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Different notions of models

o Tarski models: [A4] € {0,1}
o Interprets classical provability (correctness/completeness)
o Intuitionistic realizability: [A] € P(A) [Kleene '45]
o Interprets intuitionistic proofs
o Independence results, in intuitionistic theories
o Definitely incompatible with classical logic
e Cohen forcing: [A] € B(P) [Cohen '63]
o Independence results, in classical theories
(Negation of the continuum hypothesis, Solovay's axiom, etc.)
o Classical realizability: [A] € (1) [Krivine '94, '01, '09, ...]

o Interprets classical proofs
o Generalizes Tarski models... and forcing
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What is forcing?

@ A technique invented by Cohen ('63) to prove the independence
of the continuum hypothesis (CH) w.r.t. ZFC:

The continuum hypothesis (CH), Hilbert's 1st problem

For every infinite subset S C RR:
o Either S is denumerable (i.e. in bijection with IN)

o Either S has the power of continuum (i.e. is in bijection with IR)

In symbols: 280 =

@ Godel ('38) proved ZFCl/—=CH introducing constructible sets
e Cohen ('63) proved ZFC/ CH introducing forcing

@ Related to Boolean-valued models [Scott, Solovay, Vop&énka]

@ Used to prove the consistency/independence of many axioms
[Solovay, Shelah, Woodin, etc.]
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How does forcing work?

Exploit the underspecification of the powerset (X) (X infinite)




Cohen forcing
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An analogy with algebra

Higher-order arithmetic (tuned)
00000000

Set theory

ground model .#

Start from a

We want to add a new set approximated
by the elements of a given

forcing poset (P, <) € A

This defines a ficticious

generic filter G C P (outsize .#)

which generates around .# a

generic extension .Z[G]

Construction:

%[G] = %(P)/NExt

The forcing transformation
0000000000000

The forcing machine Realizability algebras
0000 000000000

Algebra

ground field F

Start from a

We want to add a new point
that should be a root of a given

polinomial P € F[X]

This defines a ficticious
root & of P (outsize F)
which generates around F' a
field extension F'[«]

Construction:

Fla] := F[X]/PF[X]

Conclusion
[e]e]e}
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Example: forcing -CH

@ Aim: Force the existence of an injection h: Ny — P(w)

We shall build it as a characteristic function ¢:Ng X w — 2

@ The ideal object g is approximated in the ground model .#Z by
elements of (P, <) := (Fin(Ng X w,2), D) (forcing poset)

e Forcing invocation: Let .#[G] be the generic extension
generated by an .#/-generic filter G C P (always exists!)

o In Z[G],welet: g := limG = UG (:Ngxw—2)
Using the .#-genericity of the filter G C P, we prove that:

o Partial function ¢ : Ny X w — 2 is actually total

o Corresponding function h: Na — P(w) is actually injective

Technicalities (countable chain condition) under the carpet
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Compared properties of .# and .Z[G]

Conclusion
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Forcing theorem: Given a model .# and a forcing poset (P, <) € .,
the generic extension .#[G] always exists

o ./ and .Z[G] have the very same ordinals

@ If Axiom of Choice (AC) holds in ., then it holds in .#Z[G] too
e Finite cardinals and Xy (= w) are the same in .# and in Z|G)|
e #[G] has in general fewer cardinals than .#

o Intuition: new bijections may appear in .#[G] between sets in .Z,
thus identifying their cardinals in .Z[G]

o Cardinals are preserved if P fulfils the countable chain condition
(This was the case for P = Fin(FE, 2) used for forcing —CH)

e But in some circumstances, one may use forcing to kill cardinals:
Levy collapse, Solovay's axiom, etc.
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The proof-theoretic point of view

e Construction of .Z[G] parameterized by a forcing poset (P, <),
whose elements are called forcing conditions

e p<q reads: 'pis stronger than ¢’

@ Internally relies on a logical translation

A — plFA (‘p forces A)J

where p is a fresh variable (representing a condition)

o Complex definition by induction on A, using the poset (P, <)

Properties
Q@ A entails - (VpeP)(plFA)
@ But F (YpeP)(pIFA) for more formulas A (depending on P)
Q@ - (YpeP)plFl) (consistency)

@ Remark: Forcing commutes with L, T, A and V, but not with =, =, v, 3
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Kripke forcing versus Cohen forcing

Kripke models for (classical) modal logic (S4)

pFA=B = (pFA) = (pFB) pFA=B plFFA
plFOA = VYg<p (q¢IF A) plF B

Kripke models for intuitionistic logic (LJ)

plFA=B = plFA= B qlIF A
Vg<p ((gIF A) = (q IF B)) qlF B

Forcing in classical logic (LK)

plFA=B = plFA= B qlIF A
Vg ((qIF A) = Vr<p,q (r IF B)) rIF B -
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Higher-order arithmetic (tuned)
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The forcing transformation
0000000000000

The forcing machine
0000

Realizability algebras
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Cohen forcing versus classical realizability

Cohen forcing

Classical realizability

[A] € B(P) |Al € B(Ae)
plFA tiFA
pFA=B qFA | t{FA=B ultA
pq F B tu I+ B

~— ~—~
g.lb. application
pFA q¢FB thkA  ulFB
pqlF ANB (t,u)IF ANB

ANB = ANB

AANB # ANB

Conclusion
[e]e]e}

@ Slogan: Classical realizability

= Non commutative forcing
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Combining Cohen forcing with classical realizability

@ Forcing in classical realizability [Krivine '09]
o Introduce realizability algebras, generalizing the A.-calculus
o Discover the program transformation underlying forcing
o Extend iterated forcing to classical realizability

o Show how to force the existence of a well-ordering over IR
(while keeping evaluation deterministic)

e Computational analysis of forcing [M. '11]

e Focus on the underlying program transformation (no generic filter)

o Hard-wire the program transformation into the abstract machine

Underlying methodology

Translation of Classical program New abstract machine
formulas & proofs transformation (no transformation)
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Higher-order arithmetic (PAw™)

The forcing transformation
0000000000000

The forcing machine

0000

Realizability algebras Conclusion

@ A multi-sorted language that allows to express

o Individuals

o Propositions

o Functions over individuals
o Predicates over individuals
o Predicates over predicates...

Syntax of sorts (kinds) and higher-order terms

000000000 [e]e]e}
(sort ¢)
(sort o)
(O A |
(t—=0 t—=1v—0, )

((t—=0) =0, ..)

Sorts T,o = | o | T—o
Terms M,N,A,B == 27 | X&".M | MN | 0 | s | rec,
| A=B | Va7A | M=M — A
Proof terms t,u == (postponed)
@ Equational implication: M=M= A

o Means: A if M =M
T otherwise

o Provably equivalent to:

M= M=A

(equality of denotations)
(T = type of all proofs)

(Leibniz equality)
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Encodings

@ The logic of PAw™ is ultimately based on = and V.
Other constructions of logic are encoded as follows:

L = V2% (Absurdity)
-A = A= 1 (Negation)
ANB = Vz2°((A=B=2z2)=2) (Conjunction)
AV B = V2°(A=>2) = (B=z2) = 2) (Disjunction
T A(z) = V°(VxT(A(z) = 2) = 2) (3 at sort 7)
M=M = VZ7°0=zM=2z2M) (Leibniz equality)

e M =M — A (equational implication) provably equivalent to
M =, M’ = A (combination of Leibniz equality and implication),
but has much more compact proof terms

@ Top proposition: T = (t=ff— 1) (type of all proof-terms)
where tt = A\z°y° .z, ff=Az°y°.y and L =Vz°z
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Conversion (1/2)
e Conversion M =g M’ parameterized by a (finite) set of equations
E = My=M{,....,.M,=M] (non oriented, well sorted)

@ Reflexivity, symmetry, transitivity 4+ base case:

Mg ar MO |
=

@ [3-conversion, recursion:

(A" . M)N =¢ Mz := N]
rec, MM'0 = M
recc M M' (sN) = M’ N (rec; M M'N)

@ Usual context rules 4+ extended rule for M = M’ — A:
A ey A

M=Mw—A =2 M=M — A
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Conversion (2/2)

@ Rules for identifying computationally equivalent propositions,
according to Curry-style proof terms (def. postponed):

VT Vy? A =g Vy°Vz" A
VT A = A (if T ¢FV (A))

A=V B 2 Vz" (A= B) (if x™ ¢FV (A))

M=M N=N+—A 2% N=N—sM=Mm—A
M=Mw— A > A

A= (M=M+—B) = M=M — (A= B)
Ve'™(M =M'— A) 2 M=M —Vz"A (if 2™ ¢FV (M, M"))

<

e Example: T = (tt=ff— 1) (type of all proof-terms)
where tt = Az°y° .z, ff=Az°y°.y and L =Vz°z

we can derive that: (A= T) = T (A any proposition)
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Deduction system (typing)
@ Proof terms: tbu = x| Ax.t | tu | « (Curry-style)
o Contexts: I' o= x1:A,...,2,: A, (A; of sort o)
Deduction /typing rules
ETHL: A
- (a:A)eT —— Az A’
ETkFx: A ETHt: A
El,z:AFt: B ETHL: A= B ETFu: A
ETHXNe.t: A= B ElkFtu: B
EM=M;TFt:A ETHtL:M=M— A
ETHt:M=M +— A ETHEL:A
ETHt: A ETHL:Vx™A
— T ¢FV (&)
ETHL:Vx™A ETkt: Alx:=NT]
EThFa: (A=B)=A4) = A

Remark: All proof-terms have type T := (tt = ff — L) (normalization fails)
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From operational semantics...
@ Krivine's A.-calculus
e M-calculus with call/cc and continuation constants:
tbu == x | Ax.t | tu | «© | ke
o An abstract machine with explicit stacks:
o Stack = list of closed terms (notation: , ')
@ Process = closed term x stack
@ Evaluation rules (weak head normalization, call by name)
(Grab) .t x u-m - tlx:=u] * =
(Push) tu *x - t x u-mw
(Call/cc) « x t-7 = t x kyp-mw
(Resume) ke + t-7 - t ox 7




Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion
0000000000 0000000e 0000000000000 0000 000000000 [e]e]e}

... to classical realizability semantics

@ Interpreting higher-order terms:

o Individuals interpreted as natural numbers [.] == IN
o Propositions interpreted as falsity values [o] := PB(II)
o Functions interpreted set-theoretically [r = o] = [o]"!
@ Parameterized by a pole 1 C A *1I (closed under anti-evaluation)

@ Interpreting logical constructions:

VarAl = | [Al:=1] [A=B] = [A]*-[B]
ve([r]
o0 a] — (1A FIMI=1]
(%] otherwise

Adequacy

If @ &z 1 Ay,...,xpn: A, Ft: B (in PAwT)
e pEE&, wilFAlp], ..., un I Aslp]
then: tlxy == uy,..., 2, = uy] Ik Blp]
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Representing conditions

@ Intuition: Represent the set of conditions as an upwards closed
subset of a meet-semilattice

o Take:
o A sort k of conditions, equipped with
e A binary product (p, q) — pq (of sort k — Kk — k)
e Aunitl (of sort k)
o A predicate p — C[p] of well-formedness (of sort k — 0)

o Typical example: finite functions from 7 to o are modelled by

O K I=T—=0—0 (binary relations C 7 X o)
o pq := A"y’ .pxyVqgxy (union of relations p and q)
ol := Ax"y’. L (empty relation)

e C[p] := “pis a finite function from 7 to ¢”
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Combinators

@ The forcing translation is parameterized by

o The sort k + closed terms -, 1, C (logical level)
o 9 closed proof terms a., a1,...,as (computational level)
a. : C[1]

a1 Vp" Vq" (Clpq] = CIp])

az : Vp" Vq® (Clpq] = Clq))

as : Vp" Vq" (Clpg] = Clqp])

as : Vp" (Clp] = C[pp))

as : Vp" Vg" Vr® (Cl(pg)r] = Clp(qr)])
as : Vp" Vq" Vr® (Clp(gr)] = C[(pa)r])
ar : Vp® (Clp] = Clpl])

as : Vp" (Clp] = C[1p])

This set is not minimal. One can take ., a1, as, aq, as, ar and define:
Qg = (] O3, Qg ‘= 3 0 (x5 O (x3 O (5 O (X3, (I8 := (3 O (x7
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Derived combinators

@ The combinators o, ...,ag can be composed:
Example: aroagoas : Vp©Vg® Vr® (Cl(pq)r] = C[rp))

@ We will also use the following derived combinators:

g = a30Q100600Q3 : Vp© Vg© vr® (C[(pq)r] = Clpr])
Q1 = asoas : Vp" Vg" Vr® (Cl(pq)r] = Clgr])
a1 = agoay : Vp" Vg" (Clpq] = Clp(pq)])

a2 = asoas ©ovp© Vq“ VT (Clp(gr)] = Cla(rp)])
Q13 = Q30Qi12 : Vp© " (Clp(gr)] = Cl(rp)q])
Qs = asoaqzoqpoaioqy : Vp~ Vq TH (CLP(QT)] = C[‘](”")D
Q15 = agoas ¢ Vp© Vq" Vr® (Clp(gr)] = Clgp])

Conclusion
[e]e]e}

e Important remark:

o Clpg] = C[p] AClg], but Clp] A Clg] # Clpg] (in general)

e Two conditions p and ¢ are compatible when C[pg]



Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras
0000000000 00000000 0000@00000000 0000 000000000

Ordering

olet p<q = Vr*(Clpr] = Clqr])

@ < is a preorder with greatest element 1:

Ac.c : V" (p<p)
Azyc.y(ze) : VP Vg Vr® (p<g=qg<r=p<r)
asg o az ;. Vpt (p<1)

Conclusion
000

@ Product pq is the g.l.b. of p and ¢:

ag : Vp”® Vg" (pg < p)
@10 © Vp* Vg® (pg < q)
Azy.ai3oyoaigozoair : VpE V" Vr® (r<p=r<qg=1r<pq)

o C (set of ‘good’ conditions) is upwards closed:

Azc.ay (z(arc)) : Vp*Vq® (p < q= Clp] = Clq))

@ Bad conditions are smallest elements:

Azec.z(ar1c) : Vp® (=Clp] = Vg" p < q)
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The auxiliary translation (_)*

e Translating sorts: 7 ~» 7%

* *

L L 0" = K—o (r—=o) = 71" >0" )

Intuition:  Propositions become sets of conditions

o Translating terms: M ~» M*

*

(z7)* = 27 0" =0
Az™ . M)* = A7 . M* s i =s
(MN)* := M*N* recy = rec,«
(VzTA)* = Ar*.va" A'r
(Ml = My — A)* = A" Mf = MQ* — (A*T‘)
(A= B)* = A" .V¢"Vr'"(r = ¢’ = Vs*(Clgs] = A*s) = B*r')
o (M[z™ := N])* = M*[z" := N*| (substitutivity)
o If M; =g My, then My =g MJ (compatibility with conversion)

V.
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The forcing translation

@ Given a proposition A and a condition p, let:

plFA = Vr*(Clpr] = A*r)

Conclusion
[e]e]e}

o The forcing translation is trivial on V and _ = _+— _:

pFVZ™A =5 Vz" (pIF A)
pIF My =My A =5 M{ =M (plFA)

o All the complexity lies in implication! (cf next slide)

General properties

Bi = Azyc.y(ze) : Vp*Ve® (q<p=(pIFA) = (¢IFA)
B2 = Xzc.z(arc) : Vp© (=Clp]=plF A)
Bs = Xxc.xz(agc) : Vp©Vg© ((pIF A) = (pgIF A))

Ba = dzc.z(awoc) : Vp©Vq"© ((¢IFA) = (pgF A))
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Forcing an implication

@ Definition of p IF A = B looks strange:

plFA=B = Vr*(Cpr]= (A= B)*r)
>, Vr*(Clpr] = Yq"Vr'"(r = ¢’ = (q IF A) = B*r"))

@ But it is equivalent to

Vg ((q IF A) = (pq F B)) (Hint: pFA=DB ¢F A)

pqIF B

Coercions between pIF A= B and VYq((¢IF A) = (pqF B))

v = Azey.zy (asc) : (Vg((gIFA)= (pgIF B)) = plIF A= B)
Y2 = Azyc.z(asc)y : (pIFA= B) = VYq ((qIFA) = (pqF B))
vz = Azyc.z(oaic)y : (pFA=B) = (pIFA) = (pFB)

Y4 = dzey.z(y(asc)) @ —A'p = plFA=B
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The meaning of the definition of “p IF A” (1/2)

Where does the definition of “p IF A" come from?
plFA = Vre(Clpr] = A*r)
The Boolean algebra generated by the forcing structure
o Given p®,r"let: p Lr := —Clpr] (“p and r are incompatible”)

@ To each set of conditions S*7° we associate its orthogonal
St o= {p® V" (Sr=p L)} (: K — o)

o Write: B = {S"7° : S=8} : (k—o0)—o
the set of all sets that are bi-orthogonally closed

Proposition

The poset (B, C) is a complete Boolean algebra

(B, C) is the Boolean algebra generated by the forcing structure (k,-,1,C)
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The meaning of the definition of “p IF A” (2/2)

e Given p,7: K, S: kK — o, recall that:
pLr = =Clpr]
St o= {pf V" (Sr=p L)}
B = {§"7° . §=6t)
Proposition

The poset (B, C) is a complete Boolean algebra

o Fact: For each set S*7°, we have S+ = S11+ hence S+t e B

@ Recall that the translation M +— M™* turns each proposition A : o
into aset A*:k — 0. Then we observe that:

{p® : pFA} = {p® : Vr®(Clpr] = A*r)}
= {p" : Vr*(mA*r=p L)}
= ((4))* € B
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Translating proof-terms

@ Krivine's program transformation ¢ — t*:

t =z = Aex.a(Ak.z(0aac) (74 k)  va=reey. z(ylags )
(tu)* = vyt u* v3 = Azyc. z (a7 €) ¥
Az t)" = 1z .t [z:= Lax][z; := B3 wiliz1) i = Aeey - 29 (e ©)
—_———

bounded var  other free vars of ¢ g =iee.2(ege)

By =Azc.x (ajgc)

o The translation inserts: ~3 (“apply”) in front of each app.
~v1 (“fold”) in front of each A

o A bound occurrence of x in t is translated as 35 (84 ),
where k is the de Bruijn index of this occurrence

Soundness (in PAw™)

If Ex1: A, ..., xp: A, Ht B
then &% z1:(pIFAL), ..., zn:(pFA,) F t* : (pIFB)




Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion
0000000000 00000000 0000000000080 0000 000000000 [e]e]e}

Translating proof-terms (optimized)

@ The latter program transformation creates bureaucratic S-redexes
due to the macros (3, B4, v3, 71 and 4

o If we reduce them, we get the following transformation:

z* T c® = Aex.x(Mk.x (arac) (Aex . k (z (a5 €))))
(tuw)* = Ae.t™ (asc)u”

Az.t)* = Aex.t" [z := Ae.z (1o ¢)] [zi := Ae. x; (ao ¢)]i=; (11 €)

bounded var other free vars of ¢

Soundness (in PAw™)

If E x1:A, ..., z:A, Ft: B
then &* z1:(pFA), ..., z,:(pIFA,) F t* : (pFB)
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Computational meaning of the transformation

o Aproofof plFA = WVre(Clpr] = A*r) is a function waiting
an argument ¢ : C[pr] (for somer) ~ computational condition

Az . t)* [z =X .u(aiocd)] * agc-m

)
(tw)* x c-m t" x anc-utew

ac x c-t-mw t x auuc-ki-ow

kf x c-t-7 t x ousc-T

where: kX = qakr (= Acx.kq(z(a15¢)))
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Krivine Forcing Abstract Machine (KFAM)

Conclusion
[e]e]e}

Terms tbu = =z | Xx.t | tu | «
Environments e = 0 | ez=c
Closures = tle] | ko | tle]” | ki
N———
Stacks ™ = < | cC-T forcing closures
@ Evaluation rules: real mode:
zle,y=c +x w - zle] * (y #Zx)
zle,x=c] * - c * T
Mz .t)le] x com > tlex=c * 7
(tu)le] » = - tle] * ule]-m
«le] x ¢ > ¢ * kp-m
ke x c- > c x T
@ Evaluation rules: forcing mode:
zle,y=¢* x co -7 - zle]* x agco-m (y £ x)
zle,x =c]* * co-7 - c x aipco- T
Az.t)e]* * corc-m > tleex=c* ¥ agco-m
(tu)le]* * co-m - tle]* x aiico-ule]* - w
«le]* * cprc-m > ¢ * aiaco-kE-m
kX % corc-m = c * Qi5¢0 T
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Adequacy in real and forcing modes

@ New abstract machine means:

o New classical realizability model (based on the KFAM)
o New adequacy results

Adequacy (real mode)

If @ &y A,...,xn A Ht: B (inPAw"')
@ pEE, calkAip], ..., eIk Anlp]
then: tfz1i =c1,...,2n =cn] IF Blp] (real mode)

@ Assuming that «; I type of a;  (for i = 6,9,10,11, 14, 15)

Adequacy (forcing mode)

If @ Ex1:A1,...,xn: Ay Ft: B (in PAw™)

0 pE=E&*, alk(p1 FAip]), ..., cu Ik (pn IF Anlp])
then: tfzi =ci,...,zn =cn]" Ik ((pop1) - pn IF Blp]) (forcing mode)
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Program extraction in presence of forcing

@ Assume that:

@ We got a proof of B under some axiom A
z:Aru:B (user program)

© Axiom A is not provable, but it can be forced using a suitable set of
forcing conditions (C, <):
Fs:(1LIFA) (system program)
@ Then:

@ We have ulz =s[]]* IF (1IF B)

@ If moreover B is an arithmetic formula
B2z =ulz=s[]"] F B
using a suitable wrapper ¢l (1IF B) = B
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Realizability algebras [Krivine '10, M. '11]

A realizability algebra & is given by:

@ 3sets A («/-terms), II («/-stacks), A xII (o/-processes)
@ 3 functions ():AXII—TII (x):AXII—AxII, (k):II— A

@ A compilation function (¢, o) — t[o] that takes:

e an open proof term ¢
e a A-substitution o closing ¢

and returns an &/-term t[o] € A

@ A set of .@7-processes Il C A xIT such that:

olx] *m el implies z[o] * 7 el
tlo,x:=a] x el implies Az .t)o] xa-m € 1L
tlo] x ufo] -7 € AL implies (tu)[o] * = el
axke-m €1 implies clo]xa-7m € 1L

a* T e I implies ke xa-7 € 1
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Realizability model of PAw™ (general case)

o Parameterized by a realizability algebra & = (A, II, AxII,..., 1)

@ Interpreting higher-order terms:

o Individuals interpreted as natural numbers [.] == IN
o Propositions interpreted as </-falsity values [o] := P(IT)
o Functions interpreted set-theoretically [r = o] = [o]"!

@ Interpreting logical constructions

Mem Al = |J [Alei=dl]  [A= B] = [A]*-[B]
ve(r]

=g = (U

Adequacy
If @ &t Ay,...,a: Ay Ft: B (in PAw™)
e pEE&, wlFAilp],. .. ux - Aglp]
then:  tlzq :=wuq,..., 2% := ug| Ik Blp)
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Examples (1/2)

@ From an implementation of the A -calculus:

Standard realizability algebra

o A = A II =1, AXIT := AxII
o kr, t-m, txm defined as themselves
o Compilation function (¢,0) + t[o] defined as substitution

e 1l := any saturated set of processes

@ We can do the same for all classical A-calculi :

o Parigot’s Au-calculus
o Curien-Herbelin's Au-calculus (CBN or CBV)

o Barbanera-Berardi's symmetric A-calculus (rh comes for free)
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Examples (2/2)

@ From a meet semi-lattice L:

o A =1II = AxII = L

o kr :=m, txm = txm := tm (productin L)

Compilation function (t, ) — t[o]:

o I := any ideal of L

Corresponding realizability model isomorphic to the
Boolean valued model on the complete Boolean algebra B(L)/ 1L
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KFAM: The realizability algebra of real mode

@ From a saturated set 1L in the KFAM:
The realizability algebra o7 = (A IL,AxII ... 1)

o A, II, AxII := sets of closures, stacks, processes of the KFAM
o kr (real mode), t-m, t¢xm defined asin the KFAM

e Compilation function: (¢, [o]) — t[o] := closure formation (real mode)
o I := itself
@ Adequacy w.r.t. the algebra o =

Adequacy in the KFAM in real mode (w.r.t. the pole 1)
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KFAM: The realizability algebra of forcing mode

o Given & = (A, TL, Ax1II,... 1) (cf prev. slide)
+ a forcing structure (k,C,-, 1)

The realizability algebra &7* = (A*,II*, A* xII*

o A" := Ax[r], II" := II x[r], A"xII" := (AxII) x []

° kirp) = (kr, p) (forcing mode)
o (t,p)(m q) = (t-m, pg)

o (t,p)*(m q) = (t*m,pq)

o Compilation function:

tlz1 := (cl, p1), ..., zk := (ck, Pr)] =
(t[zr :=ca,. .,z = ck]™, (Ap1) -+ )pk) (forcing mode)

o U™ = {(txm,p) : VeeA ((clre Cp]) = (txc-7m) € 1)
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The connection lemma

o Write [] (resp. [-]*) the interpretation w.r.t. &7 (resp. w.r.t. &7*)
o Notice that: [o]* = P [k]) =~ (P = [o*]

Connection lemma

@ There exists an iso: Y. o[]S [

@ For all closed M of sort 7: [M]* = - ([M*])

© Given a closed formula A and a pair (¢,p) € A" (= A x [])
(¢,p) lFor= A iff clko (pIFA)

@ Connection lemma + Adequacy w.r.t. the algebra &/* =

Adequacy in the KFAM in forcing mode  (w.r.t. the pole 1)
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To sum up

e From syntax...
o The program transform ¢ — t* underlying Cohen forcing :
Fi: A ~ Ft*:(plF A)
e A new machine (KFAM) with two execution modes such that

t[]* has the same behavior as t*]]

@ ... to semantics : iterated forcing
o Two realizability algebras <7 and «/* related by
(¢,p) ko= A iff clke (pIFA)

o Two adequacy lemmas (real/forcing) as instances of the general
lemma of adequacy

Conclusion
[e]e]e}
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Conclusion

Underlying methodology

New abstract machine

Classical program
e d
(no transformation)

transformation

Translation of
formulas & proofs

@ This methodology applies to the forcing translation (Cohen)
o Computational meaning of the underlying program transformation
o A new abstract machine: the KFAM

o Reminiscent from well-known tricks of computer architecture
(protection rings, virtualization, monitoring...)

@ New insights in logic:
o Logical meaning of explicit environments

o Logical meaning of a particular side effect
o Backtrack defines the limit between the stack and the memory
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Related and future work

@ How this computation model works in practical cases of forcing?
~> Need to take into account the generic set G

o Particular case when C|[p] is a data type:

Lionel Rieg: Herbrand theorem by forcing (PhD thesis) [2014]
o Variations on the same theme, in a linear setting:

Alois Brunel: The Monitoring Power of Forcing (PhD) [2014]
o Formalization of the generic set in PAw™ (general case):

Pierre Pradic (Master 2 thesis) [2015]

@ Does the same methodology apply to other logical translations?

o Pierre-Marie Pédrot: A Materialist Dialectica (PhD) [2015]

@ Use this methodology the other way around!

o Deduce new logical translations from computation models
borrowed to computer architecture, operating systems...

@ Towards an integration of side effects into the CH correspondence?
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