
Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Forcing as a program transformation

Alexandre Miquel

E
Q
U
I
P
O

. D E . L
O -
G
I
C
A

U

D
E L A

R

April 8th, 14th, 2022

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Different notions of models

Tarski models: JAK ∈ {0, 1}
Interprets classical provability (correctness/completeness)

Intuitionistic realizability: JAK ∈ P(Λ) [Kleene ’45]

Interprets intuitionistic proofs
Independence results, in intuitionistic theories
Definitely incompatible with classical logic

Cohen forcing: JAK ∈ P(P) [Cohen ’63]

Independence results, in classical theories
(Negation of the continuum hypothesis, Solovay’s axiom, etc.)

Classical realizability: JAK ∈ P(Π) [Krivine ’94, ’01, ’09, ...]

Interprets classical proofs
Generalizes Tarski models... and forcing

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Plan

1 Cohen forcing

2 Higher-order arithmetic (tuned)

3 The forcing transformation

4 The forcing machine

5 Realizability algebras

6 Conclusion

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Plan

1 Cohen forcing

2 Higher-order arithmetic (tuned)

3 The forcing transformation

4 The forcing machine

5 Realizability algebras

6 Conclusion

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

What is forcing?

A technique invented by Cohen (’63) to prove the independence
of the continuum hypothesis (CH) w.r.t. ZFC:

The continuum hypothesis (CH), Hilbert’s 1st problem

For every infinite subset S ⊆ R:

Either S is denumerable (i.e. in bijection with N)

Either S has the power of continuum (i.e. is in bijection with R)

In symbols: 2ℵ0 = ℵ1

Gödel (’38) proved ZFC 6` ¬CH introducing constructible sets

Cohen (’63) proved ZFC 6` CH introducing forcing

Related to Boolean-valued models [Scott, Solovay, Vopěnka]

Used to prove the consistency/independence of many axioms
[Solovay, Shelah, Woodin, etc.]

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

How does forcing work?

Exploit the underspecification of the powerset P(X) (X infinite)

g=lim G

P(P)

PM (P)

(P,≤) ⊇ G

On

M [G] M

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

An analogy with algebra

Set theory Algebra

Start from a ground model M Start from a ground field F

We want to add a new set approximated We want to add a new point

by the elements of a given that should be a root of a given

forcing poset (P,≤) ∈M polinomial P ∈ F [X]

This defines a ficticious This defines a ficticious

generic filter G ⊆ P (outsize M) root α of P (outsize F)

which generates around M a which generates around F a

generic extension M [G] field extension F [α]

Construction: Construction:

M [G] := M (P)/∼Ext F [α] := F [X]/PF [X]

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Example: forcing ¬CH

Aim: Force the existence of an injection h : ℵ2 → P(ω)

We shall build it as a characteristic function g : ℵ2 × ω → 2

The ideal object g is approximated in the ground model M by
elements of (P,≤) := (Fin(ℵ2 × ω, 2), ⊇) (forcing poset)

Forcing invocation: Let M [G] be the generic extension
generated by an M -generic filter G ⊆ P (always exists!)

In M [G], we let: g := limG =
⋃
G (: ℵ2 × ω ⇀ 2)

Using the M -genericity of the filter G ⊆ P , we prove that:

Partial function g : ℵ2 × ω → 2 is actually total

Corresponding function h : ℵ2 → P(ω) is actually injective

Technicalities (countable chain condition) under the carpet

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Compared properties of M and M [G]

Forcing theorem: Given a model M and a forcing poset (P,≤) ∈M ,
the generic extension M [G] always exists

M and M [G] have the very same ordinals

If Axiom of Choice (AC) holds in M , then it holds in M [G] too

Finite cardinals and ℵ0 (= ω) are the same in M and in M [G]

M [G] has in general fewer cardinals than M

Intuition: new bijections may appear in M [G] between sets in M ,
thus identifying their cardinals in M [G]

Cardinals are preserved if P fulfils the countable chain condition
(This was the case for P = Fin(E, 2) used for forcing ¬CH)

But in some circumstances, one may use forcing to kill cardinals:
Levy collapse, Solovay’s axiom, etc.

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

The proof-theoretic point of view

Construction of M [G] parameterized by a forcing poset (P,≤),
whose elements are called forcing conditions

p ≤ q reads: ‘p is stronger than q’

Internally relies on a logical translation

A 7→ p F A (‘p forces A’)

where p is a fresh variable (representing a condition)

Complex definition by induction on A, using the poset (P,≤)

Properties

1 ` A entails ` (∀p∈P)(p F A)

2 But ` (∀p∈P)(p F A) for more formulas A (depending on P)

3 ` (∀p∈P)(p 6F ⊥) (consistency)

Remark: Forcing commutes with ⊥, >, ∧ and ∀, but not with ⇒, ¬, ∨, ∃

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Kripke forcing versus Cohen forcing

Kripke models for (classical) modal logic (S4)

p F A⇒ B ≡ (p F A)⇒ (p F B)

p F �A ≡ ∀q≤ p (q F A)

p F A⇒ B p F A

p F B

⇑
‖Gödel’s translation from LJ to S4 (A ⇒ B)† ≡ �(A† ⇒ B†)

Kripke models for intuitionistic logic (LJ)

p F A⇒ B ≡
∀q≤ p ((q F A)⇒ (q F B))

p F A⇒ B q F A

q F B
q≤p

⇑
‖¬¬-translation from LK to LJ (tricky!)

Forcing in classical logic (LK)

p F A⇒ B ≡
∀q ((q F A)⇒ ∀r≤ p, q (r F B))

p F A⇒ B q F A

r F B
r≤p,q

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Cohen forcing versus classical realizability

Cohen forcing Classical realizability

JAK ∈ P(P) |A| ∈ P(Λc)

p F A t
 A

p F A⇒ B q F A

pq︸︷︷︸
g.l.b.

F B
t
 A⇒ B u
 A

tu︸︷︷︸
application

 B

p F A q F B

pq F A ∧B
t
 A u
 B
〈t, u〉
 A ∧B

A ∧B = A ∩B A ∧B 6= A ∩B

Slogan: Classical realizability = Non commutative forcing

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Combining Cohen forcing with classical realizability

Forcing in classical realizability [Krivine ’09]

Introduce realizability algebras, generalizing the λc-calculus

Discover the program transformation underlying forcing

Extend iterated forcing to classical realizability

Show how to force the existence of a well-ordering over R
(while keeping evaluation deterministic)

Computational analysis of forcing [M. ’11]

Focus on the underlying program transformation (no generic filter)

Hard-wire the program transformation into the abstract machine

Underlying methodology

Translation of
formulas & proofs

Classical program

transformation
 New abstract machine

(no transformation)

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Plan

1 Cohen forcing

2 Higher-order arithmetic (tuned)

3 The forcing transformation

4 The forcing machine

5 Realizability algebras

6 Conclusion

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Higher-order arithmetic (PAω+)

A multi-sorted language that allows to express

Individuals (sort ι)
Propositions (sort o)
Functions over individuals (ι→ ι, ι→ ι→ ι, ...)
Predicates over individuals (ι→ o, ι→ ι→ o, ...)
Predicates over predicates... ((ι→ o)→ o, ...)

Syntax of sorts (kinds) and higher-order terms

Sorts τ, σ ::= ι | o | τ → σ

Terms M,N,A,B ::= xτ | λxτ .M | MN | 0 | s | recτ
| A⇒ B | ∀xτ A | M = M ′ 7→ A

Proof terms t, u ::= (postponed)

Equational implication: M = M ′ 7→ A

Means: A if M = M ′ (equality of denotations)

> otherwise (> = type of all proofs)

Provably equivalent to: M =τ M
′ ⇒ A (Leibniz equality)

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Encodings

The logic of PAω+ is ultimately based on ⇒ and ∀.
Other constructions of logic are encoded as follows:

⊥ ≡ ∀zoz

¬A ≡ A⇒ ⊥

A ∧B ≡ ∀zo((A⇒ B ⇒ z)⇒ z)
A ∨B ≡ ∀zo((A⇒ z)⇒ (B ⇒ z)⇒ z)

∃xτA(x) ≡ ∀zo(∀xτ (A(x)⇒ z) ⇒ z)

M =τ M
′ ≡ ∀zτ→o(zM ⇒ zM ′)

(Absurdity)

(Negation)

(Conjunction)
(Disjunction

(∃ at sort τ)

(Leibniz equality)

M = M ′ 7→ A (equational implication) provably equivalent to
M =τ M

′ ⇒ A (combination of Leibniz equality and implication),
but has much more compact proof terms

Top proposition: > :≡ (tt = ff 7→ ⊥) (type of all proof-terms)

where tt ≡ λxoyo . x, ff ≡ λxoyo . y and ⊥ ≡ ∀zo z

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Conversion (1/2)

Conversion M ∼=E M ′ parameterized by a (finite) set of equations

E ≡ M1 = M ′1, . . . ,Mk = M ′k (non oriented, well sorted)

Reflexivity, symmetry, transitivity + base case:

M ∼=E M ′
(M=M′)∈E

β-conversion, recursion:

(λxτ .M)N ∼=E M [x := N]

recτ MM ′ 0 ∼=E M
recτ MM ′ (sN) ∼=E M ′N (recτ MM ′N)

Usual context rules + extended rule for M = M ′ 7→ A:

A ∼=E,M=M′ A
′

M = M ′ 7→ A ∼=E M = M ′ 7→ A′

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Conversion (2/2)

Rules for identifying computationally equivalent propositions,
according to Curry-style proof terms (def. postponed):

∀xτ ∀yσ A ∼=E ∀yσ ∀xτ A
∀xτ A ∼=E A (if xτ /∈FV (A))

A⇒ ∀xτ B ∼=E ∀xτ (A⇒ B) (if xτ /∈FV (A))

M = M ′ 7→ N = N ′ 7→ A ∼=E N = N ′ 7→M = M ′ 7→ A
M = M 7→ A ∼=E A

A⇒ (M = M ′ 7→ B) ∼=E M = M ′ 7→ (A⇒ B)

∀xτ (M = M ′ 7→ A) ∼=E M = M ′ 7→ ∀xτA (if xτ /∈FV (M,M′))

Example: > :≡ (tt = ff 7→ ⊥) (type of all proof-terms)

where tt ≡ λxoyo . x, ff ≡ λxoyo . y and ⊥ ≡ ∀zo z

we can derive that: (A⇒ >) ∼= > (A any proposition)

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Deduction system (typing)

Proof terms: t, u ::= x | λx . t | tu | cc (Curry-style)

Contexts: Γ ::= x1 : A1, . . . , xn : An (Ai of sort o)

Deduction/typing rules

E ; Γ ` x : A
(x:A)∈Γ

E ; Γ ` t : A

E ; Γ ` t : A′
A∼=EA′

E ; Γ, x : A ` t : B

E ; Γ ` λx . t : A⇒ B

E ; Γ ` t : A⇒ B E ; Γ ` u : A

E ; Γ ` tu : B

E ,M = M ′; Γ ` t : A

E ; Γ ` t : M = M ′ 7→ A

E ; Γ ` t : M = M 7→ A

E ; Γ ` t : A

E ; Γ ` t : A

E ; Γ ` t : ∀xτA
xτ /∈FV (E;Γ)

E ; Γ ` t : ∀xτA
E ; Γ ` t : A[x := Nτ]

E ; Γ ` cc : ((A⇒ B)⇒ A)⇒ A

Remark: All proof-terms have type > :≡ (tt = ff 7→ ⊥) (normalization fails)

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

From operational semantics...

Krivine’s λc-calculus

λ-calculus with call/cc and continuation constants:

t, u ::= x | λx . t | tu | cc | kπ

An abstract machine with explicit stacks:

Stack = list of closed terms (notation: π, π′)
Process = closed term ? stack

Evaluation rules (weak head normalization, call by name)

(Grab)
(Push)
(Call/cc)
(Resume)

λx . t ? u · π � t[x := u] ? π
tu ? π � t ? u · π
cc ? t · π � t ? kπ · π

kπ ? t · π′ � t ? π

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

... to classical realizability semantics

Interpreting higher-order terms:

Individuals interpreted as natural numbers JιK := N

Propositions interpreted as falsity values JoK := P(Π)
Functions interpreted set-theoretically Jτ → σK := JσKJτK

Parameterized by a pole ⊥⊥ ⊆ Λc ?Π (closed under anti-evaluation)

Interpreting logical constructions:

J∀xτAK =
⋃

v∈JτK

JA[x := v̇]K JA⇒ BK = JAK⊥⊥ · JBK

JM =M ′ 7→ AK =

{
JAK if JMK = JM ′K
∅ otherwise

Adequacy

If E ;x1 : A1, . . . , xn : An ` t : B (in PAω+)

ρ |= E , u1
 A1[ρ], . . . , un
 An[ρ]

then: t[x1 := u1, . . . , xn := un]
 B[ρ]

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Plan

1 Cohen forcing

2 Higher-order arithmetic (tuned)

3 The forcing transformation

4 The forcing machine

5 Realizability algebras

6 Conclusion

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Representing conditions

Intuition: Represent the set of conditions as an upwards closed
subset of a meet-semilattice

Take:

A sort κ of conditions, equipped with

A binary product (p, q) 7→ pq (of sort κ→ κ→ κ)

A unit 1 (of sort κ)

A predicate p 7→ C[p] of well-formedness (of sort κ→ o)

Typical example: finite functions from τ to σ are modelled by

κ :≡ τ → σ → o (binary relations ⊆ τ × σ)

pq :≡ λxτyσ . p x y ∨ q x y (union of relations p and q)

1 :≡ λxτyσ .⊥ (empty relation)

C[p] :≡ “p is a finite function from τ to σ”

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Combinators

The forcing translation is parameterized by

The sort κ + closed terms ·, 1, C (logical level)
9 closed proof terms α∗, α1, . . . , α8 (computational level)

α∗ : C[1]

α1 : ∀pκ ∀qκ (C[pq]⇒ C[p])

α2 : ∀pκ ∀qκ (C[pq]⇒ C[q])

α3 : ∀pκ ∀qκ (C[pq]⇒ C[qp])

α4 : ∀pκ (C[p]⇒ C[pp])

α5 : ∀pκ ∀qκ ∀rκ (C[(pq)r]⇒ C[p(qr)])

α6 : ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[(pq)r])

α7 : ∀pκ (C[p]⇒ C[p1])

α8 : ∀pκ (C[p]⇒ C[1p])

This set is not minimal. One can take α∗, α1, α3, α4, α5, α7 and define:
α2 :≡ α1 ◦ α3, α6 :≡ α3 ◦ α5 ◦ α3 ◦ α5 ◦ α3, α8 :≡ α3 ◦ α7

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Derived combinators

The combinators α1, . . . , α8 can be composed:

Example: α1 ◦ α6 ◦ α3 : ∀pκ ∀qκ ∀rκ (C[(pq)r]⇒ C[rp])

We will also use the following derived combinators:

α9 :≡ α3 ◦ α1 ◦ α6 ◦ α3 : ∀pκ ∀qκ ∀rκ (C[(pq)r]⇒ C[pr])
α10 :≡ α2 ◦ α5 : ∀pκ ∀qκ ∀rκ (C[(pq)r]⇒ C[qr])
α11 :≡ α9 ◦ α4 : ∀pκ ∀qκ (C[pq]⇒ C[p(pq)])
α12 :≡ α5 ◦ α3 : ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[q(rp)])
α13 :≡ α3 ◦ α12 : ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[(rp)q])
α14 :≡ α5 ◦ α3 ◦ α10 ◦ α4 ◦ α2 : ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[q(rr)])
α15 :≡ α9 ◦ α3 : ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[qp])

Important remark:

C[pq]⇒ C[p] ∧ C[q], but C[p] ∧ C[q] 6⇒ C[pq] (in general)

Two conditions p and q are compatible when C[pq]

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Ordering

Let p ≤ q :≡ ∀rκ(C[pr]⇒ C[qr])

≤ is a preorder with greatest element 1:

λc . c : ∀pκ (p ≤ p)
λxyc . y(xc) : ∀pκ ∀qκ ∀rκ (p ≤ q ⇒ q ≤ r ⇒ p ≤ r)
α8 ◦ α2 : ∀pκ (p ≤ 1)

Product pq is the g.l.b. of p and q:

α9 : ∀pκ ∀qκ (pq ≤ p)
α10 : ∀pκ ∀qκ (pq ≤ q)
λxy . α13 ◦ y ◦ α12 ◦ x ◦ α11 : ∀pκ ∀qκ ∀rκ (r ≤ p⇒ r ≤ q ⇒ r ≤ pq)

C (set of ‘good’ conditions) is upwards closed:

λxc . α1 (x (α7 c)) : ∀pκ ∀qκ (p ≤ q ⇒ C[p]⇒ C[q])

Bad conditions are smallest elements:

λxc . x (α1 c) : ∀pκ (¬C[p]⇒ ∀qκ p ≤ q)

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

The auxiliary translation ()∗

Translating sorts: τ τ∗

ι∗ :≡ ι o∗ :≡ κ→ o (τ → σ)∗ :≡ τ∗ → σ∗

Intuition: Propositions become sets of conditions

Translating terms: M M∗

(xτ)∗ :≡ xτ
∗

0∗ :≡ 0

(λxτ .M)∗ :≡ λxτ
∗
.M∗ s∗ :≡ s

(MN)∗ :≡ M∗N∗ rec∗τ :≡ recτ∗

(∀xτA)∗ :≡ λrκ .∀xτ
∗
A∗r

(M1 = M2 7→ A)∗ :≡ λrκ .M∗1 = M∗2 7→ (A∗r)

(A⇒ B)∗ :≡ λrκ .∀qκ∀r′κ(r = qr′ 7→ ∀sκ(C[qs]⇒ A∗s)⇒ B∗r′)

Lemma

(M [xτ := N])∗ ≡ M∗[xτ
∗

:= N∗] (substitutivity)

If M1
∼=E M2, then M∗1

∼=E∗ M∗2 (compatibility with conversion)

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

The forcing translation

Given a proposition A and a condition p, let:

p F A :≡ ∀rκ(C[pr]⇒ A∗r)

The forcing translation is trivial on ∀ and = 7→ :

p F ∀xτA ∼=∅ ∀xτ
∗
(p F A)

p FM1 = M2 7→ A ∼=∅ M∗1 = M∗2 7→ (p F A)

All the complexity lies in implication! (cf next slide)

General properties

β1 :≡ λxyc . y (x c) : ∀pκ ∀qκ (q ≤ p⇒ (p F A)⇒ (q F A))

β2 :≡ λxc . x (α1 c) : ∀pκ (¬C[p]⇒ p F A)

β3 :≡ λxc . x (α9 c) : ∀pκ ∀qκ ((p F A)⇒ (pq F A))

β4 :≡ λxc . x (α10 c) : ∀pκ ∀qκ ((q F A)⇒ (pq F A))

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Forcing an implication

Definition of p F A⇒ B looks strange:

p F A⇒ B ≡ ∀rκ(C[pr]⇒ (A⇒ B)∗r)

∼=∅ ∀rκ(C[pr]⇒ ∀qκ∀r′κ(r = qr′ 7→ (q F A)⇒ B∗r′))

But it is equivalent to

∀q ((q F A)⇒ (pq F B))

Hint:
p F A⇒ B q F A

pq F B



Coercions between p F A⇒ B and ∀q ((q F A)⇒ (pq F B))

γ1 :≡ λxcy . x y (α6 c) : (∀q ((q F A)⇒ (pq F B)) ⇒ p F A⇒ B)

γ2 :≡ λxyc . x (α5 c) y : (p F A⇒ B) ⇒ ∀q ((q F A)⇒ (pq F B))

γ3 :≡ λxyc . x (α11 c) y : (p F A⇒ B) ⇒ (p F A) ⇒ (p F B)

γ4 :≡ λxcy . x (y (α15 c)) : ¬A∗ p ⇒ p F A⇒ B

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

The meaning of the definition of “p F A” (1/2)

Where does the definition of “p F A” come from?

p F A :≡ ∀rκ(C[pr]⇒ A∗r)

The Boolean algebra generated by the forcing structure

Given pκ, rκ let: p ⊥ r :≡ ¬C[pr] (“p and r are incompatible”)

To each set of conditions Sκ→o we associate its orthogonal

S⊥ := {pκ : ∀rκ (S r ⇒ p ⊥ r)} (: κ→ o)

Write: B := {Sκ→o : S = S⊥⊥} : (κ→ o)→ o
the set of all sets that are bi-orthogonally closed

Proposition

The poset (B,⊆) is a complete Boolean algebra

(B,⊆) is the Boolean algebra generated by the forcing structure (κ, ·, 1, C)

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

The meaning of the definition of “p F A” (2/2)

Given p, r : κ, S : κ→ o, recall that:

p ⊥ r :≡ ¬C[pr]

S⊥ :≡ {pκ : ∀rκ (S r ⇒ p ⊥ r)}
B :≡ {Sκ→o : S = S⊥⊥}

Proposition

The poset (B,⊆) is a complete Boolean algebra

Fact: For each set Sκ→o, we have S⊥ = S⊥⊥⊥, hence S⊥ ∈ B

Recall that the translation M 7→M∗ turns each proposition A : o
into a set A∗ : κ→ o. Then we observe that:

{pκ : p F A} = {pκ : ∀rκ (C[pr]⇒ A∗r)}
= {pκ : ∀rκ (¬A∗ r ⇒ p ⊥ r)}
= ((A∗)c)⊥ ∈ B

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Translating proof-terms

Krivine’s program transformation t 7→ t∗:

x∗ ≡ x cc∗ ≡ λcx . cc (λk . x (α14 c) (γ4 k)) γ4 ≡λxcy . x (y (α15 c))

(t u)∗ ≡ γ3 t
∗ u∗ γ3 ≡λxyc . x (α11 c) y

(λx . t)∗ ≡ γ1 (λx . t∗ [x := β4 x]︸ ︷︷ ︸
bounded var

[xi := β3 xi]
n
i=1︸ ︷︷ ︸

other free vars of t

) γ1 ≡λxcy . x y (α6 c)

β3 ≡λxc . x (α9 c)

β4 ≡λxc . x (α10 c)

The translation inserts: γ3 (“apply”) in front of each app.
γ1 (“fold”) in front of each λ

A bound occurrence of x in t is translated as βk3 (β4 x),
where k is the de Bruijn index of this occurrence

Soundness (in PAω+)

If E ; x1 : A1, . . . , xn : An ` t : B
then E∗; x1 : (p F A1), . . . , xn : (p F An) ` t∗ : (p F B)

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Translating proof-terms (optimized)

The latter program transformation creates bureaucratic β-redexes
due to the macros β3, β4, γ3, γ1 and γ4

If we reduce them, we get the following transformation:

x∗ ≡ x cc∗ ≡ λcx . cc (λk . x (α14 c) (λcx . k (x (α15 c))))

(t u)∗ ≡ λc . t∗ (α6 c)u
∗

(λx . t)∗ ≡ λcx . t∗ [x := λc . x (α10 c)]︸ ︷︷ ︸
bounded var

[xi := λc . xi (α9 c)]
n
i=1︸ ︷︷ ︸

other free vars of t

(α11 c)

Soundness (in PAω+)

If E ; x1 : A1, . . . , xn : An ` t : B
then E∗; x1 : (p F A1), . . . , xn : (p F An) ` t∗ : (p F B)

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Computational meaning of the transformation

A proof of p F A ≡ ∀rκ(C[pr]⇒ A∗r) is a function waiting
an argument c : C[pr] (for some r) computational condition

(λx . t)∗ ? c · u · π � t∗[x := λc′ . u (α10 c
′)] ? α6 c · π

(tu)∗ ? c · π � t∗ ? α11 c · u∗ · π

cc∗ ? c · t · π � t ? α14 c · k∗π · π

k∗π ? c · t · π′ � t ? α15 c · π

where: k∗π ≡ γ4 kπ (≈ λcx . kπ (x (α15 c)))

Evaluation combinators

α10 : C[(pq)r] ⇒ C[qr]
α6 : C[p(qr)] ⇒ C[(pq)r]
α11 : C[pr] ⇒ C[p(pr)]
α14 : C[p(qr)] ⇒ C[q(rr)]
α15 : C[p(qr)] ⇒ C[qp]

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Plan

1 Cohen forcing

2 Higher-order arithmetic (tuned)

3 The forcing transformation

4 The forcing machine

5 Realizability algebras

6 Conclusion

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Krivine Forcing Abstract Machine (KFAM)

Terms
Environments
Closures

Stacks

t, u ::= x | λx . t | tu | cc
e ::= ∅ | e, x = c
c ::= t[e] | kπ | t[e]∗ | k∗π︸ ︷︷ ︸

forcing closuresπ ::= � | c · π

Evaluation rules: real mode:

x[e, y = c] ? π � x[e] ? π (y 6≡ x)
x[e, x = c] ? π � c ? π
(λx . t)[e] ? c · π � t[e, x = c] ? π

(tu)[e] ? π � t[e] ? u[e] · π
cc[e] ? c · π � c ? kπ · π

kπ ? c · π′ � c ? π

Evaluation rules: forcing mode:

x[e, y = c]∗ ? c0 · π � x[e]∗ ? α9 c0 · π (y 6≡ x)
x[e, x = c]∗ ? c0 · π � c ? α10 c0 · π
(λx . t)[e]∗ ? c0 · c · π � t[e, x = c]∗ ? α6 c0 · π

(tu)[e]∗ ? c0 · π � t[e]∗ ? α11 c0 · u[e]∗ · π
cc[e]∗ ? c0 · c · π � c ? α14 c0 · k∗π · π

k∗π ? c0 · c · π′ � c ? α15 c0 · π

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Adequacy in real and forcing modes

New abstract machine means:

New classical realizability model (based on the KFAM)

New adequacy results

Adequacy (real mode)

If E ;x1 : A1, . . . , xn : An ` t : B (in PAω+)

ρ |= E , c1
 A1[ρ], . . . , cn
 An[ρ]

then: t[x1 = c1, . . . , xn = cn]
 B[ρ] (real mode)

Assuming that αi
 type of αi (for i = 6, 9, 10, 11, 14, 15)

Adequacy (forcing mode)

If E ;x1 : A1, . . . , xn : An ` t : B (in PAω+)

ρ |= E∗, c1
 (p1 F A1[ρ]), . . . , cn
 (pn F An[ρ])

then: t[x1 = c1, . . . , xn = cn]∗
 ((p0p1) · · · pn F B[ρ]) (forcing mode)

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Program extraction in presence of forcing

Assume that:

1 We got a proof of B under some axiom A

x : A ` u : B (user program)

2 Axiom A is not provable, but it can be forced using a suitable set of
forcing conditions (C,≤):

` s : (1 F A) (system program)

Then:

1 We have u[x = s[]]∗
 (1 F B)

2 If moreover B is an arithmetic formula

(ξB z)[z = u[x = s[]]∗]
 B

using a suitable wrapper ξB
 (1 F B)⇒ B

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Plan

1 Cohen forcing

2 Higher-order arithmetic (tuned)

3 The forcing transformation

4 The forcing machine

5 Realizability algebras

6 Conclusion

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Realizability algebras [Krivine ’10, M. ’11]

Definition

A realizability algebra A is given by:

3 sets Λ (A -terms), Π (A -stacks), Λ ?Π (A -processes)

3 functions (·) : Λ×Π→ Π, (?) : Λ×Π→ Λ ?Π, (k) : Π→ Λ

A compilation function (t, σ) 7→ t[σ] that takes:

an open proof term t
a Λ-substitution σ closing t

and returns an A -term t[σ] ∈ Λ

A set of A -processes ⊥⊥ ⊆ Λ ?Π such that:

σ[x] ? π ∈ ⊥⊥ implies x[σ] ? π ∈ ⊥⊥
t[σ, x := a] ? π ∈ ⊥⊥ implies (λx . t)[σ] ? a · π ∈ ⊥⊥

t[σ] ? u[σ] · π ∈ ⊥⊥ implies (tu)[σ] ? π ∈ ⊥⊥
a ? kπ · π ∈ ⊥⊥ implies cc[σ] ? a · π ∈ ⊥⊥
a ? π ∈ ⊥⊥ implies kπ ? a · π′ ∈ ⊥⊥

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Realizability model of PAω+ (general case)

Parameterized by a realizability algebra A = (Λ,Π,Λ ?Π, . . . ,⊥⊥)

Interpreting higher-order terms:

Individuals interpreted as natural numbers JιK := N

Propositions interpreted as A -falsity values JoK := P(Π)
Functions interpreted set-theoretically Jτ → σK := JσKJτK

Interpreting logical constructions

J∀xτ AK =
⋃

v∈JτK

JA[x := v̇]K JA⇒ BK = JAK⊥⊥ · JBK

JM =M ′ 7→ AK =

{
JAK if JMK = JM ′K
∅ otherwise

Adequacy

If E ;x1 : A1, . . . , xk : Ak ` t : B (in PAω+)

ρ |= E , u1
 A1[ρ], . . . , uk
 Ak[ρ]

then: t[x1 := u1, . . . , xk := uk]
 B[ρ]

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Examples (1/2)

From an implementation of the λc-calculus:

Standard realizability algebra

Λ := Λ, Π := Π, Λ ?Π := Λ ?Π

kπ, t · π, t ? π defined as themselves

Compilation function (t, σ) 7→ t[σ] defined as substitution

⊥⊥ := any saturated set of processes

We can do the same for all classical λ-calculi :

Parigot’s λµ-calculus

Curien-Herbelin’s λ̄µ-calculus (CBN or CBV)

Barbanera-Berardi’s symmetric λ-calculus (t comes for free)

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Examples (2/2)

From a meet semi-lattice L:

Λ = Π = Λ ?Π := L

kπ := π, t ? π = t ? π := tπ (product in L)

Compilation function (t, σ) 7→ t[σ]:

t[σ] :=
∏

x∈FV (t)

σ(x)

⊥⊥ := any ideal of L

Corresponding realizability model isomorphic to the
Boolean valued model on the complete Boolean algebra B(L)/⊥⊥

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

KFAM: The realizability algebra of real mode

From a saturated set ⊥⊥ in the KFAM:

The realizability algebra A := (Λ,Π,Λ ?Π, . . . ,⊥⊥)

Λ , Π, Λ ?Π := sets of closures, stacks, processes of the KFAM

kπ (real mode), t · π, t ? π defined as in the KFAM

Compilation function: (t, [σ]) 7→ t[σ] := closure formation (real mode)

⊥⊥ := itself

Adequacy w.r.t. the algebra A =

Adequacy in the KFAM in real mode (w.r.t. the pole ⊥⊥)

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

KFAM: The realizability algebra of forcing mode

Given A = (Λ,Π,Λ ?Π, . . . ,⊥⊥) (cf prev. slide)

+ a forcing structure (κ,C, ·, 1)

The realizability algebra A ∗ := (Λ∗,Π∗,Λ∗ ?Π∗, . . . ,⊥⊥∗)

Λ∗ := Λ× JκK, Π∗ := Π× JκK, Λ∗ ?Π∗ := (Λ ?Π)× JκK

k(π,p) := (k∗π, p) (forcing mode)

(t, p) · (π, q) := (t · π, pq)
(t, p) ? (π, q) := (t ? π, pq)

Compilation function:

t[x1 := (c1, p1), . . . , xk := (ck, pk)] :≡
(t[x1 := c1, . . . , xk := ck]∗, ((1p1) · · ·)pk) (forcing mode)

⊥⊥∗ := {(t ? π, p) : ∀c∈Λ ((c
A C[p])⇒ (t ? c · π) ∈ ⊥⊥)

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

The connection lemma

Write J K (resp. J K∗) the interpretation w.r.t. A (resp. w.r.t. A ∗)

Notice that: JoK∗ = P(Π ? JκK) ' (P(Π))JκK = Jo∗K

Connection lemma

1 There exists an iso: ψτ : Jτ∗K ∼→ JτK∗

2 For all closed M of sort τ : JMK∗ = ψτ (JM∗K)

3 Given a closed formula A and a pair (c, p) ∈ Λ∗ (= Λ ? JκK)

(c, p)
A ∗ A iff c
A (p F A)

Connection lemma + Adequacy w.r.t. the algebra A ∗ =

Adequacy in the KFAM in forcing mode (w.r.t. the pole ⊥⊥)

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

To sum up

From syntax...

The program transform t 7→ t∗ underlying Cohen forcing :

` t : A ` t∗ : (p F A)

A new machine (KFAM) with two execution modes such that

t[]∗ has the same behavior as t∗[]

... to semantics : iterated forcing

Two realizability algebras A and A ∗ related by

(c, p)
A ∗ A iff c
A (p F A)

Two adequacy lemmas (real/forcing) as instances of the general
lemma of adequacy

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Plan

1 Cohen forcing

2 Higher-order arithmetic (tuned)

3 The forcing transformation

4 The forcing machine

5 Realizability algebras

6 Conclusion

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Conclusion

Underlying methodology

Translation of
formulas & proofs

Classical program

transformation
 New abstract machine

(no transformation)

This methodology applies to the forcing translation (Cohen)

Computational meaning of the underlying program transformation

A new abstract machine: the KFAM

Reminiscent from well-known tricks of computer architecture
(protection rings, virtualization, monitoring...)

New insights in logic:

Logical meaning of explicit environments

Logical meaning of a particular side effect

Backtrack defines the limit between the stack and the memory

Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Related and future work

How this computation model works in practical cases of forcing?

 Need to take into account the generic set G

Particular case when C[p] is a data type:
Lionel Rieg: Herbrand theorem by forcing (PhD thesis) [2014]

Variations on the same theme, in a linear setting:
Alöıs Brunel: The Monitoring Power of Forcing (PhD) [2014]

Formalization of the generic set in PAω+ (general case):
Pierre Pradic (Master 2 thesis) [2015]

Does the same methodology apply to other logical translations?

Pierre-Marie Pédrot: A Materialist Dialectica (PhD) [2015]

Use this methodology the other way around!

Deduce new logical translations from computation models
borrowed to computer architecture, operating systems...

Towards an integration of side effects into the CH correspondence?

	Cohen forcing
	

	Higher-order arithmetic (tuned)
	

	The forcing transformation
	The forcing machine
	

	Realizability algebras
	

	Conclusion
	

