
Relating classical realizability and negative
translation for existential witness extraction

Alexandre Miquel

Université Paris 7 & LIP (ENS Lyon)

alexandre.miquel@ens-lyon.fr

Abstract. Friedman showed how to turn a classical proof of a Σ0
1 for-

mula into an intuitionistic proof of the same formula, thus giving an
effective method to extract witnesses from classical proofs of such for-
mulae. In this paper we show how to achieve the same goal efficiently
using Krivine realizability with primitive numerals, and prove that the
corresponding program is but the direct-style equivalent (using call-cc)
of the CPS-style program underlying Friedman’s method.

1 Introduction

Classical realizability is a powerful framework introduced by Krivine [4, 7] to
study the proofs-as-programs paradigm in classical logic. Its main feature is
that the computational interpretation of proofs is not described via a negative
translation, but instead expressed in direct style using a λ-calculus extended
with the control operator call/cc. Although classical realizability is traditionally
presented in second-order classical arithmetic, it can be extended to much more
expressive logical frameworks such as Zermelo-Fraenkel set theory [5] or the cal-
culus of constructions with universes [8]. And with the help of extra instructions,
it can even provide realizers for several forms of the axiom of choice [5].

The purpose of this paper is twofold. First, it aims at presenting the method
that naturally comes with classical realizability in order to extract a witness
from a classical proof of a Σ0

1 -formula. Second, it aims to relate this extraction
method with the traditional method introduced by Friedman [2] that combines
a negative translation with an intuitionistic realizability interpretation, and to
show that through this translation, both extraction methods are basically the
same (up to the details in the definition of the negative translation).

For that, we first present Krivine’s framework for classical realizability as well
as the corresponding witness extraction method, introducing a primitive (and
we believe, more efficient) representation of natural numbers in the language
of realizers—instead of using Church numerals. We then define an intuitionistic
realizability model for second-order arithmetic as well as a negative translation
in the spirit of [9], but extended to primitive numerals. We finally analyze the
witness extraction method of classical realizability through the negative trans-
lation, and show that it corresponds to the transformation used by Friedman
to prove the conservativity of Peano arithmetic over Heyting arithmetic for Σ0

1

(and actually Π0
2) formulæ.

2 Classical realizability in second-order logic

2.1 The language of second-order logic

The language of second-order logic is parameterized by a first-order language
of expressions (a.k.a. first-order terms) to represent the individuals. In this pa-
per, we shall only consider arithmetic expressions (notation: e, e′, etc.) that
are formed from first-order variables (notation: x, y, z, etc.) and the constant
symbol 0 (‘zero’) using function symbols for all primitive recursive definitions of
functions (notation: f , g, h, etc.), including a unary function symbol s for the
successor function, binary function symbols + and × for addition and multipli-
cation, and a unary function symbol ‘pred’ for the predecessor function.

Formulæ of the (minimal) language of second-order logic are formed from
second-order variables (notation: X, Y , Z, etc.) of all arities using implication
and first- and second-order universal quantification:

Formulæ A,B ::= X(e1, . . . , ek) | A⇒ B | ∀xA | ∀X A .

The set of all free (first- and second-order) variables of a formula A is written
FV (A). The notions of first- and second-order substitution in a formula are
defined as usual, and written A{x := e} and A{X(x1, . . . , xk) := B} respectively.

In what follows we shall consider the following (standard) second-order en-
codings for connectives and first- and second-order existential quantifications as
well as for Leibniz equality:

⊥ ≡ ∀Z Z
¬A ≡ A⇒ ⊥

A ∧B ≡ ∀Z ((A⇒ B ⇒ Z)⇒ Z)
A ∨B ≡ ∀Z ((A⇒ Z)⇒ (B ⇒ Z)⇒ Z)
∃xA(x) ≡ ∀Z (∀x (A(x)⇒ Z) ⇒ Z)
∃X A(X) ≡ ∀Z (∀X (A(X)⇒ Z) ⇒ Z)

e = e′ ≡ ∀Z (Z(e)⇒ Z(e′))

(where Z is a fresh variable).

2.2 A type system for second-order logic

We now define a type system for classical second-order logic, based on a judgment
of the form Γ `NK t : A, where Γ is a typing context, t a proof-term and A a
formula of the language defined above. Here, proof-terms (notation: t, u, etc.) are
simply the pure λ-terms enriched with a special constant written cc (‘call/cc’),
to prove Peirce’s law. Typing contexts (notation: Γ , Γ ′, etc.) are finite functions
from proof-variables to formulæ.

The inference rules of this system are given in Fig. 1. These rules contain
an axiom rule, introduction and elimination rules for implication and first- and
second-order universal quantification, plus a typing rule for cc (Peirce’s axiom).

The semantics of this system is given by the classical realizability model we
are going to define now.

Γ `NK x : A
(x:A)∈Γ

Γ `NK cc : ((A ⇒ B) ⇒ A) ⇒ A

Γ, x : A `NK t : B

Γ `NK λx . t : A ⇒ B

Γ `NK t : A ⇒ B Γ `NK t : A

Γ `NK tu : B

Γ `NK t : A

Γ `NK t : ∀x A
x/∈FV (Γ)

Γ `NK t : ∀x A

Γ `NK t : A{x := e}

Γ `NK t : A

Γ `NK t : ∀X A
X /∈FV (Γ)

Γ `NK t : ∀X A

Γ `NK t : A{X(x1, . . . , xk) := B}

Fig. 1. Typing rules for classical second-order logic

2.3 A calculus of realizers

Krivine’s classical realizability model [7] is based on a much larger larger calcu-
lus than the calculus of proof-terms described in 2.2. Instead, the language λc

distinguishes three distinct syntactic categories: terms, stacks and processes.
Terms (notation: t, u, etc.) and stacks (notation: π, π′, etc.) are defined by

mutual induction as follows:

Terms

Stacks

t, u ::= x | λx . t | tu | κ | kπ

π ::= α | t · π (t closed)

Terms are the pure λ-terms enriched with constants for every instruction (nota-
tion: κ, κ′, etc.) of a fixed instruction set K that contains (at least) the instruc-
tion cc, plus a continuation constant for every stack π. Stacks are finite lists of
closed terms terminated by a stack constant1 (notation: α, β, etc.) Note that
unlike terms (that may be open or closed), stacks only contain closed terms and
are thus closed objects—so that the continuation constant kπ associated to every
stack π is really a constant.

Finally, a process (notation: p, q, etc.) is a pair written t ? π and formed by
a closed term t and a stack π:

Processes p, q ::= t ? π (t closed)

The set of closed terms (resp. the set of stacks) is written Λc (resp. Π), and
the set of processes is written Λc ? Π.

1 Since the witness extraction method we present in this paper (in section 4) does
not make use of the constant at the bottom of the stack, it is safe to assume here
that there is only a single stack constant ‘nil’. However, the presence of several stack
constants is sometimes desirable when working with extra instructions that make
use of them, such as the ‘clock’ instruction [5, 7].

2.4 Evaluation

The set of processes is equipped with a binary relation p � p′ of evaluation that
satisfies (at least) the following axioms

Grab
Push
Call/cc
Resume

λx . t ? u · π � t{x := u} ? π
tu ? π � t ? u · π
cc ? t · π � t ? kπ · π
kπ ? t · π′ � t ? π

for all t, u ∈ Λc and π, π′ ∈ Π. Note that only processes are subject to evaluation:
there is no notion of reduction for either terms or stacks in λc.

2.5 The realizability interpretation

The construction of the classical realizability model is parameterized by a set of
processes ⊥⊥ ⊆ Λc ? Π (the ‘pole’) which we assume to be saturated (or closed
under anti-evaluation) in the sense that conditions p � p′ and p′ ∈ ⊥⊥ together
imply p ∈ ⊥⊥ for all p, p′ ∈ Λc ? Π.

We call a falsity value any set of stacks S ⊆ Π. By orthogonality, every falsity
value S ⊆ Π induces a truth value S⊥⊥ ⊆ Λc defined as:

S⊥⊥ = {t ∈ Λc : ∀π ∈S t ? π ∈ ⊥⊥} .

A valuation is a function ρ that maps every first-order variable x to a natural
number ρ(x) ∈ N, and every second-order variable X of arity k to a falsity value
function ρ(X) : Nk → P(Π). A parametric expression (resp. a parametric for-
mula) is simply an expression e (resp. a formula A) equipped with a valuation ρ,
that we write e[ρ] (resp. A[ρ]). Parametric contexts are defined similarly.

For every parametric expression e[ρ] we write Val(e[ρ]) ∈ N the value of e[ρ],
interpreting variables by their images in ρ while giving to the primitive recursive
function symbols in e their standard interpretation.

Every parametric formula A[ρ] is interpreted as two sets, namely: a falsity
value ‖A[ρ]‖ ⊆ Π and a truth value |A[ρ]| ⊆ Λc. Both sets are defined by
induction on A as follows:

‖X(e1, . . . , ek)[ρ]‖ = ρ(X)(Val(e1[ρ]), . . . ,Val(ek[ρ]))

‖(A⇒ B)[ρ]‖ = |A[ρ]| · ‖B[ρ]‖ = {t · π : t ∈ |A[ρ]|, π ∈ ‖B[ρ]‖}

‖(∀xA)[ρ]‖ =
⋃
n∈N
‖A[ρ;x← n]‖

‖(∀X A)[ρ]‖ =
⋃

F :Nk→P(Π)

‖A[ρ;x← F]‖

|A[ρ]| = ‖A‖⊥⊥ = {t ∈ Λc : ∀π ∈ ‖A[ρ]‖ t ? π ∈ ⊥⊥}

Since the truth value |A[ρ]| and the falsity value ‖A[ρ]‖ actually depend on the
parameter ⊥⊥, we shall sometimes use the notations |A[ρ]|⊥⊥ and ‖A[ρ]‖⊥⊥ to
indicate this dependency explicitly. In what follows, we shall write

– t NK A[ρ] (‘t realizes A[ρ]’) when t ∈ |A[ρ]|⊥⊥ (keeping in mind that this
notion depends on the choice of the pole ⊥⊥);

– t �NK A[ρ] (‘t universally realizes A[ρ]’) when t ∈ |A[ρ]|⊥⊥ for all saturated
sets ⊥⊥ ⊆ Λc ? Π.

2.6 Adequacy

We call a substitution any finite function from proof-variables to closed λc-terms,
and write t[σ] the closed term obtained by applying a substitution σ to a term t.
Given a substitution σ and a parametric context Γ [ρ], we write σ NK Γ [ρ]
when dom(Γ) ⊆ dom(σ) and σ(x) NK A[ρ] for all (x : A) ∈ Γ . We say that:

– A judgment Γ `NK t : A is sound (w.r.t. the pole ⊥⊥) when for all valuations ρ
and for all substitutions σ such that σ NK Γ [ρ], we have t[σ] NK A[ρ].

– An inference rule P1···Pn

C (where P1, . . . , Pn and C are typing judgments) is
sound (w.r.t. the pole ⊥⊥) when the soundness of its premises P1, . . . , Pn (in
the above sense) implies the soundness of its conclusion C.

From these definitions, it is clear that the conclusion of any typing derivation
formed with only sound inference rules is sound.

Proposition 1 (Adequacy). — The typing rules of Fig. 1 are sound w.r.t. all
poles ⊥⊥ ⊆ Λc ×Π.

A consequence of this proposition is that closed proof-terms given by the
type system of Fig. 1 provide universal realizers of the corresponding formulæ.
(But not all realizers can be detected via typing [7].)

3 From second-order logic to second-order arithmetic

3.1 Extending the language of formulæ

We enrich the language of formulæ with a unary predicate constant null(e)
(whose name is self-explanatory) plus a syntactic construct {e} ⇒ B (where e
is an expression and B a formula) whose semantics will be given in 3.32:

Formulæ A,B ::= · · · | null(e) | {e} ⇒ B

This extension of the language is accompanied with the shorthands:

> ≡ null(0) nat(e) ≡ ∀Z (({e} ⇒ Z)⇒ Z)
∀NxA(x) ≡ ∀x ({x} ⇒ A(x))
∃NxA(x) ≡ ∀Z (∀x ({x} ⇒ A(x)⇒ Z)⇒ Z)

2 Intuitively: {e} ⇒ B is the type of functions producing a proof of B when applied
to the value of e, using the primitive representation of numerals described in 3.2

We also introduce two congruences over expressions and formulæ, written
e ∼= e′ and A ∼= A′. The congruence e ∼= e′ over the class of expressions is
the congruence generated by the equational theory of the primitive recursive
function symbols expressions are made of. The congruence A ∼= A′ over the class
of formulæ is then defined as the least congruence containing the contextual
closure of the congruence e ∼= e′ across atomic formulæ, and satisfying the extra
equation null(s(e)) ∼= ⊥ (writing ⊥ ≡ ∀Z Z). Note that from the definition of
the propositional constant >, the equation null(0) ∼= > comes for free.

3.2 Adding primitive numerals to λc

The instruction set K is enriched with the following instructions:

– For every n ∈ N, a (pseudo-)instruction n̂ ∈ K representing the numeral n
as a pure datum. We call the constant n̂ a pseudo-instruction since it comes
with no evaluation rule (i.e. of the form n̂ ? π � · · ·), thus expressing that
the constant n̂ is meaningless in function position.

– Two constants s and rec with the reduction rules

s ? n̂ · u · π � u ? n̂ + 1 · π
rec ? u0 · u1 · 0̂ · π � u0 ? π

rec ? u0 · u1 · n̂ + 1 · π � u1 ? n̂ · (rec u0 u1 n̂) · π

for all u, u0, u1 ∈ Λc, n ∈ N and π ∈ Π.

With these instructions, it is possible to implement every primitive recursive
function f of arity k as a term f̌ with the reduction rule

f̌ ? n̂1 · · · n̂k · u · π �∗ u ? m̂ · π ,

writing m the image of (n1, . . . , nk) by f . To improve efficiency, we can also
introduce the f̌s (or some of them) as primitive instructions.

Apart from the representation of numerals as pure data, every natural num-
ber n ∈ N can be also represented as a program ň defined by ň ≡ λx . xn̂. (This
program will receive the type nat(n) from the type system defined in 3.4.) More
generally we call a lazy numeral any closed term t such that tu � un̂ for some
n ∈ N (that may depend on u) for all u ∈ Λc.

3.3 The extended realizability interpretation

The realizability interpretation defined in 2.5 is extended to the new syntactic
constructs by letting:

‖null(e)[ρ]‖ =

{
∅ if Val(e[ρ]) = 0
Π otherwise

‖({e} ⇒ B)[ρ]‖ = {n̂ · π : n = Val(e[ρ]), π ∈ ‖B[ρ]‖}

From the interpretation of the predicate null(e) and from the definitions of
the congruences e ∼= e′ and A ∼= A′, we immediately get:

Proposition 2 (Denotations of congruent expressions/formulæ).

1. If e ∼= e′, then Val(e[ρ]) = Val(e′[ρ]) for all valuations ρ;
2. If A ∼= A′, then ‖A[ρ]‖ = ‖A′[ρ]‖ and |A[ρ]| = |A′[ρ]| for all valuations ρ.

3.4 The extended type system and its adequacy

We first extend the notion of typing context by allowing a second form of decla-
ration x : {e}, where x is a proof-variable and e an arithmetic expression. Given
a substitution σ and a parametric context Γ [ρ] (according to the extended defi-
nition of contexts), the notation σ NK Γ [ρ] now means that:

– dom(Γ) ⊆ dom(σ);
– σ(x) NK A[ρ] for all (x : A) ∈ Γ ;
– σ(x) ≡ n̂ where n = Val(e[ρ]), for all (x : {e}) ∈ Γ .

The type system defined in Fig. 1 is extended with the inference rules of
Fig. 2. These rules comprise a conversion rule (in the spirit of type theory and

Γ `NK t : A

Γ `NK t : A′ A∼=A′

Γ `NK t : > Γ `NK s : ∀Nx nat(s(x))

Γ `NK rec : ∀X (X(0) ⇒ ∀Nx (X(x) ⇒ X(s(x))) ⇒ ∀Nx X(x))

Γ, x : {e} `NK t : B

Γ `NK λx . t : {e} ⇒ B

Γ `NK t : {e} ⇒ B

Γ `NK tx : B
(x:{e})∈Γ

Γ `NK t : {sn0} ⇒ B

Γ `NK tn̂ : B

Fig. 2. Typing rules for classical second-order arithmetic

deduction modulo), typing rules for the instructions s (2nd Peano axiom) and rec
(induction principle), plus typing rules for the construct {e} ⇒ B.

Proposition 3 (Adequacy). — The typing rules of Fig. 2 are sound w.r.t. all
poles ⊥⊥ ⊆ Λc ×Π.

Using these rules, one can derive for instance that ň ≡ λx . xn̂ has type
nat(sn0), and more generally build proof-terms for the axioms of arithmetic:

Fact 1 — The following judgments are derivable:

1. `NK 0̌ : nat(0) (1st Peano axiom)
2. `NK s : ∀Nx nat(s(x)) (2nd Peano axiom)
3. `NK λz . z : ∀x (s(x) = s(y)⇒ x = y) (3rd Peano axiom)
4. `NK λz . z (λw .w) : ∀x ¬(0 = s(x)) (4th Peano axiom)
5. `NK rec : A(0)⇒ ∀Nx (A(x)⇒ A(s(x)))⇒ ∀NxA(x) (5th Peano axiom)

4 Witness extraction in classical realizability

A fundamental difference between classical realizability and intuitionistic re-
alizability is that in classical realizability we do not evaluate terms but pro-
cesses, that are objects formed by combining a proof (the current term) and a
counter-proof (the current stack) of the same formula. From a logical point of
view, evaluation thus takes place in an inconsistent world, where a proof and a
counter-proof can coexist and interact with each other.

It is well-known that in classical realizability, the truth value |A| of any
(parametric) formula A is always inhabited provided the pole ⊥⊥ is not empty.3

On the other hand, the realizability model induced by the empty pole ⊥⊥ = ∅
simply mimics the (full) standard model of PA2, since |A|(⊥⊥=∅) = Λc iff A is
true (in the standard model), and |A|(⊥⊥=∅) = ∅ otherwise [7].

A consequence of the ‘local inconsistency’ of classical realizability is that
when we get a classical realizer t of an existential formula ∃NxA(x) from which
we extract a number n ∈ N and a realizer tn NK A(n), we can never trust
the certificate tn that ‘A(n) holds’. Instead, we have to test the proposed (and
potentially false) witness to check whether A(n) holds or not—which requires
a decision procedure for the predicate A(x)—and repudiate the current witness
(to get another witness) as long as the test fails.

Here is how to proceed formally.
We assume given a unary primitive recursive symbol f with a universal re-

alizer t0 �NK ∃Nxnull(f(x)), for instance a universal realizer that comes from
a proof in the system described in Fig. 1 and 2. (Any Σ0

1 formula can be given
this form.) Let f̌ be a term that computes f in the sense of 3.2, that is: a term
such that f̌ ? n̂ · u · π �∗ u ? f̂(n) · π for all n ∈ N, u ∈ Λc and π ∈ Π. (Such a
term is also a universal realizer of ∀Nx nat(f(x)).)

From the term f̌ let us define df ≡ λnxy . f̌ n (λp . rec x (λ . y) p). By defini-
tion, the term df decides whether f(n) = 0 or not, in the sense that

df ? n̂ · u0 · u1 · π �

{
u0 · π if f(n) = 0
u1 · π if f(n) 6= 0

for all n ∈ N, u0, u1 ∈ Λc and π ∈ Π. Let us now form the term

t′0 ≡ t0 (λxy . df x (stop x) y)

where ‘stop’ is an instruction with no evaluation rule.
Intuitively, the argument that is passed to the realizer t0 is a function that

extracts a potential witness x ∈ N with a certificate y NK A(x), and that
decides whether f(x) = 0 or not using df . When the test succeeds, the (correct)
witness x is returned via the return instruction stop. When the test fails, the
(wrong) certificate y—a realizer of null(f(x)), that is, a realizer of ⊥—is given

3 Given an arbitrary process t0 ? π0 ∈ ⊥⊥, it is easy to check that kπ0t0 ∈ |A| for every
parametric formula A.

the control. In practice, such a realizer of ⊥ can do nothing but backtrack using
a formerly saved stack. In this way we implement a retroaction loop where the
successive witnesses proposed by the realizer t0 are tested and repudiated as long
as the test fails, until a correct witness is found and then returned.4

Putting these intuitions into symbols, we get the following:

Proposition 4 (Decidable witness extraction). — For all π ∈ Π, the pro-
cess t′0 ? π evaluates to stop ? n̂ · π for some n ∈ N such that f(n) = 0.

Proof. Fix π ∈ Π, and consider the pole ⊥⊥ formed by all the processes p such
that p �∗ stop ? n̂ · π for some n ∈ N such that f(n) = 0. Since t0 is a universal
realizer of the formula ∃Nxnull(f(x)), it is also a realizer w.r.t. the pole ⊥⊥
defined above. Taking a valuation ρ such that ρ(Z) = {π}, we immediately
check that stop NK ({n} ⇒ Z)[ρ] for all n ∈ N such that f(n) = 0 (by
definition of ⊥⊥). Distinguishing the cases where f(n) = 0 and f(n) 6= 0, we then
prove that λxy . df x (stop x) y NK ({n} ⇒ null(f(n)) ⇒ Z)[ρ] for all n ∈ N,
hence the same term realizes ∀x ({x} ⇒ null(f(x)) ⇒ Z)[ρ]. Consequently, we
have t′0 ? π �∗ t0 ? (λxy . df x (stop x) y) · π ∈ ⊥⊥, hence the desired result. ut

In section 7 we shall reinterpret this witness extraction method through a
well-suited negative translation.

5 Intuitionistic realizability for second-order arithmetic

We now define an intuitionistic type system accompanied with its realizabil-
ity model whose definition follows the global pattern of the Brouwer-Heyting-
Kolmogorov interpretation. As in [9], we introduce a primitive form of conjunc-
tion (as a Cartesian product) and primitive forms of first- and second-order
existential quantification (as infinitary unions).

5.1 The language of formulæ

Taking the same language of arithmetic expressions as before (cf 2.1) with its
congruence e ∼= e′ (cf 3.1) we now consider the following language of formulæ:

Formulæ A,B ::= null(e) | nat(e) | X(e1, . . . , ek)
| A⇒ B | ∀xA | ∀X A
| A ∧B | ∃xA | ∃X A

Compared with the language for classical logic described in 2.1 and 3.1, the
language above replaces the construct {e} ⇒ B by a (more standard) primi-
tive predicate nat(e). We also consider primitive constructions for conjunction
and first- and second-order existential quantifications. In this setting, numeric
quantifications are defined as

∀NxA(x) ≡ ∀x (nat(x)⇒ A(x)) and ∃NxA(x) ≡ ∃x (nat(x) ∧A(x))
4 This witness extraction method is actually implemented in the module for classical

program extraction currently developped by the author for the Coq assistant [10].

The congruence A ∼= A′ over the class of formulæ is defined from the con-
gruence induced by e ∼= e′ (across atomic formulæ) by adding the equations

null(e) ∼= ⊥ and (∃v A(v))⇒ B ∼= ∀v (A(v)⇒ B)

where v is any first- or second-order variable that does not occur free in B. (This
second equation will be crucial to establish the result of Prop. 9.) As before, we
write > ≡ null(0).

5.2 A type system for intuitionistic second-order arithmetic

We introduce an intuitionistic (and more traditional) proof system based on a
judgment of the form Γ `NJ t : A, where the proof-term t is now formed in the
pure λ-calculus enriched with the following constants: pair (pairing), fst (first
projection), snd (second projection), 0 (zero), s (successor) and rec (recursor).
In what follows we shall write 〈t;u〉 for the application pair t u, and denote by Λ
the set of all closed proof-terms. Typing contexts are simply defined here as finite
functions from proof-variables to formulæ.

The class of derivable judgments Γ `NJ t : A is inductively defined from
the rules of inference of Fig. 3, using the abbreviation ∀NxA(x) for the numeric
quantification ∀x (nat(x)⇒ A(x)) such as defined in 5.1. (Note that there is no
elimination rule for the primitive existential quantifier, since the desired elimi-
nation can be performed using the conversion ∀v (A(v)⇒ B) ∼= (∃v A(v))⇒ B.)

This system is expressive enough to provide typable proof-terms for all the
theorems of intuitionistic second-order arithmetic.

5.3 Weak reduction

Proof-terms are equipped with a binary relation of one-step weak reduction writ-
ten t �w t′ and defined by the rules

(λx . t)u �w t{x := u} rec u0 u1 0 �w u0 rec u0 u1 (s t) �w u1 t (rec u0 u1 t)

fst 〈t1; t2〉 �w t1 snd 〈t1; t2〉 �w t2

t �w t′

tu �w t′u

u �w u′

tu �w tu′

Note that weak reduction is allowed both in the left- and right hand-side of ap-
plications, but not below λ-abstraction (i.e. we disable the ξ-rule of λ-calculus).
We write �∗w the reflexive-transitive closure of one step weak reduction.

Complementarily to the notion of weak reduction, we also define a relation
of inner reduction written t �i t′ from the rules:

t �w t′

λx . t �i λx . t′
t �i t′

tu �i t′u

u �i u′

tu �i tu′
t �i t′

λx . t �i λx . t′

The reflexive-transitive closure of the relation of inner reduction is written �∗i
while its reflexive-symmetric-transitive closure is written =i.

The union of both relations �w and �i is the ordinary relation of one step
reduction, written �. By the standard method of parallel reductions we get:

Γ `NJ x : A
(x:A)∈Γ

Γ `NJ t : >
Γ `NJ t : A

Γ `NJ t : A′ A∼=A′

Γ `NJ pair : A ⇒ B ⇒ A ∧B

Γ `NJ fst : A ∧B ⇒ A Γ `NJ snd : A ∧B ⇒ B

Γ `NJ 0 : nat(0) Γ `NJ s : ∀Nx nat(s(x))

Γ `NJ rec : ∀X (X(0) ⇒ ∀Nx (X(x) ⇒ X(s(x))) ⇒ ∀Nx X(x))

Γ, x : A `NJ t : B

Γ `NJ λx . t : A ⇒ B

Γ `NJ t : A ⇒ B Γ `NJ t : A

Γ `NJ tu : B

Γ `NJ t : A

Γ `NJ t : ∀x A
x/∈FV (Γ)

Γ `NJ t : ∀x A

Γ `NJ t : A{x := e}

Γ `NJ t : A

Γ `NJ t : ∀X A
X /∈FV (Γ)

Γ `NJ t : ∀X A

Γ `NJ t : A{X(x1, . . . , xk) := B}

Γ `NJ t : A{x := e}
Γ `NJ t : ∃x A

Γ `NJ t : A{X(x1, . . . , xk) := B}
Γ `NJ t : ∃X A

Fig. 3. Typing rules for intuitionistic second-order arithmetic

Proposition 5. — The relation � is confluent.

Moreover, we easily check that inner reduction can always be postponed:

Proposition 6. — If t �i t′ �w t′′, then t �w t′1 �∗i t′′ for some t′1.

From this proposition and the confluence of � we get:

Proposition 7 (Confluence of �w modulo =i). — It t �w t1 and t �w t2,
then there are terms t′1 and t′2 such that t1 �w t′1, t2 �w t′2 and t′1 =i t′2.

5.4 The intuitionistic realizability model

We now build a simple realizability model for the type system defined above,
in which formulæ are interpreted as saturated sets of terms, that is, as sets of
closed proof-terms S ⊆ Λ such that both conditions t �w t′ and t′ ∈ S imply
t ∈ S. The set of all saturated sets is written SAT.

Here, a valuation is a function ρ that maps every first-order variable x to
a natural number ρ(x) ∈ N, and every second-order variable X of arity k to a
function ρ(X) : Nk → SAT. Parametric expressions, formulæ and contexts are
defined as before. Every parametric formula A[ρ] is interpreted as a saturated

set JA[ρ]K ∈ SAT that is defined by the standard equations

JX(e1, . . . , ek)[ρ]K = ρ(X)(Val(e1[ρ]), . . . ,Val(ek[ρ]))

Jnull(e)[ρ]K =

{
Λ if Val(e[ρ]) = 0
∅ otherwise

Jnat(e)[ρ]K = {t ∈ Λ : t �∗w sn0, where n = Val(e[ρ])}

J(A⇒ B)[ρ]K = {t ∈ Λ : ∀u∈ JA[ρ]K tu ∈ JB[ρ]K}

J(A ∧B)[ρ]K = {t ∈ Λ : ∃u1 ∈ JA[ρ]K ∃u2 ∈ JB[ρ]K t �∗w 〈t;u〉}

J(∀xA)[ρ]K =
⋂
n∈N

JA[ρ;x← n]K J(∀XA)[ρ]K =
⋂

F :Nk→SAT

JA[ρ;X ← F]K

J(∃xA)[ρ]K =
⋃
n∈N

JA[ρ;x← n]K J(∃XA)[ρ]K =
⋃

F :Nk→SAT

JA[ρ;X ← F]K

In what follows, we shall write t NJ A[ρ] for t ∈ JA[ρ]K.

Fact 2 — If A ∼= A′, then JA[ρ]K = JA′[ρ]K for all valuations ρ.

5.5 Adequacy

Given a substitution σ and a parametric context Γ [ρ], we write σ NJ Γ [ρ] when
dom(Γ) ⊆ dom(σ) and σ(x) NJ A[ρ] for all (x : A) ∈ Γ . We say that:

– A judgment Γ `NJ t : A is sound when for all valuations ρ and for all
substitutions σ such that σ NJ Γ [ρ], we have t[σ] NJ A[ρ].

– An inference rule P1···Pn

C (where P1, . . . , Pn and C are typing judgments) is
sound when the soundness of its premises P1, . . . , Pn (in the above sense)
implies the soundness of its conclusion C.

Proposition 8 (Adequacy). — The typing rules of Fig. 3 are sound.

From this result combined with the realizability interpretation of existential
quantification and conjunction, we immediately get:

Fact 3 (Witness property) — If `NJ t : ∃NxA(x) ≡ ∃x (nat(x) ∧ A(x)),
then t �∗w 〈sn0; t′〉 for some n ∈ N and for some realizer t′ NJ A(n).

A consequence of this is that every proof of ∃Nxnull(f(x)) weakly reduces to
a pair of the form 〈sn0; t′〉, where n is such that f(n) = 0.

6 The negative translation

6.1 Translating formulæ

We now define a negative translation of classical formulæ (such as defined in sub-
sections 2.1 and 3.1) into intuitionistic formulæ (in the sense of subsection 5.1),
in the spirit of [9]. As usual, this translation is parameterized by a fixed intu-
itionistic formula R—the formula that will represent the pole ⊥⊥. In what follows,
we write ¬RA for A⇒ R.

Every classical formula A is translated as two intuitionistic formulæ writ-
ten A¬¬ and A⊥. The formula A¬¬ is simply defined as a shorthand for A¬¬ ≡
¬RA⊥ whereas the formula A⊥ is defined by induction on A as follows:

(X(e1, . . . , ek))⊥ ≡ X(e1, . . . , ek) (null(e))⊥ ≡ null(h(e))
(A⇒ B)⊥ ≡ A¬¬ ∧B⊥ (∀xA)⊥ ≡ ∃xA⊥

({e} ⇒ B)⊥ ≡ nat(e) ∧B⊥ (∀X A)⊥ ≡ ∃X A⊥

where the (unary) primitive recursive function symbol h is defined by the equa-
tions h(0) = 1 and h(s(x)) = 0. It is a simple exercise to check that:

Fact 4 — If A ∼= A′, then A⊥ ∼= A′⊥ and A¬¬ ∼= A′¬¬.

Note also that by definition, we have

(∀v A(v))¬¬ ≡ ∃v A(v)⊥ ⇒ R ∼= ∀v (A(v)⊥ ⇒ R) ≡ ∀v (A(v)¬¬)

6.2 CPS-translating terms and stacks

We now define two translations t 7→ t∗ and π 7→ π∗ (that are defined by mutual
induction on t and π) from the terms and stacks of the λc-calculus to the proof-
terms defined in 5.2. These translations are parameterized by a fixed mapping
α 7→ α∗ associating a proof-term α∗ to every stack constant α of λc.

Stacks are translated in the obvious way, as finite lists:

(α)∗ ≡ α∗ (t · π)∗ ≡ 〈t∗; π∗〉

Variable, abstraction and application are translated as expected

x∗ ≡ x
(tu)∗ ≡ λk . t∗ 〈u∗; k〉

(λx . t)∗ ≡ λk . (λx . t∗) (fst k) (snd k)

whereas continuation constants and call/cc are translated as

(kπ)∗ ≡ λk . fst k π∗

(cc)∗ ≡ λk . fst k 〈(λzk′ . fst k′ z) (snd k); snd k〉

Interestingly, the pure datum n̂ is translated as

(n̂)∗ ≡ sn 0 .

Here, the translation does not start with a continuation abstraction λk . . ., since
the construct n̂ is not intended to appear in head position. Finally, the instruc-
tions s and rec are translated as:

(s)∗ ≡ λk . fst (snd k) 〈s (fst k); snd (snd k)〉
(rec)∗ ≡ λk . rec (fst1 k) (λpyk′ . fst (snd k) 〈p; 〈y; k′〉〉)

(fst (snd (snd k))) (snd (snd (snd k)))

Proposition 9 (Correctness w.r.t. typing). — If Γ `NK t : A (Fig. 1–2),
then Γ¬¬ `NJ t∗ : A¬¬ (Fig. 3).

6.3 Simulation of evaluation by weak reduction

The expected property would be that each evaluation step t1 ? π2 � t2 ? π2

in λc corresponds to one or several weak reduction steps t∗1 π∗1 �+
w t∗2 π∗2 through

the CPS-translation. Although this works for almost all the evaluation rules—
application, abstraction, call/cc, continuation and successor—the property does
not hold for the evaluation of rec so that we need to refine a little bit more.

Proposition 10 (One step simulation). — If t1 ? π1 � t2 ? π2 (one step
evaluation in λc), then t∗1 π∗1 �+

w t∗2 u (weak reduction) for some term u =i π∗2 .

Corollary 1 (Grand simulation). — If t1 ? π1 �∗ t2 ? π2 (evaluation in λc),
then t∗1 π∗1 �∗w u (weak reduction) for some term u =i t∗2 π∗2 .

7 The negative interpretation of witness extraction

Let us now reinterpret the witness extraction method described in section 4
through the negative translation defined in section 6.

For that, consider a λc-term t0 such that `NK t0 : ∃Nxnull(f(x)), where
∃Nxnull(f(x)) is a shorthand for ∀Z (∀x ({x} ⇒ null(f(x))⇒ Z)⇒ Z). Let df

be the decision function for the predicate null(f(x)) introduced in section 4, and
write uf ≡ λxy . df x (stop x) y (where ‘stop’ is an instruction with no evaluation
rule) and p0 ≡ t0 ? uf · α (where α is a stack constant). From the discussion of
section 4, we know that the process p0 evaluates to stop ? n̂ · α for some n ∈ N
such that f(n) = 0.

Via the negative translation we have by Prop. 9:

`NJ t∗0 : ∀Z
(
∀x

(
nat(x) ∧ (null(h(f(x)))⇒ R) ∧ Z ⇒ R

)
∧ Z ⇒ R

)
The crucial point is the following:

Proposition 11. — In the intuitionistic realizability model:

d∗f NJ ∀x
(
nat(x) ∧

(
null(f(x))⇒ R

)
∧

(
null(h(f(x)))⇒ R

)
∧ > ⇒ R

)
(independently from the choice of R).

To type-check the term uf ≡ λxy . df x (stop x) y through the negative trans-
lation, let us now fix the pole by setting R ≡ ∃x (nat(x)∧null(f(x))), while
defining the translation of the instruction stop as (stop)∗ ≡ λz . z. With this
implementation of stop∗ we clearly have

`NJ stop∗ : ∀x
(
nat(x) ∧ null(f(x))⇒ R

)
hence (combining the latter with Prop. 11 using adequacy)

u∗f NJ ∀x
(
nat(x) ∧

(
null(h(f(x)))⇒ R

)
∧ > ⇒ R

)
,

from which we deduce that

p∗0 NJ R ≡ ∃x
(
nat(x) ∧ null(f(x))

)
.

We have thus shown that through the negative translation, the transforma-
tion of the classical proof t0 into the process p0 is nothing but the transformation
of a classical proof of a Σ0

1 -formula into an intuitionistic realizer of the same for-
mula, thus giving a constructive explanation why the procedure described in
section 4 successfully extracts a reliable witness in finite time.

Of course, the point here is that through the negative interpretation, the
transformation of the classical proof t0 into the process p0 exactly follows the
well-known method (due to Friedman [2]) to transform a classical proof of a
Σ0

1 -formula into an intuitionistic proof of the same formula.

References

1. H. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of
Studies in Logic and The Foundations of Mathematics. North-Holland, 1984.

2. H. Friedman. Classically and intuitionistically provably recursive functions. Higher
Set Theory, 669:21–28, 1978.

3. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University
Press, 1989.

4. J.-L. Krivine. A general storage theorem for integers in call-by-name lambda-
calculus. Th. Comp. Sc., 129:79–94, 1994.

5. J.-L. Krivine. Typed lambda-calculus in classical Zermelo-Fraenkel set theory.
Arch. Math. Log., 40(3):189–205, 2001.

6. J.-L. Krivine. Dependent choice, ‘quote’ and the clock. Th. Comp. Sc., 308:259–
276, 2003.

7. J.-L. Krivine. Realizability in classical logic. Unpublished lecture notes (available
on the author’s web page), 2005.

8. A. Miquel. Classical program extraction in the calculus of constructions. In J. Du-
parc and T. A. Henzinger, editors, CSL, volume 4646 of Lecture Notes in Computer
Science, pages 313–327. Springer, 2007.

9. P. Oliva and T. Streicher. On Krivine’s realizability interpretation of classical
second-order arithmetic. Fundam. Inform., 84(2):207–220, 2008.

10. The Coq Development Team (LogiCal Project). The Coq Proof Assistant Reference
Manual – Version 8.1. Technical report, INRIA, 2006.

