Introduction AC, & DC using quote ... using the clock
000000000 00000000000000 00000000000

Realizing the axiom of dependent choices (DC) }

Alexandre Miquel

=
>
o
=
=
S
=
=

c <
INGENIERIA EFER

UNIVERSIDAD
DE LA REPUBLICA
URUGUAY

November 24th & December 01, 2021

Introduction AC, & DC using quote ... using the clock
000000000 0000000000000 0 00000000000

A small history of classical realizability

o Krivine 1994. A general storage theorem for integers
in call-by-name lambda-calculus

o K. 2001. Typed lambda-calculus in classical ZF set theory

e K. 2003. Dependent choice, ‘quote’ and the clock

. 2004-2009. Realizability in classical logic
. 2011. Realizability algebras: a program to well order R
. 2012. Realizability algebras II: new models of ZF + DC

. 2014. On the structure of classical realizability models of ZF

(]
~ X X X X

. 2016. Bar recursion in classical realizability:
dependent choice and continuum hypothesis

o K. 2018. Realizability algebras Ill: some examples
e K. 2021. A program for the full axiom of choice

Introduction AC, & DC using quote ... using the clock
080000000 0000000000000 0 00000000000

The axiom of choice in ZF

Recall: In ZF, the axiom of choice (AC) can be stated as follows:
(AC) Each set A has a choice function, that is: a function
h : P*(A) — A such that h(X) € X for all X € L*(A)

(Writing B (A) := R(A) \ {2})

Proposition (Equivalent statements of AC)
The axiom of choice is equivalent to each of the following statements:

@ Each surjection f : A— B has a right-inverse, that is:
a function g: B — A such that fog =idg

@ Each equivalence relation ~ on a set A has a system of
representatives, that is: a subset S C A that contains
exactly one point of each equivalence class of ~

© The Cartesian product [[., B« of a family (Bx)xea of
nonempty sets (indexed by an arbitrary set A) is nonempty

Proof: Exercise

Introduction AC, & DC using quote ... using the clock
00@000000 0000000000000 0 00000000000

Weak forms of the axiom of choice

The axiom of

YV(An)nen, (VneIN; Ay # @) = F(up)nen, Vn €N, u, € A,

[1A # @

neN

Note: This axiom is crucial to prove that non-finite sets are Dedekind-infinite
(thus eliminating subinfinite sets, that are neither finite nor Dedekind-infinite)

The axiom of
VA, VR C A?,
(Vvxe A, dy e A, xRy) =
Vxo € A, un)nem € AN, ug=x0 A ¥Yn €N, v, Rupi1

Note: This axiom plays an important role in analysis, since it implies (and is actually
equivalent to) Baire's category theorem

Proposition: (AC) = (DC) = (AC,) (in ZF)J

But converse implications (AC,) = (DC) = (AC) are not derivable in ZF

Introduction AC, & DC using quote ... using the clock
000e00000 0000000000000 0 00000000000

Reformulating AC,, and DC in the language of PA2

Although AC, AC,, and DC are presented as axioms in ZF,
they can be presented as axiom schemes in PA2:

The axiom scheme of (ACw)... in the language of PA2

For each formula A[x, Y] of the language of PA2 depending on a
1%t-order variable x and on a 2"9-order variable X of arity k:

(vx€IN)IY Alx, Y] = 3U (Vx€IN) Alx, U(x)]

(where U is a 2"-order variable of arity k + 1)

The axiom scheme of (DQ)... in the language of PA2

For each formula A[X, Y] of the language of PA2 depending on two
2"d_order variables X and Y of arity k:

vX3Y AKX, Y] =
¥Xo U (U(0) = Xo A (¥n€IN)A[U(n), U(n + 1)])

(where Xo and U are 2"-order variables of arities k and k + 1, respectively)

(The case of AC is more complex...)

Introduction AC, & DC using quote ... using the clock

0000e0000 0000000000000 0 00000000000
Extensionality in 2"d-order logic (1/4)
@ Recall: In 2"-order logic, predicate equality is defined by:
P=Q = VX(P(X)e QX)) (Extensional equality)

@ In An introduction to Krivine realizability, we saw that:

Proposition (Extensionality in 2"4-order logic)

For each 2"-order formula A[Z, Z, X] depending on Z, Z,X, we have:

NJ2 I VZVZ VX VY (X =Y = (AZZ,X] e A7, Z, Y]))

Proof. By structural induction on A

e By adequacy, this means that for each formula A[Z, Z, X] depending
on Z,Z, X, we have two (intuitionistic) proof-like terms:
extax Ik VZVZYXVY (X =Y = Az, Z,X] = AlZ,Z,Y])
ext)yx - VZVZVYXVY (X=Y = A7 Z Y] = AZ Z X))

@ We now want to make explicit the terms ext/x and ext’A/X...

Introduction AC, & DC using quote ... using the clock
000008000 0000000000000 0 00000000000

Extensionality in 2"d-order logic (2/4)

@ For that, we introduce a new syntactic category of skeletons:

Skeletons o1 =V | x | o—>7T)

Definition (Skeleton of a formula abstracted w.r.t. a 2"-order variable)

To each formula A abstracted w.r.t. a 2"9-order variable X, we associate
its skeleton sk(A/X), that is defined by:
sk(A/ X) = «x (if X ¢ FV(A))
sk(X(&) / X) = Vv
sk(A= B/ X) := sk(A/X)— sk(B/X)
sk(VxA / X) = sk(A/X)
sk(VY A/ X) = sk(A/X) (if Y £ X)

@ Note: sk(A/X) is not sensitive to a substitution of a variable Z X:
sk(A[x :=e]/X) = sk(A[Y := P]/X) = sk(A/X) (Y #X, X ¢ FV(P))

Introduction AC, & DC using quote ... using the clock
000000800 0000000000000 0 00000000000

Extensionality in 2"-order logic (3/4)

Definition (Terms ext, and ext/)

@ To each skeleton o we associate two intuitionistic proof-like terms
t,[z] and t/[z] that only depend on a variable z, letting:

tfz] = | ty[z] = z(Ax,y.x)
t[z] =1 ti[z] = z(Ax,y.y)
trolz] = Af,x. t[2] (f (t[2] X))
t . [z] = AM,x.tl[z] (f (t-[2] X))
@ For each skeleton o, we finally let:

ext, = Az.t,[Z] and ext! = Az.t/[7]

@ Note that both proof-like terms ext, and ext! only depend
on a skeleton ¢ and not on a abstracted formula A/X...

... Nevertheless... (go to next slide)

Introduction AC, & DC using quote ... using the clock
000000080 0000000000000 0 00000000000

Extensionality in 2"d-order logic (4/4)

Proposition

For each 2"-order formula AlZ, Z X] with parameters only depending
on the variables Z, f, and X, we have:
ext, I VZVZVYXVY (X=Y = AZ,Z,X]= Az, Z,Y])
ext!, IF VZVZVYXVY (X=Y = A7, Z,Y]= Az, Z,X])

lea

writing o = sk(A[Z, Z, X]/X)

Proof: Exercise!

@ So that in what follows, we shall write

exta/x = eXtg(a/x) and eXtQ‘/X = extgk(A/X)

keeping in mind that the above realizers actually depend only
on the skeleton of the abstracted formula A/X

@ Introduction
© Realizing AC,, & DC using quote

© Realizing AC,, & DC using the clock

@ Introduction
© Realizing AC,, & DC using quote

© Realizing AC,, & DC using the clock

Introduction AC, & DC using quote ... using the clock
000000000 0@000000000000 00000000000

The instructions quote and quote’

@ Numbering terms: the instruction quote:
Given an enumeration (t,)semn of all closed terms, we add the rule

quotext-u-m > ux[t]-m J

writing [t] the smallest n € IN such that t = ¢,

@ Numbering stacks: the instruction quote’:

Given an enumeration (7,)necin of all stacks, we add the rule

quote’ xu-m = wux[mlt-m J

writing [7]1 the smallest n € IN such that 7 = 7,

Proposition

If there is a partial recursive function f : IN — IN such that [7]" = f([kx])
for all = € M, then quote’ can be implemented from quote, letting:

quote’ := Ax.a (Mk.quote k (An.f nx))

Proof: Check it out!

AC, & DC using quote ... using the clock

Introduction
00000000000

000000000 00®00000000000

A first choice principle (1/3)

Proposition 1 (“Type" of quote’)

Given a formula®*) A[X] that only depends on a 2"-order variable X of
arity k > 0, there is a falsity function ®, : IN“*1 — 3(M) (depending
on A and on the pole 1) such that:

quote’ I- (Vne IN)A[da(n)] = VX A[X]

(%) Here and in what follows: formula = formula of PA2 with parameters.

o Intuitively, the (k + 1)-ary predicate da represents a sequence
(Pa(n))n of potential counter-examples to the predicate A[X]

@ Since the converse implication trivially holds (proof: Az,_.z), the
resulting equivalence allows to replace any 2”d—orde_r quantification
VX A[X] by a numeric quantification (¥ne€IN)A[®a(n)]

@ And since quote’ can be implemented from quote, we also have:

Ax. @ (Mk.quote k (An.fnx)) Ik (YneIN)A[da(n)] = VX A[X] J

Introduction AC, & DC using quote ... using the clock
000000000 000@0000000000 00000000000

A first choice principle (2/3)

Proof. Using meta-theoretic AC,,, we associate to each n € IN a k-ary falsity
function @, : INK — 3(MN) defined by:

Some function F : INK — 93(I) such that m, € || A[F]||
P, = if such a function F exists

Any function F : INK — 93(M) otherwise

(writing 7, the nth element of the fixed enumeration of all stacks).
Then we define ®4 : INKtL — 93(1), letting da(n) := &, for all n € IN.
We want to prove that quote’ I- (Vn€IN)A[da(n)] = VX A[X].

For that, pick a stack in ||(Vn€ IN)A[®4(n)] = VX A[X]||, that is necessarily
of the form wu-m where u € |(Vn€ |N)A[<i>A(n)]| and 7 € ||A[F]|| for some
F : IN¥ — (M), and let us prove that quote’ xu-m € L.

For that, write n:= [n]t, sothat m=m, € |AIF]|l. From the def. of ®4(n) = ®,,
we have m = m, € [|A[®,]|| = [|A[®a(n)]]|-

Now we observe that quote’ xu-m = wuxn-m, so that it remains to prove that
usxn-nm € 1 (by anti-evaluation). This follows from the fact that:

u € |[(VxeN)A[®A(x)]|, 7 € |nelN| and 7 € |[[A[Pa(n)]]. O

Introduction AC, & DC using quote ... using the clock
000000000 0000@000000000 00000000000

A first choice principle (3/3)

Changing the def. of ®4, we can build a simpler realizer based on quote:

Proposition 1.b (Variant of Prop. 1)

Given a formula A[X] that only depends on a 2"%-order variable X of
arity k > 0, there is a falsity function @/, : INK+1 — 93(1) (depending
on A and on the pole 1L) such that:

Ax.quotex x Ik (YneIN)A[®,(n)] = VX A[X]

Def. of CD/A: Forall n € IN, write Sp:={m €N :thyxn-7¢& 1} (where t, is the
nth element of the fixed enumeration of all closed terms). Using meta-theoretic AC,,,
we now associate to each n € IN a falsity function @/, : INK — 93(I) defined by:

{Some function F : INK — 3(M) such that ||JA[F]|| N S, # @

o = if such a function F exists

n
Any function F : INK — (M) otherwise
Then we define @/, : INK+1 — B(M), letting &/, (n) := &/, for all n € IN.

Exercise: Prove that Ax.quotexx I+ (VnEIN)A[Cb’A(n)] = VX A[X] O
(Hint: Reason by contradiction.)

Introduction AC, & DC using quote ... using the clock
000000000 00000@00000000 00000000000

Taking the contrapositive (1/2)

Considering the contrapositive of the first choice principle
(VneIN)A[da(n)] = VX A[X]

we get the following result:

Proposition 2

Given a formula A[X] that only depends on a 2"¢-order variable X of
arity k > 0, there is a falsity function W4 : IN¥*1 — 3() (depending
on A and on the pole 1) such that:

6 I IXAX] = (anew)A[\izA(n)])

writing 6 := Az, f.a (Ak.z(quote’ (An,x. k (f nx))))

@ Intuitively, the (k 4 1)-ary predicate W4 represents a sequence
(Wa(n))nem of potential witnesses of the predicate A[X]

@ Since the converse implication trivially holds, the resulting
equivalence allows to replace any 2"-order quantification
IX A[X] by a numeric quantification (3n € IN)A[W(n)]

Introduction AC, & DC using quote ... using the clock
000000000 000000e0000000 00000000000

Taking the contrapositive (2/2)

Proof. Considering —A instead of A, we know from Prop. 1 that there is a falsity
function ®_, : INKL — B(M) such that:

quote’ I (Vne€IN)=A[D_a(n)] = VX -A[X]
so that writing Wa = ®_,4, we get:
quote’ |- (VneIN)=A[Wa(n)] = VX -A[X]
Now writing t[q] = Az,f.a(Xk.z(q(An,x.k(f nx)))), we observe that the
following typing judgment is derivable in system ANK2:
g : (YneIN)=A[Wa(n)] = VX -A[X]
F tlg] : 3IXAX] = (3n€N)A[Va(n)]
Therefore, by adequacy we get
0 := t[quote’] IF IAXA[X] = (3neIN)A[WA(n)]. O

Introduction AC, & DC using quote ... using the clock
000000000 0000000000000 00000000000

The non-extensional axiom of choice (NEAC) (1/4)

Proposition 3 (The non-extensional axiom of choice — NEAC)

Given a formula A[X] that only depends on a 2"-order variable X of
arity k > 0, there is a falsity function &4 : IN — B() (depending
on A and on the pole 1) such that:

0, - IXAX] = Aléal

(where 6, is a closed proof-like depending on o := sk(A[X]/X))

@ The construction &4 is the 2"-order version of Hilbert's epsilon,
that “chooses” for each 2"-order predicate A[X] an object £4 that
fulfills A, if such an object exists. (Otherwise, £4 is arbitrary)

@ However, the symbol £ is non-extensional, since in the realizability
model we have in general:

VX(A[X]@B[X]) 75> 5A:58

VX(Ea(X) & Ep(X))

Introduction AC, & DC using quote ... using the clock
000000000 00000000e00000 00000000000

The non-extensional axiom of choice (NEAC) (2/4)

Proof. From Prop. 2, we know that there is a falsity function Wj : INKFL P(M)
such that: 6 IF IXA[X] = (In€IN)A[WVa(n)] (for some proof-like term 6).

Let us now consider the k-ary predicate P4 defined by:
PA(Xl,...,Xk) 5=)))
(HHQEW){ A[\UA(no)] A (Vn < no)‘!A[\UA(n)] A \UA(no,X]_,...,Xk) }

Using the fact that PA2 F “any nonempty subset of IN has a smallest element”,
we easily construct a proof-term:

t1 : (3neN)AA(n)] = (3no € IN){ A[Wa(mo)] A (Vn < no) =AW A(n)] }.

And from the def. of the k-ary predicate P4 combined with the uniqueness of the
smallest n € IN such that A[W4(n)], we can build a proof-term:

t2 = (Yno € N){ A[Wa(no)] AV(n < no) ~A[Wa(n)] = Wa(no) = Pa }.
On the other hand, we know that ext, I VXVX' (X = X' = A[X] = A[X]),
writing o := sk(A[X]/X) the skeleton of A[X] w.r.t. X (cf § Introduction).

Combining the proof-like terms 0, t;, t» and ext,, we easily deduce a proof-like term
0o I+ IXA[X] = A[Pa] (that only depends on o := sk(A[X]/X)).

To conclude it suffices to define £4 : INK — B(M) by E4 = |Pall-

Introduction AC, & DC using quote ... using the clock
000000000 000000000e0000 00000000000

The non-extensional axiom of choice (NEAC) (3/4)

Due to the form of its realizer 8,, NEAC can be generalized to formulas

—

A[Z, Z, X] that may depend on other (1%- and 2"-order) variables Z, Z:

Theorem 4 (General form of NEAC)

Given a formula A[Z, Z, X] that only depends on:
@ p I**-order variables z:= z, . .., z,,
@ g 2"-order variables 7= Zi,...,2Zq of arities ki, ..., kg >0 and
@ a 2"_order variable X of arity k > 0,
there is a (3™-order) falsity function
Ea t NP x BN x - PV — p(n)™
~~ ———
Z1,.4432p Zluuwzq X

(depending on A and 1) such that:

0, |- VZvZ <3XA[Z,Z,X] = AlZ, 7,62, 2)])

(where o := sk(A[Z, Z, X]), and using the same realizer 0, as before)

Introduction AC, & DC using quote ... using the clock
000000000 0000000000000 00000000000

The non-extensional axiom of choice (NEAC) (4/4)

Proof. For all parameters i = (my,...,mp) € IN° and F = Fy,...,F, (where
F; : INki — sB(I) for all i € [1..q]), we choose (using meta-theoretic AC) a falsity
function EA[ﬁ A INK — 9B(M) such that

0, I IXA[m, F,X] = A[m, ﬁ,éA[,ﬁ Al

(from Prop. 3), writing o := sk(A[, F, X]/X) = sk(A[Z, Z, X1/X).
(Note that the skeleton o does not depend on the parameters i, F.)
We now define the function €4 : IN? x B(MK x - - x P(M)ka — PN by
Ea(, F) == Eympy forall i € INP and F e PN x o x H(mN,
For all parameters m, F_' we thus have

0o I+ X AW, F,X] = Alm, F,Ea(rf, F)]

and since the realizer 0, is the same for all parameters m, I—j we deduce that

0, I vZvZ <3XA[Z, Z,X] = A[z,Z,éA(z,Z)])

by an immediate generalization. O

Introduction AC, & DC using quote ... using the clock
000000000 00000000000 e00 00000000000

On the importance of extensionality

@ The non-extensional axiom of choice (NEAC) does not imply AC,
since & is not extensional: VX (AX] < B[X]) & &a=E¢&s

Counter-example (Constructing a right-inverse of a surjective function?)

In 2"d-order logic, a 3rd-order function (i.e. from 2"-order objects to themselves) is

naturally represented as a formula F[X, Y] such that:
(1) ¥XVYX'VY (F[X, Y]AX = X' = F[X', Y]) A

VXVY VY (FIX,YIAY =Y = F[X,Y']) (F is compatible)
(2) VXVYVY'(FIX,Y]IANF[X,Y]=Y=Y) (F is functional)
(3) VX 3Y F[X, Y] (F is total)
If moreover, we assume that:
(4) VY 3XF[X,Y] (F is surjective)
it is natural to define a right-inverse G of F, letting: G[Y,X] = (X = & yq)-

Then it is easy to realize that the function G is functional (2) and total (3), and
moreover that Fo G =id, thatis: VXVY VX' (F[X,Y]AG[Y,X'] = X' = X).

Alas, we cannot realize that G is compatible (1), since £ is not extensional

@ Nevertheless, we shall see that NEAC implies both AC,, and DC

Introduction AC, & DC using quote ... using the clock
000000000 00000000000 0e0 00000000000

Why NEAC implies AC,,

Corollary 5 (Realizing AC,)

For each formula A[x, Y] depending on a 1%t-order variable x and on a
2"d_order variable Y of arity k, we have:

& I ((vxeN)3Y Alx, Y]) = 3U(¥x e N)Alx, U(x)]

(where &5 is a closed proof-like term depending on o := sk(A[x, Y]/Y).
and where U is a 2"9-order variable of arity k 4 1)

Proof (idea). Let &, := Mhf.f(An.0, (hn)) and instanciate U by F,
where F : IN %‘B(I’I)'Nk = &a. (Exercise: write down the details.) [

<

Remark: Relativizations to IN are actually useless. Indeed, if we replace &,
by &, := Mhf.f(0,h), we realize the i-indexed axiom of choice (AC,):

¢ I (Wx3Y Alx, Y]) = 3UVx Alx, U(x)]

Exercise: write down the details

Introduction AC, & DC using quote ... using the clock
000000000 0000000000000 e 00000000000

Why NEAC implies DC

Corollary 6 (Realizing DC)

For each formula A[X, Y] depending on two 2"-order variables X, Y of
arity k, we have:

ne - YX3Y AX, Y] =
¥Xo 3U (U(0) = Xo A (¥ne IN) A[U(n), U(n + 1)])

(where &5 is a closed proof-like term depending on o := sk(A[x, Y]/Y).
and where Xp and U are 2"-order variables of arities k and k + 1, respectively)

Proof. Assuming that Xj is instanciated by a falsity function Fp : INK — (M), we
let Fpi1:=Ea(Fn) for all n € N, and define the falsity function G : INK*1 — (1)
by G(n):=F, forall n € IN. Letting (s = Ah.{{l,1),An.60s h), we check that

Co IF VXY AX, Y] = G(0) = Fo A (YneIN) A[G(n), G(n + 1)]
and letting 7o = Axy.y ((s x), we deduce that
ne |- VX3Y AX, Y] = 3U(U(0) = Fo A (YneIN) A[U(n), U(n + 1)])

We conclude by universally generalizing over the falsity function Fg. O

@ Introduction
© Realizing AC,, & DC using quote

© Realizing AC,, & DC using the clock

Introduction AC, & DC using quote ... using the clock
000000000 0000000000000 0 0@000000000

Introduction

Krivine (2003):

We observe that the application n — t, may be any surjective
map from IN onto N. The reduction rule for x is then:
X u-m = wukn-m

where n is any integer such that t, = u. This suggests the
following interpretation: x is an input instruction and, when it
comes in head position, the process x * u - ™ waits for some
integer n which is provided by some human operator or some
external process. [...] The only constraint is that “u must be
retrievable from n”, i.e. the integers provided to the processes
xxu-mand xxu -7’ with v’ # u, must be different. A very
simple and natural way to obtain this behaviour is to provide
the integer n by means of a clock, since two different \.-terms
cannot appear at the same time. [...]

How to formalize (mathematically) this clock?

[UKrivine's x behaves as “Ax.quote x x” (with the notations of the previous section)

Introduction AC, & DC using quote ... using the clock
000000000 0000000000000 0 00800000000

Outline of the method (1/2)
How to retrieve the execution time from a process?

Naive method: Store the “current time” at the bottom of the current
stack, and increment it at each evaluation step:

Push tu* V- ap, 1 txU-V-ap

+
Grab AX.txu-V-a, ' tlxi=u]* Vo
+

Save CcxU-V-a, >t UKy V-t
Restore kg *x u-V' -, =1 U* V-
v +

Clock clock x u-vV-a, ! U*n-V-ap

+

Problem: Such a design of evaluation is completely incompatible
with the adequacy lemmal (Exercise: Check it out!)

Morality: In classical realizability, we cannot tamper with stacks

Introduction AC, & DC using quote ... using the clock
000000000 0000000000000 0 000@0000000

Outline of the method (2/2)

How to retrieve the execution time from a process?

Simple solution: Store the "boot program” in the bottom of the stack,
so that we can retrieve the current time by “subtraction”. For that:

@ Associate a stack constant «ap to each 6 € PL (“boot programs’)
and only consider deterministic evaluation sequences of the form:
“boot process”

= / =/
Oxag = -+ = t*xV-apg = t'*xV' -ag >

thread of 6

(Such a thread may be linear-infinite, linear-finite or cyclic)
@ Retrieve “current time" using an instruction “clock” with the rule

clockxt-u-ag = txn-u-ay, J

where n is the smallest integer such that: 6 *xag »=" clockxt- - ap

(Note that when evaluation is cyclic, the clock is cyclic too)

Introduction AC, & DC using quote ... using the clock
000000000 0000000000000 0 00008000000

A particular instance of the A.-calculus (1/3)

Recall: An instance of the Ac-calculus is defined by:
o Aset K ={a,...} of instructions (containing at least call/cc)
@ A nonempty set MMy of stack constants (or stack bottoms)

@ A preorder of evaluation >, that contains at least the
four basic rules Grab, Push, Save and Restore
Definition of the)\ -calculus with clock:

o Let: K := {CC, C|0Ck} (only two instructions: call-cc and clock)

The set K determines the set of proof-like terms:

Proof-like terms 0,6 == x | Mx.0 | 0¢é | « | clock J

@ Introducing a stack constant ay for each closed proof-like term
0 €PL, welet: My := {ag:0€PL}

@ To each 6 € PL, we associate the boot process 6 *x ay

Introduction AC, & DC using quote ... using the clock
000000000 0000000000000 0 00000@00000

A particular instance of the A.-calculus (2/3)

o For each 6 € PL, we define a relation 6 >" p (“boot process
0 x ap evaluates to process p in n steps”) from the inference rules:

—— (Init
9l>00*0¢9 ()

Op" Ax.txu-m 0" tu-m
Grab ————— (Push
6 bt t[X::U]*ﬂ'() g b1t t*u~7r()

0" ke *u-m

O>" @wxu-mT
————>———— (Save) el
0> U

Restore
0" Uk, ()

0 >" clockxu-m
————— (Clock
0" ux no-m ()

writing np the smallest integer (< n) such that 6 p™ clockxu -7

Lemma (Determinism of 61)

For all 8, n, p, p': 0" p and 6" p' imply p=p

Introduction AC, & DC using quote ... using the clock
000000000 0000000000000 0 00000080000

A particular instance of the A.-calculus (3/3)

@ We now define the relation >! of one step evaluation as follows:

Push tu =1 txu-m

Grab A .txu-m =1 tlxi=ulxT

Save cxu-T >l uxky-m

Restore ke x u-m =1 ux T

Clock clock x u-m ! uxn-m

writing ™ = V- g, and n the smallest integer such that 0 >" clock* u-7

olet (=" :=(1" and (=)= (- = J"

Lemma (Determinism of - & characterization of)

@ For all p,p/, p": p>=tp and p>'p” imply p' =p”
@ For all n, 9, p: 0" p iff Oxag =" p

Introduction AC, & DC using quote ... using the clock
000000000 0000000000000 0 00000008000

Threads

e For each 8 € PL, we define the thread of 6 by:
thd(9) = {p : 0" p for some n e N}
= {p: Oxap > p}

@ The thread of 0 is either:

— linear-infinite: po > p1 > p2 = -+ > Pn > Pnty1 >
— linear-finite: Po > p1 > P2 > oo > pn #P
— cyclic: Po > 0 = pk = 0 = pn = pr (k<n)

The clock behaves accordingly (infinitely, finitely, cyclicly)

@ Since thd(0) is (obviously) closed under evaluation, its complement
Ay := thd(9)° (C AxT)
is closed under anti-evaluation, and can be used as a pole:

= local pole associated to the proof-like term 6

Introduction AC, & DC using quote ... using the clock
000000000 0000000000000 0 00000000800

A first choice principle... again (1/2)

Proposition 5 (“Type” of the “clock™)

Given a formula A[X] that only depends on a 2"-order variable X of
arity k > 0 and a local pole 1Ly := thd(6)¢ (for some 6 € PL), there is a
falsity function ®,4 : INK+1 — 93(M) (depending on A and on) such that:

clock IF (YneIN)A[a(n)] = VX A[X]

Proof: cf next slide

Note that the result only holds in local poles!

Remark: When working with the “clock”, we thus need to replace

universal realizability (= realizability w.r.t. all poles)

by local realizability (= realizability w.r.t. all local poles)

The reader is invited to check the main results associated with universal
realizability (e.g. witness extraction techniques) still holds with local realizability

Introduction AC, & DC using quote ... using the clock
000000000 0000000000000 0 00000000080

A first choice principle... again (2/2)

Proof. Consider a pole of the form Ly := thd(6)® (for some 6 € PL). For each
neIN,welet Sp:={wr €l : JueA, 0>" clockxu-m}. Since > is deterministic,
the set S, contains at most one stack. Using meta-theoretic AC,,, we now associate
to each n € IN a k-ary falsity function &, : IN — (1) defined by:

Some function F : INK — 93(T) such that ||A[F]|| N S, # @
b, = if such a function F exists
Any function F : INK — (M) otherwise

Then we define ®,4 : INKt1 — 3(1), letting d4(n) := &, for all n € IN.

We want to prove that clock IF (Vne IN)A[®a(n)] = VX A[X], that is:

we want to prove that clockx u-7 € I for all u € |(Vn€IN)A[®4(n)]],

for all F :INK — 93(M) and for all 7 € ||A[F]||.

Reasoning by contradiction, let us assume that clockxu-7m ¢ 1. Hence we have
clockxu-m € thd(0), sothat clockxu-7 = uxn-m ¢ 1 (by evaluation),
where n is the smallest integer such that 6 >" clock x u - 7.

We now observe that = € ||A[F]|| N Sn, hence |A[DA(n)]]| N Sh # @ (from the def.
of ®4(n) = ®,), and thus = € ||A[®a(n)]|| (since S, = {x}). Observing that

u € |(YnEN)A[Pa(n)]|, AE|n€N| and 7 € ||A[Da(n)]]

we deduce that uxn-7 € IL: contradiction! O

Introduction AC, & DC using quote ... using the clock
000000000 0000000000000 0 0000000000e

Realizing NEAC, AC,, and DC

The same way as we did with the instruction “quote”, we successively
deduce from Prop. 5 the existence of:

o A function W4 : IN¥*1 — sB3(IM) and a term 6 € PL such that:

6o - IAXAIX] = (3neIN)A[Va(n)])

o A function £4 : INK — B(M) and a term 6, € PL such that:

0, I IXAX] = A[€A] J

o And more generally for each formula A[Z, Z, X], a function
Eptoo— ‘}3(I'I)'Nk and a term 6, € PL such that:

NEAC: 6, IF VZVZ (HXA[Z, Z,X] = A7 Z,Ea(Z, Z)]) J

The same way as before, AC,, and DC are easily deduced from NEAC

	Introduction
	

	Realizing AC & DC using quote
	

	Realizing AC & DC using the clock
	

