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The axiom of choice in ZF

Recall: In ZF, the axiom of choice (AC) can be stated as follows:

(AC) Each set A has a choice function, that is: a function
h : P∗(A)→ A such that h(X ) ∈ X for all X ∈ P∗(A)

(Writing P∗(A) := P(A) \ {∅})

Proposition (Equivalent statements of AC)

The axiom of choice is equivalent to each of the following statements:

1 Each surjection f : A→ B has a right-inverse, that is:
a function g : B → A such that f ◦ g = idB

2 Each equivalence relation ∼ on a set A has a system of
representatives, that is: a subset S ⊆ A that contains
exactly one point of each equivalence class of ∼

3 The Cartesian product
∏

x∈A Bx of a family (Bx)x∈A of
nonempty sets (indexed by an arbitrary set A) is nonempty

Proof: Exercise
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Weak forms of the axiom of choice

The axiom of denumerable choice (ACω)

∀(An)n∈N, (∀n ∈ N, Ax 6= ∅) ⇒ ∃(un)n∈N, ∀n ∈ N, un ∈ An︸ ︷︷ ︸∏
n∈N

An 6= ∅

Note: This axiom is crucial to prove that non-finite sets are Dedekind-infinite
(thus eliminating subinfinite sets, that are neither finite nor Dedekind-infinite)

The axiom of dependent choice (DC)

∀A, ∀R ⊆ A2,
(∀x ∈ A, ∃y ∈ A, x R y) ⇒
∀x0 ∈ A, ∃(un)n∈N ∈ AN, u0 = x0 ∧ ∀n ∈ N, un R un+1

Note: This axiom plays an important role in analysis, since it implies (and is actually
equivalent to) Baire’s category theorem

Proposition: (AC) ⇒ (DC) ⇒ (ACω) (in ZF)

But converse implications (ACω) ⇒ (DC) ⇒ (AC) are not derivable in ZF
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Reformulating ACω and DC in the language of PA2

Although AC, ACω and DC are presented as axioms in ZF,
they can be presented as axiom schemes in PA2:

The axiom scheme of denumerable choice (ACω)... in the language of PA2

For each formula A[x ,Y ] of the language of PA2 depending on a
1st-order variable x and on a 2nd-order variable X of arity k:

(∀x ∈N)∃Y A[x ,Y ] ⇒ ∃U (∀x ∈N)A[x ,U(x)]

(where U is a 2nd-order variable of arity k + 1)

The axiom scheme of dependent choice (DC)... in the language of PA2

For each formula A[X ,Y ] of the language of PA2 depending on two
2nd-order variables X and Y of arity k :

∀X ∃Y A[X ,Y ] ⇒
∀X0 ∃U (U(0) = X0 ∧ (∀n∈N)A[U(n),U(n + 1)])

(where X0 and U are 2nd-order variables of arities k and k + 1, respectively)

(The case of AC is more complex...)
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Extensionality in 2nd-order logic (1/4)

Recall: In 2nd-order logic, predicate equality is defined by:

P = Q :≡ ∀~x (P(~x)⇔ Q(~x)) (Extensional equality)

In An introduction to Krivine realizability, we saw that:

Proposition (Extensionality in 2nd-order logic)

For each 2nd-order formula A[~z , ~Z ,X ] depending on ~z , ~Z ,X , we have:

NJ2 ` ∀~z ∀~Z ∀X ∀Y
(
X = Y ⇒

(
A[~z , ~Z ,X ]⇔ A[~z , ~Z ,Y ]

))
Proof. By structural induction on A

By adequacy, this means that for each formula A[~z , ~Z ,X ] depending

on ~z , ~Z ,X , we have two (intuitionistic) proof-like terms:

extA/X � ∀~z ∀~Z ∀X ∀Y
(
X = Y ⇒ A[~z , ~Z ,X ]⇒ A[~z , ~Z ,Y ]

)
ext′A/X � ∀~z ∀~Z ∀X ∀Y

(
X = Y ⇒ A[~z , ~Z ,Y ]⇒ A[~z , ~Z ,X ]

)
We now want to make explicit the terms extA/X and ext′A/X ...
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Extensionality in 2nd-order logic (2/4)

For that, we introduce a new syntactic category of skeletons:

Skeletons σ, τ ::= V | ∗ | σ → τ

Definition (Skeleton of a formula abstracted w.r.t. a 2nd-order variable)

To each formula A abstracted w.r.t. a 2nd-order variable X , we associate
its skeleton sk(A/X ), that is defined by:

sk(A / X ) :≡ ∗ (if X /∈ FV (A))

sk(X (~e) / X ) :≡ V

sk(A⇒ B / X ) :≡ sk(A/X )→ sk(B/X )

sk(∀x A / X ) :≡ sk(A/X )

sk(∀Y A / X ) :≡ sk(A/X ) (if Y 6≡ X )

Note: sk(A/X ) is not sensitive to a substitution of a variable 6≡ X :

sk(A[x := e]/X ) ≡ sk(A[Y := P]/X ) ≡ sk(A/X ) (Y 6≡ X , X /∈ FV (P))
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Extensionality in 2nd-order logic (3/4)

Definition (Terms extσ and ext′σ)

1 To each skeleton σ we associate two intuitionistic proof-like terms
tσ[z ] and t ′σ[z ] that only depend on a variable z , letting:

t∗[z ] :≡ I tV[z ] :≡ z (λx , y . x)

t ′∗[z ] :≡ I t ′V[z ] :≡ z (λx , y . y)

tτ→σ[z ] :≡ λf , x . tσ[z ] (f (t ′τ [z ] x))

t ′τ→σ[z ] :≡ λf , x . t ′σ[z ] (f (tτ [z ] x))

2 For each skeleton σ, we finally let:

extσ :≡ λz . tσ[z ] and ext′σ :≡ λz . t ′σ[z ]

Note that both proof-like terms extσ and ext′σ only depend
on a skeleton σ and not on a abstracted formula A/X ...

... Nevertheless... (go to next slide)



Introduction ACω & DC using quote ... using the clock

Extensionality in 2nd-order logic (4/4)

Proposition

For each 2nd-order formula A[~z , ~Z ,X ] with parameters only depending

on the variables ~z , ~Z , and X , we have:

extσ � ∀~z ∀~Z ∀X ∀Y
(
X = Y ⇒ A[~z , ~Z ,X ]⇒ A[~z , ~Z ,Y ]

)
ext′σ � ∀~z ∀~Z ∀X ∀Y

(
X = Y ⇒ A[~z , ~Z ,Y ]⇒ A[~z , ~Z ,X ]

)
writing σ :≡ sk(A[~z , ~Z ,X ]/X )

Proof: Exercise!

So that in what follows, we shall write

extA/X :≡ extsk(A/X ) and ext′A/X :≡ ext′sk(A/X )

keeping in mind that the above realizers actually depend only
on the skeleton of the abstracted formula A/X
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The instructions quote and quote′

Numbering terms: the instruction quote:

Given an enumeration (tn)n∈N of all closed terms, we add the rule

quote ? t · u · π � u ? dte · π
writing dte the smallest n ∈ N such that t ≡ tn

Numbering stacks: the instruction quote′:

Given an enumeration (πn)n∈N of all stacks, we add the rule

quote′ ? u · π � u ? dπe⊥ · π
writing dπe⊥ the smallest n ∈ N such that π ≡ πn

Proposition

If there is a partial recursive function f : N⇀ N such that dπe⊥ = f (dkπe)
for all π ∈ Π, then quote′ can be implemented from quote, letting:

quote′ :≡ λx . cc (λk . quote k (λn . f̌ n x))

Proof: Check it out!
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A first choice principle (1/3)

Proposition 1 (“Type” of quote′)

Given a formula(∗) A[X ] that only depends on a 2nd-order variable X of
arity k ≥ 0, there is a falsity function ΦA : Nk+1 → P(Π) (depending

on A and on the pole ⊥⊥) such that:

quote′ 
 (∀n∈N)A[Φ̇A(n)] ⇒ ∀X A[X ]

(∗) Here and in what follows: formula = formula of PA2 with parameters.

Intuitively, the (k + 1)-ary predicate Φ̇A represents a sequence
(Φ̇A(n))n of potential counter-examples to the predicate A[X ]

Since the converse implication trivially holds (proof: λz , . z), the
resulting equivalence allows to replace any 2nd-order quantification
∀X A[X ] by a numeric quantification (∀n∈N)A[Φ̇A(n)]

And since quote′ can be implemented from quote, we also have:

λx . cc (λk . quote k (λn . f̌ n x)) 
 (∀n∈N)A[Φ̇A(n)] ⇒ ∀X A[X ]
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A first choice principle (2/3)

Proof. Using meta-theoretic ACω , we associate to each n ∈ N a k-ary falsity
function Φn : Nk → P(Π) defined by:

Φn :=


Some function F : Nk → P(Π) such that πn ∈ ‖A[Ḟ ]‖

if such a function F exists

Any function F : Nk → P(Π) otherwise

(writing πn the nth element of the fixed enumeration of all stacks).

Then we define ΦA : Nk+1 → P(Π), letting ΦA(n) := Φn for all n ∈ N.

We want to prove that quote′ 
 (∀n∈N)A[Φ̇A(n)] ⇒ ∀X A[X ].

For that, pick a stack in
∥∥(∀n∈N)A[Φ̇A(n)] ⇒ ∀X A[X ]

∥∥, that is necessarily

of the form u · π where u ∈
∣∣(∀n∈N)A[Φ̇A(n)]

∣∣ and π ∈ ‖A[Ḟ ]‖ for some

F : Nk → P(Π), and let us prove that quote′ ? u · π ∈ ⊥⊥.

For that, write n := dπe⊥, so that π ≡ πn ∈ ‖A[Ḟ ]‖. From the def. of ΦA(n) = Φn,
we have π ≡ πn ∈ ‖A[Φ̇n]‖ = ‖A[Φ̇A(n)]‖.

Now we observe that quote′ ? u · π � u ? n · π, so that it remains to prove that
u ? n · π ∈ ⊥⊥ (by anti-evaluation). This follows from the fact that:

u ∈ |(∀x ∈N)A[Φ̇A(x)]|, n ∈ |n ∈ N| and π ∈ ‖A[Φ̇A(n)]‖.
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A first choice principle (3/3)

Changing the def. of ΦA, we can build a simpler realizer based on quote:

Proposition 1.b (Variant of Prop. 1)

Given a formula A[X ] that only depends on a 2nd-order variable X of
arity k ≥ 0, there is a falsity function Φ′A : Nk+1 → P(Π) (depending

on A and on the pole ⊥⊥) such that:

λx . quote x x 
 (∀n∈N)A[Φ̇′A(n)] ⇒ ∀X A[X ]

Def. of Φ′A: For all n ∈ N, write Sn := {π ∈ Π : tn ? n · π /∈ ⊥⊥} (where tn is the
nth element of the fixed enumeration of all closed terms). Using meta-theoretic ACω ,
we now associate to each n ∈ N a falsity function Φ′n : Nk → P(Π) defined by:

Φ′n :=


Some function F : Nk → P(Π) such that ‖A[Ḟ ]‖ ∩ Sn 6= ∅

if such a function F exists

Any function F : Nk → P(Π) otherwise

Then we define Φ′A : Nk+1 → P(Π), letting Φ′A(n) := Φ′n for all n ∈ N.

Exercise: Prove that λx . quote x x 
 (∀n∈N)A[Φ̇′A(n)] ⇒ ∀X A[X ]

(Hint: Reason by contradiction.)
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Taking the contrapositive (1/2)

Considering the contrapositive of the first choice principle

(∀n∈N)A[Φ̇A(n)] ⇒ ∀X A[X ]

we get the following result:

Proposition 2

Given a formula A[X ] that only depends on a 2nd-order variable X of
arity k ≥ 0, there is a falsity function ΨA : Nk+1 → P(Π) (depending

on A and on the pole ⊥⊥) such that:

θ 
 ∃X A[X ] ⇒ (∃n∈N)A[Ψ̇A(n)]
)

writing θ :≡ λz, f . cc (λk . z (quote′ (λn, x . k (f n x))))

Intuitively, the (k + 1)-ary predicate Ψ̇A represents a sequence
(Ψ̇A(n))n∈N of potential witnesses of the predicate A[X ]

Since the converse implication trivially holds, the resulting
equivalence allows to replace any 2nd-order quantification
∃X A[X ] by a numeric quantification (∃n∈N)A[Ψ̇A(n)]
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Taking the contrapositive (2/2)

Proof. Considering ¬A instead of A, we know from Prop. 1 that there is a falsity
function Φ¬A : Nk+1 → P(Π) such that:

quote′ 
 (∀n∈N)¬A[Φ̇¬A(n)] ⇒ ∀X ¬A[X ]

so that writing ΨA :≡ Φ¬A, we get:

quote′ 
 (∀n∈N)¬A[Ψ̇A(n)] ⇒ ∀X ¬A[X ]

Now writing t[q] :≡ λz, f . cc (λk . z (q (λn, x . k (f n x)))), we observe that the
following typing judgment is derivable in system λNK2:

q : (∀n∈N)¬A[Ψ̇A(n)] ⇒ ∀X ¬A[X ]

` t[q] : ∃X A[X ] ⇒ (∃n∈N)A[Ψ̇A(n)]

Therefore, by adequacy we get

θ :≡ t[quote′] 
 ∃X A[X ] ⇒ (∃n∈N)A[Ψ̇A(n)].
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The non-extensional axiom of choice (NEAC) (1/4)

Proposition 3 (The non-extensional axiom of choice – NEAC)

Given a formula A[X ] that only depends on a 2nd-order variable X of
arity k ≥ 0, there is a falsity function EA : Nk → P(Π) (depending

on A and on the pole ⊥⊥) such that:

θσ 
 ∃X A[X ] ⇒ A[ĖA]

(where θσ is a closed proof-like depending on σ :≡ sk(A[X ]/X ))

The construction EA is the 2nd-order version of Hilbert’s epsilon,
that “chooses” for each 2nd-order predicate A[X ] an object EA that
fulfills A, if such an object exists. (Otherwise, EA is arbitrary)

However, the symbol E is non-extensional, since in the realizability
model we have in general:

∀X (A[X ]⇔ B[X ]) 6⇒ EA = EB︸ ︷︷ ︸
∀~x(EA(~x)⇔EB (~x))
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The non-extensional axiom of choice (NEAC) (2/4)

Proof. From Prop. 2, we know that there is a falsity function ΨA : Nk+1 → P(Π)
such that: θ 
 ∃X A[X ] ⇒ (∃n∈N)A[Ψ̇A(n)] (for some proof-like term θ).

Let us now consider the k-ary predicate PA defined by:

PA(x1, . . . , xk ) :≡
(∃n0 ∈N){ A[Ψ̇A(n0)] ∧ (∀n < n0)¬A[Ψ̇A(n)] ∧ Ψ̇A(n0, x1, . . . , xk ) }

Using the fact that PA2 ` “any nonempty subset of N has a smallest element”,
we easily construct a proof-term:

t1 : (∃n∈N)A[Ψ̇A(n)] ⇒ (∃n0 ∈N){ A[Ψ̇A(n0)] ∧ (∀n < n0)¬A[Ψ̇A(n)] }.

And from the def. of the k-ary predicate PA combined with the uniqueness of the
smallest n ∈ N such that A[Ψ̇A(n)], we can build a proof-term:

t2 : (∀n0 ∈N){ A[Ψ̇A(n0)] ∧ ∀(n < n0)¬A[Ψ̇A(n)] ⇒ Ψ̇A(n0) = PA }.

On the other hand, we know that extσ 
 ∀X ∀X ′ (X = X ′ ⇒ A[X ]⇒ A[X ′]),
writing σ :≡ sk(A[X ]/X ) the skeleton of A[X ] w.r.t. X (cf § Introduction).

Combining the proof-like terms θ, t1, t2 and extσ , we easily deduce a proof-like term
θσ 
 ∃X A[X ] ⇒ A[PA] (that only depends on σ :≡ sk(A[X ]/X )).

To conclude it suffices to define EA : Nk → P(Π) by EA := ‖PA‖.
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The non-extensional axiom of choice (NEAC) (3/4)

Due to the form of its realizer θσ, NEAC can be generalized to formulas
A[~z , ~Z ,X ] that may depend on other (1st- and 2nd-order) variables ~z , ~Z :

Theorem 4 (General form of NEAC)

Given a formula A[~z , ~Z ,X ] that only depends on:

p 1st-order variables ~z :≡ z1, . . . , zp,

q 2nd-order variables ~Z :≡ Z1, . . . ,Zq of arities k1, . . . , kq ≥ 0 and

a 2nd-order variable X of arity k ≥ 0,

there is a (3rd-order) falsity function

EA : Np︸︷︷︸
z1,...,zp

×P(Π)N
k1 × · · · ×P(Π)N

kq︸ ︷︷ ︸
Z1,...,Zq

→ P(Π)N
k︸ ︷︷ ︸

X

(depending on A and ⊥⊥) such that:

θσ 
 ∀~z ∀~Z
(
∃X A[~z , ~Z ,X ] ⇒ A[~z , ~Z , ĖA(~z , ~Z )]

)
(where σ :≡ sk(A[~z, ~Z ,X ]), and using the same realizer θσ as before)
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The non-extensional axiom of choice (NEAC) (4/4)

Proof. For all parameters ~m = (m1, . . . ,mp) ∈ Np and ~F = F1, . . . ,Fq (where
Fi : Nki → P(Π) for all i ∈ [1..q]), we choose (using meta-theoretic AC) a falsity
function E

A[~m,~F ]
: Nk → P(Π) such that

θσ 
 ∃X A[ ~m, ~F ,X ] ⇒ A[ ~m, ~F , Ė
A[~m,~F ]

]

(from Prop. 3), writing σ :≡ sk(A[ ~m, ~F ,X ]/X ) ≡ sk(A[~z, ~Z ,X ]/X ).

(Note that the skeleton σ does not depend on the parameters ~m, ~F .)

We now define the function EA : Np ×P(Π)k1 × · · · ×P(Π)kq → P(Π)N
k

by

EA( ~m, ~F ) := E
A[~m,~F ]

for all ~m ∈ Np and ~F ∈ P(Π)N
k1 × · · · ×P(Π)N

kq
.

For all parameters ~m, ~F , we thus have

θσ 
 ∃X A[ ~m, ~F ,X ] ⇒ A[ ~m, ~F , ĖA( ~m, ~F )]

and since the realizer θσ is the same for all parameters ~m, ~F , we deduce that

θσ 
 ∀~z ∀~Z
(
∃X A[~z, ~Z ,X ] ⇒ A[~z, ~Z , ĖA(~z, ~Z)]

)
by an immediate generalization.



Introduction ACω & DC using quote ... using the clock

On the importance of extensionality

The non-extensional axiom of choice (NEAC) does not imply AC,
since E is not extensional: ∀X (A[X ]⇔ B[X ]) 6⇒ EA = EB

Counter-example (Constructing a right-inverse of a surjective function?)

In 2nd-order logic, a 3rd-order function (i.e. from 2nd-order objects to themselves) is

naturally represented as a formula F [X ,Y ] such that:

(1) ∀X ∀X ′ ∀Y (F [X ,Y ] ∧ X = X ′ ⇒ F [X ′,Y ]) ∧
∀X ∀Y ∀Y ′ (F [X ,Y ] ∧ Y = Y ′ ⇒ F [X ,Y ′]) (F is compatible)

(2) ∀X ∀Y ∀Y ′ (F [X ,Y ] ∧ F [X ,Y ′]⇒ Y = Y ′) (F is functional)

(3) ∀X ∃Y F [X ,Y ] (F is total)

If moreover, we assume that:

(4) ∀Y ∃X F [X ,Y ] (F is surjective)

it is natural to define a right-inverse G of F , letting: G [Y ,X ] :≡ (X = EF [·,Y ]).

Then it is easy to realize that the function G is functional (2) and total (3), and
moreover that F ◦ G = id, that is: ∀X ∀Y ∀X ′ (F [X ,Y ] ∧ G [Y ,X ′]⇒ X ′ = X ).

Alas, we cannot realize that G is compatible (1), since E is not extensional

Nevertheless, we shall see that NEAC implies both ACω and DC
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Why NEAC implies ACω

Corollary 5 (Realizing ACω)

For each formula A[x ,Y ] depending on a 1st-order variable x and on a
2nd-order variable Y of arity k , we have:

ξσ 

(
(∀x ∈N)∃Y A[x ,Y ]

)
⇒ ∃U (∀x ∈N)A[x ,U(x)]

(where ξσ is a closed proof-like term depending on σ :≡ sk(A[x ,Y ]/Y ),
and where U is a 2nd-order variable of arity k + 1)

Proof (idea). Let ξσ :≡ λhf . f (λn . θσ (h n)) and instanciate U by Ḟ ,

where F : N→ P(Π)N
k

:= EA. (Exercise: write down the details.)

Remark: Relativizations to N are actually useless. Indeed, if we replace ξσ
by ξ′σ :≡ λhf . f (θσ h), we realize the ι-indexed axiom of choice (ACι):

ξ′A 

(
∀x ∃Y A[x ,Y ]

)
⇒ ∃U ∀x A[x ,U(x)]

Exercise: write down the details
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Why NEAC implies DC

Corollary 6 (Realizing DC)

For each formula A[X ,Y ] depending on two 2nd-order variables X , Y of
arity k, we have:

ησ 
 ∀X ∃Y A[X ,Y ] ⇒
∀X0 ∃U (U(0) = X0 ∧ (∀n∈N)A[U(n),U(n + 1)])

(where ξσ is a closed proof-like term depending on σ :≡ sk(A[x ,Y ]/Y ),
and where X0 and U are 2nd-order variables of arities k and k + 1, respectively)

Proof. Assuming that X0 is instanciated by a falsity function F0 : Nk → P(Π), we
let Fn+1 := EA(Fn) for all n ∈ N, and define the falsity function G : Nk+1 → P(Π)
by G(n) := Fn for all n ∈ N. Letting ζσ :≡ λh . 〈〈I, I〉, λn . θσ h〉, we check that

ζσ 
 ∀X ∃Y A[X ,Y ] ⇒ Ġ(0) = Ḟ0 ∧ (∀n∈N)A[Ġ(n), Ġ(n + 1)]

and letting ησ :≡ λxy . y (ζσ x), we deduce that

ησ 
 ∀X ∃Y A[X ,Y ] ⇒ ∃U (U(0) = Ḟ0 ∧ (∀n∈N)A[U(n),U(n + 1)])

We conclude by universally generalizing over the falsity function F0.
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Introduction

Krivine (2003):

We observe that the application n 7→ tn may be any surjective
map from N onto Λ. The reduction rule for χ is then:

χ ? u · π � u ? n · π [1]

where n is any integer such that tn ≡ u. This suggests the
following interpretation: χ is an input instruction and, when it
comes in head position, the process χ ? u · π waits for some
integer n which is provided by some human operator or some
external process. [...] The only constraint is that “u must be
retrievable from n”, i.e. the integers provided to the processes
χ ? u · π and χ ? u′ · π′ with u′ 6= u, must be different. A very
simple and natural way to obtain this behaviour is to provide
the integer n by means of a clock, since two different λc -terms
cannot appear at the same time. [...]

How to formalize (mathematically) this clock?

[1]Krivine’s χ behaves as “λx . quote x x” (with the notations of the previous section)
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Outline of the method (1/2)

How to retrieve the execution time from a process?

Naive method: Store the “current time” at the bottom of the current
stack, and increment it at each evaluation step:

Push tu ? ~v · αn �1 t ? u · ~v · αn+1

Grab λx . t ? u · ~v · αn �1 t[x := u] ? ~v · αn+1

Save cc ? u · ~v · αn �1 u ? k~v · ~v · αn+1

Restore k~v ? u · ~v ′ · αn �1 u ? ~v · αn+1

Clock clock ? u · ~v · αn �1 u ? n · ~v · αn+1

Problem: Such a design of evaluation is completely incompatible
with the adequacy lemma! (Exercise: Check it out!)

Morality: In classical realizability, we cannot tamper with stacks
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Outline of the method (2/2)

How to retrieve the execution time from a process?

Simple solution: Store the “boot program” in the bottom of the stack,
so that we can retrieve the current time by “subtraction”. For that:

Associate a stack constant αθ to each θ ∈ PL (“boot programs”)

and only consider deterministic evaluation sequences of the form:

“boot process”︷ ︸︸ ︷
θ ? αθ � · · · � t ? ~v · αθ � t ′ ? ~v ′ · αθ � · · ·︸ ︷︷ ︸

thread of θ

(Such a thread may be linear-infinite, linear-finite or cyclic)

Retrieve “current time” using an instruction “clock” with the rule

clock ? t · ~u · αθ � t ? n · ~u · αθ,

where n is the smallest integer such that: θ ? αθ �n clock ? t · ~u · αθ

(Note that when evaluation is cyclic, the clock is cyclic too)
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A particular instance of the λc-calculus (1/3)

Recall: An instance of the λc -calculus is defined by:

A set K = {cc, . . .} of instructions (containing at least call/cc)

A nonempty set Π0 of stack constants (or stack bottoms)

A preorder of evaluation �, that contains at least the
four basic rules Grab, Push, Save and Restore

Definition of the λc-calculus with clock:

Let: K := {cc, clock} (only two instructions: call-cc and clock)

The set K determines the set of proof-like terms:

Proof-like terms θ, φ ::= x | λx . θ | θ φ | cc | clock

Introducing a stack constant αθ for each closed proof-like term
θ ∈ PL, we let: Π0 := {αθ : θ ∈ PL}

To each θ ∈ PL, we associate the boot process θ ? αθ
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A particular instance of the λc-calculus (2/3)

For each θ ∈ PL, we define a relation θ .n p (“boot process

θ ? αθ evaluates to process p in n steps”) from the inference rules:

θ .0 θ ? αθ
(Init)

θ .n λx . t ? u · π
θ .n+1 t[x := u] ? π

(Grab)
θ .n tu · π

θ .n+1 t ? u · π
(Push)

θ .n cc ? u · π
θ .n+1 u ? kπ · π

(Save)
θ .n kπ ? u · π′

θ .n+1 u ? π
(Restore)

θ .n clock ? u · π
θ .n+1 u ? n0 · π

(Clock)

writing n0 the smallest integer (≤ n) such that θ .n0 clock ? u · π

Lemma (Determinism of θ . )

For all θ, n, p, p′: θ .n p and θ .n p′ imply p ≡ p′
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A particular instance of the λc-calculus (3/3)

We now define the relation �1 of one step evaluation as follows:

Push tu ? π �1 t ? u · π
Grab λx . t ? u · π �1 t[x := u] ? π

Save cc ? u · π �1 u ? kπ · π
Restore kπ ? u · π′ �1 u ? π

Clock clock ? u · π �1 u ? n · π
writing π ≡ ~v · αθ, and n the smallest integer such that θ .n clock ? u · π

Let (�n) := (�1)n and (�) := (�1)∗ =
⋃
n∈N

(�n)

Lemma (Determinism of � & characterization of θ . )

1 For all p, p′, p′′: p �1 p′ and p �1 p′′ imply p′ ≡ p′′

2 For all n, θ, p: θ .n p iff θ ? αθ �n p
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Threads

For each θ ∈ PL, we define the thread of θ by:

thd(θ) := {p : θ .n p for some n ∈ N}
= {p : θ ? αθ � p}

The thread of θ is either:

– linear-infinite: p0 � p1 � p2 � · · · � pn � pn+1 � · · ·
– linear-finite: p0 � p1 � p2 � · · · � pn 6�1

– cyclic: p0 � · · · � pk � · · · � pn ≡ pk (k < n)

The clock behaves accordingly (infinitely, finitely, cyclicly)

Since thd(θ) is (obviously) closed under evaluation, its complement

⊥⊥θ := thd(θ){ (⊆ Λ× Π)

is closed under anti-evaluation, and can be used as a pole:

⇒ local pole associated to the proof-like term θ
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A first choice principle... again (1/2)

Proposition 5 (“Type” of the “clock”)

Given a formula A[X ] that only depends on a 2nd-order variable X of
arity k ≥ 0 and a local pole ⊥⊥θ := thd(θ){ (for some θ ∈ PL), there is a
falsity function ΦA : Nk+1 → P(Π) (depending on A and on θ) such that:

clock 
 (∀n∈N)A[Φ̇A(n)] ⇒ ∀X A[X ]

Proof: cf next slide

Note that the result only holds in local poles!

Remark: When working with the “clock”, we thus need to replace

by

universal realizability (= realizability w.r.t. all poles)

local realizability (= realizability w.r.t. all local poles ⊥⊥θ)

The reader is invited to check the main results associated with universal
realizability (e.g. witness extraction techniques) still holds with local realizability
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A first choice principle... again (2/2)

Proof. Consider a pole of the form ⊥⊥θ := thd(θ){ (for some θ ∈ PL). For each
n ∈ N, we let Sn := {π ∈ Π : ∃u ∈ Λ, θ .n clock ? u · π}. Since � is deterministic,
the set Sn contains at most one stack. Using meta-theoretic ACω , we now associate
to each n ∈ N a k-ary falsity function Φn : Nk → P(Π) defined by:

Φn :=


Some function F : Nk → P(Π) such that ‖A[Ḟ ]‖ ∩ Sn 6= ∅

if such a function F exists

Any function F : Nk → P(Π) otherwise

Then we define ΦA : Nk+1 → P(Π), letting ΦA(n) := Φn for all n ∈ N.

We want to prove that clock 
 (∀n∈N)A[Φ̇A(n)] ⇒ ∀X A[X ], that is:
we want to prove that clock ? u · π ∈ ⊥⊥ for all u ∈ |(∀n∈N)A[Φ̇A(n)]|,
for all F : Nk → P(Π) and for all π ∈ ‖A[Ḟ ]‖.
Reasoning by contradiction, let us assume that clock ? u · π /∈ ⊥⊥. Hence we have
clock ? u · π ∈ thd(θ), so that clock ? u · π � u ? n · π /∈ ⊥⊥ (by evaluation),
where n is the smallest integer such that θ .n clock ? u · π.

We now observe that π ∈ ‖A[Ḟ ]‖ ∩ Sn, hence ‖A[Φ̇A(n)]‖ ∩ Sn 6= ∅ (from the def.
of ΦA(n) = Φn), and thus π ∈ ‖A[Φ̇A(n)]‖ (since Sn = {π}). Observing that

u ∈ |(∀n∈N)A[Φ̇A(n)]|, n ∈ |n ∈ N| and π ∈ ‖A[Φ̇A(n)]‖
we deduce that u ? n · π ∈ ⊥⊥: contradiction!
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Realizing NEAC, ACω and DC

The same way as we did with the instruction “quote”, we successively
deduce from Prop. 5 the existence of:

A function ΨA : Nk+1 → P(Π) and a term θ0 ∈ PL such that:

θ0 
 ∃X A[X ] ⇒ (∃n∈N)A[Ψ̇A(n)]

A function EA : Nk → P(Π) and a term θσ ∈ PL such that:

θσ 
 ∃X A[X ] ⇒ A[ĖA]

And more generally for each formula A[~z , ~Z ,X ], a function

EA : · · · → P(Π)N
k

and a term θσ ∈ PL such that:

NEAC: θσ 
 ∀~z ∀~Z
(
∃X A[~z , ~Z ,X ] ⇒ A[~z , ~Z , ĖA0 (~z , ~Z )]

)
The same way as before, ACω and DC are easily deduced from NEAC
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