are realized by simple proof-like terms.

4. Classical realizability semantics

4.1. Generalities. Given a particular instance of the λc-calculus (defined from particular
setsB, C and from a particular relation of evaluation �1 as described in Section 2), we shall
now build a classical realizability model in which every closed formula A of the language
of PA2 will be interpreted as a set of closed terms |A| ⊆ Λ, called the truth value of A, and
whose elements will be called the realizers of A.

4.1.1. Poles, truth values and falsity values. Formally, the construction of the realizability
model is parameterized by a pole5 y in the sense of the following definition:

Definition 7 (Poles). — A pole is any set of processes y ⊆ Λ ? Π which is closed under
anti-evaluation, in the sense that both conditions p � p′ and p′ ∈ y together imply that
p ∈ y for all processes p, p′ ∈ Λ ? Π.

There are mainly two methods to define a pole y from an arbitrary set of processes P:
• The first method is to define the pole y as the set of all processes that reach an

element of P after zero, one or several evaluation steps, that is:

y ≡ {p ∈ Λ ? Π : ∃p′ ∈ P (p � p′)} .

By definition, the set y is the smallest pole that contains the set of processes P as
a subset. In what follows, we shall say that this definition is goal-oriented.

• The second method is to define the pole y as the complement set of the union of
all threads starting from an element of P, that is:

y ≡
(⋃

p∈P

th(p)
)c
≡

⋂
p∈P

(
th(p)

)c
.

Here, the set y is now the largest pole that does not intersect P. In what follows,
we shall say that this definition is thread-oriented.

Let us now consider a fixed pole y. We call a falsity value any set of stacks S ⊆ Π.
Every falsity value S ⊆ Π induces a truth value S y ⊆ Λ that is defined by

S y = {t ∈ Λ : ∀π ∈ S (t ? π) ∈ y} .

Intuitively, every falsity value S ⊆ Π represents a particular set of tests, while the corre-
sponding truth value S y represent the set of all programs that passes all tests in S (w.r.t.
the pole y, that can be seen as the challenge). From the definition of S y, it is clear that the
larger the falsity value S , the smaller the corresponding truth value S y, and vice-versa.

5In [17, 16, 11], poles are also called models. The reason is that each pole y defines a theory Ty which is
formed by all the closed formulas realized by a proof-like term. The theory Ty—which is an extension of PA2
by Theorem 1 p. 14—is consistent if and only if the formula ⊥ is realized by no proof-like term, in which case
we say that the pole y is consistent. In this case, the theory Ty induced by y has (by completeness) at least a
model in the sense of Tarski, which is also a particular model of PA2.
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In classical realizability, the semantics of a closed formula A is primarily given by a
falsity value ‖A‖ ⊆ Π that defines the set of all tests that should be passed by all the
realizers of A. The corresponding truth value |A| ⊆ Λ (i.e. the set of all realizers of A) is
then defined indirectly from the equation |A| = ‖A‖y.

4.1.2. Formulas with parameters. In order to interpret second-order variables that occur
in a given formula A, it is convenient to enrich the language of PA2 with a new predicate
symbol Ḟ of arity k for every falsity value function F of arity k, that is, for every func-
tion F : Nk → P(Π) that associates a falsity value F(n1, . . . , nk) ⊆ Π to every k-tuple
(n1, . . . , nk) ∈ Nk. A formula of the language enriched with the predicate symbols Ḟ is
then called a formula with parameters. Formally:

Definition 8 (Formulas with parameters). — The set of all formulas with parameters is
inductively defined from the rules (1)–(4) of Def. 6 (replacing the expression ‘formula’ by
‘formula with parameters’) plus the following rule:

(5) If F : Nk → P(Π) is a falsity value function of arity k ≥ 0 and if e1, . . . , ek are
first-order expressions, then Ḟ(e1, . . . , ek) is a formula with parameters.

The notions of a predicate with parameters and of a typing context with parameters are
defined similarly. The notations FV(A), FV(P), FV(Γ), dom(Γ), A{x := e}, A{X := P}, etc.
are extended to all formulas A with parameters, to all predicates P with parameters and to
all typing contexts Γ with parameters in the obvious way.

4.2. Definition of the interpretation function. The interpretation of the closed formulas
with parameters is defined as follows:

Definition 9 (Interpretation of closed formulas with parameters). — The falsity value
‖A‖ ⊆ Π of a closed formula A with parameters is defined by induction on the number
of connectives/quantifiers in A from the equations

‖Ḟ(e1, . . . , ek)‖ = F(~e1�, . . . , ~ek�)

‖A⇒ B‖ = |A| · ‖B‖ =
{
t · π : t ∈ |A|, π ∈ ‖B‖

}
‖∀x A‖ =

⋃
n∈N

‖A{x := n}‖

‖∀X A‖ =
⋃

F:Nk→P(Π)

‖A{X := Ḟ}‖ (if X has arity k)

whereas its truth value |A| ⊆ Λ is defined by |A| = ‖A‖y.

Since the falsity value ‖A‖ (resp. the truth value |A|) of A actually depends on the poley,
we shall write it sometimes ‖A‖y (resp. |A|y) to recall the dependency. Given a closed
formula A with parameters and a closed term t ∈ Λ, we say that:

• t realizes A and write t  A when t ∈ |A|y.
(This notion is relative to a particular pole y.)

• t universally realizes A and write t � A when t ∈ |A|y for all poles y.
From these definitions, we clearly have

|∀x A| =
⋂
n∈N

|A{x := n}| and |∀X A| =
⋂

F:Nk→P(Π)

|A{X := Ḟ}| .

On the other hand, the truth value |A ⇒ B| of an implication A ⇒ B slightly differs from
its traditional interpretation in Kleene’s realizability [13]. Writing

|A| → |B| = {t ∈ Λ : for all u ∈ Λ , u ∈ |A| implies tu ∈ |B|} ,

we easily check that:

Lemma 1. — For all closed formulas A and B with parameters:
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(1) |A⇒ B| ⊆ |A| → |B| (adequacy of modus ponens).
(2) The converse inclusion does not hold in general, unless the pole y is insensitive to

the rule (Push), that is: tu ? π ∈ y iff t ? u · π ∈ y (for all t, u ∈ Λ, π ∈ Π).
(3) In all cases, t ∈ (|A| → |B|) implies λx . tx ∈ |A⇒ B| (for all t ∈ Λ).

Proof. (1) Let t ∈ |A ⇒ B| and u ∈ |A|. To prove that tu ∈ |B|, we consider an arbitrary
stack π ∈ ‖B‖. By applying the rule (Push) we get tu?π �1 t? u · π ∈ y, since t ∈ |A⇒ B|
and u · π ∈ ‖A⇒ B‖. Hence tu ? π ∈ y by anti-evaluation.

(2) Let t ∈ |A| → |B|. To prove that t ∈ |A ⇒ B|, we consider an arbitrary element of
the falsity value ‖A⇒ B‖, that is, a stack u · π where u ∈ |A| and π ∈ ‖B‖. We clearly have
tu ? π ∈ y, since tu ∈ |B| from our assumption on t. But since y is insensitive to the rule
(Push), we also have t ? u · π ∈ y.

(3) Let t ∈ |A| → |B|. To prove that λx . tx ∈ |A⇒ B|, we consider an arbitrary element
of the falsity value ‖A ⇒ B‖, that is, a stack u · π where u ∈ |A| and π ∈ ‖B‖. We have
λx . tx? u · π �1 tu?π ∈ y (since tu ∈ |B|), hence λx . tx? u · π ∈ y by anti-evaluation. �

Lemma 2 (Law of Peirce). — Let A and B be two closed formulas with parameters:

(1) If π ∈ ‖A‖, then kπ  A⇒ B.
(2) cc � ((A⇒ B)⇒ A)⇒ A.

Proof. (1) Let π ∈ ‖A‖. To prove that kπ ∈ |A⇒ B|, we need to check that kπ ? t · π′ ∈ y
for all t ∈ |A| and π′ ∈ ‖B‖. By applying the rule (Restore) we get kπ ? t · π′ �1 t ? π ∈ y
(since t ∈ |A| and π ∈ ‖A‖), hence kπ ? t · π′ ∈ y by anti-evaluation.

(2) To prove that cc  ((A ⇒ B) ⇒ A) ⇒ A (for an arbitrary pole y), we need to
check that cc? t ·π ∈ y for all t ∈ |(A⇒ B)⇒ A| and π ∈ ‖A‖. By applying the rule (Save)
we get cc ? t · π �1 t ? kπ · π. But since kπ ∈ |A ⇒ B| (from (1)) and π ∈ ‖A‖, we have
kπ · π ∈ ‖(A⇒ B)⇒ A‖, so that t ? kπ · π ∈ y. Hence cc? t · π ∈ y by anti-evaluation. �

4.3. Valuations and substitutions. In order to express the soundness invariants relating
the type system of Section 3 with the classical realizability semantics defined above, we
need to introduce some more terminology.

Definition 10 (Valuations). — A valuation is a function ρ that associates a natural number
ρ(x) ∈ N to every first-order variable x and a falsity value function ρ(X) : Nk → P(Π) to
every second-order variable X of arity k.

• Given a valuation ρ, a first-order variable x and a natural number n ∈ N, we denote
by ρ, x← n the valuation defined by:

(ρ, x← n) = ρ| dom(ρ)\{x} ∪ {x← n} .

• Given a valuation ρ, a second-order variable X of arity k and a falsity value func-
tion F : Nk → P(Π), we denote by ρ, x← F the valuation defined by:

(ρ, x← F) = ρ| dom(ρ)\{X} ∪ {X ← F} .

To every pair (A, ρ) formed by a (possibly open) formula A of PA2 and a valuation ρ,
we associate a closed formula with parameters A[ρ] that is defined by

A[ρ] ≡ A{x1 := ρ(x1); . . . ; xn := ρ(xn); X1 := ρ̇(X1); . . . ; Xm := ρ̇(Xm)}

where x1, . . . , xn, X1, . . . , Xm are the free variables of A, and writing ρ̇(Xi) the predicate
symbol associated to the falsity value function ρ(Xi). This operation naturally extends to
typing contexts by letting (x1 : A1, . . . , xn : An)[ρ] ≡ x1 : A1[ρ], . . . , xn : An[ρ].

Definition 11 (Substitutions). — A substitution is a finite function σ from λ-variables to
closed λc-terms. Given a substitution σ, a λ-variable x and a closed λc-term u, we denote
by σ, x := u the substitution defined by (σ, x := u) ≡ σ| dom(σ)\{x} ∪ {x := u}.
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Given an open λc-term t and a substitution σ, we denote by t[σ] the term defined by

t[σ] ≡ t{x1 := σ(x1); . . . ; xn := σ(xn)}

where dom(σ) = {x1, . . . , xn}. Notice that t[σ] is closed as soon as FV(t) ⊆ dom(σ). We
say that a substitution σ realizes a closed context Γ with parameters and write σ  Γ if:

• dom(σ) = dom(Γ);
• σ(x)  A for every declaration (x : A) ∈ Γ.

4.4. Adequacy. Given a fixed pole y, we say that:

• A typing judgment Γ ` t : A is adequate (w.r.t. the pole y) if for all valuations ρ
and for all substitutions σ  Γ[ρ] we have t[σ]  A[ρ].

• More generally, we say that an inference rule

J1 · · · Jn

J0

is adequate (w.r.t. the pole y) if the adequacy of all typing judgments J1, . . . , Jn

implies the adequacy of the typing judgment J0.

From the latter definition, it is clear that a typing judgment that is derivable from a set
of adequate inference rules is adequate too. In Section 4.5, we shall extend the notion of
adequacy to new judgments of subtyping and of subtyping equivalence.

Proposition 1 (Adequacy). — The typing rules of Fig. 1 are adequate w.r.t. any pole y, as
well as all the judgments Γ ` t : A that are derivable from these rules.

(The proof of this result can be found in [17].)
Since the typing rules of Fig. 1 involve no continuation constant, every realizer that

comes from a proof of second order logic by Prop. 1 is thus a proof-like term.

4.5. Subtyping and subtyping equivalence. In many situations, it is convenient to con-
sider a subtyping judgment A ≤ B as well as a judgment of subtyping equivalence A ' B,
where A and B are two formulas with parameters. Given a pole y, we say that:

• The subtyping judgment A ≤ B is adequate (w.r.t. the pole y) if for all valuations
ρ we have ‖B[ρ]‖ ⊆ ‖A[ρ]‖ (so that |A[ρ]| ⊆ |B[ρ]|).

• The subtyping equivalence judgment A ' B is adequate (w.r.t. the pole y) if for
all valuations ρ we have ‖A[ρ]‖ = ‖B[ρ]‖ (so that |A[ρ]| = |B[ρ]|).

The notion of an adequate inference rule (cf Section 4.4) is extended to all the inference
rules involving the new forms of judgments A ≤ B and A ' B. As before, it is clear that a
judgment (of typing, subtyping or of subtyping equivalence) that is derivable from a set of
adequate inference rules is adequate too.

Proposition 2. — The inference rules of Fig. 2 are adequate w.r.t. all poles y.

Proof. Immediately follows from the definitions. �

From the inference rules of Fig. 2, one can derive well-known equivalences of (intu-
itionistic or classical) realizability, such as:

• ∀x A ' A and ∀x (A⇒ B) ' A⇒ ∀x B (if x < FV(A));
• ∀X A ' A and ∀X (A⇒ B) ' A⇒ ∀X B (if X < FV(A));
• ∀x∀y A ' ∀y∀x A, ∀X ∀Y A ' ∀Y ∀X A, and ∀x∀Y A ' ∀Y ∀x A;
• A⇒ > ' >, etc.
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A ≤ A
A ≤ B B ≤ C

A ≤ C
Γ ` t : A A ≤ B

Γ ` t : B
A ≤ B B ≤ A

A ' B
A ' B
A ≤ B

A ' B
B ≤ A

⊥ ≤ A A ≤ > > ≤ A⇒ >

∀x A ≤ A{x := e} ∀X A ≤ A{X := P}

A ≤ B
A ≤ ∀x B

x<FV(A)
A ≤ B

A ≤ ∀X B
X<FV(A)

A′ ≤ A B ≤ B′

A⇒ B ≤ A′ ⇒ B′

∀x (A⇒ B) ≤ A⇒ ∀x B
x<FV(A)

∀X (A⇒ B) ≤ A⇒ ∀X B
X<FV(A)

Figure 2. Adequate rules of subtyping and of subtyping equivalence

4.6. Realizing the axioms of PA2. Let us recall that in PA2, Leibniz equality e1 = e2 is
defined by e1 = e2 ≡ ∀Z (Z(e1)⇒ Z(e2)).

Proposition 3 (Realizing Peano axioms). :
(1) λz . z � ∀x∀y (s(x) = s(y)⇒ x = y)
(2) λz . zu � ∀x (s(x) = 0⇒ ⊥) (where u is any term such that FV(u) ⊆ {z}).
(3) λz . z � ∀x1 · · · ∀xk (e1(x1, . . . , xn) = e2(x1, . . . , xk))

for all arithmetic expressions e1(x1, . . . , xn) and e2(x1, . . . , xk) such that
N |= ∀x1 · · · ∀xk (e1(x1, . . . , xn) = e2(x1, . . . , xk)).

(The proof of this proposition can be found in [17]).
From this we deduce the main theorem:

Theorem 1 (Realizing the theorems of PA2). — If A is a theorem of PA2 (in the sense
defined in Section 3.3.2), then there is a closed proof-like term t such that t � A.

Proof. Immediately follows from Prop. 1 and 3. �

4.7. The full standard model of PA2 as a degenerate case. It is easy to see that when
the pole y is empty, the classical realizability model defined above collapses to the full
standard model of PA2, that is: to the model (in the sense of Tarski) where individuals
are interpreted by the elements of N and where second-order variables of arity k are in-
terpreted by all the subsets of Nk. For that, we first notice that when y = ∅, the truth
value S y associated to an arbitrary falsity value S ⊆ Π can only take two different values:
S y = Λc when S = ∅, and S y = ∅when S , ∅. Moreover, we easily check that the realiz-
ability interpretation of implication and universal quantification mimics the standard truth
value interpretation of the corresponding logical construction in the case where y = ∅.
Writing M for the full standard model of PA2, we thus easily show that:

Proposition 4. — If y = ∅, then for every closed formula A of PA2 we have

|A| =

Λ if M |= A
∅ if M 6|= A

Proof. We more generally show that for all formulas A and for all valuations ρ closing A
(in the sense defined in section 4.2) we have

|A[ρ]| =

Λ if M |= A[ρ̃]
∅ if M 6|= A[ρ̃]

where ρ̃ is the valuation in M (in the usual sense) defined by
• ρ̃(x) = ρ(x) for all first-order variables x;
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• ρ̃(X) = {(n1, . . . , nk) ∈ Nk : ρ(X)(n1, . . . , nk) = ∅} for all second-order variables X
of arity k.

(This characterization is proved by a straightforward induction on A.) �

An interesting consequence of the above lemma is the following:

Corollary 1. — If a closed formula A has a universal realizer t � A, then A is true in the
full standard model M of PA2.

Proof. If t � A, then t ∈ |A|∅. Therefore |A|∅ = Λ and M |= A. �

However, the converse implication is false in general, since the formula ∀x Nat(x) (cf
Section 3.3.1) that expresses the induction principle over individuals is obviously true
in M , but it has no universal realizer when evaluation is deterministic [17, Theorem 12].

5. The specification problem

From now on, we are interested in the specification problem, which is to give a purely
computational characterization of the universal realizers of a given formula A.

As mentioned in the introduction, this problem is much more subtle in classical real-
izability than in intuitionistic realizability, which is mainly due to fact that realizers may
issue a backtrack at any time. Another source of difficulty comes from the fact that the
definition of the λc-calculus is open to the introduction of extra instructions such as the
ones we have presented in Section 2.3. We cannot reason anymore as in the closed world
of the pure λ-calculus, where closed programs start either with an abstraction or with an
application. Here, extra instructions can do anything: they can compute the code of a
term or a stack (quote), they can decode a stack or a term from its code (by introducing a
dual instruction unquote), they can introduce non determinism in computations (t), and
they can even introduce non recursive computations (which is the case if we introduce an
instruction solving the halting problem for any Turing machine).

In this section, we shall study the case of very simple formulas for which the specifi-
cation problem has a simple solution, that does even not depend on any particular set of
instructions. In the next section, we shall consider the more ambitious case of Peirce’s law,
where control structures play a crucial role.

5.1. The identity type. In the language of second-order logic, the identity type is de-
scribed by the formula ∀X (X ⇒ X). We say that a closed term t ∈ Λ is identity-like if
t ? u · π � u ? π for all u ∈ Λ and π ∈ Π. Examples of identity-like terms are of course the
identity function I ≡ λx . x, but also terms such as I I, δ I (where δ ≡ λx . xx), etc.

Proposition 5. — For all terms t ∈ Λ, the following assertions are equivalent:
(1) t � ∀X (X ⇒ X);
(2) t is identity-like.

Proof. (2) ⇒ (1). Let t be a closed λc-term that is identity-like. To prove that t �
∀X (X ⇒ X), let us consider an arbitrary pole y and an arbitrary falsity value S ⊆ Π

to instantiate the variable X. To show that t  Ṡ ⇒ Ṡ , let us consider an arbitrary element
of ‖Ṡ ⇒ Ṡ ‖, that is, a stack of the form u · π where u ∈ |Ṡ | = S y and π ∈ ‖Ṡ ‖ = S . We
have t ? u · π � u ? π ∈ y, hence t ? u · π ∈ y by anti-evaluation.

(1)⇒ (2). Given a universal realizer t � ∀X (X ⇒ X), a term u ∈ Λ and a stack π ∈ Π,
let us consider the pole y = {p : p � u?π} and the falsity value S = {π}. Since u?π ∈ y
(from the definition of y), we get u  Ṡ (from the definition of S ). Hence u · π ∈ ‖Ṡ ⇒ Ṡ ‖
and thus t ? u · π ∈ y (since t  Ṡ ⇒ Ṡ ), which precisely means that t ? u · π � u ? π. �

We have thus proved that the universal realizers of the formula ∀X (X ⇒ X) are pre-
cisely the identity-like λc-terms, and this, independently from any particular set of instruc-
tions C. However, we should not forget that there are many ways to implement identity-like
terms using call/cc or other instructions, for instance:
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• λx . cc (λk . x), λx . cc (λk . k x), λx . cc (λk . k x (δ δ))
• cc (λk . I), cc (λk . k I), cc (λk . k I δ k), t I (δ δ), etc.

Goal-oriented poles vs thread-oriented poles. It is interesting to notice that in order to
prove that universal realizers of ∀X (X ⇒ X) are identity-like terms, we have introduced
for each pair (u, π) ∈ Λ × Π the pole yu,π = {p : p � u ? π} that is generated from the
expected final state u ? π, thus using a goal-oriented definition. However, we could also
prove the same implication by using a thread-oriented definition as follows:

Alternative proof of (1)⇒ (2). Let us assume that t � X (X ⇒ X), and take two elements
u ∈ Λ and π ∈ Π. We now consider the pole

y ≡
(
th(t ? u · π)

)c
≡ {p ∈ Λ ? π : (t ? u · π 6� p)}

as well as the falsity value S = {π}. From the definition of y, we have t ? u · π < y. But
since t  Ṡ ⇒ Ṡ and π ∈ ‖Ṡ ‖, we immediately get u 6 Ṡ . Which precisely means that
u ? π < y, so that u ? π ∈ th(t ? u · π). �

Let us briefly compare the ingredients used in both proofs of (1)⇒ (2).
• In the first proof of (1) ⇒ (2), we use a goal-oriented definition of the pole y, by

generating y from the final state u ? π we want to reach. Moreover, this proof of
(1)⇒ (2) is purely intuitionistic (from the point of view of meta-theory).

• In the second proof of (1)⇒ (2), we use a thread-oriented definition of the pole y,
by excluding from y the process p0 ≡ t ? u · π we start from. As a consequence,
this second proof is classical, since it relies on the equality

(
th(p0)

)cc
= th(p0).

In the simple cases we are studying in this section, it is always possible to use both con-
structions indifferently in order to prove that a universal realizer of the considered formula
meets the expected specification. However, this is not always the case, and the thread-
oriented construction (which is slightly less natural than the goal-oriented construction)
proves to be much more powerful in many situations, as illustrated in [16] and [11].

5.2. The Booleans. Let us now consider the unary predicate Bool(x) defined by

Bool(x) ≡ ∀X (X(0)⇒ X(1)⇒ X(x)) .

We also denote by Bool the formula ∀X (X ⇒ X ⇒ X) of second-order propositional logic
that we get by erasing first-order dependencies in the predicate Bool(x). It is clear from the
rules of Fig. 2 that the formula Bool(x) is a subtype of the formula Bool.

We say that a closed term t ∈ Λ is:
• True-like if t ? u0 · u1 · π � u0 ? π for all u0, u1 ∈ Λ and π ∈ Π.
• False-like if t ? u0 · u1 · π � u1 ? π for all u0, u1 ∈ Λ and π ∈ Π.
• Boolean-like if for all u0, u1 ∈ Λ and π ∈ Π, we have either

t ? u0 · u1 · π � u0 ? π or t ? u0 · u1 · π � u1 ? π.
It is clear from these definitions that both True-like and False-like terms are particular cases
of Boolean-like terms. We easily check that:

Proposition 6. — For all closed terms t ∈ Λ:
(1) t � Bool(0) iff t is True-like;
(2) t � Bool(1) iff t is False-like;
(3) The formula Bool(n) has no universal realizer as soon as n ≥ 2.
(4) t � Bool iff t is Boolean-like.

Proof. The proofs of (1), (2) and (4) proceed similarly to the proof of Prop. 5. (In all cases,
we can choose either a goal-oriented or a thread-oriented definition of the pole to show that
the universal realizer t meets the expected specification.) For (3), it suffices to notice that
the formula Bool(n) (where n ≥ 2) is false in the standard model of PA2, and thus has no
universal realizer. �
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The above proposition shows that in classical realizability, universal realizers of the
formulas Bool(0), Bool(1) and Bool have exactly the same computational behavior as the
intuitionistic realizers of these formulas in AF2 [14]. But in AF2, it is also clear that the
set of (intuitionistic) realizers of Bool is exactly the disjoint union of the sets of realizers of
the formulas Bool(0) and Bool(1). In classical realizability, the situation is more complex
due to the presence of extra instructions, as we shall now see.

Non deterministic choice operators. We say that a closed λc-term t ∈ Λ is a non determin-
istic choice operator if t is both True-like and False-like. An example of such an operator
is the instruction t introduced in Section 2.3.

From Prop. 6, it is clear that non-deterministic choice operators are exactly the closed
λc-terms t such that t � Bool(0) and t � Bool(1) (simultaneously). In classical realiz-
ability, the sets of universal realizers of the formulas Bool(0) and Bool(1) may thus have
a nonempty intersection, depending on the presence of a non deterministic operator in the
calculus. If the calculus provides the instruction t described in Section 2.3, then the in-
tersection is nonempty. But if the relation of one step evaluation is deterministic, then the
sets of universal realizers of the formulas Bool(0) and Bool(1) do not intersect.

Versatile Booleans. We call a versatile Boolean any Boolean-like term that is neither True-
like nor False-like. Intuitively, a versatile Boolean is a Boolean-like term that sometimes
returns its first argument or its second argument, depending on the two arguments it is
applied to, or depending on the rest of the stack.

It is clear that versatile Booleans cannot exist in the pure λ-calculus, for obvious uni-
formity reasons. But in the λc-calculus, it is easy to implement such objects using the
instruction quote or the instruction eq (see Section 2.3), for instance:

• The term D ≡ λxy . quote (λn . even n x y), where even is a pure λ-term that
tests whether the numeral it is applied to is even. Notice that the answer (‘first’ or
‘second’) given by D does not actually depend on the two arguments it is applied
to, since it only depends on the (code of the) rest of the stack!

• The term E ≡ λxy . eq x I x y. Here the term E returns its first argument if it is
equal to I, and its second argument otherwise.

From Prop. 6, both terms D and E are universal realizers of the formula Bool, but none of
them universally realizes Bool(0) or Bool(1).

5.3. Interaction constants. The two examples of versatile Booleans presented above cru-
cially depend on two extra instructions quote and eq that have no equivalent in the λ(µ)-
calculus. Indeed, these instructions are able to distinguish syntactically different terms that
are computationally equivalent, such as the terms I and I I for instance6.

To understand better the impact of such extra instructions in the λc-calculus, we need to
introduce the important notion of an interaction constant.

Definition 12 (Interaction constants). — A constant κ ∈ C is said to be
• inert if for all π ∈ Π, there is no process p such that κ ? π �1 p;
• substitutive if for all u ∈ Λ and for all processes p, p′ ∈ Λ ? Π,

p �1 p′ implies p{κ := u} �1 p′{κ := u};
• non generative if for all processes p, p′ ∈ Λ ? Π such that p �1 p′, the constant κ

cannot occur in p′ unless it already occurs in p.
A constant κ ∈ C that is inert, substitutive and non generative is then called an interaction
constant. Similarly, we say that a stack constant α ∈ B is:

6In particular, it is clear that naively extending the pure λ-calculus with any of these two instructions would
immediately break the property of confluence. In the λc-calculus, the property of determinism is preserved only
because computation proceeds according to a fixed evaluation strategy.
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• substitutive if for all π ∈ Π and for all processes p, p′ ∈ Λ ? Π,
p �1 p′ implies p{α := π} �1 p′{α := π};

• non generative if for all p, p′ ∈ Λ ? Π such that p �1 p′, the stack constant α
cannot occur in p′ unless it already occurs in p.

We can first notice that substitutive constants are incompatible with the two instruc-
tions quote and eq:

Proposition 7. — If the calculus of realizers contains one of both instructions quote or eq,
then none of the constants κ ∈ C is substitutive.

Proof. Let us assume that the calculus contains an instruction eq with the evaluation rule
(Eq) described in Section 2.3. Given an arbitrary constant κ ∈ C, let us consider the process
p ≡ eq ? κ · I · δ · I · α, where α ∈ B is a fixed stack constant. We notice that p �1 I ? α
(since κ . I) whereas p{κ := I} ≡ eq ? I · I · δ · I · α �1 δ ? α . (I ? α){κ := I}, hence the
constant κ is not substitutive. The same argument applies to the instruction quote, since
the instruction eq can be implemented from it. �

On the other hand, it is clear that if the relation of evaluation �1 is defined from the only
rules (Grab), (Push), (Save) and (Restore)—and possibly: the rule (Fork)—then all the
remaining constants κ in C (i.e. κ , cc,t) are interaction constants (and thus substitutive),
whereas all the stack constants in B are substitutive and non generative.

Substitutive (term and stack) constants are useful to analyze the computational behavior
of realizers in a uniform way. For instance, if we know that a closed term t ∈ Λ is such that

t ? κ1 · · · κn · α � p

where κ1, . . . , κn are substitutive constants that do not occur in t, and where α is a substitu-
tive stack constant that does not occur in t too, then we more generally know that

t ? u1 · · · un · π � p{κ1 := u1; . . . ; κn := un;α := π}

for all terms u1, . . . , un ∈ Λ and for all stacks π ∈ Π. Intuitively, substitutive constants play
in the λc-calculus the same role as free variables in the pure λ-calculus.

Using the uniformity of computations that is brought by the presence of substitutive
constants, we easily check that:

Proposition 8. — If the calculus of realizers has infinitely many substitutive constants and
infinitely many substitutive stack constants, then every Boolean-like term is either True-like
or False-like. (Which means that there are no versatile Booleans.)

Proof. Let t be a Boolean-like term, and consider two distinct substitutive constants κ0
and κ1 that do not occur in the closed term t as well as a substitutive stack constant α that
does not occur in t. (We can always find such constants outside t, since t only contains a
finite number of them.) We distinguish two cases:

• Either t ? κ0 · κ1 · α � κ0 ? α. By substitutivity, we have

t ? u0 · u1 · π ≡ (t ? κ0 · κ1 · α){κ0 := u0; κ1 := u1;α := π}
� (κ0 ? α){κ0 := u0; κ1 := u1;α := π} ≡ u0 ? π

for all u0, u1 ∈ Λ and π ∈ Π, which means that t is True-like.
• Either t ? κ0 · κ1 · α � κ1 ? α. Symmetrically, we deduce that t is False-like. �

6. Specification of Peirce’s law

In this section, we now consider the specification problem for an intrinsically classical
reasoning principle: the law of Peirce. In the literature, Peirce’s law is indifferently stated
as ∀X ∀Y (((X ⇒ Y)⇒ X)⇒ X) or as ∀X ((¬X ⇒ X)⇒ X). Since the judgment

∀X ∀Y (((X ⇒ Y)⇒ X)⇒ X) ' ∀X ((¬X ⇒ X)⇒ X)
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is derivable from the rules of Fig. 2, both formulations of this law have the same semantics,
and thus the same set of (universal) realizers. In what follows, we shall prefer the simpler
formulation ∀X ((¬X ⇒ X)⇒ X) that involves a single parameter X.

The aim of this section is to specify all the universal realizers of Peirce’s law. It is clear
from Lemma 2 that the instruction cc is one of them, but it is now time to see that the
universal realizers of Peirce’s law may have a much richer computational behavior than
the one of the instruction cc.

6.1. The family of terms (ccn,p)n≥p≥1. To illustrate the possible computational behaviors
of the universal realizers of Peirce’s law, it is useful to introduce a sequence of closed
proof-like terms ccn,p indexed by all pairs of integers (n, p) such that n ≥ p ≥ 1.

Given a fixed pair (n, p) such that n ≥ p ≥ 1, we define for all i ∈ [1..n] an open proof-
like term Ki

n,p[x0, k, x1, . . . , xi−1] that only depends on the variables x0, k, x1, . . . , xi−1. This
finite sequence of open terms is defined from i = n (down) to i = 1 by the equations:

Kn
n,p[x0, k, x1, . . . , xn−1] ≡ λxn . k xp

Ki
n,p[x0, k, x1, . . . , xi−1] ≡ λxi . k (x0 Ki+1

n,p [x0, k, x1, . . . , xi]) (1 ≤ i < n)

(Notice that we actually have FV(Ki
n,p[x0, k, x1, . . . , xi−1]) = {x0; k} ∪ {xp if p < i}.)

The closed proof-like term ccn,p is then defined by

ccn,p ≡ λx0 . cc (λk . x0 K1
n,p[x0, k]) .

We easily check that:

Fact 1. — For all u0, . . . , un ∈ Λ and π0, . . . , πn ∈ Π, we have:

ccn,k ? u0 · π0 � u0 ? K1
n,p[u0, kπ0 ] · π0

Ki
n,p[u0, kπ0 , u1, . . . , ui−1] ? ui · πi � u0 ? Ki+1

n,p [u0, kπ0 , u1, . . . , ui] · π0

Kn
n,p[u0, kπ0 , u1, . . . , un−1] ? un · πn � up ? π0

(1 ≤ i < n)

In the particular case where n = p = 1, we thus have

cc1,1 ? u0 · π0 � u0 ? (λx1 . kπ0 x1) · π0
(λx1 . kπ0 x1) ? u1 · π1 � u1 ? π0 ,

(since K1
1,1[u0, kπ0 ] ≡ λx1 . kπ0 x1)

which makes clear that cc1,1 has the same computational behavior as cc—which is not
surprising since cc1,1 ≡ λx0 . cc (λk . x0 (λx1 . k x1)) is nothing but the η-long form of cc.

It is easy to check that:

Proposition 9. — For all n ≥ p ≥ 1 the judgment ` ccn,p : ∀X ((¬X ⇒ X) ⇒ X) is
derivable from the rules of Fig. 1, so that ccn,p is a universal realizer of Peirce’s law.

Proof. It suffices to check for i = n (down) to i = 1 that the judgment

x0 : ¬X ⇒ X, k : ¬X, x1 : X, . . . , xi−1 : X ` Ki
n,p[x0, k, x1, . . . , xi−1] : ¬X

is derivable from the rules of Fig. 1 (where X is a fixed second order variable), hence we
have ` ccn,p ≡ λx0 . cc (λk . x0 K1

n,p[x0, k]) : ∀X ((¬X ⇒ X)⇒ X). �

In Section 6.3, we shall prove that in the presence of infinitely many interaction con-
stants and of infinitely many substitutive and non generative stack constants in the calculus
of realizers, every universal realizer of Peirce’s law behaves as one of the terms ccn,p.

6.2. A first game G0. To understand the computational behavior of the universal realizers
of Peirce’s law, it is convenient to present computations in the form of a game between two
players ∃ (player) and ∀ (opponent), that we denote by G0.

The game G0 starts with an initialization phase, where ∃ brings a closed term t0 ∈ Λ

that is intended to realize the law of Peirce, while ∀ brings a ‘handle’ (u0, π0) ∈ Λ ×Π that
is intended to be used by ∃ to communicate its moves to ∀. The rest of the game is then
parameterized by the handle (u0, π0), and starts at the ∃-position t0 ? u0 · π0.
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During the game, ∃-positions are indicated as processes p while ∀-positions are indi-
cated as closed terms t (corresponding to the last ∃-move). The game alternates ∃-moves
and ∀-moves that are defined as follows:

• ∃-moves. Starting from an ∃-position p, player ∃ evaluates the process p in order
to reach one of the following states:

– If p � u ? π0, where u is the first component of a pair (u, π) formerly played
by ∀ (not counting the initial handle (u0, π0)), then ∃ wins.

– If p � u0 ? t · π0, then ∃ may communicate its answer t to ∀ through the
handle (u0, π0), in which case the answer t becomes the current ∀-position.
Notice that such a term t is not necessarily unique (even when the relation of
evaluation is deterministic), so that ∃ can freely choose any such term t.

If none of the above two moves is possible, then ∀ wins.
• ∀-moves. Starting from a ∀-position t, opponent ∀ can play any pair (u, π) ∈

Λ × Π. The process p ≡ t ? u · π then becomes the current ∃-position.
When a play is infinite, we consider that ∀ wins (‘benefit of the doubter’).

In this game-theoretic setting, it is easy to see that each ccn,p (n ≥ p ≥ 1) constitutes a
winning strategy for ∃ in exactly 2n + 1 moves. Indeed, if we start from the initial position
ccn,p ? u0 · π0 (using an arbitrary handle (u0, π0)), then the game proceeds as follows:

• ∃ plays t1 ≡ K1
n,p[u0, kπ0 ] (since ccn,p ? u0 · π0 � u0 ? t1 · π0).

• ∀ plays any move (u1, π1)
• ∃ plays t2 ≡ K2

n,p[u0, kπ0 , u1] (since t1 ? u1 · π1 � u0 ? t2 · π0).
...

• ∀ plays any move (un−1, πn−1)
• ∃ plays tn ≡ Kn

n,p[u0, kπ0 , u1, . . . , un−1] (since tn−1 ? un−1 · πn−1 � u0 ? tn · π0).
• ∀ plays any move (un, πn)
• ∃ wins (since tn ? un · πn � up ? π0, where 1 ≤ p ≤ n).

Let us now formalize the notion of a winning strategy for the game G0 (from the point
of view of player ∃). We call a G0-state (or simply: a state) any pair 〈p, `〉 where p is
a process and where ` is a finite set of closed terms that intuitively represents the former
moves of ∀. Given a fixed handle (u0, π0) ∈ Λ ×Π, we inductively define the set W(u0,π0) of
winning states from the following two inference rules:

〈p, `〉 ∈ W(u0,π0) (if p � u ? π0 for some u ∈ `)

〈t ? u · π, ` ∪ {u}〉 ∈ W(u0,π0) for all (u, π) ∈ Λ × Π

〈p, `〉 ∈ W(u0,π0)
(if p � u0 ? t · π0)

Notice that the second inference rule has infinitely many premises, that correspond to all
the possible ∀-moves (u, π) ∈ Λ × Π. A derivation of 〈p, `〉 ∈ W(u0,π0) is thus an infinitely
branching well-founded tree. Finally, we say that a closed term t0 is a winning strategy for
the game G0 if 〈t0 ? u0 · π0,∅〉 ∈ W(u0,π0) for all handles (u0, π0) ∈ Λ × Π.

We easily check that:

Fact 2. — For all n ≥ p ≥ 1, ccn,p is a winning strategy for the game G0.

Moreover, the terms ccn,p are uniform strategies, in the sense that all the corresponding
plays have the very same structure: they all have the same length (2n + 1 moves) and they
all use the pth opponent’s move (up, πp) to end the game (with up ? π0). In the presence
of the quote instruction, it is easy to implement winning strategies for the game G0 that
are not uniform—for instance by dynamically extracting n and/or p from the code of the
handle (u0, π0) or of one of the first opponent’s moves (ui, πi). But in all cases:

Proposition 10 (Adequacy of winning strategies for the game G0). — If t0 ∈ Λ is a winning
strategy for the game G0, then t0 � ∀X ((¬X ⇒ X)⇒ X).
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Proof. Let us assume that t0 ∈ Λ is a winning strategy for the game G0, and take a pole y,
a falsity value S ⊆ Π, a realizer u0 ∈ |¬Ṡ ⇒ Ṡ | as well as a stack π ∈ S . We want to show
that t0 ? u0 · π0 ∈ y. For that, we more generally prove that

For all states 〈p, `〉 ∈ W(u0,π0), if ` ⊆ S y, then p ∈ y.

We proceed by induction on the derivation of 〈p, `〉 ∈ W(u0,π0), distinguishing two cases:

(1) 〈p, `〉 ∈ W(u0,π0) since p � u ? π0 for some u ∈ `.
If we assume that ` ⊆ S y, we thus get u ? π0 ∈ y (since u ∈ S y and π0 ∈ S ). We
then conclude by anti-evaluation.

(2) 〈p, `〉 ∈ W(u0,π0) since p � u0 ? t · π0 for some term t ∈ Λ such that
〈t ? u · π, ` ∪ {u}〉 ∈ W(u0,π0) for all (u, π) ∈ Λ × Π.
Let us assume that ` ⊆ S y. We first want to prove that t  ¬Ṡ . For that, we take
a term u ∈ S y and a stack π ∈ Π. Since ` ∪ {u} ⊆ S y, we get t ? u · π ∈ y
from the induction hypothesis. Hence t  ¬Ṡ and thus t · π0 ∈ ‖¬Ṡ ⇒ Ṡ ‖, so that
u0 ? t · π0 ∈ y. We conclude by anti-evaluation.

By induction, the property holds for all states 〈p, `〉 ∈ W(u0,π0). In particular, we have shown
that t0 ? u0 · π0 ∈ y, since 〈t0 ? u0 · π0,∅〉 ∈ W(u0,π0) from our assumption on t0. �

6.3. Completeness of G0 in the presence of interaction constants. In this section, we
prove that in the presence of infinitely many interaction constants and of infinitely many
substitutive stack constants, the converse of Prop. 10 holds, in the sense that every universal
realizer of the law of Peirce is a winning strategy for the game G0.

This result is a consequence of the following technical lemma:

Lemma 3. — Let t0 be a universal realizer of the law of Peirce. If (κi)i∈ω is an infinite
sequence of (pairwise distinct) non generative constants that do not occur in t0 and if
(αi)i∈ω is an infinite sequence of stack constants, then there exist two indices n and p such
that n ≥ p ≥ 1 as well as a finite sequence t1, . . . , tn of n closed terms such that:

t0 ? κ0 · α0 � κ0 ? t1 · α0
ti ? κi · αi � κ0 ? ti+1 · α0
tn ? κn · αn � κp ? α0

(for all 1 ≤ i < n)

Proof. We consider the sequence of sets of processes (Qi)i∈ω that is defined by

Q0 = th(t0 ? κ0 · α0) and Qi+1 =
⋃

t∈Λ s.t.
κ0?t·α0∈Qi

th(t ? κi+1 · αi+1) .

From this definition, it is clear that a process q ∈ Qi contains none of the constants κ j for
j > i, using the fact that these constants do not occur in t0 and that they are non generative.

Let us now write Q∞ =
⋃

i∈ω Qi, and consider the (thread-oriented) pole y defined
by y = (Q∞)c as well as the falsity value S = {α0}. From the definition of y, we have
t0 ? κ0 · α0 < y. But since t0  (¬Ṡ ⇒ Ṡ ) ⇒ Ṡ and α0 ∈ S , we deduce κ0 6 ¬Ṡ ⇒ Ṡ .
Which means that there is a realizer t  ¬Ṡ such that κ0 ? t · α0 < y. From the latter, we
deduce that κ0 ? t · α0 ∈ Qp−1 for some p ≥ 1. Hence t ? κp · αp ∈ Qp (from the definition
of Qp) and thus t ? κp · αp < y. But since t  ¬Ṡ , we have κp 6 Ṡ , hence κp ? α0 < y
and thus κp ? α0 ∈ Qn for some index n ≥ 0. Using the fact that κp can only occur in
the processes belonging to the sets Qi for i ≥ p, we get n ≥ p (so that n ≥ 1). From the
definition of Qn, we immediately deduce the existence of n terms t1, . . . , tn such that

t0 ? κ0 · α0 ∈ Q0 � κ0 ? t1 · α0 ∈ Q0
ti ? κi · αi ∈ Qi � κ0 ? ti+1 · α0 ∈ Qi

tn ? κn · αn ∈ Qn � κp ? α0 ∈ Qn

(for all 1 ≤ i < n)
�



22 MAURICIO GUILLERMO AND ALEXANDRE MIQUEL

Theorem 2 (Specification of Peirce’s law in the presence of interaction constants). — If
the calculus of realizers contains infinitely many interaction constants as well as infin-
itely many substitutive and non generative stack constants, then the universal realizers of
Peirce’s law are exactly the uniform winning strategies for the game G0.

Proof. We have already proved (Prop. 10) that the terms t0 that are winning strategies for
the game G0 universally realize Peirce’s law. Conversely, let t0 � ∀X ((¬X ⇒ X) ⇒ X),
and take an infinite sequence (κi)i∈ω of (pairwise distinct) interaction constants that do not
occur in t0 as well as an infinite sequence (αi)i∈ω of (pairwise distinct) non generative and
substitutive stack constants that do not occur in t0 too. (It is always possible to find such
term and stack constants outside t0, since t0 only contains a finite number of them.) From
Lemma 3, there exist two indices n and p such that n ≥ p ≥ 1 as well as a finite sequence
t1, . . . , tn of n closed terms such that:

t0 ? κ0 · α0 � κ0 ? t1 · α0
ti ? κi · αi � κ0 ? ti+1 · α0
tn ? κn · αn � κp ? α0

(for all 1 ≤ i < n)

Also notice that from our assumptions, each term ti (0 ≤ i ≤ n) may contain the constants
κ j/α j for any j < i, but it contains none of them when j ≥ i. To prove the desired result,
we consider the threads th(ti ? κi · αi) (1 ≤ i ≤ n) in reverse order.

• i = n. For all u0, . . . , un ∈ Λ and π0, . . . , πn ∈ Π we have

tn{κ j := u j}
n−1
j=0 {α j := π j}

n−1
j=0 ? un · πn � up ? π0

(by substitutivity), so that

〈tn{κ j := u j}
n−1
j=0 {α j := π j}

n−1
j=0 ? un · πn, {u1; . . . ; un}〉 ∈ W(u0,π0)

from the first rule of the inductive definition of W(u0,π0).
• 0 ≤ i < n. Let us now assume that

〈ti+1{κ j := u j}
i
j=0{α j := π j}

i
j=0 ? ui+1 · πi+1, {u1; . . . ; ui+1}〉 ∈ W(u0,π0)

for all u0, . . . , ui+1 ∈ Λ and π0, . . . , πi+1 ∈ Π. From the second rule of the inductive
definition of W(u0,π0), we get

〈ti{κ j := u j}
i−1
j=0{α j := π j}

i−1
j=0 ? ui · πi, {u1; . . . ; ui}〉 ∈ W(u0,π0)

for all u0, . . . , ui ∈ Λ and π0, . . . , πi ∈ Π.
In the case where i = 0, we have thus proved that 〈t0 ? u0 · π0, ∅〉 ∈ W(u0,π0) for all u0 ∈ Λ

and π0 ∈ Λ, which means that t0 is a winning strategy for G0. The fact that this strategy is
uniform is obvious from the construction. �

In the presence of infinitely many interaction constants and of infinitely many substi-
tutive and non generative stack constants, every universal realizer of Peirce’s law has thus
the same computational behavior as one of the proof-like terms ccn,p (n ≥ p ≥ 1).

6.4. A wild realizer of Peirce’s law. Theorem 2 gives a specification of Peirce’s law in
the particular case where the language of realizers provides infinitely many interaction con-
stants and infinitely many substitutive and non generative stack constants. It is interesting
to notice that these assumptions are compatible with the presence of the non determinis-
tic instruction t; actually, the specification expressed in Theorem 2 makes no assumption
about the determinism or the non determinism of the relation of evaluation �1.

However, the assumptions of Theorem 2 are definitely incompatible with the presence of
instructions such as eq or quote, that break the property of substitutivity (for all term/stack
constants), and it is tempting to extend the result expressed in Theorem 2 to a framework
that allows such instructions—provided we drop the requirement of uniformity, since we
know that quote allows to implement non uniform winning strategy for the game G0.
Alas, this is not possible, since the presence of the instruction eq (that can be mimicked
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using quote) allows to define wild realizers of the law of Peirce, that is, universal realizers
t � ∀X ((¬X ⇒ X)⇒ X) that are not winning strategies for the game G0.

Here is an example of such a wild realizer. Let us consider the terms

K[y, k] ≡ λz . eq z (yy) I (k z)
T1[x] ≡ λy . cc (λk . x K[y, k])
T2[x] ≡ T1[x] T1[x]
cc′ ≡ λx .T2[x]

From these definitions we get:

cc′ ? u · π �1 T2[u] ? π � u ? K[T1[u], kπ] · π

for all u ∈ Λ and π ∈ Π, whereas

K[T1[u], kπ] ? u′ · π′ �

I ? π′ if u′ ≡ T2[u]
u′ ? π otherwise

for all u, u′ ∈ Λ and π, π′ ∈ Π.

Lemma 4. — Let y be a fixed pole and S ⊆ Π an arbitrary falsity value. For all u ∈ Λ

and π ∈ S such that T2[u] ? π < y, we have K[T1[u], kπ]  ¬Ṡ .

Proof. To show that K[T1[u], kπ]  ¬Ṡ , let us consider a stack of the form u′ · π′ where
u′ ∈ S y and π′ ∈ Π. Since π ∈ S , we have u′ ? π ∈ y, and thus u′ . T2[u]. Hence
K[T1[u], kπ]? u′ · π′ � u′ ?π ∈ y, so that K[T1[u], kπ]? u′ · π′ ∈ y by anti-evaluation. �

Proposition 11. — cc′ � ∀X ((¬X ⇒ X)⇒ X)

Proof. Let us consider a fixed pole y as well as a falsity value S ⊆ Π. To show that
cc′ ∈ |(¬Ṡ ⇒ Ṡ )⇒ Ṡ |, let us take u ∈ |¬Ṡ ⇒ Ṡ | and π ∈ S . We distinguish two cases:

• Either T2[u] ? π ∈ y. In this case we have cc′ ? u · π �1 T2[u] ? π ∈ y, from
which we get cc′ ? u · π ∈ y by anti-evaluation.

• Either T2[u] ? π < y. In this case we have cc′ ? u · π � u ? K[T1[u], kπ] · π.
Since K[T1[u], kπ]  ¬Ṡ (from Lemma 4), we get u ? K[T1[u], kπ] · π ∈ y, hence
cc′ ? u · π ∈ y by anti-evaluation. �

Notice that the subterm I that appears in the definition of the continuation K[y, k] never
appears in head position in the proofs of Lemma 4 and Prop. 11, so that we could actually
replace it by any closed λc-term. Intuitively, this is due to the fact that when u′ ≡ T2[u],
we are not interested anymore in the behavior of the process K[T1[u], kπ] ? u′ · π′ since
we are able to conclude that cc′ ? u · π ∈ y using other means (first case of the proof of
Prop. 11). Also notice that the case distinction performed in the proof of Prop. 11 makes
the corresponding proof intrinsically classical, which contrasts with the proof of adequacy
for cc (Lemma 2 p. 12), which is fully intuitionistic. In some sense, we can think of cc′ as
a universal realizer of Peirce’s law that is twice classical. It is classical from the compu-
tational point of view, since it heavily relies on the machinery of continuations. But it is
also classical from the meta-theoretic point of view, due to the fact that the corresponding
proof of adequacy (Prop. 11) is classical too.

Before giving a game-theoretic interpretation of these strange phenomena, let us first
check that cc′ of is not a winning strategy for our first game G0:

Lemma 5. — Let us assume that the relation of one step evaluation �1 is only defined
from the rules (Grab), (Push), (Save), (Restore) and (Eq). Then the universal realizer cc′

of Peirce’s law is not a winning strategy for the game G0.

Proof. We start with the initial handle (I, α0), where α0 is a stack constant. We notice that:
• Player ∃ is forced to play t1 ≡ K[T1[I], kα0 ], since t1 is the only term t such that

I ? t · α0 ∈ th(cc′ ? I · α0).
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• Opponent ∀ can play u1 ≡ T2[I] and π1 ≡ α0.
• Then ∃ loses, since the thread th(t1 ? u1 · π1) contains no process of the form

I ? t2 · α0 (to continue to play) or of the form T2[I] ? α0 (to win the game). �

6.5. A second game G1. Although the wild realizer cc′ of Peirce’s law does not constitute
a winning strategy for the game G0, we can still understand the computational behavior
of cc′ in game-theoretic terms as follows. Starting from an arbitrary handle (u0, π0):

• Player ∃ plays K[T1[u0], kπ0 ] (since cc′ ? u0 · π0 � u0 ? K[T1[u0], kπ0 ] · π0)
• Then opponent ∀ plays an arbitrary move (u1, π1) ∈ Λ × Π.

We now need to distinguish the following two cases:
(1) Either u1 . T2[u0]. In this case, the play ends as expected:

– ∃ wins, since K[T1[u0], kπ0 ] ? u1 · π1 � u1 ? π0.
(2) Either u1 ≡ T2[u0]. In this case, we can understand the strange computa-

tional behavior of cc′ as follows: since no interesting move can be obtained
from the current ∃-position K[T1[u0], kπ0 ] ? u1 · π1, player ∃ backtracks to
the former ∃-position cc′ ? u0 · π0 (the game started from). Then the play
continues from the ∃-position cc′ ? u0 · π0, and ∃ now wins since

cc′ ? u0 · π0 �1 T2[u0] ? π0 ≡ u1 ? π0 .

In other words, we can still think of the closed term cc′ as a winning strategy provided we
give to player ∃ the possibility to compute its move from any ∃-position that was previously
encountered during the play (and not only from the current ∃-position).

We thus get a new game G1 that is defined from the same ∃/∀-positions as before, as
well as from the same ∀-moves as before. The only difference is that now, player ∃ keeps
track of the history of all the preceding ∃-positions encountered during the game, and is
allowed to compute its next move from any position recorded in this history.

Formally, we thus define a G1-state as a pair 〈P, `〉 where P is a finite set of processes
(intuitively: the history of all the previously encountered ∃-positions, including the current
position) and where ` is a finite set of closed terms (intuitively: the history of the first
components ui of the previous moves (ui, πi) of the opponent ∀). Given a handle (u0, π0) ∈
Λ × Π, the set W ′(u0,π0) of winning G1-states is inductively defined as follows:

〈P, `〉 ∈ W ′(u0,π0) (if p � u ? π0 for some p ∈ P, u ∈ `)

〈P ∪ {t ? u · π}, ` ∪ {u}〉 ∈ W ′(u0,π0) for all (u, π)

〈P, `〉 ∈ W ′(u0,π0)
(if p � u0 ? t · π0 for some p ∈ P)

As before, we say that a term t0 is a winning strategy for the game G1 if for all handles
(u0, π0) ∈ Λ ×Π, we have 〈{t0 ? u0 · π0},∅〉 ∈ W ′(u0,π0). It is a simple exercise to check that:

Fact 3. — The closed term cc′ is a winning strategy for the game G1.

Moreover, we easily check that winning strategies for the game G0 are particular cases
of winning strategies for the game G1:

Proposition 12. — If a closed λc-term is a winning strategy for the game G0, then it is also
a winning strategy for the game G1.

Proof. It suffices to prove that 〈p, `〉 ∈ W(u0,π0) implies 〈{p}, `〉 ∈ W ′(u0,π0) for all G0-states
〈P, `〉, by induction on the derivation of 〈p, `〉 ∈ W(u0,π0). The second case of the proof relies
on the property of monotonicity expressing that 〈P, `〉 ∈ W ′(u0,π0) and P ⊆ P′ together imply
〈P′, `〉 ∈ W ′(u0,π0) (which is also proved by induction). �

Let us now prove that the game G1 is adequate w.r.t. Peirce’s law:

Proposition 13 (Adequacy of winning strategies for the game G1). — If t0 is a winning
strategy for the game G1, then t0 � ∀X ((¬X ⇒ X)⇒ X).
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Proof. Let y be a fixed pole, and consider a falsity value S ⊆ Π, a realizer u0  ¬Ṡ ⇒ Ṡ
as well as a stack π0 ∈ S . We want to show that t0 ? u0 · π0 ∈ y. For that, we more
generally prove that for all 〈P, `〉 ∈ W ′(u0,π0), ` ⊆ S y implies P∩y , ∅. The proof proceeds
by induction on the derivation on 〈P, `〉 ∈ W ′

(u0,π0), distinguishing the following cases:
(1) 〈P, `〉 ∈ W ′(u0,π0) since there exist some p ∈ P and u ∈ ` such that p � u ? π0. If we

assume that ` ⊆ S y, we thus get u ? π0 ∈ y, hence p ∈ y by anti-evaluation.
(2) 〈P, `〉 ∈ W ′(u0,π0) since there exist some p ∈ P and t ∈ Λ such that p � u0 ? t · π0,

and since 〈P ∪ {t ? u · π}, ` ∪ {u}〉 ∈ W ′
(u0,π0) for all u ∈ Λ and π ∈ Π. Let us

assume that ` ⊆ S y. To show that P∩y , ∅, let us assume that P∩y = ∅ (using
the meta-theoretic law of Peirce). We first want to show that t  ¬Ṡ . For that,
let us consider u ∈ S y and π ∈ Π. Since 〈P ∪ {t ? u · π}, ` ∪ {u}〉 ∈ W ′(u0,π0) and
(`∪ {u}) ⊆ S y, we get (P∪ {t? u · π})∩y , ∅ by induction hypothesis. But since
P ∩ y = ∅, we deduce that t ? u · π ∈ y, which finishes the proof that t  ¬Ṡ .
Therefore, u0 ? t · π0 ∈ y, and thus p ∈ y by anti-evaluation.

In particular, we have proved that t0 ? u0 · π0 ∈ y, since 〈{t0 ? u0 · π0},∅〉 ∈ W ′(u0,π0). �

But the converse implication also holds, without any further assumption on the param-
eters B, C and �1 that define the underlying calculus of realizers:

Proposition 14 (Completeness of winning strategies for the game G1). — If t0 universally
realizes Peirce’s law, then t0 is a winning strategy for the game G1.

Proof. We reason by contradiction by assuming that there is a handle (u0, π0) ∈ Λ × Π

such that 〈{t0 ? u0 ·π0},∅〉 < W ′
(u0,π0). To reach a contradiction, we shall build an increasing

sequence of G1-states (〈Pi, `i〉)i∈N such that 〈Pi, `i〉 < W ′(u0,π0) for all i ∈ N. For that, we
consider a fixed enumeration φ : N → Λ such that every term t ∈ Λ appears infinitely
many times in the range of φ. The sequence (〈Pi, `i〉)i∈N is defined as follows:

• P0 = {t0 ? u0 · π0} and `0 = ∅, so that 〈P0, `0〉 < W ′(u0,π0).
• Let us assume that we have built a G1-state 〈Pi, `i〉 such that 〈Pi, `i〉 < W ′(u0,π0).

Writing t ≡ φ(i), we distinguish the following two cases:
(1) Either there exists a process p ∈ Pi such that p � u0 ? t · π0. In this case, we

know (from the second rule of the inductive definition of W ′(u0,π0)) that there
is a pair (u, π) ∈ Λ ×Π such that 〈Pi ∪ {t ? u · π}, `i ∪ {u}〉 < W ′

(u0,π0). We pick
such a pair (u, π) and let Pi+1 = Pi ∪ {t ? u · π} and `i+1 = `i ∪ {u}, so that by
construction we have 〈Pi+1, `i+1〉 < W ′(u0,π0)

(2) Either there is no process p ∈ Pi such that p � u0 ? t · π0. In this case, we
keep the same G1-state by letting Pi+1 = Pi and `i+1 = `i.

It is clear from the above construction that Pi ⊆ Pi+1 and `i ⊆ `i+1 for all i ∈ N. We then
put P∞ =

⋃
i∈N Pi, Q =

⋃
p∈P∞ th(p), and we consider the poley = Qc as well as the falsity

value S = {π0}. Since t0  (¬Ṡ ⇒ Ṡ )⇒ Ṡ , π0 ∈ S and t0 ? u0 · π0 < y (from the definition
of y), we get u0 6 ¬Ṡ ⇒ Ṡ . Thus, there is a realizer t  ¬Ṡ such that u0 ? t · π0 < y.
Hence u0 ? t · π0 ∈ Q, so that there is an index n ≥ 0 and a process p ∈ Pn such that
p � u0 ? t · π0. Let us consider an index n′ ≥ n such that φ(n′) ≡ t. Since p ∈ Pn′ (⊇ Pn)
and p � u0 ? t · π0, there exists (u, π) ∈ Λ × Π such that Pn′+1 = Pn′ ∪ {t ? u · π} and
`n′+1 = `n′ ∪ {u} (by construction of 〈Pn′+1, `n′+1〉). Therefore t ? u · π < y, hence u 6 Ṡ
(since t  ¬Ṡ and π ∈ ‖⊥‖), so that u ? π0 < y. Hence we get u ? π0 ∈ Q, so that there is
an index m ≥ 0 and a process p′ ∈ Pm such that p′ � u?π0. Without loss of generality, we
can assume that m ≥ n′ + 1 since the sequence (Pi)i∈N is increasing. We have thus found
an index m ≥ n′ + 1, a process p′ ∈ Pm and a term u ∈ `m (since u ∈ `n′+1 ⊆ `m) such
that p′ � u ? π0, which means that 〈Pm, `m〉 ∈ W ′(u0,π0) (from the first rule of the inductive
definition of W ′(u0,π0)) and brings us the desired contradiction. �

From Prop. 13 and 14, we thus get the definitive specification of Peirce’s law:
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Theorem 3 (Specification of Peirce’s law). — The universal realizers of Peirce’s law are
exactly the winning strategies for the game G1.
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