

Realizing the axiom of dependent choices (DC)

Alexandre Miquel

November 24th & December 01, 2021

A small history of classical realizability

- Krivine 1994. *A general storage theorem for integers in call-by-name lambda-calculus*
- K. 2001. *Typed lambda-calculus in classical ZF set theory*
- K. 2003. *Dependent choice, 'quote' and the clock*
- K. 2004–2009. *Realizability in classical logic*
- K. 2011. *Realizability algebras: a program to well order \mathbb{R}*
- K. 2012. *Realizability algebras II: new models of ZF + DC*
- K. 2014. *On the structure of classical realizability models of ZF*
- K. 2016. *Bar recursion in classical realizability: dependent choice and continuum hypothesis*
- K. 2018. *Realizability algebras III: some examples*
- K. 2021. *A program for the full axiom of choice*

The axiom of choice in ZF

Recall: In ZF, the **axiom of choice (AC)** can be stated as follows:

(AC) Each set A has a **choice function**, that is: a function
 $h : \mathfrak{P}^*(A) \rightarrow A$ such that $h(X) \in X$ for all $X \in \mathfrak{P}^*(A)$

(Writing $\mathfrak{P}^*(A) := \mathfrak{P}(A) \setminus \{\emptyset\}$)

Proposition (Equivalent statements of AC)

The axiom of choice is equivalent to each of the following statements:

- 1 Each surjection $f : A \rightarrow B$ has a **right-inverse**, that is: a function $g : B \rightarrow A$ such that $f \circ g = \text{id}_B$
- 2 Each equivalence relation \sim on a set A has a **system of representatives**, that is: a subset $S \subseteq A$ that contains exactly one point of each equivalence class of \sim
- 3 The Cartesian product $\prod_{x \in A} B_x$ of a family $(B_x)_{x \in A}$ of nonempty sets (indexed by an arbitrary set A) is nonempty

Proof: Exercise

Weak forms of the axiom of choice

The axiom of **denumerable choice** (AC_ω)

$$\forall (A_n)_{n \in \mathbb{N}}, (\forall n \in \mathbb{N}, A_n \neq \emptyset) \Rightarrow \underbrace{\exists (u_n)_{n \in \mathbb{N}}, \forall n \in \mathbb{N}, u_n \in A_n}_{\prod_{n \in \mathbb{N}} A_n \neq \emptyset}$$

Note: This axiom is crucial to prove that non-finite sets are Dedekind-infinite (thus eliminating **subinfinite** sets, that are neither finite nor Dedekind-infinite)

The axiom of **dependent choice** (DC)

$$\begin{aligned} \forall A, \forall R \subseteq A^2, \\ (\forall x \in A, \exists y \in A, x R y) \Rightarrow \\ \forall x_0 \in A, \exists (u_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}, u_0 = x_0 \wedge \forall n \in \mathbb{N}, u_n R u_{n+1} \end{aligned}$$

Note: This axiom plays an important role in analysis, since it implies (and is actually equivalent to) Baire's category theorem

Proposition: (AC) \Rightarrow (DC) \Rightarrow (AC_ω) (in ZF)

But converse implications (AC_ω) \Rightarrow (DC) \Rightarrow (AC) are not derivable in ZF

Reformulating AC_ω and DC in the language of PA2

Although AC, AC_ω and DC are presented as **axioms** in ZF, they can be presented as **axiom schemes** in PA2:

The axiom scheme of **denumerable choice** (AC_ω)... in the language of PA2

For each formula $A[x, Y]$ of the language of PA2 depending on a 1st-order variable x and on a 2nd-order variable X of arity k :

$$(\forall x \in \mathbb{N}) \exists Y A[x, Y] \Rightarrow \exists U (\forall x \in \mathbb{N}) A[x, U(x)]$$

(where U is a 2nd-order variable of arity $k + 1$)

The axiom scheme of **dependent choice** (DC)... in the language of PA2

For each formula $A[X, Y]$ of the language of PA2 depending on two 2nd-order variables X and Y of arity k :

$$\begin{aligned} \forall X \exists Y A[X, Y] \Rightarrow \\ \forall X_0 \exists U (U(0) = X_0 \wedge (\forall n \in \mathbb{N}) A[U(n), U(n + 1)]) \end{aligned}$$

(where X_0 and U are 2nd-order variables of arities k and $k + 1$, respectively)

(The case of AC is more complex...)

Extensionality in 2nd-order logic

(1/4)

- **Recall:** In 2nd-order logic, predicate equality is defined by:

$$P = Q \quad \text{:=} \quad \forall \vec{x} (P(\vec{x}) \Leftrightarrow Q(\vec{x})) \quad (\text{Extensional equality})$$

- In *An introduction to Krivine realizability*, we saw that:

Proposition (Extensionality in 2nd-order logic)

For each 2nd-order formula $A[\vec{z}, \vec{Z}, X]$ depending on \vec{z}, \vec{Z}, X , we have:

$$\text{NJ2} \vdash \forall \vec{z} \forall \vec{Z} \forall X \forall Y \left(X = Y \Rightarrow (A[\vec{z}, \vec{Z}, X] \Leftrightarrow A[\vec{z}, \vec{Z}, Y]) \right)$$

Proof. By structural induction on A

- By adequacy, this means that for each formula $A[\vec{z}, \vec{Z}, X]$ depending on \vec{z}, \vec{Z}, X , we have two (intuitionistic) proof-like terms:

$$\text{ext}_{A/X} \quad \Vdash \vdash \forall \vec{z} \forall \vec{Z} \forall X \forall Y (X = Y \Rightarrow A[\vec{z}, \vec{Z}, X] \Rightarrow A[\vec{z}, \vec{Z}, Y])$$

$$\text{ext}'_{A/X} \quad \Vdash \vdash \forall \vec{z} \forall \vec{Z} \forall X \forall Y (X = Y \Rightarrow A[\vec{z}, \vec{Z}, Y] \Rightarrow A[\vec{z}, \vec{Z}, X])$$

- We now want to make explicit the terms $\text{ext}_{A/X}$ and $\text{ext}'_{A/X}$...

Extensionality in 2nd-order logic

(2/4)

- For that, we introduce a new syntactic category of **skeletons**:

Skeletons $\sigma, \tau ::= \text{V} \mid * \mid \sigma \rightarrow \tau$

Definition (Skeleton of a formula abstracted w.r.t. a 2nd-order variable)

To each formula A abstracted w.r.t. a 2nd-order variable X , we associate its **skeleton** $\text{sk}(A/X)$, that is defined by:

$$\begin{aligned}\text{sk}(A / X) &:= * && (\text{if } X \notin FV(A)) \\ \text{sk}(X(\vec{e}) / X) &:= \text{V} \\ \text{sk}(A \Rightarrow B / X) &:= \text{sk}(A/X) \rightarrow \text{sk}(B/X) \\ \text{sk}(\forall x A / X) &:= \text{sk}(A/X) \\ \text{sk}(\forall Y A / X) &:= \text{sk}(A/X) && (\text{if } Y \not\equiv X)\end{aligned}$$

- Note:** $\text{sk}(A/X)$ is not sensitive to a substitution of a variable $\not\equiv X$:

$$\text{sk}(A[x := e]/X) \equiv \text{sk}(A[Y := P]/X) \equiv \text{sk}(A/X) \quad (Y \not\equiv X, X \notin FV(P))$$

Extensionality in 2nd-order logic

(3/4)

Definition (Terms ext_σ and ext'_σ)

1 To each skeleton σ we associate two intuitionistic proof-like terms $t_\sigma[z]$ and $t'_\sigma[z]$ that only depend on a variable z , letting:

$$\begin{array}{ll} t_*[z] \coloneqq \mathbb{I} & t_v[z] \coloneqq z(\lambda x, y \cdot x) \\ t'_*[z] \coloneqq \mathbb{I} & t'_v[z] \coloneqq z(\lambda x, y \cdot y) \end{array}$$

$$\begin{array}{ll} t_{\tau \rightarrow \sigma}[z] \coloneqq \lambda f, x. t_\sigma[z] (f(t'_\tau[z] x)) \\ t'_{\tau \rightarrow \sigma}[z] \coloneqq \lambda f, x. t'_\sigma[z] (f(t_\tau[z] x)) \end{array}$$

2 For each skeleton σ , we finally let:

$$\text{ext}_\sigma \coloneqq \lambda z. t_\sigma[z] \quad \text{and} \quad \text{ext}'_\sigma \coloneqq \lambda z. t'_\sigma[z]$$

• Note that both proof-like terms ext_σ and ext'_σ only depend on a skeleton σ and not on a abstracted formula A/X ...

... Nevertheless...

(go to next slide)

Extensionality in 2nd-order logic

(4/4)

Proposition

For each 2nd-order formula $A[\vec{z}, \vec{Z}, X]$ with parameters only depending on the variables \vec{z} , \vec{Z} , and X , we have:

$$\begin{aligned}\mathsf{ext}_\sigma \quad & \Vdash \forall \vec{z} \forall \vec{Z} \forall X \forall Y (X = Y \Rightarrow A[\vec{z}, \vec{Z}, X] \Rightarrow A[\vec{z}, \vec{Z}, Y]) \\ \mathsf{ext}'_\sigma \quad & \Vdash \forall \vec{z} \forall \vec{Z} \forall X \forall Y (X = Y \Rightarrow A[\vec{z}, \vec{Z}, Y] \Rightarrow A[\vec{z}, \vec{Z}, X])\end{aligned}$$

writing $\sigma := \mathsf{sk}(A[\vec{z}, \vec{Z}, X]/X)$

Proof: Exercise!

- So that in what follows, we shall write

$$\mathsf{ext}_{A/X} := \mathsf{ext}_{\mathsf{sk}(A/X)} \quad \text{and} \quad \mathsf{ext}'_{A/X} := \mathsf{ext}'_{\mathsf{sk}(A/X)}$$

keeping in mind that the above realizers actually depend only on the skeleton of the abstracted formula A/X

Plan

- 1 Introduction
- 2 Realizing AC_ω & DC using quote
- 3 Realizing AC_ω & DC using the clock

Plan

- 1 Introduction
- 2 Realizing AC ω & DC using quote
- 3 Realizing AC ω & DC using the clock

The instructions quote and quote'

- **Numbering terms: the instruction quote:**

Given an enumeration $(t_n)_{n \in \mathbb{N}}$ of all closed terms, we add the rule

$$\text{quote} * t \cdot u \cdot \pi \succ u * \overline{[t]} \cdot \pi$$

writing $[t]$ the smallest $n \in \mathbb{N}$ such that $t \equiv t_n$

- **Numbering stacks: the instruction quote':**

Given an enumeration $(\pi_n)_{n \in \mathbb{N}}$ of all stacks, we add the rule

$$\text{quote}' * u \cdot \pi \succ u * \overline{[\pi]^\perp} \cdot \pi$$

writing $[\pi]^\perp$ the smallest $n \in \mathbb{N}$ such that $\pi \equiv \pi_n$

Proposition

If there is a partial recursive function $f : \mathbb{N} \rightharpoonup \mathbb{N}$ such that $[\pi]^\perp = f([\kappa_\pi])$ for all $\pi \in \Pi$, then **quote'** can be implemented from **quote**, letting:

$$\text{quote}' := \lambda x. \mathbf{c}(\lambda k. \text{quote} k (\lambda n. \check{f} n x))$$

Proof: Check it out!

A first choice principle

(1/3)

Proposition 1 ("Type" of quote')

Given a formula^(*) $A[X]$ that only depends on a 2nd-order variable X of arity $k \geq 0$, there is a falsity function $\Phi_A : \mathbb{N}^{k+1} \rightarrow \mathfrak{P}(\Pi)$ (depending on A and on the pole \perp) such that:

$$\text{quote}' \Vdash (\forall n \in \mathbb{N}) A[\dot{\Phi}_A(n)] \Rightarrow \forall X A[X]$$

(*) Here and in what follows: **formula** = **formula of PA2 with parameters**.

- Intuitively, the $(k+1)$ -ary predicate $\dot{\Phi}_A$ represents a **sequence** $(\Phi_A(n))_n$ of potential counter-examples to the predicate $A[X]$
- Since the converse implication trivially holds (proof: $\lambda z, _. z$), the resulting equivalence allows to replace any 2nd-order quantification $\forall X A[X]$ by a **numeric quantification** $(\forall n \in \mathbb{N}) A[\dot{\Phi}_A(n)]$
- And since quote' can be implemented from quote, we also have:

$$\lambda x. \alpha (\lambda k. \text{quote } k (\lambda n. \check{f} n x)) \Vdash (\forall n \in \mathbb{N}) A[\dot{\Phi}_A(n)] \Rightarrow \forall X A[X]$$

A first choice principle

(2/3)

Proof. Using meta-theoretic AC_ω , we associate to each $n \in \mathbb{N}$ a k -ary falsity function $\Phi_n : \mathbb{N}^k \rightarrow \mathfrak{P}(\Pi)$ defined by:

$$\Phi_n := \begin{cases} \text{Some function } F : \mathbb{N}^k \rightarrow \mathfrak{P}(\Pi) \text{ such that } \pi_n \in \|A[\dot{F}]\| \\ \quad \text{if such a function } F \text{ exists} \\ \text{Any function } F : \mathbb{N}^k \rightarrow \mathfrak{P}(\Pi) \text{ otherwise} \end{cases}$$

(writing π_n the n^{th} element of the fixed enumeration of all stacks).

Then we define $\Phi_A : \mathbb{N}^{k+1} \rightarrow \mathfrak{P}(\Pi)$, letting $\Phi_A(n) := \Phi_n$ for all $n \in \mathbb{N}$.

We want to prove that $\text{quote}' \Vdash (\forall n \in \mathbb{N}) A[\dot{\phi}_A(n)] \Rightarrow \forall X A[X]$.

For that, pick a stack in $\|(\forall n \in \mathbb{N}) A[\dot{\Phi}_A(n)] \Rightarrow \forall X A[X]\|$, that is necessarily of the form $u \cdot \pi$ where $u \in \|(\forall n \in \mathbb{N}) A[\dot{\Phi}_A(n)]\|$ and $\pi \in \|A[\dot{F}]\|$ for some $F : \mathbb{N}^k \rightarrow \mathfrak{P}(\Pi)$, and let us prove that $\text{quote}' \star u \cdot \pi \in \perp$.

For that, write $n := [\pi]^\perp$, so that $\pi \equiv \pi_n \in \|A[\dot{F}]\|$. From the def. of $\Phi_A(n) = \Phi_n$, we have $\pi \equiv \pi_n \in \|A[\dot{\Phi}_n]\| = \|A[\dot{\Phi}_A(n)]\|$.

Now we observe that $\text{quote}' * u \cdot \pi \succ u * \bar{n} \cdot \pi$, so that it remains to prove that $u * \bar{n} \cdot \pi \in \perp$ (by anti-evaluation). This follows from the fact that:

$$u \in |(\forall x \in \mathbb{N})A[\dot{\Phi}_A(x)]|, \quad \bar{n} \in |n \in \mathbb{N}| \quad \text{and} \quad \pi \in \|A[\dot{\Phi}_A(n)]\|.$$

□

A first choice principle

(3/3)

Changing the def. of Φ_A , we can build a simpler realizer based on quote:

Proposition 1.b (Variant of Prop. 1)

Given a formula $A[X]$ that only depends on a 2nd-order variable X of arity $k \geq 0$, there is a falsity function $\Phi'_A : \mathbb{N}^{k+1} \rightarrow \mathfrak{P}(\Pi)$ (depending on A and on the pole \perp) such that:

$$\lambda x . \text{quote } x x \Vdash (\forall n \in \mathbb{N}) A[\dot{\Phi}'_A(n)] \Rightarrow \forall X A[X]$$

Def. of Φ'_A : For all $n \in \mathbb{N}$, write $S_n := \{\pi \in \Pi : t_n * \bar{n} \cdot \pi \notin \perp\}$ (where t_n is the n th element of the fixed enumeration of all closed terms). Using meta-theoretic AC_ω, we now associate to each $n \in \mathbb{N}$ a falsity function $\Phi'_n : \mathbb{N}^k \rightarrow \mathfrak{P}(\Pi)$ defined by:

$$\Phi'_n := \begin{cases} \text{Some function } F : \mathbb{N}^k \rightarrow \mathfrak{P}(\Pi) \text{ such that } \|A[F]\| \cap S_n \neq \emptyset \\ \quad \text{if such a function } F \text{ exists} \\ \text{Any function } F : \mathbb{N}^k \rightarrow \mathfrak{P}(\Pi) \text{ otherwise} \end{cases}$$

Then we define $\Phi'_A : \mathbb{N}^{k+1} \rightarrow \mathfrak{P}(\Pi)$, letting $\Phi'_A(n) := \Phi'_n$ for all $n \in \mathbb{N}$.

Exercise: Prove that $\lambda x . \text{quote } x x \Vdash (\forall n \in \mathbb{N}) A[\dot{\Phi}'_A(n)] \Rightarrow \forall X A[X]$
(Hint: Reason by contradiction.)

□

Taking the contrapositive

(1/2)

Considering the contrapositive of the first choice principle

$$(\forall n \in \mathbb{N}) A[\dot{\phi}_A(n)] \Rightarrow \forall X A[X]$$

we get the following result:

Proposition 2

Given a formula $A[X]$ that only depends on a 2nd-order variable X of arity $k \geq 0$, there is a falsity function $\psi_A : \mathbb{N}^{k+1} \rightarrow \mathfrak{P}(\Pi)$ (depending on A and on the pole \perp) such that:

$$\theta \Vdash \exists X A[X] \Rightarrow (\exists n \in \mathbb{N}) A[\dot{\psi}_A(n)]$$

writing $\theta := \lambda z, f. \alpha(\lambda k. z(\text{quote}'(\lambda n, x. k(f n x))))$

- Intuitively, the $(k+1)$ -ary predicate $\dot{\psi}_A$ represents a **sequence** $(\dot{\psi}_A(n))_{n \in \mathbb{N}}$ of **potential witnesses** of the predicate $A[X]$
- Since the converse implication trivially holds, the resulting equivalence allows to replace any 2nd-order quantification $\exists X A[X]$ by a **numeric quantification** $(\exists n \in \mathbb{N}) A[\dot{\psi}_A(n)]$

Taking the contrapositive

(2/2)

Proof. Considering $\neg A$ instead of A , we know from Prop. 1 that there is a falsity function $\Phi_{\neg A} : \mathbb{IN}^{k+1} \rightarrow \mathfrak{P}(\Pi)$ such that:

$$\text{quote}' \Vdash (\forall n \in \mathbb{IN}) \neg A[\dot{\Phi}_{\neg A}(n)] \Rightarrow \forall X \neg A[X]$$

so that writing $\Psi_A := \Phi_{\neg A}$, we get:

$$\text{quote}' \Vdash (\forall n \in \mathbb{IN}) \neg A[\dot{\Psi}_A(n)] \Rightarrow \forall X \neg A[X]$$

Now writing $t[q] := \lambda z, f. \mathfrak{cc}(\lambda k. z(q(\lambda n, x. k(f n x))))$, we observe that the following typing judgment is derivable in system λNK2 :

$$\begin{aligned} q &: (\forall n \in \mathbb{IN}) \neg A[\dot{\Psi}_A(n)] \Rightarrow \forall X \neg A[X] \\ \vdash t[q] &: \exists X A[X] \Rightarrow (\exists n \in \mathbb{IN}) A[\dot{\Psi}_A(n)] \end{aligned}$$

Therefore, by adequacy we get

$$\theta := t[\text{quote}'] \Vdash \exists X A[X] \Rightarrow (\exists n \in \mathbb{IN}) A[\dot{\Psi}_A(n)].$$

□

The non-extensional axiom of choice (NEAC)

(1/4)

Proposition 3 (The non-extensional axiom of choice – NEAC)

Given a formula $A[X]$ that only depends on a 2nd-order variable X of arity $k \geq 0$, there is a falsity function $\mathcal{E}_A : \mathbb{IN}^k \rightarrow \mathfrak{P}(\Pi)$ (depending on A and on the pole \perp) such that:

$$\theta_\sigma \Vdash \exists X A[X] \Rightarrow A[\dot{\mathcal{E}}_A]$$

(where θ_σ is a closed proof-like depending on $\sigma : \equiv \text{sk}(A[X]/X)$)

- The construction \mathcal{E}_A is the 2nd-order version of **Hilbert's epsilon**, that “chooses” for each 2nd-order predicate $A[X]$ an object \mathcal{E}_A that fulfills A , if such an object exists. (Otherwise, \mathcal{E}_A is arbitrary)
- However, the symbol \mathcal{E} is **non-extensional**, since in the realizability model we have in general:

$$\forall X (A[X] \Leftrightarrow B[X]) \not\Rightarrow \underbrace{\mathcal{E}_A = \mathcal{E}_B}_{\forall \vec{x} (\mathcal{E}_A(\vec{x}) \Leftrightarrow \mathcal{E}_B(\vec{x}))}$$

The non-extensional axiom of choice (NEAC)

(2/4)

Proof. From Prop. 2, we know that there is a falsity function $\Psi_A : \mathbb{IN}^{k+1} \rightarrow \mathfrak{P}(\Pi)$ such that: $\theta \Vdash \exists X A[X] \Rightarrow (\exists n \in \mathbb{IN}) A[\dot{\Psi}_A(n)]$ (for some proof-like term θ).

Let us now consider the k -ary predicate P_A defined by:

$$P_A(x_1, \dots, x_k) := (\exists n_0 \in \mathbb{IN}) \{ A[\dot{\Psi}_A(n_0)] \wedge (\forall n < n_0) \neg A[\dot{\Psi}_A(n)] \wedge \dot{\Psi}_A(n_0, x_1, \dots, x_k) \}$$

Using the fact that $\text{PA2} \vdash$ “any nonempty subset of \mathbb{IN} has a smallest element”, we easily construct a proof-term:

$$t_1 : (\exists n \in \mathbb{IN}) A[\dot{\Psi}_A(n)] \Rightarrow (\exists n_0 \in \mathbb{IN}) \{ A[\dot{\Psi}_A(n_0)] \wedge (\forall n < n_0) \neg A[\dot{\Psi}_A(n)] \}.$$

And from the def. of the k -ary predicate P_A combined with the uniqueness of the smallest $n \in \mathbb{IN}$ such that $A[\dot{\Psi}_A(n)]$, we can build a proof-term:

$$t_2 : (\forall n_0 \in \mathbb{IN}) \{ A[\dot{\Psi}_A(n_0)] \wedge \forall (n < n_0) \neg A[\dot{\Psi}_A(n)] \} \Rightarrow \dot{\Psi}_A(n_0) = P_A.$$

On the other hand, we know that $\text{ext}_\sigma \Vdash \forall X \forall X' (X = X' \Rightarrow A[X] \Rightarrow A[X'])$, writing $\sigma := \text{sk}(A[X]/X)$ the skeleton of $A[X]$ w.r.t. X (cf § Introduction).

Combining the proof-like terms θ , t_1 , t_2 and ext_σ , we easily deduce a proof-like term $\theta_\sigma \Vdash \exists X A[X] \Rightarrow A[P_A]$ (that only depends on $\sigma := \text{sk}(A[X]/X)$).

To conclude it suffices to define $\mathcal{E}_A : \mathbb{IN}^k \rightarrow \mathfrak{P}(\Pi)$ by $\mathcal{E}_A := \|P_A\|$. □

The non-extensional axiom of choice (NEAC)

(3/4)

Due to the form of its realizer θ_σ , NEAC can be generalized to formulas $A[\vec{z}, \vec{Z}, X]$ that may depend on other (1st- and 2nd-order) variables \vec{z}, \vec{Z} :

Theorem 4 (General form of NEAC)

Given a formula $A[\vec{z}, \vec{Z}, X]$ that only depends on:

- p 1st-order variables $\vec{z} := z_1, \dots, z_p$,
- q 2nd-order variables $\vec{Z} := Z_1, \dots, Z_q$ of arities $k_1, \dots, k_q \geq 0$ and
- a 2nd-order variable X of arity $k \geq 0$,

there is a (3rd-order) falsity function

$$\mathcal{E}_A : \underbrace{\mathbb{N}^p}_{z_1, \dots, z_p} \times \underbrace{\mathfrak{P}(\Pi)^{\mathbb{N}^{k_1}} \times \dots \times \mathfrak{P}(\Pi)^{\mathbb{N}^{k_q}}}_{Z_1, \dots, Z_q} \rightarrow \underbrace{\mathfrak{P}(\Pi)^{\mathbb{N}^k}}_X$$

(depending on A and $\perp\!\!\!\perp$) such that:

$$\theta_\sigma \Vdash \forall \vec{z} \forall \vec{Z} \left(\exists X A[\vec{z}, \vec{Z}, X] \Rightarrow A[\vec{z}, \vec{Z}, \dot{\mathcal{E}}_A(\vec{z}, \vec{Z})] \right)$$

(where $\sigma := \text{sk}(A[\vec{z}, \vec{Z}, X])$, and using the same realizer θ_σ as before)

The non-extensional axiom of choice (NEAC)

(4/4)

Proof. For all parameters $\vec{m} = (m_1, \dots, m_p) \in \mathbb{N}^p$ and $\vec{F} = F_1, \dots, F_q$ (where $F_i : \mathbb{N}^{k_i} \rightarrow \mathfrak{P}(\Pi)$ for all $i \in [1..q]$), we choose (using meta-theoretic AC) a falsity function $\mathcal{E}_{A[\vec{m}, \vec{F}]} : \mathbb{N}^k \rightarrow \mathfrak{P}(\Pi)$ such that

$$\theta_\sigma \Vdash \exists X A[\vec{m}, \vec{F}, X] \Rightarrow A[\vec{m}, \vec{F}, \dot{\mathcal{E}}_{A[\vec{m}, \vec{F}]}]$$

(from Prop. 3), writing $\sigma := \text{sk}(A[\vec{m}, \vec{F}, X]/X) \equiv \text{sk}(A[\vec{z}, \vec{Z}, X]/X)$.

(Note that the skeleton σ does not depend on the parameters \vec{m}, \vec{F} .)

We now define the function $\mathcal{E}_A : \mathbb{N}^p \times \mathfrak{P}(\Pi)^{k_1} \times \dots \times \mathfrak{P}(\Pi)^{k_q} \rightarrow \mathfrak{P}(\Pi)^{\mathbb{N}^k}$ by $\mathcal{E}_A(\vec{m}, \vec{F}) := \mathcal{E}_{A[\vec{m}, \vec{F}]}$ for all $\vec{m} \in \mathbb{N}^p$ and $\vec{F} \in \mathfrak{P}(\Pi)^{\mathbb{N}^{k_1}} \times \dots \times \mathfrak{P}(\Pi)^{\mathbb{N}^{k_q}}$.

For all parameters \vec{m}, \vec{F} , we thus have

$$\theta_\sigma \Vdash \exists X A[\vec{m}, \vec{F}, X] \Rightarrow A[\vec{m}, \vec{F}, \dot{\mathcal{E}}_A(\vec{m}, \vec{F})]$$

and since the realizer θ_σ is the same for all parameters \vec{m}, \vec{F} , we deduce that

$$\theta_\sigma \Vdash \forall \vec{z} \forall \vec{Z} \left(\exists X A[\vec{z}, \vec{Z}, X] \Rightarrow A[\vec{z}, \vec{Z}, \dot{\mathcal{E}}_A(\vec{z}, \vec{Z})] \right)$$

by an immediate generalization. □

On the importance of extensionality

- The non-extensional axiom of choice (NEAC) does not imply AC, since \mathcal{E} is not extensional: $\forall X (A[X] \Leftrightarrow B[X]) \not\Rightarrow \mathcal{E}_A = \mathcal{E}_B$

Counter-example (Constructing a right-inverse of a surjective function?)

In 2nd-order logic, a 3rd-order function (i.e. from 2nd-order objects to themselves) is naturally represented as a formula $F[X, Y]$ such that:

- (1) $\forall X \forall X' \forall Y (F[X, Y] \wedge X = X' \Rightarrow F[X', Y]) \wedge \forall X \forall Y \forall Y' (F[X, Y] \wedge Y = Y' \Rightarrow F[X, Y'])$ (F is **compatible**)
- (2) $\forall X \forall Y \forall Y' (F[X, Y] \wedge F[X, Y'] \Rightarrow Y = Y')$ (F is **functional**)
- (3) $\forall X \exists Y F[X, Y]$ (F is **total**)

If moreover, we assume that:

- (4) $\forall Y \exists X F[X, Y]$ (F is **surjective**)

it is natural to define a right-inverse G of F , letting: $G[Y, X] := (X = \mathcal{E}_{F[\cdot, Y]})$.

Then it is easy to realize that the function G is functional (2) and total (3), and moreover that $F \circ G = \text{id}$, that is: $\forall X \forall Y \forall X' (F[X, Y] \wedge G[Y, X'] \Rightarrow X' = X)$.

Alas, we cannot realize that G is compatible (1), since \mathcal{E} is not extensional

- Nevertheless, we shall see that NEAC implies both AC_ω and DC

Why NEAC implies AC_ω

Corollary 5 (Realizing AC_ω)

For each formula $A[x, Y]$ depending on a 1st-order variable x and on a 2nd-order variable Y of arity k , we have:

$$\xi_\sigma \Vdash ((\forall x \in \mathbb{N}) \exists Y A[x, Y]) \Rightarrow \exists U (\forall x \in \mathbb{N}) A[x, U(x)]$$

(where ξ_σ is a closed proof-like term depending on $\sigma := \text{sk}(A[x, Y]/Y)$, and where U is a 2nd-order variable of arity $k + 1$)

Proof (idea). Let $\xi_\sigma := \lambda h f . f(\lambda n . \theta_\sigma(hn))$ and instanciate U by \dot{F} , where $F : \mathbb{N} \rightarrow \mathfrak{P}(\Pi)^{\mathbb{N}^k} := \mathcal{E}_A$. (Exercise: write down the details.) \square

Remark: Relativizations to \mathbb{N} are actually useless. Indeed, if we replace ξ_σ by $\xi'_\sigma := \lambda h f . f(\theta_\sigma h)$, we realize the ι -indexed axiom of choice (AC _{ι}):

$$\xi'_A \Vdash (\forall x \exists Y A[x, Y]) \Rightarrow \exists U \forall x A[x, U(x)]$$

Exercise: write down the details

Why NEAC implies DC

Corollary 6 (Realizing DC)

For each formula $A[X, Y]$ depending on two 2nd-order variables X, Y of arity k , we have:

$$\eta_\sigma \Vdash \forall X \exists Y A[X, Y] \Rightarrow \forall X_0 \exists U (U(0) = X_0 \wedge (\forall n \in \mathbb{N}) A[U(n), U(n+1)])$$

(where ξ_σ is a closed proof-like term depending on $\sigma := \text{sk}(A[x, Y]/Y)$, and where X_0 and U are 2nd-order variables of arities k and $k+1$, respectively)

Proof. Assuming that X_0 is instantiated by a falsity function $F_0 : \mathbb{N}^k \rightarrow \mathfrak{P}(\Pi)$, we let $F_{n+1} := \mathcal{E}_A(F_n)$ for all $n \in \mathbb{N}$, and define the falsity function $G : \mathbb{N}^{k+1} \rightarrow \mathfrak{P}(\Pi)$ by $G(n) := F_n$ for all $n \in \mathbb{N}$. Letting $\zeta_\sigma := \lambda h. \langle \langle \mathbf{I}, \mathbf{I} \rangle, \lambda n. \theta_\sigma h \rangle$, we check that

$$\zeta_\sigma \Vdash \forall X \exists Y A[X, Y] \Rightarrow \dot{G}(0) = \dot{F}_0 \wedge (\forall n \in \mathbb{N}) A[\dot{G}(n), \dot{G}(n+1)]$$

and letting $\eta_\sigma := \lambda x y. y(\zeta_\sigma x)$, we deduce that

$$\eta_\sigma \Vdash \forall X \exists Y A[X, Y] \Rightarrow \exists U (U(0) = \dot{F}_0 \wedge (\forall n \in \mathbb{N}) A[U(n), U(n+1)])$$

We conclude by universally generalizing over the falsity function F_0 . □

Plan

- 1 Introduction
- 2 Realizing AC_ω & DC using quote
- 3 Realizing AC_ω & DC using the clock

Introduction

Krivine (2003):

We observe that the application $n \mapsto t_n$ may be any surjective map from \mathbb{N} onto Λ . The reduction rule for χ is then:

$$\chi * u \cdot \pi \succ u * \bar{n} \cdot \pi^{[1]}$$

*where n is any integer such that $t_n \equiv u$. This suggests the following interpretation: χ is an input instruction and, when it comes in head position, the process $\chi * u \cdot \pi$ waits for some integer n which is provided by some human operator or some external process. [...] The only constraint is that “ u must be retrievable from n ”, i.e. the integers provided to the processes $\chi * u \cdot \pi$ and $\chi * u' \cdot \pi'$ with $u' \neq u$, must be different. A very simple and natural way to obtain this behaviour is to provide the integer n by means of a clock, since two different λ_c -terms cannot appear at the same time. [...]*

How to formalize (mathematically) this clock?

[1] Krivine's χ behaves as “ $\lambda x . \text{quote } x x$ ” (with the notations of the previous section)

Outline of the method

(1/2)

How to retrieve the execution time from a process?

Naive method: Store the “current time” at the bottom of the current stack, and increment it at each evaluation step:

Push	$tu \star \vec{v} \cdot \alpha_n$	\succ^1	$t \star u \cdot \vec{v} \cdot \alpha_{n+1}$
Grab	$\lambda x. t \star u \cdot \vec{v} \cdot \alpha_n$	\succ^1	$t[x := u] \star \vec{v} \cdot \alpha_{n+1}$
Save	$\alpha \star u \cdot \vec{v} \cdot \alpha_n$	\succ^1	$u \star k_{\vec{v}} \cdot \vec{v} \cdot \alpha_{n+1}$
Restore	$k_{\vec{v}} \star u \cdot \vec{v}' \cdot \alpha_n$	\succ^1	$u \star \vec{v} \cdot \alpha_{n+1}$
Clock	$\text{clock} \star u \cdot \vec{v} \cdot \alpha_n$	\succ^1	$u \star \bar{n} \cdot \vec{v} \cdot \alpha_{n+1}$

Problem: Such a design of evaluation is **completely incompatible** with the **adequacy lemma!** (Exercise: Check it out!)

Morality: In classical realizability, we cannot tamper with stacks

Outline of the method

(2/2)

How to retrieve the execution time from a process?

Simple solution: Store the “boot program” in the bottom of the stack, so that we can retrieve the current time by “subtraction”. For that:

- Associate a stack constant α_θ to each $\theta \in \text{PL}$ (“boot programs”) and only consider deterministic evaluation sequences of the form:

“boot process”

$$\underbrace{\theta * \alpha_\theta \succ \dots \succ t * \vec{v} * \alpha_\theta \succ t' * \vec{v}' * \alpha_\theta \succ \dots}_{\text{thread of } \theta}$$

(Such a thread may be linear-infinite, linear-finite or cyclic)

- Retrieve “current time” using an instruction “clock” with the rule

$$\text{clock} * t * \vec{u} * \alpha_\theta \succ t * \vec{n} * \vec{u} * \alpha_\theta,$$

where n is the smallest integer such that: $\theta * \alpha_\theta \succ^n \text{clock} * t * \vec{u} * \alpha_\theta$

(Note that when evaluation is cyclic, the clock is cyclic too)

A particular instance of the λ_c -calculus

(1/3)

Recall: An instance of the λ_c -calculus is defined by:

- A set $\mathcal{K} = \{\infty, \dots\}$ of **instructions** (containing at least **call/cc**)
- A nonempty set Π_0 of **stack constants** (or **stack bottoms**)
- A preorder of evaluation \succ , that contains at least the four basic rules **Grab**, **Push**, **Save** and **Restore**

Definition of the λ_c -calculus with clock:

- Let: $\mathcal{K} := \{\infty, \text{clock}\}$ (only two instructions: **call-cc** and **clock**)
The set \mathcal{K} determines the set of proof-like terms:

Proof-like terms $\theta, \phi ::= x \mid \lambda x . \theta \mid \theta \phi \mid \infty \mid \text{clock}$

- Introducing a stack constant α_θ for each closed proof-like term $\theta \in \text{PL}$, we let: $\Pi_0 := \{\alpha_\theta : \theta \in \text{PL}\}$
- To each $\theta \in \text{PL}$, we associate the **boot process** $\theta \star \alpha_\theta$

A particular instance of the λ_c -calculus

(2/3)

- For each $\theta \in \text{PL}$, we define a relation $\theta \triangleright^n p$ ("boot process $\theta \star \alpha_\theta$ evaluates to process p in n steps") from the inference rules:

$$\frac{}{\theta \triangleright^0 \theta \star \alpha_\theta} \text{ (Init)}$$

$$\frac{\theta \triangleright^n \lambda x. t \star u \cdot \pi}{\theta \triangleright^{n+1} t[x := u] \star \pi} \text{ (Grab)}$$

$$\frac{\theta \triangleright^n t u \cdot \pi}{\theta \triangleright^{n+1} t \star u \cdot \pi} \text{ (Push)}$$

$$\frac{\theta \triangleright^n \mathfrak{C} \star u \cdot \pi}{\theta \triangleright^{n+1} u \star k_\pi \cdot \pi} \text{ (Save)}$$

$$\frac{\theta \triangleright^n k_\pi \star u \cdot \pi'}{\theta \triangleright^{n+1} u \star \pi} \text{ (Restore)}$$

$$\frac{\theta \triangleright^n \text{clock} \star u \cdot \pi}{\theta \triangleright^{n+1} u \star \bar{r}_0 \cdot \pi} \text{ (Clock)}$$

writing n_0 the smallest integer ($\leq n$) such that $\theta \triangleright^{n_0} \text{clock} \star u \cdot \pi$

Lemma (Determinism of $\theta \triangleright$)

For all θ, n, p, p' : $\theta \triangleright^n p$ and $\theta \triangleright^n p'$ imply $p \equiv p'$

A particular instance of the λ_c -calculus

(3/3)

- We now define the relation \succ^1 of **one step evaluation** as follows:

Push	$tu \star \pi$	\succ^1	$t \star u \cdot \pi$
Grab	$\lambda x. t \star u \cdot \pi$	\succ^1	$t[x := u] \star \pi$
Save	$\alpha \star u \cdot \pi$	\succ^1	$u \star k_\pi \cdot \pi$
Restore	$k_\pi \star u \cdot \pi'$	\succ^1	$u \star \pi$
Clock	$\text{clock} \star u \cdot \pi$	\succ^1	$u \star \bar{n} \cdot \pi$

writing $\pi \equiv \vec{v} \cdot \alpha_\theta$, and n the smallest integer such that $\theta \triangleright^n \text{clock} \star u \cdot \pi$

- Let $(\succ^n) := (\succ^1)^n$ and $(\succ) := (\succ^1)^* = \bigcup_{n \in \mathbb{N}} (\succ^n)$

Lemma (Determinism of \succ & characterization of $\theta \triangleright$)

- For all $p, p', p'': p \succ^1 p'$ and $p \succ^1 p''$ imply $p' \equiv p''$
- For all n, θ, p : $\theta \triangleright^n p$ iff $\theta \star \alpha_\theta \succ^n p$

Threads

- For each $\theta \in \text{PL}$, we define the **thread** of θ by:

$$\begin{aligned}\mathbf{thd}(\theta) &:= \{p : \theta \triangleright^n p \text{ for some } n \in \mathbb{N}\} \\ &= \{p : \theta \star \alpha_\theta \succ p\}\end{aligned}$$

- The thread of θ is either:

- linear-infinite: $p_0 \succ p_1 \succ p_2 \succ \dots \succ p_n \succ p_{n+1} \succ \dots$
- linear-finite: $p_0 \succ p_1 \succ p_2 \succ \dots \succ p_n \succ^1$
- cyclic: $p_0 \succ \dots \succ p_k \succ \dots \succ p_n \equiv p_k \quad (k < n)$

The clock behaves accordingly (infinitely, finitely, cyclicly)

- Since $\mathbf{thd}(\theta)$ is (obviously) closed under evaluation, its complement

$$\perp_\theta := \mathbf{thd}(\theta)^\complement \quad (\subseteq \Lambda \times \Pi)$$

is closed under anti-evaluation, and can be used as a **pole**:

\Rightarrow **local pole** associated to the proof-like term θ

A first choice principle... again

(1/2)

Proposition 5 (“Type” of the “clock”)

Given a formula $A[X]$ that only depends on a 2nd-order variable X of arity $k \geq 0$ and a local pole $\perp_\theta := \mathbf{thd}(\theta)^\complement$ (for some $\theta \in \text{PL}$), there is a falsity function $\Phi_A : \mathbb{N}^{k+1} \rightarrow \mathfrak{P}(\Pi)$ (depending on A and on θ) such that:

$$\text{clock} \Vdash (\forall n \in \mathbb{N}) A[\dot{\Phi}_A(n)] \Rightarrow \forall X A[X]$$

Proof: cf next slide

Note that the result only holds in local poles!

Remark: When working with the “clock”, we thus need to replace

universal realizability (= realizability w.r.t. all poles)

by local realizability (= realizability w.r.t. all local poles \perp_θ)

The reader is invited to check the main results associated with universal realizability (e.g. witness extraction techniques) still holds with local realizability

A first choice principle... again

(2/2)

Proof. Consider a pole of the form $\perp\!\!\!\perp_\theta := \mathbf{thd}(\theta)^\complement$ (for some $\theta \in \text{PL}$). For each $n \in \mathbb{IN}$, we let $S_n := \{\pi \in \Pi : \exists u \in \Lambda, \theta \triangleright^n \text{clock} \star u \cdot \pi\}$. Since \succ is deterministic, the set S_n contains at most one stack. Using meta-theoretic AC_ω, we now associate to each $n \in \mathbb{IN}$ a k -ary falsity function $\Phi_n : \mathbb{IN}^k \rightarrow \mathfrak{P}(\Pi)$ defined by:

$$\Phi_n := \begin{cases} \text{Some function } F : \mathbb{IN}^k \rightarrow \mathfrak{P}(\Pi) \text{ such that } \|A[\dot{F}]\| \cap S_n \neq \emptyset \\ \quad \text{if such a function } F \text{ exists} \\ \text{Any function } F : \mathbb{IN}^k \rightarrow \mathfrak{P}(\Pi) \text{ otherwise} \end{cases}$$

Then we define $\Phi_A : \mathbb{IN}^{k+1} \rightarrow \mathfrak{P}(\Pi)$, letting $\Phi_A(n) := \Phi_n$ for all $n \in \mathbb{IN}$.

We want to prove that $\text{clock} \Vdash (\forall n \in \mathbb{IN}) A[\dot{\Phi}_A(n)] \Rightarrow \forall X A[X]$, that is: we want to prove that $\text{clock} \star u \cdot \pi \in \perp\!\!\!\perp$ for all $u \in |(\forall n \in \mathbb{IN}) A[\dot{\Phi}_A(n)]|$, for all $F : \mathbb{IN}^k \rightarrow \mathfrak{P}(\Pi)$ and for all $\pi \in \|A[\dot{F}]\|$.

Reasoning by contradiction, let us assume that $\text{clock} \star u \cdot \pi \notin \perp\!\!\!\perp$. Hence we have $\text{clock} \star u \cdot \pi \in \mathbf{thd}(\theta)$, so that $\text{clock} \star u \cdot \pi \succ u \star \bar{n} \cdot \pi \notin \perp\!\!\!\perp$ (by evaluation), where n is the smallest integer such that $\theta \triangleright^n \text{clock} \star u \cdot \pi$.

We now observe that $\pi \in \|A[\dot{F}]\| \cap S_n$, hence $\|A[\dot{\Phi}_A(n)]\| \cap S_n \neq \emptyset$ (from the def. of $\Phi_A(n) = \Phi_n$), and thus $\pi \in \|A[\dot{\Phi}_A(n)]\|$ (since $S_n = \{\pi\}$). Observing that

$$u \in |(\forall n \in \mathbb{IN}) A[\dot{\Phi}_A(n)]|, \quad \bar{n} \in |n \in \mathbb{IN}| \quad \text{and} \quad \pi \in \|A[\dot{\Phi}_A(n)]\|$$

we deduce that $u \star \bar{n} \cdot \pi \in \perp\!\!\!\perp$: contradiction!

□

Realizing NEAC, AC $_{\omega}$ and DC

The same way as we did with the instruction “quote”, we successively deduce from Prop. 5 the existence of:

- A function $\Psi_A : \mathbb{N}^{k+1} \rightarrow \mathfrak{P}(\Pi)$ and a term $\theta_0 \in \text{PL}$ such that:

$$\theta_0 \Vdash \exists X A[X] \Rightarrow (\exists n \in \mathbb{N}) A[\dot{\Psi}_A(n)]$$

- A function $\mathcal{E}_A : \mathbb{N}^k \rightarrow \mathfrak{P}(\Pi)$ and a term $\theta_\sigma \in \text{PL}$ such that:

$$\theta_\sigma \Vdash \exists X A[X] \Rightarrow A[\dot{\mathcal{E}}_A]$$

- And more generally for each formula $A[\vec{z}, \vec{Z}, X]$, a function $\mathcal{E}_A : \dots \rightarrow \mathfrak{P}(\Pi)^{\mathbb{N}^k}$ and a term $\theta_\sigma \in \text{PL}$ such that:

NEAC: $\theta_\sigma \Vdash \forall \vec{z} \forall \vec{Z} \left(\exists X A[\vec{z}, \vec{Z}, X] \Rightarrow A[\vec{z}, \vec{Z}, \dot{\mathcal{E}}_{A_0}(\vec{z}, \vec{Z})] \right)$

The same way as before, AC $_{\omega}$ and DC are easily deduced from NEAC