
The not so simple proof-irrelevant model of CC

Alexandre Miquel1 and Benjamin Werner2

1 Laboratoire de Recherche en Informatique, Université Paris-Sud,
F - 91 405 ORSAY cedex, France

Alexandre.Miquel@lri.fr
2 INRIA-Rocquencourt, BP 105, F - 78 153 LE CHESNAY cedex, France

Benjamin.Werner@inria.fr

Abstract. It is well-known that the Calculus of Constructions (CC)
bears a simple set-theoretical model in which proof-terms are mapped
onto a single object—a property which is known as proof-irrelevance. In
this paper, we show that when going into the (generally omitted) techni-
cal details, this naive model raises several unexpected difficulties related
to the interpretation of the impredicative level, especially for the sound-
ness property which is surprisingly difficult to be given a correct proof
in this simple framework. We propose a way to tackle these difficulties,
thus giving a (more) detailed elementary consistency proof of CC with-
out going back to a translation to Fω. We also discuss some possible
alternatives and possible extensions of our construction.

1 Introduction

Typed λ-calculi essentially describe the definition and the interaction of func-
tions. When building a model for a type system, the denotation of A → B
corresponds to a set of mappings from the denotations of A to the denotations
of B. The idea of set-theoretical models is to simply choose the set of all such
(set-theoretical) functions.

Such models are not very interesting from the proof-theoretical point of view
but they have at least the virtue of simplicity. The validity of an axiom or an
extension of the type system in this model is generally easy to justify. This point
alone is important enough in modern complex type theories as implemented
in proof-processing tools (Coq, Lego, PVS, NuPRL, Agda. . .), especially when
dealing with formalizations of pieces of mathematics which can require some
axiomatization.

Some of these type theories are impredicative, meaning a proposition may be
formed by quantification over all propositions. Technically, this means they are
extensions of Girard’s system F [12]. As pointed out by Reynolds [20], the only
way to give a set-theoretical account for system F (and thus its extensions) is
to identify all elements of a given type in the denotation. Thus types are either
interpreted by the empty set, or a singleton with a canonical element.

The Calculus of Constructions (CC) is one of the most well-known extensions
of system F . In CC, a type is a term which is either of type ∗ or of type 2. Types

of type ∗ are impredicative, that is ∀x : ∗ . x is also of type ∗. On the other hand,
quantification over 2 is prohibited for building objects of type 2. One therefore
talks of the impredicative level for objects of type ∗ and their elements, and of
the predicative level for objects of type 2 and their elements. This distinction of
different levels is kept in extensions of CC with additional universes and inductive
types.

There are two ways to look at the Calculus of Constructions and most of
its extensions. In the first, the objects are defined on the impredicative level;
this is typically the case when integers are defined impredicatively as Church
numerals. In this vision, the calculus is essentially an impredicative variant of
Martin-Löf’s type theories. In the second, objects are axiomatized or defined on
the predicative level; the impredicative level is therefore entirely dedicated to
propositions and proofs. This amounts to view the calculus as an extension of
Church’s Higher-Order Logic (HOL) with proofs as objects.

Since any set-theoretical model will identify the Church numerals 0 and 1, it
is clearly not interesting for the first vision of CC. It is however interesting for
the second case; indeed, set-theoretical models are the easiest way to prove the
coherence of CC, and many of its extensions provided these extensions take place
on the predicative level and bear interpretations as sets. Such interpretations are
called proof-irrelevant, since the content of the proof object is not relevant to the
interpretation. We can also mention that proof-irrelevance can have some other
positive side effects, we try to give a hint in to that respect in the conclusion.

Indeed, it has been repeatedly pointed out that the trivial boolean model of
system F can be extended to the Calculus of Constructions, with a standard set-
theoretical interpretation of the predicative level(s). However, maybe because it
was not considered interesting, little attention has been paid to the details of its
definition. In the next section, we try to explicitate some non trivial difficulties
when doing so, mainly in the interaction of the predicative and impredicative
levels.

In section three we give a slight reformulation of CC which allows us to tackle
the soundness proof in section 4. We end up by discussing some alternative
solutions and some consequences.

In what follows, we try to be as precise as possible, but for the usual choice
between de Bruijn indices and named variables. Both choices require specific
technical developments (see respectively [5] and [16]). We believe the present
work can be fitted in both formalization styles.

2 A problematic proof-irrelevant model

2.1 The Calculus of Constructions

In the following, we shall assume that the calculus of constructions (CC) and
more generally the theory of pure type systems (PTS) is familiar to the reader.
We will denote by ∗ and 2 the two sorts of CC, which are related by the axiom

∗ : 2 and by the four rules

(∗, ∗) (propositions)
(2, ∗) (polymorphism)
(∗,2) (dependent types)
(2,2) (type constructors)

The syntax of raw-terms is given by

Sorts s ::= ∗ | 2

Terms t, u, T, U ::= x | s | Πx :T .U | λx :T . t | tu.

In the following, we shall denote by t{x := u} the term obtained by substi-
tuting the term u to each free occurrence of the variable x in t. The one step
β-reduction is defined as usual and will be denoted by →β . Its reflexive and
transitive closure is denoted by �β , and the β-conversion equivalence by =β .
As in any other PTS [3], the β-reduction enjoys the Church-Rosser property :

If t1 =β t2, then there exists t′ such that t1 �β t′ and t2 �β t′.

Typing contexts are given by

Contexts Γ ::= [] | Γ ; [x : T]

We will not recall the typing rules of CC that can be found in [8, 10, 3], and we
will just mention the subject-reduction property:

If Γ ` t : T and t �β t′, then Γ ` t′ : T .

2.2 Defining the model

The proof-irrelevant model of CC is based on the simple idea that each type-
theoretical construct should be interpreted by its obvious set-theoretical equiv-
alent. In this way, the dependent product Πx :T .Ux (we add the subscript x
in Ux to emphasize the dependency) is interpreted by the generalized cartesian
product∏

x∈T

Ux =
{
f function; Dom(f) = T ∧ ∀x ∈ T f(x) ∈ Ux

}
,

the λ-abstraction λx :T . tx is interpreted by the set-theoretical abstraction that
will be denoted by (x∈T 7→ tx) in the following, and the application tu is inter-
preted by the function application t(u) of set-theory.

Interpreting proofs and propositions The delicate point here is of course the inter-
pretation of proof-terms and propositions. In order to achieve proof-irrelevance,
all proof-terms have to be interpreted by a single object •, and consequently,
propositions have to be interpreted either by the empty set ∅ (‘falsity’) or by
the singleton {•} (‘truth’), so that we naturally recover the classical interpreta-
tion of propositions as truth-values.

Let us recall that in CC, the sort ∗ is impredicative, since the dependent
product Πx :T .Ux of a family of propositions Ux indexed by some type T is
still a proposition, even if T has type 2. Regarding this point, it is important
to notice that interpreting naively the dependent product as the generalized
cartesian product of set theory is not completely sound. Indeed, if (Ux)x∈T is
a family of sets indexed by some set T such that Ux = ∅ or Ux = {•} for all
x ∈ T , then it is easy to check that

∏
x∈T

Ux =

{
∅ if Ux = ∅ for some x ∈ T{
(x∈T 7→ •)

}
if Ux = {•} for all x ∈ T

so that in the second case, we do not obtain the expected singleton {•}, but
another singleton that contains the constant function mapping • to any x ∈ T .

Identifying constant proof-functions To keep a uniform interpretation of the de-
pendent product (remember that the PTS-style syntax of CC makes no distinc-
tion between the different kinds of dependent product), the last remark shows
that we have to identify all the constant functions of the form (x∈T 7→ •) with
the object • itself. (Since the problem we want to point out comes from this
identification, it is worth to say a few words about it.) Therefore, let us set

lam(f) =

{
• if f(x) = • for all x ∈ Dom(f)
f otherwise

for any function f (the notation lam(f) being undefined otherwise). Intuitively,
the operator lam acts as a very simple encoding mechanism that replaces any
constant function of the form (x∈T 7→ •) by the proof-object • itself, and that
leaves f unchanged otherwise. To prevent undesirable identifications, we have to
assume that

Convention 1 — The proof-object • is not a set-theoretical function3.

Symmetrically, the corresponding decoding operation is performed through the
function application by setting

app(u, x) =

{
• if u = •
u(x) otherwise

3 Taking • ≡ {∅} is a possible choice which fits all conventions throughout the article.
Indeed, the empty set is not the set-theoretical code of pair (usually encoded as
{{a}; {a; b}}), hence the singleton {∅} is not the code of a set-theoretical function.

so that the proof-object • now behaves as a constant function mapping any
object of the universe to • itself. Notice that the notation app(u, x) is defined
when either u = • or u is a function and x ∈ Dom(u), and that both cases are
disjoint due to our convention. It is then straightforward to check that

Fact 2 — For any function f and for any object x ∈ Dom(f), the notation
app(lam(f), x) is defined and

app(lam(f), x) = f(x) .

At this point, it is important to notice that the domain of f is completely lost
via the encoding f 7→ lam(f) when f is a constant function returning the proof-
object. As a consequence, the notation app(lam(f), x) may be defined whereas
f(x) is not, which is the case when f is a constant function returning the proof-
object and when x /∈ Dom(f). This remark will have a crucial importance when
we will consider the problem of soundness of β-reduction in paragraph 2.4.

Finally, since we only want to work with encoded functions throughout the
model construction, it is convenient to also define a modified cartesian product

∏̂
x∈T

Ux =
{

lam(f); f ∈
∏
x∈T

Ux

}
in which all the expected functions are replaced by their encoded form.

Interpreting the predicative sort To interpret the sort 2, we simply have to
consider a set U such that

1. ∅ ∈ U , {•} ∈ U and
{
∅; {•}

}
∈ U ;

2. U is closed under the (modified) generalized cartesian product, that is

T ∈ U ∧ (∀x ∈ T Ux ∈ U) ⇒
∏̂
x∈T

Ux ∈ U

for any family of sets (Ux)x∈T .

A very simple candidate for U is the denumerable set Vω of all hereditarily finite
sets. (To fulfill the first condition, we have to assume that the proof-object • is
hereditarily finite.) Notice that if we choose U = Vω, we then obtain a model of
CC in which the denotations of all types are finite (thus refuting the possibility
of building any provably infinite data type in the formalism). On the other hand,
it is also possible to choose U such that U contains at least an infinite set (for
instance ω), but in this case, the set U can only be built under the assumption
of the existence of an inaccessible cardinal—that cannot be derived in Zermelo-
Fraenkel set theory [14].

2.3 Defining the interpretation function

The interpretation function is organized as follows:

– To each context Γ we associate a set JΓ K of Γ -valuations, that is lists of
objects of the form (· · · ((nil, α1), α2) · · · , αn) where n is the length of Γ .
(Consing is performed rightwards as for contexts.)

– To each pair (Γ, t) formed by a context Γ and a term t, we associate a
function JΓ ` tK which is partially defined on JΓ K (i.e. a function which is
defined on a subset of JΓ K).

Since the denotations JΓ K and JΓ ` tK will be defined by mutual induction on
the size of their argument, we have to precise what we mean by the size of a
context Γ and what we mean by the size of a pair Γ ` t:

– The size |t| of a term t is (recursively) defined as the sum of the sizes of its
immediate subterms plus 1. (In particular, |t| ≥ 1 for any term t.)

– The size of a context Γ = [x1 : T1; . . . ;xn : Tn] is defined by

|Γ | = |T1|+ · · ·+ |Tn|+ 1/2 .

– The size of a pair Γ ` t (where Γ = [x1 : T1; . . . ;xn : Tn]) is defined by

|Γ ` t| = |T1|+ · · ·+ |Tn|+ |t| = |Γ |+ |t| − 1/2 .

The ‘±1/2’ in the definitions of |Γ | and |Γ ` t| simply ensure that we have the
strict inequalities |Γ ` t| < |Γ ; [x : t]| and |Γ | < |Γ ` t| for all Γ and for all t.
(These functions thus take their values in the set of positive semi-integers, which
is still well-ordered.)

For each context Γ , the set JΓ K is defined by the following equations:

J[]K = {nil}

JΓ ; [x : T]K =
{
(γ, α); γ ∈ JΓ K ∧ JΓ ` T Kγ defined ∧ α ∈ JΓ ` T Kγ

}
Finally, the interpretation JΓ ` tK of a term t in a context Γ is defined for

all γ ∈ JΓ K by:

JΓ ` ∗Kγ =
{
∅; {•}

}
JΓ ` 2Kγ = U

JΓ ` xK(···(nil,α1)··· ,αn) = αi (if x is the i-th declared variable in Γ)

JΓ ` Πx :T .UKγ =
∏̂

α∈JΓ ` T Kγ

JΓ ; [x : T] ` UK(γ,α)

JΓ ` λx :T . tKγ = lam
(
α∈JΓ ` T Kγ

7→ JΓ ; [x : T] ` tK(γ,α)

)
JΓ ` tuKγ = app

(
JΓ ` tKγ , JΓ ` uKγ

)
(Notice that JΓ K is always defined before JΓ ` tK.) It is important to make precise
the cases where the denotation JΓ ` tKγ is defined:

– JΓ ` ∗Kγ and JΓ ` 2Kγ are always defined.
– JΓ ` xKγ is defined if x is declared in Γ .
– JΓ ` Πx :T .UKγ is defined if JΓ ` T Kγ is defined and JΓ ; [x : T] ` UK(γ,α)

is defined for all α ∈ JΓ ` T Kγ .
– JΓ ` λx :T . tKγ is defined if JΓ ` T Kγ is defined and JΓ ; [x : T] ` tK(γ,α) is

defined for all α ∈ JΓ ` T Kγ .
– JΓ ` tuKγ is defined when JΓ ` tKγ and JΓ ` uKγ are defined, and when

either JΓ ` tKγ = • or JΓ ` tKγ is a function and JΓ ` uKγ belongs to its
domain.

Let us denote by Γ ;∆ (resp. γ, δ) the concatenation of contexts (resp. valu-
ations). We can now prove the following property:

Lemma 1 (Substitutivity). — Let Γ be a context and let u and U be terms
such that JΓ ` uKγ ∈ JΓ ` UKγ for some γ ∈ JΓ K (by assuming that both
members of the former equality are defined). Then for any term t such that
JΓ ; [x : U] ` tK(γ,JΓ ` uKγ) is defined, the denotation JΓ ` t{x := u}Kγ is defined
and

JΓ ` t{x := u}Kγ = JΓ ; [x : U] ` tK(γ,JΓ ` uKγ) .

Proof. Let α = JΓ ` uKγ (Γ , u, U and γ being fixed for the rest of the proof). To
prove the expected implication, one has to strengthen its statement as follows.
Let P (∆) be the predicate defined by

P (∆) ≡
∀δ (γ, α), δ ∈ JΓ ; [x : T];∆K ⇒ γ, δ ∈ JΓ ;∆{x := u}K

for all context ∆, and Q(∆ ` t) the predicate defined by

Q(∆ ` t) ≡
∀δ, t (γ, α), δ ∈ JΓ ; [x : U];∆K ∧ JΓ ; [x : U];∆ ` tK(γ,α),δ defined

⇒ JΓ ;∆{x := u} ` t{x := u}Kγ,δ defined ∧
JΓ ;∆{x := u} ` t{x := u}Kγ,δ = JΓ ; [x : U];∆ ` tK(γ,α),δ

for all pair (∆, t) formed by a context ∆ and a term t. The assertions P (∆) and
Q(∆ ` t) are then proved for each ∆ and t by a mutual induction on the size
of their argument. (In particular, P (∆) is proved before Q(∆, t) for all t.) The
expected result is then given by Q([], t). ut

2.4 The unattainable soundness

We now come to our main problem, which is to prove the soundness property
that can be formulated as follows:

If Γ ` t : T , then for all γ ∈ JΓ K the denotations JΓ ` tKγ and JΓ ` T Kγ

are defined and JΓ ` tKγ ∈ JΓ ` T Kγ .

The natural way to prove this property is to proceed by induction over the
derivation of the judgement Γ ` t : T . When writing down the proof completely,
it appears that all the cases successfully pass the test, except for the conversion
rule

(Conv)
Γ ` t : T Γ ` T ′ : s

Γ ` t : T ′ T ′=βT

In this case, we know (by the induction hypothesis) that for a given valuation
γ ∈ JΓ K, the denotations JΓ ` tKγ , JΓ ` T Kγ and JΓ ` T ′Ks are defined, and
that

JΓ ` tKγ ∈ JΓ ` T Kγ and JΓ ` T ′Kγ ∈ JΓ ` sKγ .

To be able to conclude, we first have to check that JΓ ` T Kγ = JΓ ` T ′Kγ—
which seems quite plausible since the terms T and T ′ are convertible. However,
we have to do it very carefully: since our interpretation function is partial, it
could be possible that some of the intermediate conversion steps between T
and T ′ bears no denotation (in the context Γ and for the valuation γ) although
the denotations JΓ ` T Kγ and JΓ ` T ′Kγ are defined.

To escape this uncomfortable situation, it is natural to rely on the Church-
Rosser property by considering the following plausible property:

Conjecture 1 (Soundness of β-reduction). — If the denotation JΓ ` tKγ is defined
for some γ ∈ JΓ K, and if t →β t′, then JΓ ` t′Kγ is defined and

JΓ ` t′Kγ = JΓ ` tKγ .

It is clear that this proposition would entail the equality JΓ ` T Kγ = JΓ ` T ′Kγ

under the assumption T =β T ′ (this is obvious from the Church-Rosser prop-
erty). Unfortunately, the conjecture 1 is wrong, as illustrated by the following
counter-example:

A counter-example to the conjecture 1 Let us consider a closed term T : ∗ such
that J[] ` T K = {•}. (We can take for instance T = ΠX : ∗ . X → X.) Let us
now consider the ill-typed term t = (λx :T . x)∗ (i.e. the identity function on T
applied to the sort ∗). We have

J[] ` λx :T . xK = lam
(
α∈{•} 7→ α

)
= •,

so that
J[] ` tK = app(•, J[] ` ∗K) = • .

Of course, the term t reduces to the term t′ = ∗, whose denotation is defined and
different from •. Intuitively, this counter-example can be understood as follows:

1. First, we have built a function f (i.e. the identity function) on a very simple
domain (the singleton {•}). Since this function is constant and returns the
proof-object • on its domain, the encoding mechanism f 7→ lam(f) replaced
this function by the proof-object • itself, thus forgetting all information
about the domain of f .

2. When we applied the object • = lam(f) to an arbitrary object x (here the
denotation of ∗), we obtained the proof-object as a result—since the proof-
object behaves as a constant function on the whole universe. Of course,
the object x had been chosen outside the domain of f , so that the result is
meaningless. (And here different from the denotation of the β-reduced term.)

It is easy to build several variations on this counter-example, in order to get two
terms t and t′ such that t →β t′ and:

– JΓ ` tKγ and JΓ ` t′Kγ are defined and different; or
– JΓ ` tKγ is defined and JΓ ` t′Kγ is undefined; or
– JΓ ` tKγ is undefined and JΓ ` t′Kγ is defined.

However, our counter-example strongly relies on the fact that t is ill-typed,
and it would be more desirable to replace the (wrong) conjecture 1 by :

Conjecture 2 (Soundness of β-reduction). — If the denotation JΓ ` tKγ is defined
for some γ ∈ JΓ K, if t →β t′ and if t is well-typed in Γ , then JΓ ` t′Kγ is defined
and

JΓ ` t′Kγ = JΓ ` tKγ .

Of course, it is clear that in order to prove this conjecture, we need the
soundness property. . . that needs this conjecture to be proved! From this, it
appears that there is no obvious way to prove the soundness property for the
‘simple’ model we presented in this section.

Independence w.r.t. the encoding It is important to understand that the prob-
lem we presented is not due to the precise encoding/decoding mechanism we
introduced in paragraph 2.2, but to the fact that the identification of all proof-
terms requires to forget the domain of the corresponding functions. In particular,
P. Aczel presents in [1] another mechanism (for the same purpose) which is based
on the following definitions

• = ∅

lam(f) =
{
(x, z); x ∈ Dom(f) ∧ z ∈ f(x)

}
app(u, x) =

{
z; (x, z) ∈ u

}
and it is easy to check that our counter-example works exactly the same way
with these new definitions.4

Another possibility is to introduce an undefined object so that the interpre-
tation function becomes total. For that, we simply have to set

JΓ ` MNKγ = undefined

when either
4 It is interesting to notice that this alternative encoding of functions is very close to

the encoding of Scott-continuous (or stable) functions by their traces in the theory
of concrete Scott-domains (or in the theory of coherence spaces) [13].

– the denotation of M is neither a function nor the proof object, or
– the denotation of M is a set-theoretical function whose domain does not

contain the denotation of N .

The other equations defining the interpretation function have then to be adapted
in order to propagate the undefined object when one of the subterms is itself
denoted by the undefined object (whose behaviour is the one of an exception).

However, considering a partial interpretation function (as we did above) or
a total interpretation function with an undefined object is only a matter of
presentation, and it is easy to check that the counter-example still holds in this
alternative presentation.

3 The sorted type system

3.1 Definition

As we have seen, the problem lies not so much in the definition of the model, but
in stating the subject-reduction property for the interpretation. This property is
indeed true for well-typed terms but well-typedness is a too restrictive condition
in order for the soundness proof to go through. In order to keep the simplicity of
the construction, we propose a looser condition for subject reduction, building
on the fact that in a functional PTS (like CC) every well-typed term has at most
one sort.

The sort of any term is given unambiguously once the sorts of its free variables
are known. We therefore build the model for a sorted version of the type system.
This idea is due to Geuvers [11] (and is also used in [23] for more syntactical
purposes).

Definition 1. The definition of terms is unchanged, but we take a set of vari-
ables indexed by the sorts. In other words, we can describe the algebra of sorted
terms by:

s ::= ∗ | 2

t ::= xs | tt | λxs : t.t | Πxs : t.t | s

where x ranges over some usual set of variables.

An important point is that α-conversion does not allow renaming of sorts, that
is λx∗ : ∗.x∗ and λx2 : ∗.x are not α-convertible5. Of course, the definitions of
substitution, β-conversion and its properties remain unchanged.

A consequence of the Church-Rosser property is that:

Corollary 1 (Uniqueness of Type Formation).
If Πxs :A .B =β Πxs′ :A′ . B′, then s = s′,A =β A′ and B =β B′{x′s := xs}.

5 This is indeed more natural in a de Bruijn style formalization.

We write Γ s̀ t : T for the sorted typing judgements. The rules for s̀ are
the same as for ` with exception of the rule Weak in which we require the sort
of the variable to match the type of its type.

Definition 2 (The sorted typing rules).
The typing rules for the sorted calculus of constructions are:

[] s̀ ∗ : 2 (Axiom)
Γ s̀ A : B

Γ s̀ xs : T
(xs : T) ∈ Γ (Var)

Γ s̀ T1 : s1 Γ ; [xs : T1] s̀ T2 : s2

Γ s̀ Πxs : T1.T2 : s2
(Pi)

Γ ; [xs : A] s̀ t : B Γ ; [xs : A] s̀ B : s′

Γ s̀ λxs : A.t : Πxs : A.B
(Lam)

Γ s̀ t : Πxs : A.B Γ s̀ u : A

Γ s̀ tu : B{xs := u}
(App)

Γ s̀ t : T Γ s̀ A : s

Γ ; [xs : A] s̀ t : T
(Weak)

Γ s̀ t : A Γ s̀ B : s

Γ s̀ t : B
A =β B (Conv)

3.2 Basic Metatheory

This presentation is essentially equivalent to the standard PTS one. The basic
metatheory is similar to the usual one, but has to be done in the correct order.

Lemma 2. If Γ s̀ t : T is derivable, then so is Γ ` t : T .

Proof. This is a trivial induction over the structure of the derivation, since the
rules for s̀ are more restrictive than the rules for `.

The two following lemmas are proved exactly as their counterparts for regular
PTSs, by induction over typing derivation.

Lemma 3 (Substitution). If Γ ; [xs : A]∆ s̀ t : T and Γ s̀ u : A are deriv-
able, then so is Γ∆{xs := u} s̀ t{xs := u} : T{xs := u}.

Lemma 4 (Stripping or Inversion).
If Γ s̀ xs : T then there exist T ′ and s′ such that (xs : T ′) ∈ Γ ,

T =β T ′, Γ s̀ T : s′ and Γ s̀ T ′ : s.
If Γ s̀ λxs : A.t : T then there exist B, s′ and s′′ such that: Γ s̀ A : s,

Γ ; [xs : A] s̀ B : s′′, Γ ; [xs : A] s̀ t : B,Γ s̀ T ′ : s′

and T =β Πxs : A.B.
If Γ s̀ Πxs : A.B : T then there exists s′ such that T =β s′ and

Γ ; [xs : A] s̀ B : s′.
Furthermore, T = s′ or Γ s̀ T : s′′ for some s′′.

If Γ s̀ tu : T then there exist s, A and B such that
Γ s̀ t : Πxs : A.B, Γ s̀ u : A, T =β B{xs := u}.
Furthermore T = B{xs := u} or Γ s̀ T : s′

for some s′.
Γ s̀ 2 : T is not possible.

If Γ s̀ ∗ : T then T = 2 or T =β 2 and Γ s̀ T : s for some s.

Using stripping, we can prove the two next results by induction over t (actually
over the size of |t| + |Γ |). Again the proofs are quasi-identical to the ones for
regular PTSs, in particular when proving subject reduction, one needs to consider
also reductions inside contexts for induction loading.

Corollary 2 (Type uniqueness). If Γ s̀ t : T and Γ s̀ t : T ′, then T =β T ′.

Lemma 5 (Subject reduction). If Γ s̀ t : T and t →β t′, then Γ s̀ t′ : T .

3.3 Sorting terms and reductions

Using the marking of variables, we are able to define sorts even for non-typed
terms. This is the key for a convenient restriction of β-reduction.

Definition 3. The sort s(t) of a term t is (partially) defined by the following
equations :

s(xs) ≡ s s(λxs′ : T.u) ≡ s(u)
s(tu) ≡ s(t) s(Πxs′ : T.u) ≡ s(u)

A term is called a proof-term if its sort is ∗, or a predicate if its sort is 2.

Lemma 6. Well-typed terms are well-sorted; more precisely: If Γ s̀ t : T , then
either T = 2 or Γ s̀ T : s(t).

Proof. By induction over the typing derivation. The cases of the rules Axiom,
Var, Pi, Lam and Weak are trivial.

In the case of App the conclusion is Γ s̀ tu : B{xs := u}. We know that
Γ s̀ Πxs :A .B : s(t), which ensures that Γ ; [xs : A] s̀ B : s(t) by stripping.
Since Γ s̀ u : A, we have Γ s̀ B{xs := u} : s(t) by substitution.

The case of Conv is more interesting. The conclusion is Γ s̀ t : B; we know
that B cannot be 2, since it is well-typed. Therefore A is also different from
2 and thus Γ ` A : s(t). By Church-Rosser, A and B have a common reduct
C. By subject-reduction, we know that Γ s̀ C : s(t) (C is a reduct of A) and
Γ s̀ C : s (C is a reduct of B). By type uniqueness s =β s(t) which implies
s = s(t) and so Γ ` B : s(t).

Definition 4. A β-reduction (resp. a sequence of β-reductions) is well-sorted
iff the reduced redex(es) is (are) of the form (λxs : A.t u) with s(u) = s.

Lemma 7. If t reduces to t′ by a well-sorted reduction and s(t) is defined, then
so is s(t′) and s(t) = s(t′).

Proof. By easy induction over the body of the reduced redex.

Lemma 8. Any β-reduction of a well-typed term is well-sorted.

Proof. Consider a redex (λxs : A.t u) well-typed in some context Γ . Using
stripping one easily checks that Γ s̀ A : s and Γ s̀ u : A.

Lemma 9. If there exists a derivation of Γ ` t : T , then there exists a mapping
σ from the (sorted) variables to themselves, such that Γ{σ} s̀ t{σ} : T{σ} is
derivable.

Proof. When dealing with named variables, one first shows that derivable judge-
ments are stable by α-conversion.

The lemma then is proved by induction over the typing derivation. In order
for the induction to go through, one proves that the mapping is unique (modulo
α-conversion). This is ensured by the type uniqueness property for regular PTSs,
ensuring there is only one way to chose the sort of each variable.

4 Model Construction

We use the same set U as in section 2 and the interpretations JΓ K and JΓ s̀ tK
are defined using the same well-founded order as in 2.3. We however do not need
the coding/decoding operators anymore. Instead, it is easy to proceed by case
over the sort of the interpreted term.

The functions JΓ K and JΓ s̀ tK are defined by:

J[]K ≡ {nil}
JΓ ; [x : t]K ≡ {(γ, α); γ ∈ JΓ K ∧ α ∈ JΓ s̀ tKγ}

if p is a proof-term:
JΓ s̀ pKγ ≡ •

in other cases:
JΓ s̀ ∗Kγ ≡ {∅; {•}}
JΓ s̀ 2Kγ ≡ U

JΓ s̀ x2K(...(α1,α2),...αn) ≡ αi if x2 is the ith declared variable Γ

JΓ s̀ tuKγ ≡ JΓ s̀ tKγ(JΓ s̀ uKγ)
JΓ s̀ λxs : A.tKγ ≡ α ∈ JΓ s̀ AKγ 7→ JΓ ; [xs : A] s̀ tK(γ,α)

if B is a predicate:

JΓ s̀ Πxs : A.BKγ ≡
⋂

α∈JΓ s̀ AKγ

JΓ ; [xs : A] s̀ BK(γ,α)

if B is not a predicate:

JΓ s̀ Πxs : A.BKγ ≡
∏

α∈JΓ s̀ AKγ

JΓ s̀ BK(α,γ)

In the above, the interpretation of the predicate Πxs : A.B is not empty if
JΓ s̀ AKγ is. A more explicit formulation would be:

JΓ s̀ Πxs : A.BKγ ≡ {f ∈ {•}|∀α ∈ JΓ s̀ AKγ . f ∈ JΓ ; [xs : A] s̀ BK(γ,α)}.

Like in 2, the use of set-theoretic function application for defining JΓ s̀ tuK
makes these definitions partial. The conditions for being defined are similar, but
for the proof-terms.

Lemma 10 (substitutivity). Let u be a term of sort s. Suppose JΓ s̀ tKγ ∈
JΓ s̀ AKγ and write α ≡ JΓ s̀ tKγ . Suppose (γ, α), δ ∈ JΓ ; [xs : A]∆K. If
JΓ ; [xs : A]∆ s̀ uK(γ,α),δ is defined, then

JΓ ; [xs : A]∆ s̀ uK(γ,α),δ = JΓ∆{xs := t} s̀ u{xs := t}Kγ,δ.

The proof is similar to lemma 1.

Lemma 11 (soundness for reduction). If JΓ s̀ tKγ is defined, if t →β t′

by a well-sorted reduction, then JΓ s̀ t′Kγ is defined and

JΓ s̀ tKγ = JΓ s̀ t′Kγ .

Proof. We proceed by structural induction over t. The only interesting cases are
when t is reduced at the root.

– If t is a proof term, then so is t′ (by lemma 7). Thus JΓ s̀ tKγ =JΓ s̀ t′Kγ =•.
– If t = (λx∗ : A.u p) with p a proof-term, then JΓ s̀ pKγ = • and the result

is an easy instance of the substitutivity lemma.
– If t = (λx2 : A.u v), and u and v are no proof-terms, then JΓ s̀ λx2 : A.uKγ

is a function of domain JΓ s̀ AKγ . Since JΓ s̀ tKγ is defined, we know
that JΓ s̀ vKγ ∈ JΓ s̀ AKγ . The result follows easily by the substitutivity
lemma.

Of course, as already pointed out, the previous lemma is not true for non-
well-sorted reductions.

Theorem 3 (Soundness). If Γ s̀ t : T is derivable, then:

– JΓ K is defined,
– for any γ ∈ JΓ K, JΓ s̀ tKγ and JΓ s̀ T Kγ are defined and JΓ s̀ tKγ ∈

JΓ s̀ T Kγ .

Proof. We proceed by induction over the typing derivation. We detail some cases.

Axiom This is trivial since {∅; {•}} ∈ U .
Var Trivial.

Pi Let us distinguish two cases: the first where T2 is a predicate and the sec-
ond where it is not. If T2 is a predicate, then s2 = ∗ and thus for all
γ ∈ JΓ K and α ∈ JΓ s̀ T1Kγ we have JΓ ; [x : T1] s̀ t2K(γ, α) and thus⋂

α∈JΓ s̀ T1Kγ
JΓ s̀ T2K(γ,α) is either ∅ or {•}.

If T2 is not a predicate, then the result follows from the closure of U with
respect to dependent product.

Lambda Again, the first case is when B is a predicate and thus λxs : A.t is a proof.
Then JΓ s̀ λxs : A.tKγ is defined and equal to •. We are left with checking
that JΓ s̀ Πxs : A.BKγ is indeed not empty and equal to •. This is the
case since for any α ∈ JΓ s̀ AKγ the induction hypothesis ensures us that
• = JΓ ; [xs : A] s̀ tK(γ,α) ∈ JΓ ; [x : A] s̀ BK(γ,α).
If B is not a predicate, then t is not a proof-term and JΓ s̀ λxs : A.tKγ

is interpreted by the set-theoretical function. Since JΓ s̀ Πxs : A.BKγ

is defined as the dependent product, the result follows from the induction
hypothesis.

App If B is a predicate and t a proof-term, then

JΓ s̀ Πxs : A.BKγ =
⋂

α∈JΓ s̀ AKγ

JΓ ; [xs : A] s̀ BK(γ,α)

and it contains • by induction hypothesis. Thus

• = JΓ s̀ (t u)Kγ ∈ JΓ ; [xs : A] s̀ BK(JΓ s̀ uKγ ,γ) = JΓ s̀ B{xs := u}Kγ .

Conv This is a consequence of the previous lemma.

Corollary 3. There is no term t such that [] s̀ t : Πx2 : ∗x2 or [] ` t : Πx : ∗x.

5 Discussion

We have been able to build a proof-irrelevant model by making the stratification
hidden in the usual PTS presentation explicit. We have tried to do this in an as
light way as possible, avoiding a tedious stratification of the syntax where proofs,
predicates and kinds are defined by mutual induction. Let us mention some
applications and possible extensions to this work, as well as some alternative
ways to proceed.

5.1 Extensions and Axioms

A particular useful application of set-theoretical models is the validation of ax-
ioms. In particular, Barbanera and Berardi’s work [4] states that any model
validating the excluded middle is necessarily proof-irrelevant. In addition to be-
ing proof-irrelevant, set-theoretical models are simple enough to easily validate
a large class of axioms.

It therefore seems reasonable to have such a model at hand for theories ac-
tually used in proof-checkers. The recent work of Chicli, Pottier and Simpson [7]
showed that unpleasant surprises are always possible when this is not the case.
More generally, we believe that theories forbidding the excluded middle (i.e.
which are not sub-classical) are indeed very delicate to handle.

Another advantage of interpretations like the one studied in this paper are
that they can often deal with extensions carried out on the predicative level,
or levels. Inductive types in 2 can be interpreted as inductive sets, PTS style

universes by large enough sets provided one assumes the existence of enough
inaccessible cardinals. In that respect, this work can be seen as a cleaning-up of
the encoding of Coq’s type theory (without the impredicative sort Set) which is
sketched in [22].

On the other hand, one should mention that adding the subsumption rule

Γ ` T : ∗
Γ ` T : 2

to the system cannot be handled easily in our setting and could indeed become
problematic when combined with other extensions.

5.2 Judgemental Equality

It is quite easy to see that, even if the presentations of section 2 and 4 differ, the
defined denotations are actually equal for well-typed terms and types. That is,
the problem presented in section 2 is mainly a circularity in the proof between
the general soundness of the model and the soundness of β-reduction.

Another way to break this circularity is to consider judgemental equality,
following Martin-Löf [15]. In this case, the β-conversion side condition in the
Conv rule is replaced by an explicit judgement of the form Γ ` A = B : s.
This corresponds to another style of presentation of type theories, where well-
typedness is re-checked after every single step of β-reduction or expansion. When
modeling such theories, it is possible to prove soundness for the model and with
respect to judgemental equality in a single mutual induction. This is done by
Streicher [21] using a presentation involving a form of judgemental equality. As
pointed out to us, one may notice that he also uses two different interpretations
of the universal quantification depending of the predicative/impredicative level.

There is however a price to pay. Without going into details, it appears that the
difficulty is then shifted to the (syntactic) subject-reduction property. This is not
too surprising, considering that the derivations with judgemental equality can
be almost arbitrarily larger than their counter-parts in the PTS style (this last
point is of course crucial in implemented proof-checkers). Actually, establishing
the equivalence of impredicative type theories with judgemental equality with
their PTS style counter-parts seems related to the strong normalization property,
which is notoriously more complex.

5.3 Typed reduction

This last remark is also illustrated by the interpretation carried out by Melliès
and Werner in [17]. In this work, the semantic interpretation is carried out for
a very restricted version of β-reduction, for which soundness is not problem-
atic. The equivalence with conventional PTSs however is proved after strong
normalization and heavily relies on the latter property.

5.4 Proof-irrelevance in a domain-theoretic model

In [18, 19], Miquel presents a proof-irrelevant model of (an extension of) the
Calculus of Constructions by interpreting type-theoretic functions as (traces of)
stable functions in a suitable coherence space [13]. The main advantage of such
a domain-theoretic framework is that it naturally supports the interpretation
of domain-free λ-abstractions6 and thus validates the untyped β-conversion rule
(even for ill-typed terms). In addition, the encoding of stable functions by their
traces automatically performs the identification of all proof-terms, and validates
the excluded middle as well as the subsumption rule ∗ ⊂ 2 presented in para-
graph 5.1.

Of course, there is a price to pay which is the loss of simplicity. Using domain-
theoretic functions instead of set-theoretic functions involves much more sophis-
ticated tools (such as stability), and the corresponding interpretation function
tends to produce less readable denotations (which is typically the case for func-
tions, that are only accessed via their traces). Moreover this domain-theoretic
model refutes standard axioms such as the extensionality axiom for functions

Πf, g : (T → U) . (Πx :T . fx =U gx) → f =T→U g

(where =T denotes Leibniz equality on the type T), and more generally, it is not
known whether this model validates other axioms such as the axiom of choice.

5.5 Proof-Irrelevance per se

Let us finally mention another, non-axiomatic, extension of CC which is validated
by the simple model. It is possible to relax the rule Conv by adding the following
coercion : t =β u for any proof-terms t and u. That β-conversion is not to be
checked inside proof-terms. The afferent type system is obviously validated by the
constructed model. This relaxed conversion rule is particularly interesting when
objects live in the predicative level. In [2], Altenkirch presents such a system
together with a categorical model; he shows that proof-irrelevance combined
with η-conversion in the conversion rule entails the extensionality principle for
functions.

There seem to be several practical uses for such a feature. Suppose one defines
some type nat : 2 describing natural numbers together with the usual ≤ relation,
such that i ≤ j : ∗ if i, j : nat. An array of size n + 1 can be modelized as a
function

ar : Πi : nat.0 ≤ i → i ≤ n → nat.

Doing so in the usual setting, one has to add some conditions stating that
(ar i p1 p2) does not depend upon the form of p1 and p2. Furthermore, these con-
ditions have to be invoqued every time the array is accessed, causing a dramatic
increase of the proof-terms. This gets drasticly simplified in the proof-irrelevant

6 For this reason, this model is actually a model of the domain-free Calculus of Con-
structions [6] with its untyped β-conversion rule.

version of the type theory. Notice that practical type-checking for such theories is
indeed much simpler if proof-terms are tagged in the style of the sorted system.

We believe the study and use of such explicitly proof-irrelevant type theories
can be a very fruitful topic.

Acknowledgement

The idea for the counter-example of soundness came up in a discussion of the
first author with Thierry Coquand, who expressed doubts about the usual proof-
irrelevant models. Anonymous referees expressed several useful remarks and com-
ments.

References

1. P. Aczel. On relating type theories and set theories, in Types for Proofs and
Programs, edited by Altenkirch, Naraschewski and Reus, Proceedings of Types
’98, LNCS 1657 (1999).

2. T. Altenkirch. Extensional Equality in Intensional Type Theory. In Proceedings
of the fourteenth Annual IEEE Symposium on Logic in Computer Science, IEEE,
1999.

3. H. Barendregt. Lambda Calculi with Types. Technical Report 91-19, Catholic
University Nijmegen, 1991. In Handbook of Logic in Computer Science, Vol II,
Elsevier, 1992.

4. F. Barbanera, S. Berardi. Proof-irrelevance out of Excluded Middle and Choice
in the Calculus of Constructions. Journal of Functional Programming, vol.6(3),
519-525, 1996.

5. B. Barras and B. Werner. Coq in Coq. Manuscript.
6. G. Barthe. Domain-free pure type systems. Journal of Functional Programming,

vol. 10(5), p. 412–452, 2000.
7. L. Chicli, L. Pottier and C. Simpson. Quotient Types in Coq. Presentation at the

TYPES’01 Workshop, Nijmegen, 2001.
8. Th. Coquand. Une Théorie des Constructions. Thèse de Doctorat, Université

Paris 7, janvier 1985.
9. Th. Coquand. Metamathematical Investigations of a Calculus of Constructions.

In P. Oddifredi (editor), Logic and Computer Science. Academic Press, 1990.
Rapport de recherche INRIA 1088.

10. Th. Coquand and G. Huet.The Calculus of Constructions.Information and Com-
putation, 76(2/3), 1988.

11. H. Geuvers. Logics and Type Systems. PhD Thesis, Katholieke Universiteit Ni-
jmegen, 1993.

12. J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de l’arith-
métique d’ordre supérieur, Thèse d’État, Université Paris 7, 1972.

13. J.-Y. Girard. Translation and appendices Y. Lafont and P. Taylor. Proofs and
Types, Cambridge Tracts in Theoretical Computer Science 7. Cambridge Tracts
in Theoretical Computer Science 7. Cambridge University Press, 1989.

14. J.-L. Krivine. Théorie des ensembles. Cassini, Paris, 1998.
15. P. Martin-Löf. Intuitionistic Type Theory. Studies in Proof Theory, Bibliopolis,

1984.

16. J. McKinna and R. Pollack. Pure Type Systems formalized, in TLCA’93,
M. Bezem and J. F. Groote Eds, LNCS 664, Springer-Verlag, Berlin, 1993.

17. P.-A. Melliès and B. Werner. A Generic Normalization Proof for Pure Type
Systems. In TYPES’96, E. Gimenez and C. Paulin-Mohring Eds, LNCS 1512,
Springer-Verlag, Berlin, 1998.

18. A. Miquel. A Model for Impredicative Type Systems with Universes, Intersection
Types and Subtyping. Proceedings of the 15th Annual IEEE Symposium on Logic
in Computer Science (LICS’00), 2000.

19. A. Miquel. Le calcul des constructions implicite: syntaxe et sémantique. Thèse de
doctorat, Université Paris 7, 2001.

20. J. Reynolds. Polymorphism is not Set-Theoretic, Semantics of Data Types.
G. Kahn, D. B. MacQueen and G. Plotkin Eds. LNCS 173, pp. 145-156, Springer-
Verlag, Berlin, 1984.

21. T. Streicher. Semantics of Type Theory. Progress in Theoretical Computer Sci-
ence. Birkhaeuser Verlag, Basel 1991.

22. B. Werner. Sets in Types, Types in Sets. In, M. Abadi and T. Itoh (Eds), The-
oretical Aspects of Computer Science, TACS’97, LNCS 1281, Springer-Verlag,
1997.

23. B. Werner. Une Théorie des Constructions Inductives. Thèse de Doctorat, Uni-
versité Paris 7, 1994.

