
Introduction ACω & DC using quote ... using the clock

Realizing the axiom of dependent choices (DC)

Alexandre Miquel

E
Q
U
I
P
O

. D E . L
O -
G
I
C
A

U

D
E L A

R

November 24th & December 01, 2021

Introduction ACω & DC using quote ... using the clock

A small history of classical realizability

Krivine 1994. A general storage theorem for integers
in call-by-name lambda-calculus

K. 2001. Typed lambda-calculus in classical ZF set theory

K. 2003. Dependent choice, ‘quote’ and the clock

K. 2004–2009. Realizability in classical logic

K. 2011. Realizability algebras: a program to well order R

K. 2012. Realizability algebras II: new models of ZF + DC

K. 2014. On the structure of classical realizability models of ZF

K. 2016. Bar recursion in classical realizability:
dependent choice and continuum hypothesis

K. 2018. Realizability algebras III: some examples

K. 2021. A program for the full axiom of choice

Introduction ACω & DC using quote ... using the clock

The axiom of choice in ZF

Recall: In ZF, the axiom of choice (AC) can be stated as follows:

(AC) Each set A has a choice function, that is: a function
h : P∗(A)→ A such that h(X) ∈ X for all X ∈ P∗(A)

(Writing P∗(A) := P(A) \ {∅})

Proposition (Equivalent statements of AC)

The axiom of choice is equivalent to each of the following statements:

1 Each surjection f : A→ B has a right-inverse, that is:
a function g : B → A such that f ◦ g = idB

2 Each equivalence relation ∼ on a set A has a system of
representatives, that is: a subset S ⊆ A that contains
exactly one point of each equivalence class of ∼

3 The Cartesian product
∏

x∈A Bx of a family (Bx)x∈A of
nonempty sets (indexed by an arbitrary set A) is nonempty

Proof: Exercise

Introduction ACω & DC using quote ... using the clock

Weak forms of the axiom of choice

The axiom of denumerable choice (ACω)

∀(An)n∈N, (∀n ∈ N, Ax 6= ∅) ⇒ ∃(un)n∈N, ∀n ∈ N, un ∈ An︸ ︷︷ ︸∏
n∈N

An 6= ∅

Note: This axiom is crucial to prove that non-finite sets are Dedekind-infinite
(thus eliminating subinfinite sets, that are neither finite nor Dedekind-infinite)

The axiom of dependent choice (DC)

∀A, ∀R ⊆ A2,
(∀x ∈ A, ∃y ∈ A, x R y) ⇒
∀x0 ∈ A, ∃(un)n∈N ∈ AN, u0 = x0 ∧ ∀n ∈ N, un R un+1

Note: This axiom plays an important role in analysis, since it implies (and is actually
equivalent to) Baire’s category theorem

Proposition: (AC) ⇒ (DC) ⇒ (ACω) (in ZF)

But converse implications (ACω) ⇒ (DC) ⇒ (AC) are not derivable in ZF

Introduction ACω & DC using quote ... using the clock

Reformulating ACω and DC in the language of PA2

Although AC, ACω and DC are presented as axioms in ZF,
they can be presented as axiom schemes in PA2:

The axiom scheme of denumerable choice (ACω)... in the language of PA2

For each formula A[x ,Y] of the language of PA2 depending on a
1st-order variable x and on a 2nd-order variable X of arity k:

(∀x ∈N)∃Y A[x ,Y] ⇒ ∃U (∀x ∈N)A[x ,U(x)]

(where U is a 2nd-order variable of arity k + 1)

The axiom scheme of dependent choice (DC)... in the language of PA2

For each formula A[X ,Y] of the language of PA2 depending on two
2nd-order variables X and Y of arity k :

∀X ∃Y A[X ,Y] ⇒
∀X0 ∃U (U(0) = X0 ∧ (∀n∈N)A[U(n),U(n + 1)])

(where X0 and U are 2nd-order variables of arities k and k + 1, respectively)

(The case of AC is more complex...)

Introduction ACω & DC using quote ... using the clock

Extensionality in 2nd-order logic (1/4)

Recall: In 2nd-order logic, predicate equality is defined by:

P = Q :≡ ∀~x (P(~x)⇔ Q(~x)) (Extensional equality)

In An introduction to Krivine realizability, we saw that:

Proposition (Extensionality in 2nd-order logic)

For each 2nd-order formula A[~z , ~Z ,X] depending on ~z , ~Z ,X , we have:

NJ2 ` ∀~z ∀~Z ∀X ∀Y
(
X = Y ⇒

(
A[~z , ~Z ,X]⇔ A[~z , ~Z ,Y]

))
Proof. By structural induction on A

By adequacy, this means that for each formula A[~z , ~Z ,X] depending

on ~z , ~Z ,X , we have two (intuitionistic) proof-like terms:

extA/X � ∀~z ∀~Z ∀X ∀Y
(
X = Y ⇒ A[~z , ~Z ,X]⇒ A[~z , ~Z ,Y]

)
ext′A/X � ∀~z ∀~Z ∀X ∀Y

(
X = Y ⇒ A[~z , ~Z ,Y]⇒ A[~z , ~Z ,X]

)
We now want to make explicit the terms extA/X and ext′A/X ...

Introduction ACω & DC using quote ... using the clock

Extensionality in 2nd-order logic (2/4)

For that, we introduce a new syntactic category of skeletons:

Skeletons σ, τ ::= V | ∗ | σ → τ

Definition (Skeleton of a formula abstracted w.r.t. a 2nd-order variable)

To each formula A abstracted w.r.t. a 2nd-order variable X , we associate
its skeleton sk(A/X), that is defined by:

sk(A / X) :≡ ∗ (if X /∈ FV (A))

sk(X (~e) / X) :≡ V

sk(A⇒ B / X) :≡ sk(A/X)→ sk(B/X)

sk(∀x A / X) :≡ sk(A/X)

sk(∀Y A / X) :≡ sk(A/X) (if Y 6≡ X)

Note: sk(A/X) is not sensitive to a substitution of a variable 6≡ X :

sk(A[x := e]/X) ≡ sk(A[Y := P]/X) ≡ sk(A/X) (Y 6≡ X , X /∈ FV (P))

Introduction ACω & DC using quote ... using the clock

Extensionality in 2nd-order logic (3/4)

Definition (Terms extσ and ext′σ)

1 To each skeleton σ we associate two intuitionistic proof-like terms
tσ[z] and t ′σ[z] that only depend on a variable z , letting:

t∗[z] :≡ I tV[z] :≡ z (λx , y . x)

t ′∗[z] :≡ I t ′V[z] :≡ z (λx , y . y)

tτ→σ[z] :≡ λf , x . tσ[z] (f (t ′τ [z] x))

t ′τ→σ[z] :≡ λf , x . t ′σ[z] (f (tτ [z] x))

2 For each skeleton σ, we finally let:

extσ :≡ λz . tσ[z] and ext′σ :≡ λz . t ′σ[z]

Note that both proof-like terms extσ and ext′σ only depend
on a skeleton σ and not on a abstracted formula A/X ...

... Nevertheless... (go to next slide)

Introduction ACω & DC using quote ... using the clock

Extensionality in 2nd-order logic (4/4)

Proposition

For each 2nd-order formula A[~z , ~Z ,X] with parameters only depending

on the variables ~z , ~Z , and X , we have:

extσ � ∀~z ∀~Z ∀X ∀Y
(
X = Y ⇒ A[~z , ~Z ,X]⇒ A[~z , ~Z ,Y]

)
ext′σ � ∀~z ∀~Z ∀X ∀Y

(
X = Y ⇒ A[~z , ~Z ,Y]⇒ A[~z , ~Z ,X]

)
writing σ :≡ sk(A[~z , ~Z ,X]/X)

Proof: Exercise!

So that in what follows, we shall write

extA/X :≡ extsk(A/X) and ext′A/X :≡ ext′sk(A/X)

keeping in mind that the above realizers actually depend only
on the skeleton of the abstracted formula A/X

Introduction ACω & DC using quote ... using the clock

Plan

1 Introduction

2 Realizing ACω & DC using quote

3 Realizing ACω & DC using the clock

Introduction ACω & DC using quote ... using the clock

Plan

1 Introduction

2 Realizing ACω & DC using quote

3 Realizing ACω & DC using the clock

Introduction ACω & DC using quote ... using the clock

The instructions quote and quote′

Numbering terms: the instruction quote:

Given an enumeration (tn)n∈N of all closed terms, we add the rule

quote ? t · u · π � u ? dte · π
writing dte the smallest n ∈ N such that t ≡ tn

Numbering stacks: the instruction quote′:

Given an enumeration (πn)n∈N of all stacks, we add the rule

quote′ ? u · π � u ? dπe⊥ · π
writing dπe⊥ the smallest n ∈ N such that π ≡ πn

Proposition

If there is a partial recursive function f : N⇀ N such that dπe⊥ = f (dkπe)
for all π ∈ Π, then quote′ can be implemented from quote, letting:

quote′ :≡ λx . cc (λk . quote k (λn . f̌ n x))

Proof: Check it out!

Introduction ACω & DC using quote ... using the clock

A first choice principle (1/3)

Proposition 1 (“Type” of quote′)

Given a formula(∗) A[X] that only depends on a 2nd-order variable X of
arity k ≥ 0, there is a falsity function ΦA : Nk+1 → P(Π) (depending

on A and on the pole ⊥⊥) such that:

quote′
 (∀n∈N)A[Φ̇A(n)] ⇒ ∀X A[X]

(∗) Here and in what follows: formula = formula of PA2 with parameters.

Intuitively, the (k + 1)-ary predicate Φ̇A represents a sequence
(Φ̇A(n))n of potential counter-examples to the predicate A[X]

Since the converse implication trivially holds (proof: λz , . z), the
resulting equivalence allows to replace any 2nd-order quantification
∀X A[X] by a numeric quantification (∀n∈N)A[Φ̇A(n)]

And since quote′ can be implemented from quote, we also have:

λx . cc (λk . quote k (λn . f̌ n x))
 (∀n∈N)A[Φ̇A(n)] ⇒ ∀X A[X]

Introduction ACω & DC using quote ... using the clock

A first choice principle (2/3)

Proof. Using meta-theoretic ACω , we associate to each n ∈ N a k-ary falsity
function Φn : Nk → P(Π) defined by:

Φn :=


Some function F : Nk → P(Π) such that πn ∈ ‖A[Ḟ]‖

if such a function F exists

Any function F : Nk → P(Π) otherwise

(writing πn the nth element of the fixed enumeration of all stacks).

Then we define ΦA : Nk+1 → P(Π), letting ΦA(n) := Φn for all n ∈ N.

We want to prove that quote′
 (∀n∈N)A[Φ̇A(n)] ⇒ ∀X A[X].

For that, pick a stack in
∥∥(∀n∈N)A[Φ̇A(n)] ⇒ ∀X A[X]

∥∥, that is necessarily

of the form u · π where u ∈
∣∣(∀n∈N)A[Φ̇A(n)]

∣∣ and π ∈ ‖A[Ḟ]‖ for some

F : Nk → P(Π), and let us prove that quote′ ? u · π ∈ ⊥⊥.

For that, write n := dπe⊥, so that π ≡ πn ∈ ‖A[Ḟ]‖. From the def. of ΦA(n) = Φn,
we have π ≡ πn ∈ ‖A[Φ̇n]‖ = ‖A[Φ̇A(n)]‖.

Now we observe that quote′ ? u · π � u ? n · π, so that it remains to prove that
u ? n · π ∈ ⊥⊥ (by anti-evaluation). This follows from the fact that:

u ∈ |(∀x ∈N)A[Φ̇A(x)]|, n ∈ |n ∈ N| and π ∈ ‖A[Φ̇A(n)]‖.

Introduction ACω & DC using quote ... using the clock

A first choice principle (3/3)

Changing the def. of ΦA, we can build a simpler realizer based on quote:

Proposition 1.b (Variant of Prop. 1)

Given a formula A[X] that only depends on a 2nd-order variable X of
arity k ≥ 0, there is a falsity function Φ′A : Nk+1 → P(Π) (depending

on A and on the pole ⊥⊥) such that:

λx . quote x x
 (∀n∈N)A[Φ̇′A(n)] ⇒ ∀X A[X]

Def. of Φ′A: For all n ∈ N, write Sn := {π ∈ Π : tn ? n · π /∈ ⊥⊥} (where tn is the
nth element of the fixed enumeration of all closed terms). Using meta-theoretic ACω ,
we now associate to each n ∈ N a falsity function Φ′n : Nk → P(Π) defined by:

Φ′n :=


Some function F : Nk → P(Π) such that ‖A[Ḟ]‖ ∩ Sn 6= ∅

if such a function F exists

Any function F : Nk → P(Π) otherwise

Then we define Φ′A : Nk+1 → P(Π), letting Φ′A(n) := Φ′n for all n ∈ N.

Exercise: Prove that λx . quote x x
 (∀n∈N)A[Φ̇′A(n)] ⇒ ∀X A[X]

(Hint: Reason by contradiction.)

Introduction ACω & DC using quote ... using the clock

Taking the contrapositive (1/2)

Considering the contrapositive of the first choice principle

(∀n∈N)A[Φ̇A(n)] ⇒ ∀X A[X]

we get the following result:

Proposition 2

Given a formula A[X] that only depends on a 2nd-order variable X of
arity k ≥ 0, there is a falsity function ΨA : Nk+1 → P(Π) (depending

on A and on the pole ⊥⊥) such that:

θ
 ∃X A[X] ⇒ (∃n∈N)A[Ψ̇A(n)]
)

writing θ :≡ λz, f . cc (λk . z (quote′ (λn, x . k (f n x))))

Intuitively, the (k + 1)-ary predicate Ψ̇A represents a sequence
(Ψ̇A(n))n∈N of potential witnesses of the predicate A[X]

Since the converse implication trivially holds, the resulting
equivalence allows to replace any 2nd-order quantification
∃X A[X] by a numeric quantification (∃n∈N)A[Ψ̇A(n)]

Introduction ACω & DC using quote ... using the clock

Taking the contrapositive (2/2)

Proof. Considering ¬A instead of A, we know from Prop. 1 that there is a falsity
function Φ¬A : Nk+1 → P(Π) such that:

quote′
 (∀n∈N)¬A[Φ̇¬A(n)] ⇒ ∀X ¬A[X]

so that writing ΨA :≡ Φ¬A, we get:

quote′
 (∀n∈N)¬A[Ψ̇A(n)] ⇒ ∀X ¬A[X]

Now writing t[q] :≡ λz, f . cc (λk . z (q (λn, x . k (f n x)))), we observe that the
following typing judgment is derivable in system λNK2:

q : (∀n∈N)¬A[Ψ̇A(n)] ⇒ ∀X ¬A[X]

` t[q] : ∃X A[X] ⇒ (∃n∈N)A[Ψ̇A(n)]

Therefore, by adequacy we get

θ :≡ t[quote′]
 ∃X A[X] ⇒ (∃n∈N)A[Ψ̇A(n)].

Introduction ACω & DC using quote ... using the clock

The non-extensional axiom of choice (NEAC) (1/4)

Proposition 3 (The non-extensional axiom of choice – NEAC)

Given a formula A[X] that only depends on a 2nd-order variable X of
arity k ≥ 0, there is a falsity function EA : Nk → P(Π) (depending

on A and on the pole ⊥⊥) such that:

θσ
 ∃X A[X] ⇒ A[ĖA]

(where θσ is a closed proof-like depending on σ :≡ sk(A[X]/X))

The construction EA is the 2nd-order version of Hilbert’s epsilon,
that “chooses” for each 2nd-order predicate A[X] an object EA that
fulfills A, if such an object exists. (Otherwise, EA is arbitrary)

However, the symbol E is non-extensional, since in the realizability
model we have in general:

∀X (A[X]⇔ B[X]) 6⇒ EA = EB︸ ︷︷ ︸
∀~x(EA(~x)⇔EB (~x))

Introduction ACω & DC using quote ... using the clock

The non-extensional axiom of choice (NEAC) (2/4)

Proof. From Prop. 2, we know that there is a falsity function ΨA : Nk+1 → P(Π)
such that: θ
 ∃X A[X] ⇒ (∃n∈N)A[Ψ̇A(n)] (for some proof-like term θ).

Let us now consider the k-ary predicate PA defined by:

PA(x1, . . . , xk) :≡
(∃n0 ∈N){ A[Ψ̇A(n0)] ∧ (∀n < n0)¬A[Ψ̇A(n)] ∧ Ψ̇A(n0, x1, . . . , xk) }

Using the fact that PA2 ` “any nonempty subset of N has a smallest element”,
we easily construct a proof-term:

t1 : (∃n∈N)A[Ψ̇A(n)] ⇒ (∃n0 ∈N){ A[Ψ̇A(n0)] ∧ (∀n < n0)¬A[Ψ̇A(n)] }.

And from the def. of the k-ary predicate PA combined with the uniqueness of the
smallest n ∈ N such that A[Ψ̇A(n)], we can build a proof-term:

t2 : (∀n0 ∈N){ A[Ψ̇A(n0)] ∧ ∀(n < n0)¬A[Ψ̇A(n)] ⇒ Ψ̇A(n0) = PA }.

On the other hand, we know that extσ
 ∀X ∀X ′ (X = X ′ ⇒ A[X]⇒ A[X ′]),
writing σ :≡ sk(A[X]/X) the skeleton of A[X] w.r.t. X (cf § Introduction).

Combining the proof-like terms θ, t1, t2 and extσ , we easily deduce a proof-like term
θσ
 ∃X A[X] ⇒ A[PA] (that only depends on σ :≡ sk(A[X]/X)).

To conclude it suffices to define EA : Nk → P(Π) by EA := ‖PA‖.

Introduction ACω & DC using quote ... using the clock

The non-extensional axiom of choice (NEAC) (3/4)

Due to the form of its realizer θσ, NEAC can be generalized to formulas
A[~z , ~Z ,X] that may depend on other (1st- and 2nd-order) variables ~z , ~Z :

Theorem 4 (General form of NEAC)

Given a formula A[~z , ~Z ,X] that only depends on:

p 1st-order variables ~z :≡ z1, . . . , zp,

q 2nd-order variables ~Z :≡ Z1, . . . ,Zq of arities k1, . . . , kq ≥ 0 and

a 2nd-order variable X of arity k ≥ 0,

there is a (3rd-order) falsity function

EA : Np︸︷︷︸
z1,...,zp

×P(Π)N
k1 × · · · ×P(Π)N

kq︸ ︷︷ ︸
Z1,...,Zq

→ P(Π)N
k︸ ︷︷ ︸

X

(depending on A and ⊥⊥) such that:

θσ
 ∀~z ∀~Z
(
∃X A[~z , ~Z ,X] ⇒ A[~z , ~Z , ĖA(~z , ~Z)]

)
(where σ :≡ sk(A[~z, ~Z ,X]), and using the same realizer θσ as before)

Introduction ACω & DC using quote ... using the clock

The non-extensional axiom of choice (NEAC) (4/4)

Proof. For all parameters ~m = (m1, . . . ,mp) ∈ Np and ~F = F1, . . . ,Fq (where
Fi : Nki → P(Π) for all i ∈ [1..q]), we choose (using meta-theoretic AC) a falsity
function E

A[~m,~F]
: Nk → P(Π) such that

θσ
 ∃X A[~m, ~F ,X] ⇒ A[~m, ~F , Ė
A[~m,~F]

]

(from Prop. 3), writing σ :≡ sk(A[~m, ~F ,X]/X) ≡ sk(A[~z, ~Z ,X]/X).

(Note that the skeleton σ does not depend on the parameters ~m, ~F .)

We now define the function EA : Np ×P(Π)k1 × · · · ×P(Π)kq → P(Π)N
k

by

EA(~m, ~F) := E
A[~m,~F]

for all ~m ∈ Np and ~F ∈ P(Π)N
k1 × · · · ×P(Π)N

kq
.

For all parameters ~m, ~F , we thus have

θσ
 ∃X A[~m, ~F ,X] ⇒ A[~m, ~F , ĖA(~m, ~F)]

and since the realizer θσ is the same for all parameters ~m, ~F , we deduce that

θσ
 ∀~z ∀~Z
(
∃X A[~z, ~Z ,X] ⇒ A[~z, ~Z , ĖA(~z, ~Z)]

)
by an immediate generalization.

Introduction ACω & DC using quote ... using the clock

On the importance of extensionality

The non-extensional axiom of choice (NEAC) does not imply AC,
since E is not extensional: ∀X (A[X]⇔ B[X]) 6⇒ EA = EB

Counter-example (Constructing a right-inverse of a surjective function?)

In 2nd-order logic, a 3rd-order function (i.e. from 2nd-order objects to themselves) is

naturally represented as a formula F [X ,Y] such that:

(1) ∀X ∀X ′ ∀Y (F [X ,Y] ∧ X = X ′ ⇒ F [X ′,Y]) ∧
∀X ∀Y ∀Y ′ (F [X ,Y] ∧ Y = Y ′ ⇒ F [X ,Y ′]) (F is compatible)

(2) ∀X ∀Y ∀Y ′ (F [X ,Y] ∧ F [X ,Y ′]⇒ Y = Y ′) (F is functional)

(3) ∀X ∃Y F [X ,Y] (F is total)

If moreover, we assume that:

(4) ∀Y ∃X F [X ,Y] (F is surjective)

it is natural to define a right-inverse G of F , letting: G [Y ,X] :≡ (X = EF [·,Y]).

Then it is easy to realize that the function G is functional (2) and total (3), and
moreover that F ◦ G = id, that is: ∀X ∀Y ∀X ′ (F [X ,Y] ∧ G [Y ,X ′]⇒ X ′ = X).

Alas, we cannot realize that G is compatible (1), since E is not extensional

Nevertheless, we shall see that NEAC implies both ACω and DC

Introduction ACω & DC using quote ... using the clock

Why NEAC implies ACω

Corollary 5 (Realizing ACω)

For each formula A[x ,Y] depending on a 1st-order variable x and on a
2nd-order variable Y of arity k , we have:

ξσ

(
(∀x ∈N)∃Y A[x ,Y]

)
⇒ ∃U (∀x ∈N)A[x ,U(x)]

(where ξσ is a closed proof-like term depending on σ :≡ sk(A[x ,Y]/Y),
and where U is a 2nd-order variable of arity k + 1)

Proof (idea). Let ξσ :≡ λhf . f (λn . θσ (h n)) and instanciate U by Ḟ ,

where F : N→ P(Π)N
k

:= EA. (Exercise: write down the details.)

Remark: Relativizations to N are actually useless. Indeed, if we replace ξσ
by ξ′σ :≡ λhf . f (θσ h), we realize the ι-indexed axiom of choice (ACι):

ξ′A

(
∀x ∃Y A[x ,Y]

)
⇒ ∃U ∀x A[x ,U(x)]

Exercise: write down the details

Introduction ACω & DC using quote ... using the clock

Why NEAC implies DC

Corollary 6 (Realizing DC)

For each formula A[X ,Y] depending on two 2nd-order variables X , Y of
arity k, we have:

ησ
 ∀X ∃Y A[X ,Y] ⇒
∀X0 ∃U (U(0) = X0 ∧ (∀n∈N)A[U(n),U(n + 1)])

(where ξσ is a closed proof-like term depending on σ :≡ sk(A[x ,Y]/Y),
and where X0 and U are 2nd-order variables of arities k and k + 1, respectively)

Proof. Assuming that X0 is instanciated by a falsity function F0 : Nk → P(Π), we
let Fn+1 := EA(Fn) for all n ∈ N, and define the falsity function G : Nk+1 → P(Π)
by G(n) := Fn for all n ∈ N. Letting ζσ :≡ λh . 〈〈I, I〉, λn . θσ h〉, we check that

ζσ
 ∀X ∃Y A[X ,Y] ⇒ Ġ(0) = Ḟ0 ∧ (∀n∈N)A[Ġ(n), Ġ(n + 1)]

and letting ησ :≡ λxy . y (ζσ x), we deduce that

ησ
 ∀X ∃Y A[X ,Y] ⇒ ∃U (U(0) = Ḟ0 ∧ (∀n∈N)A[U(n),U(n + 1)])

We conclude by universally generalizing over the falsity function F0.

Introduction ACω & DC using quote ... using the clock

Plan

1 Introduction

2 Realizing ACω & DC using quote

3 Realizing ACω & DC using the clock

Introduction ACω & DC using quote ... using the clock

Introduction

Krivine (2003):

We observe that the application n 7→ tn may be any surjective
map from N onto Λ. The reduction rule for χ is then:

χ ? u · π � u ? n · π [1]

where n is any integer such that tn ≡ u. This suggests the
following interpretation: χ is an input instruction and, when it
comes in head position, the process χ ? u · π waits for some
integer n which is provided by some human operator or some
external process. [...] The only constraint is that “u must be
retrievable from n”, i.e. the integers provided to the processes
χ ? u · π and χ ? u′ · π′ with u′ 6= u, must be different. A very
simple and natural way to obtain this behaviour is to provide
the integer n by means of a clock, since two different λc -terms
cannot appear at the same time. [...]

How to formalize (mathematically) this clock?

[1]Krivine’s χ behaves as “λx . quote x x” (with the notations of the previous section)

Introduction ACω & DC using quote ... using the clock

Outline of the method (1/2)

How to retrieve the execution time from a process?

Naive method: Store the “current time” at the bottom of the current
stack, and increment it at each evaluation step:

Push tu ? ~v · αn �1 t ? u · ~v · αn+1

Grab λx . t ? u · ~v · αn �1 t[x := u] ? ~v · αn+1

Save cc ? u · ~v · αn �1 u ? k~v · ~v · αn+1

Restore k~v ? u · ~v ′ · αn �1 u ? ~v · αn+1

Clock clock ? u · ~v · αn �1 u ? n · ~v · αn+1

Problem: Such a design of evaluation is completely incompatible
with the adequacy lemma! (Exercise: Check it out!)

Morality: In classical realizability, we cannot tamper with stacks

Introduction ACω & DC using quote ... using the clock

Outline of the method (2/2)

How to retrieve the execution time from a process?

Simple solution: Store the “boot program” in the bottom of the stack,
so that we can retrieve the current time by “subtraction”. For that:

Associate a stack constant αθ to each θ ∈ PL (“boot programs”)

and only consider deterministic evaluation sequences of the form:

“boot process”︷ ︸︸ ︷
θ ? αθ � · · · � t ? ~v · αθ � t ′ ? ~v ′ · αθ � · · ·︸ ︷︷ ︸

thread of θ

(Such a thread may be linear-infinite, linear-finite or cyclic)

Retrieve “current time” using an instruction “clock” with the rule

clock ? t · ~u · αθ � t ? n · ~u · αθ,

where n is the smallest integer such that: θ ? αθ �n clock ? t · ~u · αθ

(Note that when evaluation is cyclic, the clock is cyclic too)

Introduction ACω & DC using quote ... using the clock

A particular instance of the λc-calculus (1/3)

Recall: An instance of the λc -calculus is defined by:

A set K = {cc, . . .} of instructions (containing at least call/cc)

A nonempty set Π0 of stack constants (or stack bottoms)

A preorder of evaluation �, that contains at least the
four basic rules Grab, Push, Save and Restore

Definition of the λc-calculus with clock:

Let: K := {cc, clock} (only two instructions: call-cc and clock)

The set K determines the set of proof-like terms:

Proof-like terms θ, φ ::= x | λx . θ | θ φ | cc | clock

Introducing a stack constant αθ for each closed proof-like term
θ ∈ PL, we let: Π0 := {αθ : θ ∈ PL}

To each θ ∈ PL, we associate the boot process θ ? αθ

Introduction ACω & DC using quote ... using the clock

A particular instance of the λc-calculus (2/3)

For each θ ∈ PL, we define a relation θ .n p (“boot process

θ ? αθ evaluates to process p in n steps”) from the inference rules:

θ .0 θ ? αθ
(Init)

θ .n λx . t ? u · π
θ .n+1 t[x := u] ? π

(Grab)
θ .n tu · π

θ .n+1 t ? u · π
(Push)

θ .n cc ? u · π
θ .n+1 u ? kπ · π

(Save)
θ .n kπ ? u · π′

θ .n+1 u ? π
(Restore)

θ .n clock ? u · π
θ .n+1 u ? n0 · π

(Clock)

writing n0 the smallest integer (≤ n) such that θ .n0 clock ? u · π

Lemma (Determinism of θ .)

For all θ, n, p, p′: θ .n p and θ .n p′ imply p ≡ p′

Introduction ACω & DC using quote ... using the clock

A particular instance of the λc-calculus (3/3)

We now define the relation �1 of one step evaluation as follows:

Push tu ? π �1 t ? u · π
Grab λx . t ? u · π �1 t[x := u] ? π

Save cc ? u · π �1 u ? kπ · π
Restore kπ ? u · π′ �1 u ? π

Clock clock ? u · π �1 u ? n · π
writing π ≡ ~v · αθ, and n the smallest integer such that θ .n clock ? u · π

Let (�n) := (�1)n and (�) := (�1)∗ =
⋃
n∈N

(�n)

Lemma (Determinism of � & characterization of θ .)

1 For all p, p′, p′′: p �1 p′ and p �1 p′′ imply p′ ≡ p′′

2 For all n, θ, p: θ .n p iff θ ? αθ �n p

Introduction ACω & DC using quote ... using the clock

Threads

For each θ ∈ PL, we define the thread of θ by:

thd(θ) := {p : θ .n p for some n ∈ N}
= {p : θ ? αθ � p}

The thread of θ is either:

– linear-infinite: p0 � p1 � p2 � · · · � pn � pn+1 � · · ·
– linear-finite: p0 � p1 � p2 � · · · � pn 6�1

– cyclic: p0 � · · · � pk � · · · � pn ≡ pk (k < n)

The clock behaves accordingly (infinitely, finitely, cyclicly)

Since thd(θ) is (obviously) closed under evaluation, its complement

⊥⊥θ := thd(θ){ (⊆ Λ× Π)

is closed under anti-evaluation, and can be used as a pole:

⇒ local pole associated to the proof-like term θ

Introduction ACω & DC using quote ... using the clock

A first choice principle... again (1/2)

Proposition 5 (“Type” of the “clock”)

Given a formula A[X] that only depends on a 2nd-order variable X of
arity k ≥ 0 and a local pole ⊥⊥θ := thd(θ){ (for some θ ∈ PL), there is a
falsity function ΦA : Nk+1 → P(Π) (depending on A and on θ) such that:

clock
 (∀n∈N)A[Φ̇A(n)] ⇒ ∀X A[X]

Proof: cf next slide

Note that the result only holds in local poles!

Remark: When working with the “clock”, we thus need to replace

by

universal realizability (= realizability w.r.t. all poles)

local realizability (= realizability w.r.t. all local poles ⊥⊥θ)

The reader is invited to check the main results associated with universal
realizability (e.g. witness extraction techniques) still holds with local realizability

Introduction ACω & DC using quote ... using the clock

A first choice principle... again (2/2)

Proof. Consider a pole of the form ⊥⊥θ := thd(θ){ (for some θ ∈ PL). For each
n ∈ N, we let Sn := {π ∈ Π : ∃u ∈ Λ, θ .n clock ? u · π}. Since � is deterministic,
the set Sn contains at most one stack. Using meta-theoretic ACω , we now associate
to each n ∈ N a k-ary falsity function Φn : Nk → P(Π) defined by:

Φn :=


Some function F : Nk → P(Π) such that ‖A[Ḟ]‖ ∩ Sn 6= ∅

if such a function F exists

Any function F : Nk → P(Π) otherwise

Then we define ΦA : Nk+1 → P(Π), letting ΦA(n) := Φn for all n ∈ N.

We want to prove that clock
 (∀n∈N)A[Φ̇A(n)] ⇒ ∀X A[X], that is:
we want to prove that clock ? u · π ∈ ⊥⊥ for all u ∈ |(∀n∈N)A[Φ̇A(n)]|,
for all F : Nk → P(Π) and for all π ∈ ‖A[Ḟ]‖.
Reasoning by contradiction, let us assume that clock ? u · π /∈ ⊥⊥. Hence we have
clock ? u · π ∈ thd(θ), so that clock ? u · π � u ? n · π /∈ ⊥⊥ (by evaluation),
where n is the smallest integer such that θ .n clock ? u · π.

We now observe that π ∈ ‖A[Ḟ]‖ ∩ Sn, hence ‖A[Φ̇A(n)]‖ ∩ Sn 6= ∅ (from the def.
of ΦA(n) = Φn), and thus π ∈ ‖A[Φ̇A(n)]‖ (since Sn = {π}). Observing that

u ∈ |(∀n∈N)A[Φ̇A(n)]|, n ∈ |n ∈ N| and π ∈ ‖A[Φ̇A(n)]‖
we deduce that u ? n · π ∈ ⊥⊥: contradiction!

Introduction ACω & DC using quote ... using the clock

Realizing NEAC, ACω and DC

The same way as we did with the instruction “quote”, we successively
deduce from Prop. 5 the existence of:

A function ΨA : Nk+1 → P(Π) and a term θ0 ∈ PL such that:

θ0
 ∃X A[X] ⇒ (∃n∈N)A[Ψ̇A(n)]

A function EA : Nk → P(Π) and a term θσ ∈ PL such that:

θσ
 ∃X A[X] ⇒ A[ĖA]

And more generally for each formula A[~z , ~Z ,X], a function

EA : · · · → P(Π)N
k

and a term θσ ∈ PL such that:

NEAC: θσ
 ∀~z ∀~Z
(
∃X A[~z , ~Z ,X] ⇒ A[~z , ~Z , ĖA0 (~z , ~Z)]

)
The same way as before, ACω and DC are easily deduced from NEAC

	Introduction
	

	Realizing AC & DC using quote
	

	Realizing AC & DC using the clock
	

