
Cut elimination for Zermelo set theory

Gilles Dowek1 and Alexandre Miquel2

1 École polytechnique and INRIA
LIX, École polytechnique, 91128 Palaiseau Cedex, France

Gilles.Dowek@polytechnique.edu
2 Université Paris 7,

PPS, 175 Rue du Chevaleret, 75013 Paris, France
Alexandre.Miquel@pps.jussieu.fr

Abstract. We show how to express intuitionistic Zermelo set theory
in deduction modulo (i.e. by replacing its axioms by rewrite rules) in
such a way that the corresponding notion of proof enjoys the normal-
ization property. To do so, we first rephrase set theory as a theory of
pointed graphs (following a paradigm due to P. Aczel) by interpreting
set-theoretic equality as bisimilarity, and show that in this setting, Zer-
melo’s axioms can be decomposed into graph-theoretic primitives that
can be turned into rewrite rules. We then show that the theory we obtain
in deduction modulo is a conservative extension of (a minor extension
of) Zermelo set theory. Finally, we prove the normalization of the intu-
itionistic fragment of the theory.

The cut elimination theorem is a central result in proof theory that has
many corollaries such as the disjunction property and the witness property for
constructive proofs, the completeness of various proof search methods and the
decidability of some fragments of predicate logic, as well as some independence
results.

However, most of these corollaries hold for pure predicate logic and do not
generally extend when we add axioms, because the property that cut-free proofs
end with an introduction rule does not generalize in the presence of axioms.
Thus, extensions of the normalization theorem have been proved for some ax-
iomatic theories, for instance arithmetic, simple type theory [11, 12] or the so-
called stratified foundations [4]. There are several ways to extend normalization
to axiomatic theories: the first is to consider a special form of cut corresponding
to a given axiom, typically the induction axiom. A second is to transform ax-
ioms into deduction rules, typically the β-equivalence axiom. A third way is to
replace axioms by computation rules and consider deduction rules modulo the
congruence generated by these computation rules [5, 7].

Unfortunately, extending the normalization theorem to set theory has al-
ways appeared to be difficult or even impossible: a counter example, due to
M. Crabbé [3] shows that normalization does not hold when we replace the
axioms of set theory by the obvious deduction rules, and in particular the Re-
stricted Comprehension axiom by a deduction rule allowing to deduce the for-
mula a ∈ b ∧ P (x ← a) from a ∈ {x ∈ b | P} and vice-versa. In the same way,

2

normalization fails if we replace the comprehension axiom by a computation rule
rewriting a ∈ {x ∈ b | P} to a ∈ b∧P (x← a). Calling C the set {x ∈ A | ¬x ∈ x}
the formula C ∈ C rewrites to C ∈ A ∧ ¬C ∈ C and it is not difficult to check
that the formula ¬C ∈ A. This counterexample raises the following question:
is the failure of normalization an artifact of this particular formulation of set
theory, or do all formulations of this theory have a similar property?

More recently, interpretations of set theory in type theory have been pro-
posed [18–20] that follow P. Aczel’s “sets as pointed graphs” paradigm [1] by
interpreting sets as pointed graphs and extensional equality as bisimilarity. One
remarkable feature about these translations is that they express set theory in
a framework that enjoys normalization. Another is that although the formulæ
a ∈ {x ∈ b | P} and a ∈ b ∧ P (x ← a) are provably equivalent, their proofs are
different. This suggests that the failure of normalization for set theory is not a
property of the theory itself, but of some particular way to transform the axioms
into deduction or computation rules.

In the type theoretic interpretation of set theory where sets are translated as
pointed graphs, the membership relation ∈ is no longer primitive, but defined
in terms of other atomic relations such as the ternary relation x ηa y expressing
that two nodes x and y are connected by an edge in a pointed graph a.

In this paper, we aim at building a theory of pointed graphs in predicate
logic—that we call IZmod—which is expressive enough to encode set theory in
a conservative way. For that, we start from a simple extension of intuitionistic
Zermelo set theory (without foundation) called IZst, namely, Zermelo set theory
with the axioms of Strong Extensionality and Transitive Closure.

Instead of expressing the theory IZmod with axioms, we shall directly express
it with computation rules. It is well-known [5] that any theory expressed with
computation rules can also be expressed with axioms, replacing every computa-
tion rule of the form l −→ r by the axiom l = r when l and r are terms, or by
the axiom l⇔ r when l and r are formulæ. Expressing this theory with rewrite
rules instead of axioms makes the normalization theorem harder to prove but is
a key element for the cut-free proofs to end with an introduction rule. To prove
our normalization theorem, we shall use two main ingredients: reducibility candi-
dates as introduced by J.-Y. Girard [11] to prove normalization for higher-order
logic, and the forcing/realizability method, following [4, 6].

1 Deduction modulo

In deduction modulo, the notions of language, term and formula are that of
first-order predicate logic. But, a theory is formed with a set of axioms Γ and
a congruence ≡ defined on formulæ. Such a congruence may be defined by a
rewrite systems on terms and on formulæ. Then, the deduction rules take this
congruence into account. For instance, the modus ponens is not stated as usual

A⇒ B A
B

3

as the first premise need not be exactly A ⇒ B but may be only congruent to
this formula, hence it is stated

C A
if C ≡ A⇒ B

B

All the rules of natural deduction may be stated in a similar way. See, for in-
stance, [7] for a complete presentation.

For example, arithmetic can be defined by a congruence defined by the fol-
lowing rewrite rules

0 + y −→ y
S(x) + y −→ S(x+ y)

0× y −→ 0
S(x)× y −→ x× y + y

and some axioms, including the identity axiom ∀x (x = x). In this theory, we
can prove that the number 4 is even

axiom
Γ ` ∀x x = x (x, x = x, 4) ∀-elim
Γ ` 2× 2 = 4 (x, 2× x = 4, 2) ∃-intro

Γ ` ∃x 2× x = 4

Substituting the term 2 for the variable x in the formula 2×x = 4 yields 2×2 = 4,
that is congruent to 4 = 4. The transformation of one formula into the other,
that requires several proof steps in usual formulation of arithmetic, is dropped
from the proof in deduction modulo.

Deduction modulo allows rules rewriting terms to terms, but also atomic
formulæ to arbitrary ones. For instance

x× y = 0 −→ x = 0 ∨ y = 0

When we take the rewrite rules above, the axioms of addition and multipli-
cation are not needed anymore as, for example, the formula ∀y 0 + y = y is
congruent to the axiom ∀y y = y. Thus, rewrite rules replace axioms.

This equivalence between rewrite rules and axioms is expressed by the equiv-
alence lemma, which says that for every congruence ≡ we can find a theory T
such that Γ `A is provable in deduction modulo the congruence ≡ if and only
if T , Γ `A is provable in ordinary first-order predicate logic [5]. Hence, deduc-
tion modulo is not a true extension of predicate logic, but rather an alternative
formulation of predicate logic. Of course, the provable formulæ are the same in
both cases, but the proofs are very different.

2 Variations on axiomatic Set Theory

In this section, we define the theory IZst. This theory is Zermelo set theory
extended with two axioms: the Strong Extensionality axiom (which replaces
the standard Extensionality axiom of set theory) and the Transitive Closure
axiom. In Zermelo-Fraenkel set theory with the Foundation axiom, the Strong

4

Extensionality axiom can be derived from the Foundation axiom, but it is weaker.
Similarly, the Transitive Closure axiom is a consequence of the Replacement
scheme, but it is weaker.

Since the theory IZst is expressed in the standard existential way, we also
define two conservative extensions of IZst plus a non-conservative extension. The
first extension of IZst is a theory called IZclass obtained by adding a conservative
notion of class à la Von Neumann-Bernays-Gödel. The second extension, called
IZskol, is built from the latter by adding Skolem symbols to denote sets and class,
including notations to denote sets and class defined by comprehension. As we
shall see in section 4, such a conservative extension of the language of set theory
is convenient to define the translation which maps formulæ of the language IZmod

of pointed graphs back to the language of set theory.
The final extension, called IZskol2, is an extension of IZskol with impredica-

tive classes that will be used in section 5. This extension of IZskol is nothing
but a skolemized presentation of second order Zermelo set theory with strong
extensionality and transitive closure.

2.1 The theory IZst

Definition 1 (The theory IZst). The theory IZst is expressed in predicate logic.
Its language is the language of first-order predicate logic formed with two binary
predicate symbols = and ∈, and its axioms are given in Table 1.

We use the standard abbreviations:

a ⊆ b ≡ ∀x (x ∈ a⇒ x ∈ b)
Empty(a) ≡ ∀x ¬(x ∈ a)
Succ(a, b) ≡ ∀x (x ∈ b⇔ (x ∈ a ∨ x = a))

Ind(c) ≡ ∀a (Empty(a)⇒ a ∈ c) ∧ ∀a (a ∈ c⇒ ∀b (Succ(a, b)⇒ b ∈ c))
Nat(a) ≡ ∀b (Ind(b)⇒ a ∈ b)

Notice that in IZst the standard formulation of the Extensionality axiom is
a consequence of the axiom of Strong Extensionality:

Proposition 1. — In IZst, the following formula is provable:

(Extensionality) ∀a ∀b (∀x (x ∈ a⇔ x ∈ b) ⇒ a = b) .

Proof. Using the instance of strong extensionality where the formula R(x, y) is
(x = a ∧ y = b) ∨ x = y . ut

2.2 A conservative extension with a sort for classes

Definition 2 (The theory IZclass). The theory IZclass is expressed in many-
sorted predicate logic. It has two sorts Set and Class. Its language is formed with
two binary predicate symbols = and ∈ of rank 〈Set,Set〉 and a binary predicate
symbol mem of rank 〈Set,Class〉. The axioms of the theory IZclass are

5

(Reflexivity) ∀x (x = x)

(Equ. Compat.) ∀x∀x′∀y (x = x′ ∧ x = y ⇒ x′ = y)

(Mem. Left Compat.) ∀x∀x′∀y (x = x′ ∧ x ∈ y ⇒ x′ ∈ y)

(Mem. Right Compat.) ∀x∀y∀y′ (y = y′ ∧ x ∈ y ⇒ x ∈ y′)

(Strong Extensionality) ∀x1 · · · ∀xn∀a∀b
(R(a, b)
∧ ∀x∀x′∀y (x′ ∈ x ∧R(x, y)⇒ ∃y′ (y′ ∈ y ∧R(x′, y′)))
∧ ∀y∀y′∀x (y′ ∈ y ∧R(x, y)⇒ ∃x′ (x′ ∈ x ∧R(x′, y′)))
⇒ a = b)

for each formula R(x, y) whose free variables are among x1, . . . , xn, x and y

(Pairing) ∀a∀b∃e∀x (x ∈ e⇔ x = a ∨ x = b)

(Union) ∀a∃e∀x (x ∈ e ⇔ ∃y (x ∈ y ∧ y ∈ a))

(Powerset) ∀a∃e∀x (x ∈ e⇔ x ⊆ a)

(Restr. Comprehension) ∀x1 · · · ∀xn∀a∃e∀x (x ∈ e⇔ x ∈ a ∧ P (x))
for each formula P (x) whose free variables are among x1, . . . , xn, a and x

(Infinity) ∃e Ind(e)

(Transitive closure) ∀a∃e (a ⊆ e ∧ ∀x∀y(x ∈ y ∧ y ∈ e⇒ x ∈ e))

Table 1. Axioms of the theory IZst

6

– the axioms of equality of IZst and the axiom

∀x ∀y ∀p (x = y ∧mem(x, p)⇒ mem(y, p))

– the strong extensionality scheme, generalized to all formulæ possibly contain-
ing the symbol mem and free variables of sort Class, but no quantification
on classes;

– the pairing axiom, the union axiom, the powerset axiom, the axiom of infin-
ity, the axiom of transitive closure;

– the restricted comprehension scheme, generalized to all formulæ possibly con-
taining the symbol mem and free variables of sort Class, but no quantification
on classes;

– and finally, a class comprehension scheme

∃α ∀x (mem(x, α)⇔ P)

for each formula P possibly containing the symbol mem and free variables of
sort Class, but no quantification on classes.

All the axioms of IZst are axioms of IZclass, thus IZclass is an extension of IZst.
To prove that this is a conservative extension, we use a notion of intuitionistic
model where formulæ are valuated in a Heyting algebra [22], and we prove that
for every intuitionistic model of IZst there is an intuitionistic model of IZclass val-
idating the same formulæ of the language of IZst. Conservativity follows from the
correctness and completeness of intuitionistic logic w.r.t. to its Heyting algebra
valuated models.

Definition 3. — LetM be an intuitionistic model of IZst, whose domain is still
written M and whose underlying Heyting algebra is written B. A function E
from M to B is said to be definable if there exists a formula P in the language
of IZst whose free variables are among x, y1, . . . , yn and elements b1, . . . , bn ofM
such that for all a JP Ka/x,b1/y1,...,bn/yn

= E(a).

Definition 4. — Let M be a model of IZst, and consider the structure M′
(with the same underlying Heyting algebra B) defined as follows: JSetK =M and
JClassK is the set of definable functions fromM to the underlying algebra B. The
denotation of the symbols = and ∈ is the same as in M, and the denotation of
the symbol mem is function application.

Proposition 2. — The structure M′ is a model of IZclass.

Proof. To prove that M′ is a model of the class comprehension scheme, of the
generalized extensionality scheme and of the the generalized restricted compre-
hension scheme, we prove that for any formula P containing no quantifiers on
variable of the sort Class and assignment φ, there exists a formula Q in the
language of IZst and an assignment φ′ such that for all a,

JP Kφ+a/x = JQKφ′+a/x

7

We proceed by induction over the structure of P . The only non trivial case is
when P = mem(x, p) where p and x are variables. Then, the object JpKφ is a
definable function from M to B. Let Q and φ′ be the defining formula and
assignment, for all a, we have

JP Kφ+a/x = JQKφ′+a/x ut

Obviously, a formula of the language of IZst has the same denotation in M
and in M′, hence the conservativity of IZclass over IZst.

2.3 A conservative extension with Skolem symbols

The language of IZskol is the following. Notice that the language of terms ex-
pressing sets and classes now contains binding symbols.

Terms

Class terms

Formulæ

Restricted
formulæ

t, u ::= x |
⋃
t | {t1, t2} | P(t)

| {x ∈ t | P ′} | N | Cl(t)

T,U ::= X | {|x | P ′|}

P,Q ::= t = u | t ∈ u | mem(t, T)
| > | ⊥ | P ∧Q | P ∨Q | P ⇒ Q
| ∀x P | ∃x P | ∀X P | ∃X P

P ′, Q′ ::= t = u | t ∈ u | mem(t, T)
| > | ⊥ | P ′ ∧Q′ | P ′ ∨Q′ | P ′ ⇒ Q′

| ∀x P ′ | ∃x P ′

Definition 5. We define three transformations:

– A transformation on terms, which maps each term t of IZskol equipped with
a variable z to a formula of IZclass written z ∈◦ t;

– A transformation on class terms, which maps each class term T of IZskol

equipped with a variable z to a formula of IZclass written mem◦(z, T);

– A transformation on formulæ, which maps each formula P of IZskol to a
formula of IZclass written P ◦.

8

These transformations are defined by the following equations:

z ∈◦ x ≡ z ∈ x
z ∈◦

⋃
t ≡ ∃y (z ∈ y ∧ y ∈◦ t)

z ∈◦ {t1, t2} ≡ (z = t1)◦ ∨ (z = t2)◦

z ∈◦ P(t) ≡ ∀y (y ∈ z ⇒ y ∈◦ t)
z ∈◦ {x ∈ t | P ′} ≡ z ∈◦ t ∧ P ′◦(x← z)
z ∈◦ N ≡ Nat(z)
z ∈◦ Cl(t) ≡ ∀x [∀y1∀y2 (y1 ∈ y2 ∧ y2 ∈ x⇒ y1 ∈ x) ∧

∀y (y ∈◦ t⇒ y ∈ x) ⇒ z ∈ x]

mem◦(z,X) ≡ mem(z,X)
mem◦(z, {|x | P ′|}) ≡ P ′

◦(x← z)

(t = u)◦ ≡ ∀z (z ∈◦ t⇔ z ∈◦ u)
(t ∈ u)◦ ≡ ∃x ((x = t)◦ ∧ x ∈◦ u)
(mem(t, U))◦ ≡ ∃x ((x = t)◦ ∧mem◦(x, U))
(P ∧Q)◦ ≡ P ◦ ∧Q◦

etc.
(∀x P)◦ ≡ ∀x P ◦
(∃x P)◦ ≡ ∃x P ◦

Notice that if P is already in the language of IZclass, then the equivalence P ⇔ P ◦

is (intuitionistically) provable in IZclass.
The notion of provability in IZskol is defined by IZskol ` P if IZclass ` P ◦.

An equivalent solution would be to define provability in IZskol directly from the
expected deduction rules and from the skolemized versions of the axioms of
IZclass.

We shall use the following abbreviations:

∅ ≡ {x ∈ N | ⊥}
X ∪ Y ≡

⋃
{X,Y }

{a} ≡ {a, a}
〈a, b〉 ≡ {{a}, {a, b}}
π1(x) ≡

⋃
{x1 ∈

⋃
x | ∃x2 x ≡ 〈x1, x2〉}

π2(x) ≡
⋃
{x2 ∈

⋃
x | ∃x1 x ≡ 〈x1, x2〉}

X × Y ≡ {z ∈ P(P(X ∪ Y)) | ∃x ∃y (x ∈ X ∧ y ∈ Y ∧ z = 〈x, y〉}
0 ≡ ∅
1 ≡ {∅}

f(x) ≡
⋃
{y ∈

⋃⋃
f | 〈x, y〉 ∈ f}

f|D ≡ {c ∈ f | π1(c) ∈ D}

2.4 Second-order class quantification

The model construction of section 5 (which is devoted to the normalization
proof of IZmod) is not done relatively to the theory IZskol, but relatively to the
extension IZskol2 of IZskol in which we drop the restriction on the formulæ that

9

may be used in set/class comprehension (thus allowing class quantification to
appear everywhere in the language).

Of course, IZskol2 is definitely not a conservative extension of IZskol. Actually,
it is a skolemized presentation of second-order Zermelo set theory (extended
with Strong Extensionality and Transitive Closure), which is proof-theoretically
stronger than IZst. However, IZskol2 has an obvious extensional model in ZF which
is defined by setting

JSetK = V2ω and JClassK = V2ω+1 ,

where (Vα) denotes the cumulative hierarchy (indexed by ordinals).

2.5 Projective classes

Let A be class defined by a formula A(x) with at most one free variable x, and
φ(x, y) a formula with at most two free variables x and y. We say that φ is a
projection onto A if the following formulæ are provable:

1. ∀x ∃y φ(x, y)
2. ∀x ∀y ∀y′ (φ(x, y) ∧ φ(x, y′)⇒ y = y′)
3. ∀x (A(x)⇒ φ(x, x))
4. ∀x ∀y (φ(x, y)⇒ A(y))

A class A is projective if there is a projection φ onto A. Notice that in classical
set theory every nonempty class A is projective, by taking

φ(x, y) ≡ (A(x) ∧ y = x) ∨ (¬A(x) ∧ y = a)

where a is an arbitrary object such that A(a). In intuitionistic set theory, it is
not the case anymore. In some case, the formula φ(x, y) can be written y = t(x)
for some term t with at most one free variable x. In this case, conditions 1 and 2
vanish, and conditions 3 and 4 are rephrased as:

3′. ∀x (A(x)⇒ t(x) = x)
4′. ∀x A(t(x))

In what follows, the term t(x) will be written bxctA, or simply bxcA when the
term t is clear in the context.

3 A theory of pointed graphs

3.1 Informal presentation

The main definition in this paper is the theory IZmod that is a presentation of
set theory in deduction modulo with rewrite rules only, i.e. with no axioms. At a
first glance, the theory IZmod looks more like a theory of pointed graphs, where
usual set theoretic notions such as membership and equality are derived notions.

10

Informally, a pointed graph is just a pair formed with a directed graph and a
distinguished node, called the root of the pointed graph. In the theory IZmod, all
pointed graphs share the same nodes, but may have different roots and edges.
Thus we have a sort N for nodes and a sort G for pointed graphs. The main
symbol of the theory is a ternary predicate symbol η, the formula x ηa y ex-
pressing that there is a edge from y to x in the pointed graph a. We also have a
function symbol root mapping each pointed graph to its root.

The easiest way to represent a set as a pointed graph is to represent it as a
tree whose root is connected to the roots of the trees representing the elements
of the set. For instance, the set ∅ is represented as a pointed graph with no
edges. The set {∅} is represented as a tree whose root has one child that has no
children, etc.

In the figure below, the pointed graph with no edges and root 1 is a repre-
sentation of the set ∅, the pointed graph with root 2 and the plain edge is a
representation of the set {∅} and the pointed graph with root 4 and the dotted
edges is a representation of the set {∅, {∅}}.

'&%$!"#1 '&%$!"#2

��

'&%$!"#4

�� ��'&%$!"#3 '&%$!"#5 '&%$!"#6

��'&%$!"#7

We extend this idea by considering that any pointed graph represents a set,
namely, the set of objects represented by all the pointed graphs obtained by
shifting the root one level downwards.

Of course, a set may have several and non-isomorphic representations. For
instance, the graph with root 2 and plain edges and the graph with root 6 and
dotted edges both represent the set {∅}. To recover the property of extensional-
ity, we have to define equality in such a way to identify these two pointed graphs.
Thus set equality is defined as bisimilarity. Introducing a third sort for binary
relations on nodes and a predicate symbol rel (such that rel(x, y, r) means that
x and y are related by the relation r), we then define a ≈ b as

∃r (rel(root(a), root(b), r)
∧ ∀x∀x′∀y (x′ ηa x ∧ rel(x, y, r)⇒ ∃y′ (y′ ηb y ∧ rel(x′, y′, r)))
∧ ∀y∀y′∀x (y′ ηb y ∧ rel(x, y, r)⇒ ∃x′ (x′ ηa x ∧ rel(x′, y′, r))))

In deduction modulo, this definition can be handled by introducing a predicate
symbol ≈ and a rule rewriting the atomic formula a ≈ b to this one.

Next, we want to define the membership relation. We first introduce in the
language a binary function symbol / associating a pointed graph to each pair
formed with a pointed graph and a node. The pointed graph a/x has the same
graph as a but its root is x. This is expressed in deduction modulo by the rules

root(a/x) −→ x (a/x)/y −→ a/y

x ηa/z y −→ x ηa y

11

Now, an object a is a member of a set b if the root of b has a child x in b, such
that a is bisimilar to b/x. In deduction modulo, this definition can be handled
by introducing a predicate symbol ∈ and a rule

a ∈ b −→ ∃x (x ηb root(b) ∧ a ≈ (b/x))

As equality on pointed graphs is not defined as the smallest substitutive relation,
but as bisimilarity, substitutivity has to be proved. In fact, equality is only
substitutive with respect to the predicates ∈ and ≈, but not with respect to the
symbol “/”, for instance. Fortunately, substitutivity with respect to ∈ and ≈ is
all we need to prove that IZmod extends IZst.

Equality on nodes is defined in a more usual way, introducing a fourth sort for
classes of nodes. The comprehension schemes expressing the existence of classes
and relations are handled by introducing a function symbol for each formula and
the rewrite rules

mem(x, gx,y1,...,yn,P (y1, . . . , yn)) −→ P
rel(x, x,′ , g′x,x′,y1,...,yn,P

(y1, . . . , yn)) −→ P

Now, we want to build graphs for the usual set theoretic constructions: pair-
ing, union, powerset, restricted comprehension, infinity and transitive closure.
Let us take the example of the union. If a is a pointed graph, we want

⋃
(a) to

be a pointed graph with a fresh root o related to all the grand children of the
root of a. That the root of

⋃
(a) is the node o can be expressed in deduction

modulo with the rule
root(

⋃
(a)) −→ o

Then, we want the formula x ηS
(a) x

′ to hold if either x and x′ are related in the
graph a or x′ is o and x is a grand child of the root of a. This could be expressed
by the naive rule

x ηS
(a) x

′ −→
x ηa x

′ ∨ ∃z (x′ = o ∧ x ηa z ∧ z ηa root(a))

However, with such as rule, we fail to express that the root o must be fresh.
If it were already a node of a, for instance, the properties of the set

⋃
(a) would

not be as expected. To build the pointed graph
⋃

(a), we must first relocate the
graph a in a space where there is no o. This is achieved by introducing in the
language a relocation function i, that is injective but not surjective and a node
o that is not in the image of i. Then the set

⋃
(a) can be defined by the rule

x ηS
(a) x

′ −→
(∃y∃y′ (x = i(y) ∧ x′ = i(y′) ∧ y ηa y′))

∨ (∃y∃z (x = i(y) ∧ x′ = o ∧ y ηa z ∧ z ηa root(a))) .

The fact that i is injective is expressed in deduction modulo, following [8] by
introducing a left inverse i′ and the rule

i′(i(x))→ x

12

To express that o is not in the image of i, we introduce a predicate I that contains
the image of i but not o. This is expressed by the rules

I(i(x))→ > I(o)→ ⊥

Some other constructions, such as pairing or powerset, need two relocation func-
tions i and j such that the images of i, j and o are disjoint. To express the
axiom of infinity, we also need a copy of arithmetic at the level of nodes, thus
we introduce also symbols Nat, 0, S, Pred , Null , and < and related rules. For
the powerset axiom, we need also an injection ρ embedding pointed graphs into
nodes.

3.2 The theory IZmod

Let us now turn to the formal definition of IZmod. The main symbol of this theory
is a ternary predicate symbol η, the formula x ηa y meaning that there is a edge
from x and y in the pointed graph a.

The sorts of the theory IZmod are the following:

Sort Usage
G pointed graphs
N Nodes
C Classes of nodes
R Binary relations on nodes

The predicate (pre), function (fun) and constant (cst) symbols with their arities
are given in Table 2.

The function symbols fx,y1,...,yn,P are defined for each formula P with free
variables x, y1, . . . , yn of sort G formed with the predicate symbols ∈ and ≈, and
quantifiers on G only. The function symbols gx,y1,...,yn,P (resp. g′x,x′,y1,...,yn,P

) are
defined for each formula P whose free variables are among x, y1, . . . , yn (resp.
x, x′, y1, . . . , yn), with x (resp. x, x′) of sort N , formed in the restriction of the
language containing all the symbols, except g··· and g′···. The theory IZmod con-
tains no axioms but the rewrite rules that are given in Table 3.

Example 1. Let ∅ = fx,y,¬(x∈y)(y, y).

3.3 Translating IZst into IZmod

We prove that IZmod is an extension of set theory. To do so, we define a transla-
tion P 7→ P † from IZst to IZmod which simply maps ∈ (of IZst) to ∈ (of IZmod)
and = (of IZst) to ≈ (of IZmod), the rest of the structure of the formula being
preserved. We then prove that IZmod is an extension of IZst, in the sense that for
any formula φ of IZst, if IZst ` φ, then IZmod ` φ†.

To prove this formula, we first prove that all axioms of IZst are theorems of
IZmod. We begin with fifty-three elementary lemmas.

13

General

η pre(G,N,N) Local membership
root fun(G)N Root of a pointed graph
/ fun(G,N)G Change the root of a pointed graph
= pre(N,N) Node equality

Sets and relations on nodes

mem pre(N,C) Node membership
rel pre(N,N,R) Node relation
gx,y1,...,yn,P fun(Nn)C Construction of sets of nodes
g′x,x′,y1,...,yn,P

fun(Nn)R Construction of relations on nodes

Relocations

o cst N Distinguished node
i fun(N)N First injection
i′ fun(N)N Left-inverse of i
I pre(N) Image of i
j fun(N)N Second injection
j′ fun(N)N Left-inverse of j
J pre(N) Image of j
0 cst N zero
S fun(N)N successor
Pred fun(N)N Left-inverse of S
Null pre(N) Singleton 0
Nat pre(N) Natural number nodes
< pre(N,N) Strict ordering over nodes

ρ fun(G)N Injection from pointed graphs to nodes
ρ′ fun(N)G Left-inverse of ρ

Equality and membership

≈ pre(G,G) Equality as bisimilarity
∈ pre(G,G) Membership as shifted bisimilarity

ConstructionsS
fun(G)G Construction of the union

{ , } fun(G,G)G Construction of the pair
P fun(G)G Construction of the powerset
fx,y1,...,yn,P fun(Gn, G)G Construction of sets by comprehension
Ω cst G Pointed graph of Von Neumann numerals
Cl fun(G)G Construction of the transitive closure

Table 2. The signature of IZmod

14

General
x ηa/z y −→ x ηa y root(a/x) −→ x
y = z −→ ∀p (mem(y, p)⇒ mem(z, p)) (a/x)/y −→ a/y

Sets and relations on nodes

mem(x, gx,y1,...,yn,P (y1, . . . , yn)) −→ P
rel(x, x,′ , g′x,x′,y1,...,yn,P

(y1, . . . , yn)) −→ P

Relocations

i′(i(x)) → x I(i(x)) → > I(j(x)) → ⊥ I(o) → ⊥
j′(j(x)) → x J(j(x)) → > J(i(x)) → ⊥ J(o) → ⊥

Pred(S(x)) → x Null(0) → > Null(S(x)) → ⊥ ρ′(ρ(x)) → x
Nat(0) → > Nat(S(x)) → Nat(x) x < 0 → ⊥ x < S(y) → x < y ∨ x = y

Equality and membership

a ≈ b −→ ∃r (rel(root(a), root(b), r)
∧ ∀x∀x′∀y (x′ ηa x ∧ rel(x, y, r)⇒ ∃y′ (y′ ηb y ∧ rel(x′, y′, r)))
∧ ∀y∀y′∀x (y′ ηb y ∧ rel(x, y, r)⇒ ∃x′ (x′ ηa x ∧ rel(x′, y′, r))))

a ∈ b −→ ∃x (x ηb root(b) ∧ a ≈ (b/x))

Constructions
x ηS

(a) x
′ −→

(∃y∃y′ (x = i(y) ∧ x′ = i(y′) ∧ y ηa y′))
∨ (∃y∃z (x = i(y) ∧ x′ = o ∧ y ηa z ∧ z ηa root(a)))

x η{a,b} x
′ −→

(∃y∃y′ (x = i(y) ∧ x′ = i(y′) ∧ y ηa y′))
∨ (∃y∃y′ (x = j(y) ∧ x′ = j(y′) ∧ y ηby′))
∨ (x = i(root(a)) ∧ x′ = o)
∨ (x = j(root(b)) ∧ x′ = o)

x ηP(a) x
′ −→

(∃y∃y′ (x = i(y) ∧ x′ = i(y′) ∧ y ηa y′))
∨ (∃y∃c (x = i(y) ∧ x′ = j(ρ(c)) ∧ y ηa root(a) ∧ (a/y) ∈ c))
∨ (∃c (x = j(ρ(c)) ∧ x′ = o))

x ηfx,y1,...,yn,P (y1,...,yn,a) x
′ −→

(∃y∃y′ (x = i(y) ∧ x′ = i(y′) ∧ y ηa y′))
∨ (∃y (x = i(y) ∧ x′ = o ∧ y ηa root(a) ∧ P (x← (a/y))))

x ηΩ x′ −→
(∃y∃y′ (x = i(y) ∧ x′ = i(y′) ∧ y < y′))
∨ (∃y (x = i(y) ∧ x′ = o ∧Nat(y)))

x ηCl(a) x
′ −→

(∃y∃y′ (x = i(y) ∧ x′ = i(y′) ∧ y ηa y′))
∨ (∃y (x = i(y) ∧ x′ = o∧

∀c [∀z (z ηa root(a)⇒ mem(z, c)) ∧
∀z ∀z′ ((z ηa z

′ ∧mem(z′, c))⇒ mem(z, c)) ⇒ mem(y, c)]))

root(
S

(a)) −→ o root({a, b}) −→ o
root(P(a)) −→ o root(fx,y1,...,yn,P (y1, . . . , yn, a)) −→ o

root(Ω) −→ o root(Cl(a)) −→ o

Table 3. Rewrite rules of IZmod

15

Node identity

1. x = x
2. y = z ⇒ (P (x← y)⇒ P (x← z)) (∗)

Bisimilarity

3. a ≈ a
4. a ≈ b⇒ b ≈ a
5. (a ≈ b ∧ b ≈ c)⇒ a ≈ c
6. a ≈ (a/ root(a))

Injectivity and non confusion

7. S(x) = S(y)⇒ x = y
8. ¬0 = S(x)
9. i(x) = i(y)⇒ x = y
10. j(x) = j(y)⇒ x = y
11. ¬i(x) = o
12. ¬j(x) = o
13. ¬i(x) = j(y)

Eta simplification

14. x ηS
(a) i(y

′)⇔ ∃y (x = i(y) ∧ y ηa y′)
15. x ηS

(a) o⇔ ∃y ∃z (x = i(y) ∧ y ηa z ∧ z ηa root(a))
16. x η{a,b} i(y

′)⇔ ∃y (x = i(y) ∧ y ηa y′)
17. x η{a,b} j(y

′)⇔ ∃y (x = j(y) ∧ y ηb y′)
18. x η{a,b} o⇔ (x = i(root(a)) ∨ x = j(root(b)))
19. x ηP(a) i(y

′)⇔ ∃y (x = i(y) ∧ y ηa y′)
20. x ηP(a) j(ρ(c))⇔ ∃y (x = i(y) ∧ y ηa root(a) ∧ (a/y) ∈ c)
21. x ηP(a) o⇔ ∃c (x = j(ρ(c)))
22. x ηfx,y1,...,yn,P (y1,...,yn,a) i(y

′)⇔ ∃y (x = i(y) ∧ y ηa y′)
23. x ηfx,y1,...,yn,P (y1,...,yn,a) o⇔ ∃y (x = i(y) ∧ y ηa root(a) ∧ P (x← (a/y)))

24. x ηΩ i(y′)⇔ ∃y (x = i(y) ∧ y < y′)
25. x ηΩ o⇔ ∃y (x = i(y) ∧Nat(y))
26. x ηCl(a) i(y

′)⇔ ∃y (x = i(y) ∧ y ηa y′)
27. x ηCl(a) o⇔
∃y (x = i(y)∧

∀c [∀z (z ηa root(a)⇒ mem(z, c)) ∧
∀z ∀z′ ((z ηa z

′ ∧mem(z′, c))⇒ mem(z, c)) ⇒ mem(y, c)])

(∗) Where P is any formula of the language of IZmod that contains no function symbol
of the form g... or g′....

Table 4.

16

Membership

28. x ηa root(a)⇒ (a/x) ∈ a
29. a ≈ b⇒ ∀x (x ηa root(a)⇒ ∃y (y ηb root(b) ∧ (a/x) ≈ (b/y)))
30. (a ∈ b ∧ a ≈ c)⇒ c ∈ b
31. (a ∈ b ∧ b ≈ c)⇒ a ∈ c

Substitutivity

32. (P (x← a) ∧ a ≈ b)⇒ P (x← b) (∗)

Bisimilarity by relocation

33. (root(b) = i(root(a)) ∧ ∀x∀y′ (y′ ηb i(x)⇔ ∃x′ (y′ = i(x′) ∧ x′ ηa x)))⇒ a ≈ b
34. (root(b) = j(root(a)) ∧ ∀x∀y′ (y′ ηb j(x)⇔ ∃x′ (y′ = j(x′) ∧ x′ ηa x)))⇒ a ≈ b

Embedding

35.
S

(a)/i(y) ≈ (a/y)
36. ({a, b}/i(root(a))) ≈ a
37. ({a, b}/j(root(b))) ≈ b
38. P(a)/i(y) ≈ (a/y)
39. fx,y1,...,yp,P (a1, ..., ap, b)/i(y) ≈ (b/y)
40. Cl(a)/i(y) ≈ (a/y)

Extensionality

41. P (c, d)
∧ (∀a∀a′∀b ((a′ ∈ a ∧ P (a, b))⇒ ∃b′(b′ ∈ b ∧ P (a′, b′))))
∧ (∀a∀b∀b′ ((b′ ∈ b ∧ P (a, b))⇒ ∃a′(a′ ∈ a ∧ P (a′, b′))))
⇒ (c ≈ d) (∗)

Finitary existence axioms

42. c ∈
S

(a)⇔ ∃b (c ∈ b ∧ b ∈ a)
43. c ∈ {a, b} ⇔ (c ≈ a ∨ c ≈ b)
44. a ∈ P(b)⇔ ∀c (c ∈ a⇒ c ∈ b)
45. a ∈ fx,y1,...,yp,P (y1, ..., yp, b)⇔ a ∈ b ∧ P (x← a) (∗)

Infinity

46. ¬a ∈ ∅
47. ∅ ≈ (Ω/i(0))
48. (a ≈ (Ω/i(y)))⇒

S
({a, {a}}) ≈ (Ω/i(S(y)))

49. ∅ ∈ Ω
50. a ∈ Ω ⇒

S
({a, {a}}) ∈ Ω

51. Ind(Ω)

Transitive closure
52. a ∈ c⇒ a ∈ Cl(c)
53. a ∈ b⇒ b ∈ Cl(c)⇒ a ∈ Cl(c)

(∗) Where P is any formula expressed in the language ≈, ∈ and where all the
quantifiers are of sort G.

Table 5.

17

Theorem 1. If IZst ` P then IZmod ` P †.
Proof. We first prove the fifty three easy lemmas of tables 4 and 5, from which
we deduce that the axioms of IZst are provable in IZmod. We conclude with a
simple induction on proof structure. ut

3.4 An example

To understand the benefit of using pointed graphs and not directly sets, take an
arbitrary set A and consider the set C (built using the restricted comprehension
scheme) formed by the elements of A that are not members of themselves. The
naive computation rule

a ∈ C −→ a ∈ A ∧ ¬a ∈ a

makes the formula C ∈ C reduce to C ∈ A∧¬C ∈ C. Consequently, the rewrite
system is non terminating, and the underlying proof system is non normalizing
too: a simple adaptation of the proof of Russell’s paradox yields a non normal-
izable (but non paradoxical) proof of ¬C ∈ A.

A simple attempt to solve the problem would be to replace the former rule
by

a ∈ C −→ ∃b (b = a ∧ (b ∈ A ∧ ¬b ∈ b)) .
This way, the atomic formula C ∈ C would reduce to the formula ∃b (b = C∧(b ∈
A ∧ ¬b ∈ b)), and instead of the formula ¬C ∈ C we would get the formula
¬b ∈ b (where b is a variable). Using this trick, the rewrite system would be
terminating, but we could still build a non normalizable proof using the method
of [7]. The reason is that although we know that b is an element of A and that A
is structurally smaller than C (since C is built from A), nothing prevents us
from substituting an arbitrary term to the variable b in the sub-formula ¬b ∈ b
during some deduction step.

In IZmod, in contrast, the formula C ∈ C reduces to

∃x ((∃y∃y′ (x = i(y) ∧ o = i(y′) ∧ y ηA y′) ∨
∃y (x = i(y) ∧ o = o ∧ y ηA root(A) ∧ ¬(A/y) ∈ (A/y)))
∧ C ≈ (C/x))

During this reduction step, we have evolved from C ∈ C to ¬(A/y) ∈ (A/y),
where A is structurally smaller than C. This breaks the circularity and, in the
normalization proof, we shall be able to interpret A first and then C according
to this rule.

4 Translating back IZmod into IZskol

To complete the proof that IZmod is actually a formulation of set theory, we
prove that it is a conservative extension of IZst. Since IZskol is itself a conservative
extension of IZst, all we need to prove is that IZmod is a conservative extension
of IZskol. This proof is organized in two steps. First, we define a translation
P 7→ P ∗ from IZmod to IZskol and we prove that if IZmod ` P then IZskol ` P ∗.
Then, we prove that the formula P ⇔ P †∗ is provable in IZskol.

18

4.1 Pointed graphs and reifications

The translation P 7→ P ∗ is based on the fact that the notions of pointed graph
and bisimilarity can be defined in set theory.

Definition 6 (Pointed graph). A (directed) graph is a set of pairs. A pointed
graph is a pair 〈A, a〉 where A is a graph.

Notice that we do not include a carrier set in our graphs, since the carrier A
of a graph A can always be reconstructed as

A =
{
x ∈

⋃⋃
A | ∃y 〈x, y〉 ∈ A ∨ 〈y, x〉 ∈ A

}
,

whereas the carrier of a pointed graph can be reconstructed as 〈A, a〉 = A∪{a}.
The formula ‘A is a graph’ is

Graph(A) ≡ ∀c∈A ∃x ∃y c = 〈x, y〉

and the formula ‘g is a pointed graph’ is

Pgraph(g) ≡ ∃A ∃a (g = 〈A, a〉 ∧Graph(A)) .

Definition 7 (Bisimilarity). — Let 〈A, a〉 and 〈B, b〉 be two pointed graphs.
A set r is called a bisimulation from 〈A, a〉 to 〈B, b〉 if

1. 〈a, b〉 ∈ r;
2. for all x, x′ and y such that 〈x′, x〉 ∈ A and 〈x, y〉 ∈ r, there exists y′ such

that 〈x′, y′〉 ∈ r and 〈y′, y〉 ∈ B;
3. for all y, y′ and x such that 〈y′, y〉 ∈ B and 〈x, y〉 ∈ r, there exists x′ such

that 〈x′, y′〉 ∈ r and 〈x′, x〉 ∈ A.

Two pointed graphs 〈A, a〉 and 〈B, b〉 are said to be bisimilar if there exists a
bisimulation from 〈A, a〉 to 〈B, b〉.

Formally, the formula ‘g and g′ are bisimilar’ is

g ≈ g′ ≡ ∃A∃a∃B∃b∃r (
Graph(A) ∧Graph(B) ∧ g = 〈A, a〉 ∧ g′ = 〈B, b〉
∧〈a, b〉 ∈ r
∧∀x∀x′∀y ((〈x′, x〉 ∈ A ∧ 〈x, y〉 ∈ r)⇒ ∃y′ (〈y′, y〉 ∈ B ∧ 〈x′, y′〉 ∈ r))
∧ ∀y∀y′∀x ((〈y′, y〉 ∈ B ∧ 〈x, y〉 ∈ r)⇒ (∃x′ 〈x′, x〉 ∈ A ∧ 〈x′, y′〉 ∈ r)))

In the following definition, we will need a shorthand for ‘φ is a function’

Function(φ) ≡ ∀z (z ∈ φ ⇒ ∃x ∃y z = 〈x, y〉) ∧
∀x ∀y ∀y′ (〈x, y〉 ∈ φ ∧ 〈x, y′〉 ∈ φ⇒ y = y′)

as well as terms Dom(φ) and Cod(φ) defined as

Dom(φ) ≡ {x ∈
⋃⋃

φ | ∃y 〈x, y〉 ∈ φ}
Cod(φ) ≡ {y ∈

⋃⋃
φ | ∃x 〈x, y〉 ∈ φ}

19

Definition 8 (Collapse). A Mostovski collapse of a graph A is a function φ
of domain Dom(φ) = A such that for any vertex i ∈ Dom(φ) and for any x, we
have x ∈ φ(i) if and only if there exists j ∈ Dom(φ) such that 〈j, i〉 ∈ A and
x = φ(j).

Formally, the formula ‘φ is a collapse of A’ is

Collapse(A, φ) ≡
Graph(A) ∧ Function(φ) ∧Dom(φ) = A ∧
∀i ∀y′ ∀y [y′ ∈ y ∧ 〈i, y〉 ∈ φ ⇔ ∃i′ (〈i′, i〉 ∈ A ∧ 〈i′, y′〉 ∈ φ)]

The collapse of a graph, when it exists, is unique. In ZF, this property is a
consequence of the Foundation axiom. However, the weaker Strong Extension-
ality axiom is sufficient.

Proposition 3. — The formula

∀A ∀φ ∀ψ (Collapse(A, φ) ∧ Collapse(A,ψ)⇒ φ = ψ)

is derivable in IZskol.

Proof. Let A be a graph with two collapse functions φ and ψ. As a consequence
of the instance of Strong Extensionality corresponding to the relation r defined
by

r(u, v) ≡ ∃i (〈i, u〉 ∈ φ ∧ 〈i, v〉 ∈ ψ)

we get x = x′ for all x, x′ and i such that 〈i, x〉 ∈ φ and 〈i, x′〉 ∈ ψ. ut

The domain of the collapse φ of a graph A is the carrier A of A. We extend
it on the whole universe by introducing the notation

φ̂A(i) ≡ {y ∈ Cod(φ) | ∃j 〈j, i〉 ∈ A ∧ 〈j, y〉 ∈ φ}

Proposition 4. — The following formulæ are provable in IZskol:

1. ∀A ∀φ ∀i (Collapse(A, φ) ∧ i ∈ A ⇒ φ(i) = φ̂A(i))
2. ∀A ∀φ (Collapse(A, φ) ⇒ ∀i ∀y (y ∈ φ̂A(i) ⇔ ∃j (〈j, i〉 ∈ A∧y = φ̂A(j))))

Proof. 1. Assume that φ is a collapse of A and i ∈ A. Then, by definition of
φ̂A, we have φ(i) = φ̂A(i).

2. If 〈j, i〉 ∈ A then j ∈ A, hence by the first part of the proposition, the
formula 〈j, i〉 ∈ A ∧ y = φ̂A(j) is equivalent to 〈j, i〉 ∈ A ∧ y = φ(j). ut

Definition 9 (Reification). — Let 〈A, a〉 be a pointed graph whose underlying
graph has a collapse φ. We say that an object x is a reification of 〈A, a〉 if
x = φ̂A(a).

Formally, the formula ‘x is a reification of g’ is

Reif(g, x) ≡ ∃A ∃a ∃φ (g = 〈A, a〉 ∧ Collapse(A, φ) ∧ x = φ̂A(a))

The formula ‘g is a reifiable pointed graph is’

Rgraph(g) ≡ ∃x Reif(g, x)

As an immediate corollary of Prop. 3 we get the following proposition.

20

Proposition 5. The formula

∀g ∀x ∀y ((Reif(g, x) ∧ Reif(g, y))⇒ x = y)

is derivable in IZst.

Proposition 6. — The formula

∀x ∀g ∀h ((Reif(g, x) ∧ Reif(h, x))⇒ g ≈ h)

is derivable in IZst.

Proof. Let x be a set, and g = 〈A, a〉 and h = 〈B, b〉 be two pointed graphs such
that Reif(g, x) and Reif(h, x). Assume that φ is a collapse of 〈A, a〉 such that
φ(a) = x and ψ is a collapse of 〈B, b〉 such that ψ(b) = x. We then define the
relation r by

r = {〈y, z〉 ∈ Dom(φ)×Dom(ψ) | φ̂A(y) = ψ̂B(z)}

and check that this is a bisimulation of g = 〈A, a〉 with h = 〈B, b〉. ut

By definition, a reifiable pointed graph has a reification. We prove that,
conversely, every set is the reification of some pointed graph. This existence
property can be proved with the Replacement Scheme of ZF. However, the weaker
Transitive Closure axiom is sufficient.

Proposition 7. The formula

∀x ∃g Reif(g, x)

is derivable in IZst.

Proof. Let A be the set Cl(x)∪{x} and r the relation on A defined by r(u, v) if
and only if u ∈ v, the set x is the reification of the pointed graph 〈r, x〉. ut

We now want to show that the class Rgraph is projective. To do so, we first
have to project any set A to a collapsible graph G(A). Intuitively, the graph
G(A) is defined as the largest subgraph of A that has a collapse. This relies on
the following definition:

Definition 10 (Initial subgraph).

ISeg(G,A) ≡ Graph(G) ∧ ∀x ∀ y ((〈x, y〉 ∈ A ∧ y ∈ G)⇒ 〈x, y〉 ∈ G)

Proposition 8. If Collapse(A, φ) and ISeg(G,A) then Collapse(G,φ|G)

Proof. Let ψ = φ|G. It is routine to check that if i ∈ G, then the formulæ

∃j (〈j, i〉 ∈ A ∧ 〈j, y〉 ∈ φ) and ∃j (〈j, i〉 ∈ G ∧ 〈j, y〉 ∈ ψ)

are equivalent. Thus, if i ∈ G, then we have y ∈ ψ(i) if and only if y ∈ φ(i) if
and only if ∃j (〈j, i〉 ∈ A ∧ 〈j, y〉 ∈ φ) if and only if ∃j (〈j, i〉 ∈ G ∧ 〈j, y〉 ∈ ψ).
Thus ψ is a collapse of G. ut

21

Proposition 9. Let A be a graph, and G1 and G2 two initial subgraphs of A
with collapses φ1 and φ2. Then φ1 and φ2 coincide on D = Dom(φ1)∩Dom(φ2).

Proof. Let G = A ∩ (D ×D). Notice that D = G1 ∩ G2. It is routine to check
that G is an initial subgraph of G1 (resp. G2). Let D′ = G ⊆ D. By Prop. 8,
φ1|D′ and φ2|D′ are collapses of G hence they are equal by Prop. 3. We now
want to prove that φ1 and φ2 coincide on the full set D. Consider an element
i ∈ D. We have y ∈ φ1(i) if and only if ∃j 〈j, i〉 ∈ G1 ∧ y = φ1(j) if and
only if ∃j 〈j, i〉 ∈ G2 ∧ y = φ2(j) if and only if y ∈ φ2(i). The equivalence
∃j 〈j, i〉 ∈ G1 ∧ y = φ1(j) if and only if ∃j 〈j, i〉 ∈ G2 ∧ y = φ2(j) is justified
by noticing that the proposition 〈j, i〉 ∈ G1 and 〈j, i〉 ∈ G2 are equivalent when
i ∈ D (since both G1 and G2 are initial subgraphs of A), and that in this case,
we have j ∈ D′, hence φ1(j) = φ2(j). ut

As an immediate corollary, we get:

Proposition 10. The union of all the initial subgraphs of a set A that have a
collapse has a collapse.

Definition 11 (Largest collapsible subgraph). — The largest collapsible
subgraph of a set A is given by

G(A) =
⋃
{G ∈ P(A) | ISeg(G,A) ∧ ∃ψ Collapse(G,ψ)}

The projection of any set x onto the class Rgraph of reifiable pointed graphs
is then defined as

bxcRgraph = 〈G(π1(x), π2(x)〉

4.2 Translation

We are now ready to define a translation from IZmod to IZskol. Each sort s of IZmod

is interpreted as a sort of IZskol written s∗ accompanied with a relativization
predicate written s∗(x) (where x is of sort s∗). We take

– G∗ = Set, with G∗(x) ≡ Rgraph(x)
– N∗ = Set, with N∗(x) ≡ >
– C∗ = Class, with C∗(x) ≡ >
– R∗ = Class, with R∗(c) ≡ ∀x (mem(x, c)⇒ ∃y ∃z (x = 〈y, z〉))

Each term t (resp. formula P) of IZmod is translated as a term t∗ (resp.
formula P ∗) of IZskol. These translations are defined by mutual induction in
Tables 6 and 7.

Proposition 11. — If a is a well-formed term of sort s in IZmod with free
variables x1, . . . , xn of sorts s1, . . . , sn respectively, then

IZskol ` ∀x1 · · · ∀xn (s∗1(x1) ∧ · · · ∧ s∗n(xn)⇒ s∗(a∗))

22

x∗ ≡ x
(root(a))∗ ≡ π2(a∗) (i(a))∗ ≡ 〈0, a∗〉 (j(a))∗ ≡ 〈1, a∗〉

(a/b)∗ ≡ 〈π1(a∗), b∗〉 (i′(a))∗ ≡ π2(a∗) (j′(a))∗ ≡ π2(a∗)
o∗ ≡ 0 S(x)∗ ≡ x∗ ∪ {x∗} (ρ(a))∗ ≡ a∗

0∗ ≡ 0 Pred(x)∗ ≡
S
x∗ (ρ′(a))∗ ≡ ba∗cRgraph

(gx,y1,...,yn,P (b1, . . . , bn))∗ ≡ {|x | P ∗(y1 ← b∗1, ..., yn ← b∗n)|}
(g′x,x′,y1,...,yn,P

(b1, . . . , bn))∗ ≡ {|z | ∃x∃x′ (z = 〈x, x′〉 ∧ P ∗(y1 ← b∗1, ..., yn ← b∗n))|}

(
S

(a))∗ ≡ 〈R, 0〉 where X ≡ ({0} × a∗) ∪ {0} and
R ≡ {c ∈ X ×X | ∃y∃y′ (c = 〈〈0, y′〉, 〈0, y〉〉 ∧ 〈y′, y〉 ∈ π1(a∗))

∨∃y′∃y (c = 〈〈0, y′〉, 0〉 ∧ 〈y′, y〉 ∈ π1(a∗) ∧ 〈y, π2(a∗)〉 ∈ π1(a∗))}

({a, b})∗ ≡ 〈R, 0〉 where X ≡ ({0} × a∗) ∪ ({1} × b∗) ∪ {0} and
R ≡ {c ∈ X ×X | ∃y∃y′ (c = 〈〈0, y′〉, 〈0, y〉〉 ∧ 〈y′, y〉 ∈ π1(a∗))

∨∃y∃y′ (c = 〈〈1, y′〉, 〈1, y〉〉 ∧ 〈y′, y〉 ∈ π1(b∗))
∨c = 〈〈0, π2(a∗)〉, 0〉 ∨ c = 〈〈1, π2(b∗)〉, 0〉}

(P(a))∗ ≡ 〈R, 0〉 where X ≡ ({0} × a∗) ∪ ({1} ×P(a∗)) ∪ {0} and
R ≡ {c ∈ X ×X | ∃y∃y′ (c = 〈〈0, y′〉, 〈0, y〉〉 ∧ 〈y′, y〉 ∈ π1(a∗))

∨∃y∃p (c = 〈〈0, y〉, 〈1, p〉〉 ∧ 〈y, π2(a∗)〉 ∈ π1(a∗) ∧ y ∈ p)
∨∃p (c = 〈〈1, p〉, 0〉)}

(fx,y1,...,yn,P (a1, . . . , an, a))∗ ≡ 〈R, 0〉 where X ≡ ({0} × a∗) ∪ {0} and
R ≡ {c ∈ X ×X | ∃y∃y′ (c = 〈〈0, y′〉, 〈0, y〉〉 ∧ 〈y′, y〉 ∈ π1(a∗))

∨ ∃y (c = 〈〈0, y〉, 0〉 ∧ 〈y, π2(a∗)〉 ∈ π1(a∗)
∧ P ∗(x← 〈π1(a∗), y〉, y1..n ← a∗1..n))}

Ω∗ ≡ 〈R, 0〉 where X ≡ ({0} × N) ∪ {0} and
R ≡ {c ∈ X ×X | ∃y∃y′ (c = 〈〈0, y′〉, 〈0, y〉〉 ∧ y′ ∈ y)

∨∃y (c = 〈〈0, y〉, 0〉)}

(Cl(a))∗ ≡ 〈R, 0〉 where X ≡ ({0} × a∗) ∪ {0} and
R ≡ {c ∈ X ×X | ∃y∃y′ (c = 〈〈0, y′〉, 〈0, y〉〉 ∧ 〈y′, y〉 ∈ π1(a∗))

∨∃y (c = 〈〈0, y〉, 0〉 ∧ 〈y, π2(a∗)〉 ∈ Clos(π1(a∗)))
where Clos(r) is the term
{c ∈ r × r | ∀r′ (r ⊆ r′ ∧ ∀x∀y∀z (〈x, y〉 ∈ r′ ∧ 〈y, z〉 ∈ r′ ⇒ 〈x, z〉 ∈ r′) ⇒ c ∈ r′)}

Table 6. Translation of terms

23

(t ηa u)∗ ≡ 〈t∗, u∗〉 ∈ π1(a∗)
(t = u)∗ ≡ t∗ = u∗

(mem(t, p))∗ ≡ mem(t∗, p∗)
(rel(t, u, r))∗ ≡ mem(〈t∗, u∗〉, r∗)

(I(t))∗ ≡ ∃y t∗ = 〈0, y〉
(J(t))∗ ≡ ∃y t∗ = 〈1, y〉

(Null(t))∗ ≡ t∗ = 0
(t < u)∗ ≡ t∗ ∈ u∗ ∧ u∗ ∈ N

(Nat(t))∗ ≡ t∗ ∈ N
(t ≈ u)∗ ≡ t∗ ≈ u∗
(t ∈ u)∗ ≡ ∃z (〈z, π2(u∗)〉 ∈ π1(u∗) ∧ t∗ ≈ 〈π1(u∗), z〉)

>∗ ≡ >
⊥∗ ≡ ⊥

(A⇒ B)∗ ≡ A∗ ⇒ B∗

(A ∧B)∗ ≡ A∗ ∧B∗
(A ∨B)∗ ≡ A∗ ∨B∗
(∀x A)∗ ≡ ∀x (s∗(x)⇒ A∗)
(∃x A)∗ ≡ ∃x (s∗(x) ∧A∗)

Table 7. Translation of formulæ

Proof. By induction on the structure of the term a. The only non trivial case is
when t is of sort G, in which case we have to check that t∗ is a term of sort Set
and that the formula Reif(t) is provable in IZskol. If a has the form

⋃
(b), {b, c},

P(b), fx,y1,...,yn,P (b1, . . . , bn, b), Ω or Cl(a), then we just apply the induction
hypothesis and prove that the pointed graph built in the translation is reifiable
(which needs to use the corresponding axioms of IZskol). If a has the form b/x
then we have to prove that the pointed graph built in the translation is reifiable
which is obvious because reifiability does not depend on the position of the root
in the graph. If the term has the form ρ′(a). We have to check that the pointed
graph built in the translation is reifiable, and this holds because G(a) is built in
order to have a collapse. ut

Proposition 12 (Correction of rules). — If P −→ Q, where the free vari-
ables of P are among x1, . . . , xn of sorts s1, . . . , sn respectively, then the formula

IZskol ` s∗1(x1) ∧ · · · ∧ s∗n(xn) ⇒ (P ∗ ⇔ Q∗)

Proof. We check this rule by rule. Let us give a few examples.

– The rule

x ηS
(a) x

′ −→ (∃y ∃y′ (x = i(y) ∧ x′ = i(y′) ∧ y ηa y′))
∨ (∃y ∃z (x = i(y) ∧ x′ = o ∧ y ηa z ∧ z ηa root(a)))

Consider an atomic formula of the form t ηS
(a) t

′ that reduces to

(∃y ∃y′ (t = i(y) ∧ t′ = i(y′) ∧ y ηa y′))
∨ (∃y ∃z (t = i(y) ∧ t′ = o ∧ y ηa z ∧ z ηa root(a)))

24

The translation of the formula t ηS
(a) t

′ is 〈t∗, t′∗〉 ∈ π1(〈R, 0〉) where

R = {c ∈ X ×X |
∃y ∃y′ (c = 〈〈0, y〉, 〈0, y′〉〉 ∧ 〈y, y′〉 ∈ π1(a∗))

∨ ∃y ∃z (c = 〈〈0, y〉, 0〉 ∧ 〈y, z〉 ∈ π1(a∗) ∧ 〈z, π2(a∗)〉 ∈ π1(a∗))}

where X = ({0}× a∗)∪ {0}. This formula is provably equivalent in IZskol to

t∗ ∈ X ∧ t′∗ ∈ X∧
(∃y ∃y′ (t∗ = 〈0, y〉 ∧ t′∗ = 〈0, y′〉 ∧ 〈y, y′〉 ∈ π1(a∗))
∨ ∃y ∃z (t∗ = 〈0, y〉 ∧ t′∗ = 0 ∧ 〈y, z〉 ∈ π1(a∗) ∧ 〈z, π2(a∗)〉 ∈ π1(a∗)))

that is provably equivalent in IZskol to

∃y ∃y′ (t∗ = 〈0, y〉 ∧ t′∗ = 〈0, y′〉 ∧ 〈y, y′〉 ∈ π1(a∗))
∨ ∃y ∃z (t∗ = 〈0, y〉 ∧ t′∗ = 0 ∧ 〈y, z〉 ∈ π1(a∗) ∧ 〈z, π2(a∗)〉 ∈ π1(a∗))

that is the translation of

(∃y ∃y′ (t = i(y) ∧ t′ = i(y′) ∧ y ηa y′))
∨ (∃y ∃z (t = i(y) ∧ t′ = o ∧ y ηa z ∧ z ηa root(a))) .

– The rule
y = z −→ ∀p (mem(y, p)⇒ mem(z, p))

Consider an atomic formula t = u that reduces to

∀p (mem(t, p)⇒ mem(t, p)) .

The l.h.s. translates to the formula t∗ = u∗ whereas the r.h.s. translates to

∀p (> ⇒ mem(t∗, p)⇒ mem(u∗, p)) .

Both formulæ are equivalent in IZclass.

Proposition 13 (Correction of the translation). — Let P be a formula of
IZmod with free variables x1, . . . , xn of sorts s1, . . . , sn respectively. If IZmod ` P ,
then

IZskol ` s∗1(x1) ∧ · · · ∧ s∗n(xn)⇒ P ∗

Proof. By induction over proof structure, using Prop. 11 to justify the rules of
quantifiers and Prop. 12 to justify conversion steps. ut

4.3 Conservative extension

In Section 3.3, we have proved that IZmod was an extension of IZst. We are now
ready to prove that this extension is conservative.

25

Proposition 14. — For any formula P (x1, . . . , xn) of IZst, the universal clo-
sure of the formula (with free variables x1, . . . , xn, g1, . . . , gn)

n∧
i=1

Reif(xi, gi) ⇒
(
P (x1, . . . , xn)⇔ P †∗(g1, . . . , gn)

)
is a theorem of IZskol.

Proof. By structural induction on P .

– If P (x, y) has the form x = y, let us assume Reif(x, g) and Reif(y, h). We
have to prove

x = y ⇔ g ≈ h

and this is a consequence of Prop. 6 and 5.
– If P (x, y) has the form x ∈ y, let us assume Reif(x, g) and Reif(y, h). The

formula P †∗(g, h) is

∃z (〈z, π2(h)〉 ∈ π1(h) ∧ g ≈ 〈π1(h), z〉)

and we have to prove the formula

x ∈ y ⇔ ∃z (〈z, π2(h)〉 ∈ π1(h) ∧ g ≈ 〈π1(h), z〉)

Let B = π1(h), b = π2(h), and a = π2(g). We have to prove

x ∈ y ⇔ ∃z (〈z, b〉 ∈ B ∧ g ≈ 〈B, z〉)

Let φ be a collapse of g such that x = φ(a) and ψ a collapse of h such that
y = ψ(b).
• Assume x ∈ y. Then there exists z ∈ Dom(ψ) such that ψ(z) = x and
〈z, b〉 ∈ B. But x is obviously a reification of the pointed graph 〈B, z〉.
Since the pointed graphs g and 〈B, z〉 have the same reification x, they
are bisimilar (Proposition 6).

• Conversely, assume z such that 〈z, b〉 ∈ B and 〈B, z〉 ≈ g. From 〈z, b〉 ∈
B, we get ψ(z) ∈ ψ(b) = y. Since the pointed graphs 〈B, z〉 and g are
bisimilar, their reifications ψ(z) and x are equal from Proposition 5.

– If P (x1, . . . , xn) has the form Q(x1, . . . , xn)∧R(x1, . . . , xn), then, by induc-
tion hypothesis, under the hypotheses Reif(xi, gi), we have
Q(x1, . . . , xn) ⇔ Q†∗(g1, . . . , gn) and R(x1, . . . , xn) ⇔ R†∗(g1, . . . , gn). We
deduce (Q(x1, . . . , xn)∧R(x1, . . . , xn))⇔ (Q†∗(g1, . . . , gn)∧R†∗(g1, . . . , xn)),
i.e. (Q(x1, . . . , xn) ∧R(x1, . . . , xn))⇔ (Q(g1, . . . , gn) ∧R(g1, . . . , gn))†∗.

– If P (x1, . . . , xn) has the form Q(x1, . . . , xn) ∨R(x1, . . . , xn) or
Q(x1, . . . , xn)⇒ R(x1, . . . , xn), the proof is similar.

– If P (x1, . . . , xn) has the form ∀x Q(x, x1, . . . , xn), then P †∗(g1, . . . , gn) is

∀g [Rgraph(g)⇒ Q†∗(g, g1, . . . , gn)] .

26

• Let us assume P (x1, . . . , xn), i.e. ∀x Q(x, x1, . . . , xn), and prove
(P †)∗(g1, . . . , gn), i.e. ∀g [Rgraph(g)⇒ Q†∗(g, g1, . . . , gn)].
Let g be a reifiable pointed graph, and a a reification of g. From our
assumption, one has Q(a, x1, . . . , xn) By induction hypothesis, we have
(Q†)∗(g, g1, . . . , gn).

• Conversely, assume (P †)∗(g1, . . . , gn), i.e.
∀g [Rgraph(g)⇒ Q†∗(g, g1, . . . , gn)], and prove
P (x1, . . . , xn), i.e. ∀x Q(x, x1, . . . , xn). Let x be a set. From Prop. 7,
there exists a reifiable pointed graph h such that Reif(x, h). By induction
hypothesis we have Q(x, x1, . . . , xn).

– If P has the form ∃x Q, the proof is similar. ut

Theorem 2 (Conservativity). — Let P be a closed formula in the language
of IZst. If IZmod ` P †, then IZst ` P .

Proof. Assume IZmod ` P †. By Proposition 13, we have IZskol ` (P †)∗, by Propo-
sition 14 we get IZskol ` P and we conclude using the fact that IZskol is a con-
servative extension of IZst. ut

5 Normalization

In this section, we prove that all proofs in the theory IZmod are strongly normaliz-
able. As this theorem implies the consistency of IZmod, it cannot be proved in set
theory itself. In [6] we have generalized the usual notion of relative consistency
proof to a notion of relative normalization proof. Technically, our normalization
theorem is proved under the assumption that IZskol2 is 1-consistent.

5.1 Reducibility candidates

To prove normalization, we shall use the result proved in [6]. For that, we need
to define a translation from IZmod to IZskol2 associating to each term t of IZmod

a term t∗ of IZskol2 and to each atomic formula P of IZmod a formula π P
of IZskol2. This translation is then extended to all formulæ as shown in [6]. To
define the formula π P we shall first define a term P ∗ expressing a reducibility
candidate and then we shall define π P as π ∈ P ∗.

We refer to [6] for the definition of all notations related to reducibility candi-
dates. In particular, we shall denote Proof the set of all proof-terms, CR the set of
all reducibility candidates, SN the set of all strongly normalizable proofs (which
is the largest reducibility candidate), and ⇒̃, ∧̃, ∨̃, etc. the binary operations on
CR that interpret the corresponding intuitionistic connectives.

An important property of the class of reducibility candidates is that it is
projective. Indeed, if we define bXcCR as the intersection of all reducibility can-
didates containing X ∩ SN

bXcCR = {π ∈ SN | ∀r∈CR (X ∩ SN ⊆ r ⇒ π ∈ r)}

we easily check that IZskol2 proves

27

1. For all X, bXcCR ∈ CR
2. If X ∈ CR, then X = bXcCR.

Moreover, ifX is a set of strongly normalizable proofs, then bXcCR is the smallest
reducibility candidate containing X.

5.2 Saturated pointed graphs

Definition 12 (Saturated pointed graph). A saturated graph is a function
R whose domain is a set of pairs and whose codomain is CR. A saturated pointed
graph is a pair 〈R, r〉 formed by a saturated graph R and an arbitrary object r.

The formulæ ‘x is a saturated graph’ and ‘x is a saturated pointed graph’
are written Sgraph(x) and Spgraph(x), respectively. Again, it is easy to check
that the class of saturated graphs and the class of saturated pointed graphs are
projective, using the projections:

bXcSgraph ≡ {c ∈ Dom(X)× CR | π2(c) = bX(π1(c))cCR}
bXcSpgraph ≡ 〈bπ1(X)cSgraph, π2(X)〉

We check that IZskol2 proves
1. For all X, Spgraph(bXcSpgraph)
2. If Spgraph(X), then X = bXcSpgraph.

(and similarly for Sgraph).
The carrier a of a saturated pointed graph a is defined as

a ≡ {x ∈
⋃⋃

π1(x) | ∃y ∃r 〈〈x, y〉, r〉 ∈ π1(a) ∨ 〈〈y, x〉, r〉 ∈ π1(a)} .

5.3 Translation of sorts

We now define the translation of IZmod into IZskol2.
Each sort s of IZmod is translated as a sort of IZskol2 written s∗ accompanied

with a relativization predicate written s∗(x) (where x is of sort s∗). We then set:
– G∗ = Set, with G∗(x) ≡ Spgraph(x)
– N∗ = Set, with N∗(x) ≡ >
– C∗ = Class, with

C∗(c) ≡ ∀z (mem(z, c)⇒ ∃x ∃r (z = 〈x, r〉 ∧ r ∈ CR))

– R∗ = Class, with

R∗(c) ≡ ∀z (mem(z, c)⇒ ∃x ∃y ∃r (z = 〈〈x, y〉, r〉 ∧ r ∈ CR))

If c is an element of C∗ and if x is any object, we write

c[x] = b
⋃
{r ∈ CR | mem(〈x, r〉, c)}cCR

the candidate associated to x in c (or the smallest candidate if there is no can-
didate associated to x in c). Similarly, if c is an element of R∗ and if x, y are
arbitrary objects, we write

c[x, y] = b
⋃
{r ∈ CR | mem(〈〈x, y〉, r〉, c)}cCR

the candidate associated to 〈x, y〉 in c (or the smallest candidate otherwise).

28

5.4 Translation of function and predicate symbols

To each function symbol f of arity n of IZmod, we associate a term f̃(x1, ..., xn)
possibly containing the free variables x1, ..., xn. These “macros” will be used
later to translate full terms, setting (f(t1, ..., tn))∗ ≡ f̃(t∗1, ..., t

∗
n).

We start by some easy function symbols:

˜root(x) ≡ π2(x) x/̃y ≡ 〈π1(x), y〉 õ ≡ 0

ĩ(x) ≡ 〈0, x〉 j̃(x) ≡ 〈1, x〉 ρ̃(x) ≡ x

ĩ′(x) ≡ π2(x) j̃′(x) ≡ π2(x) ρ̃′(x) ≡ bxcSpgraph

0̃ ≡ 0 S̃(x) ≡ x ∪ {x} ˜Pred(x) ≡
⋃
x

In the same way, to each predicate symbol P of arity n of IZmod, we asso-
ciate a term P̃ (x1, ..., xn) possibly containing the free variables x1, ..., xn. From
these macros we will translate atomic formulæ by setting (P (t1, . . . , tn))∗ ≡
P̃ (t∗1, . . . , t

∗
n). We set

˜mem(x, p) ≡ p(x)

r̃el(x, y, p) ≡ p(x, y)

Ĩ(x) ≡ J̃(x) ≡ ˜Null(x) ≡ Ñat(x) ≡ SN

(x η̃a y) ≡ bπ1(a)(x, y)cCR
Using both definitions (f(t1, ..., tn))∗ ≡ f̃(t∗1, ..., t

∗
n) and (P (t1, ..., tn))∗ ≡

P̃ (t∗1, ..., t
∗
n), we can now translate all the terms and formulæ containing the

symbols for which we have already introduced a translation. In particular, we
can translate the formula ∀p (mem(x, p) ⇒ mem(y, p)). We thus translate the
predicate symbol = as

x =̃ y ≡ (∀p (mem(x, p)⇒ mem(y, p)))∗

In a similar way we take

a ≈̃ b ≡ [∃r (rel(root(a), root(b), r)
∧ ∀x∀x′∀y (x′ ηa x ∧ rel(x, y, r)⇒

∃y′ (y′ ηb y ∧ rel(x′, y′, r)))
∧ ∀y∀y′∀x (y′ ηb y ∧ rel(x, y, r)⇒

∃x′ (x′ ηa x ∧ rel(x′, y′, r))))]∗

a ∈̃ b ≡ [∃x (x ηb root(b) ∧ a ≈ (b/x))]∗

To define x <̃ y and (t < u)∗, we proceed as follows. Fix x0 and y0, and
consider the sequence of functions (fn)n∈N : Cl({y0})→ CR defined by induction
on n as follows:

– f0 is defined as the constant function that maps all the elements of Cl({y0})
to the smallest candidate.

– fn+1 is defined from fn in two steps as follows:

29

• First we consider the functional graph f ′n defined as

f ′n = {(0,⊥)} ∪ {〈s(z), fn(z) ∨̃ x0 = z〉 | y ∈ Cl({y})}

• Then we set

fn+1(z) = b{π ∈ Proof | ∃c (〈z, c〉 ∈ f ′n ∧ π ∈ c)}cCR

for all z ∈ Cl({y}).

Finally we set x0 <̃ y0 ≡ b
⋃
n∈N fn(y0)cCR.

We then translate the symbols
⋃

, {, }, P, fx,y1,...,yn
, Ω and Cl.

The formula x ηS
(a) x

′ reduces to the formula P which is:

(∃y ∃y′ (x = i(y) ∧ x′ = i(y′) ∧ y ηa y′))
∨ (∃y ∃z (x = i(y) ∧ x′ = o ∧ y ηa z ∧ z ηa root(a)))

Consider the translation P ∗ of this formula. We let⋃̃
(a) ≡ 〈R, 0〉

where R = {c ∈ (X×X)×CR | ∃x ∃x′ c = 〈〈x, x′〉, P ∗〉} and X = (1×a)∪{0}.
We do the same thing for the other constructions.

Finally, remains to define the translation of the symbols gx,y1,...,yn,P and
g′x,x′,y1,...,yn,P

. We set

g̃x,y1,...,yn,P (y1, . . . , yn) ≡ {|z | ∃x z = 〈x, P ∗〉|}

(g̃′x,x′,y1,...,yn,P (y1, . . . , yn))∗ ≡ {|z | ∃x ∃x′ z = 〈〈x, x′〉, P ∗〉|}

From [6], to get normalization, we need to prove the following two lemmas:

Proposition 15. — For any atomic formula A of IZmod, the formula A∗ ∈ CR
is provable in IZskol2.

Proof. By induction on the structure of A. ut

Proposition 16. — If A −→ B, then A∗ = B∗ is provable in IZskol2 under
the assumptions s∗i (xi) for each variable xi of sort si that appears in one of the
formulæ A and B.

Proof. It suffices to prove the formula for each rewrite rule A −→ B (for which A
is always an atomic formula). In most cases, this is obvious, since the denotation
of the left-hand side has been precisely defined as the denotation of the right-
hand side. ut

Thus we get our final theorem.

Theorem 3. — If IZskol2 is 1-consistent, then the theory IZmod has the normal-
ization property.

30

6 Witness properties

Corollary 1 (Witness property in IZmod). If a closed formula ∃x P (x) is
provable in IZmod, then there exists a term t in IZmod (of the same sort as the
variable x) such that the formula P (t) is provable.

Proof. A cut-free proof ends with an introduction rule.

Corollary 2 (Non-numerical witness in IZst). If a closed formula ∃x P (x)
is provable in IZst, then there exists a formula D(y) with one free variable y such
that

1. The formula ∃!x D(x) is provable in IZst.
2. The formula ∀x (D(x)⇒ P (x)) is provable in IZst.

Proof. The formula ∃x P †(x) is provable in IZmod, hence by corollary 1 there
exists a term t such that P †(t) is provable in IZmod. Hence the formula P †∗(t∗)
is provable in IZst. Consider the formula D(y) ≡ Reif(y, t∗). From Prop. 11,
we have Rgraph(t∗), that is: ∃x D(x). Uniqueness follows from Prop. 5. From
Prop. 14, we have

∀x ∀g (Reif(x, g)⇒ (P (x)⇔ P †∗(g)))

hence
∀x (Reif(x, t∗)⇒ (P †∗(t∗)⇒ P (x)))

As we have P †∗(t∗), we get ∀x (D(x)⇒ P (x)). ut

Corollary 3 (Numerical witness in IZst). If a closed formula of the form
∃ x(Nat(x)∧P (x)) is provable in IZst, then there exists a natural number n such
that the formula

∃x (Isn(x) ∧ P (x))

is provable in IZst, where the formula Isn(x) is inductively defined by

Is0(x) ≡ Empty(x) and Isn+1(x) ≡ ∃y (Isn(y) ∧ Succ(y, x))

Proof. The formula ∃ x(Nat†(x)∧P †(x)) is provable in IZmod, hence there exists
a term t in IZmod such that Nat†(t) and P †(t) are provable. We check that the
formula ∀x (Nat†(x) ⇒ x ∈ Ω) is provable in IZmod. Hence the formula t ∈ Ω,
i.e. ∃x (x ηΩ o)∧t ≈ (Ω/x) is provable. Again there exists a term u such that the
formulae u ηΩ o and t ≈ (Ω/u) are provable. The formula u ηΩ o is equivalent
by elementary means to ∃y (u = i(y) ∧Nat(y)).

Thus there exists a term v such that u = i(v) and Nat(v) are provable.
A cut free proof of the formula Nat(v) ends with an introduction rule. Hence

Nat(v) reduce to a non atomic formula and v has the form Sn(0) for some n.
Thus the formula t ≈ (Ω/i(Sn(0))) is provable.
We check, by induction on n that the formula Is†n(Ω/i(Sn(0))) is provable

in IZmod. Hence the formula ∃x (Is†n(x) ∧ P †(x)) is provable in IZmod. Hence
∃x (Rgraph(x)∧Is†∗n (x)∧P †∗(x)) is provable in IZst and by Prop. 14, the formula
∃x (Isn(x) ∧ P (x)) is provable in IZst.

31

7 Conclusion

In this paper we have given a normalization proof for Zermelo set theory ex-
tended with Strong Extensionality and Transitive Closure.

This theorem can also be attained as a corollary of the existence of a trans-
lation of IZst into type theory [20] (using stronger assumptions than the 1-
consistency of IZskol2). However, instead of expressing set theory on top of a
theory of graphs defined in type theory, we expressed it on top of a theory of
graphs simply expressed in predicate logic. The fact that this theory can be
expressed with computation rules only and no axioms is a key element for the
cut-free proof to end with an introduction rule. This shows that the key feature
of type theory used in these translations is the feature captured by Deduction
modulo: the possibility to mix computation and deduction.

Along the way we have proposed a typed lambda-calculus where all terms
normalize and where all provably total functions of set theory can be expressed.
It should be noticed that the syntax of lambda-calculus is exactly that of the
proofs of predicate logic (i.e. variables, abstractions and applications, pairs and
projections, disjoints union and definition by cases, . . .). No new construction is
needed, only the type system is new.

One striking feature of this expression of set theory in Deduction modulo
is the presence of the extensionality axiom. Extensionality axioms are usually
difficult to transform into computation rules. For instance, for extensional simple
type theory there is, as far as we know, no expression in Deduction modulo and
no normalization proof. The idea is to define equality in such a way that it is
extensional and then prove that it is substitutive on the considered part of the
language. Whether this method can be generalized to extensional simple type
theory still remains to be investigated.

Our investigation on normalization has lead us to consider an extension of
Zermelo set theory with Strong Extensionality and Transitive Closure. This
raises the question of the interest per se of this theory. In particular, the fact
that transitive closure cannot always be constructed in Zermelo set theory [9] can
be seen as a weakness of this theory, which is repaired by the transitive closure
axiom. However, we leave open the question of the various axioms of set theory
that can be added or removed from our choice of axioms: both for weaker theo-
ries, for instance without the Transitive Closure axiom and for stronger theories,
for instance with the collection scheme, the axiom of choice or the continuum
hypothesis.

Finally, the fact that set operations need to be decomposed into more atomic
operations raises the question of the relevance of the choice of the notion of set for
the foundation of mathematics. It might be the case that founding mathematics
directly on the notion of graph would be more convenient.

References

1. P. Aczel. Non well-founded sets. Center for the Study of Language and Information,
Stanford, 1988.

32

2. P. Aczel. On relating type theories and set theories. In T. Altenkirch,
W. Naraschewski, and B. Reus, editors, Types for proofs and programs, volume
1657 of Lecture Notes in Computer Science, pages 1–18. Springer, 1999.

3. M. Crabbé. Non-normalisation de ZF. Manuscript, 1974.
4. M. Crabbé. Stratification and cut-elimination. The Journal of Symbolic Logic,

56(1):213–226, 1991.
5. G. Dowek, Th. Hardin, and C. Kirchner. Theorem proving modulo. Journal of

Automated Reasoning, 31:33–72, 2003.
6. G. Dowek and A. Miquel. Relative normalization. Manuscript, available from the

web pages of the authors, 2006.
7. G. Dowek and B. Werner. Proof normalization modulo. The Journal of Symbolic

Logic, 68(4):1289–1316, 2003.
8. G. Dowek and B. Werner. Arithmetic as a theory modulo. In J. Giesel, editor, Term

Rewriting and Applications, volume 3467 of Lecture Notes in Computer Science,
pages 423–437. Springer, 2005.

9. O. Esser and R. Hinnion. Antifoundation and transitive closure in the system of
Zermelo. Notre Dame Journal of Formal Logic, 40(2):197–205, 1999.

10. H. Friedman. Some applications of Kleene’s methods for intuitionistic systems. In
Cambridge Summer School in Mathematical Logic, volume 337 of Springer Lecture
Notes in Mathematics, pages 113–170. Springer-Verlag, 1973.

11. J.-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse et son ap-
plication à l’élimination des coupures dans l’analyse et la théorie des types. In
J.E. Fenstad (Ed.), Second Scandinavian Logic Symposium. North-Holland, 1970.

12. J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures dans
l’arithmétique d’ordre supérieur. PhD thesis, Université de Paris 7, 1972.

13. J.-L. Krivine. Théorie des ensembles. Cassini, 1998.
14. J.-L. Krivine. Typed lambda-calculus in classical Zermelo-Fraenkel set theory.

Archive for Mathematical Logic, 40(3):189–205, 2001.
15. J.-L. Krivine. Dependent choice, ‘quote’ and the clock. Theoretical Computer

Science, 308:259–276, 2003.
16. D. McCarty. Realizability and Recursive Mathematics. PhD thesis, Ohio State

University, 1984.
17. P.-A. Melliès and B. Werner. A generic normalization proof for pure type systems.

In E. Gimenez and Ch. Paulin-Mohring, editors, Types for Proofs and Programs,
Lecture Notes in Computer Science, pages 254–276, 1998.

18. A. Miquel. Le calcul des constructions implicite: syntaxe et sémantique. PhD
thesis, Université de Paris 7, 2001.

19. A. Miquel. A strongly normalising Curry-Howard correspondence for IZF set the-
ory. In Proceedings of CSL’03, volume 2803 of Lecture Notes in Computer Science,
pages 441–454, 2003.

20. A. Miquel. Lamda-Z: Zermelo’s Set Theory as a PTS with 4 sorts. In Jean-
Christophe Filliâtre, Christine Paulin-Mohring, and Benjamin Werner, editors,
TYPES, volume 3839 of Lecture Notes in Computer Science, pages 232–251.
Springer, 2004.

21. J. Myhill. Some properties of intuitionistic Zermelo-Fraenkel set theory. In Cam-
bridge Summer School in Mathematical Logic, volume 337 of Springer Lecture Notes
in Mathematics, pages 206–231. Springer-Verlag, 1973.

22. H. Rasiowa and R. Sikorski. The mathematics of metamathematics. Polish Scien-
tific Publishers, 1963.

23. B. Werner. Sets in types, types in sets. In Theoretical Aspects of Computer Soft-
ware, volume 1281 of Lecture Notes in Computer Science, pages 530–546, 1997.

