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Different notions of models

Tarski models: JAK ∈ {0, 1}
Interprets classical provability (correctness/completeness)

Intuitionistic realizability: JAK ∈ P(Λ) [Kleene ’45]

Interprets intuitionistic proofs
Independence results, in intuitionistic theories
Definitely incompatible with classical logic

Cohen forcing: JAK ∈ P(P ) [Cohen ’63]

Independence results, in classical theories
(Negation of the continuum hypothesis, Solovay’s axiom, etc.)

Classical realizability: JAK ∈ P(Π) [Krivine ’94, ’01, ’09, ...]

Interprets classical proofs
Generalizes Tarski models... and forcing
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What is forcing?

A technique invented by Cohen (’63) to prove the independence
of the continuum hypothesis (CH) w.r.t. ZFC:

The continuum hypothesis (CH), Hilbert’s 1st problem

For every infinite subset S ⊆ R:

Either S is denumerable (i.e. in bijection with N)

Either S has the power of continuum (i.e. is in bijection with R)

In symbols: 2ℵ0 = ℵ1

Gödel (’38) proved ZFC 6` ¬CH introducing constructible sets

Cohen (’63) proved ZFC 6` CH introducing forcing

Related to Boolean-valued models [Scott, Solovay, Vopěnka]

Used to prove the consistency/independence of many axioms
[Solovay, Shelah, Woodin, etc.]
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How does forcing work?

Exploit the underspecification of the powerset P(X) (X infinite)

g=lim G

P(P)

PM (P)

(P,≤) ⊇ G

On

M [G] M
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An analogy with algebra

Set theory Algebra

Start from a ground model M Start from a ground field F

We want to add a new set approximated We want to add a new point

by the elements of a given that should be a root of a given

forcing poset (P,≤) ∈M polinomial P ∈ F [X]

This defines a ficticious This defines a ficticious

generic filter G ⊆ P (outsize M ) root α of P (outsize F )

which generates around M a which generates around F a

generic extension M [G] field extension F [α]

Construction: Construction:

M [G] := M (P )/∼Ext F [α] := F [X]/PF [X]
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Example: forcing ¬CH

Aim: Force the existence of an injection h : ℵ2 → P(ω)

We shall build it as a characteristic function g : ℵ2 × ω → 2

The ideal object g is approximated in the ground model M by
elements of (P,≤) := (Fin(ℵ2 × ω, 2), ⊇) (forcing poset)

Forcing invocation: Let M [G] be the generic extension
generated by an M -generic filter G ⊆ P (always exists!)

In M [G], we let: g := limG =
⋃
G (: ℵ2 × ω ⇀ 2)

Using the M -genericity of the filter G ⊆ P , we prove that:

Partial function g : ℵ2 × ω → 2 is actually total

Corresponding function h : ℵ2 → P(ω) is actually injective

Technicalities (countable chain condition) under the carpet
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Compared properties of M and M [G]

Forcing theorem: Given a model M and a forcing poset (P,≤) ∈M ,
the generic extension M [G] always exists

M and M [G] have the very same ordinals

If Axiom of Choice (AC) holds in M , then it holds in M [G] too

Finite cardinals and ℵ0 (= ω) are the same in M and in M [G]

M [G] has in general fewer cardinals than M

Intuition: new bijections may appear in M [G] between sets in M ,
thus identifying their cardinals in M [G]

Cardinals are preserved if P fulfils the countable chain condition
(This was the case for P = Fin(E, 2) used for forcing ¬CH)

But in some circumstances, one may use forcing to kill cardinals:
Levy collapse, Solovay’s axiom, etc.
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The proof-theoretic point of view

Construction of M [G] parameterized by a forcing poset (P,≤),
whose elements are called forcing conditions

p ≤ q reads: ‘p is stronger than q’

Internally relies on a logical translation

A 7→ p F A (‘p forces A’)

where p is a fresh variable (representing a condition)

Complex definition by induction on A, using the poset (P,≤)

Properties

1 ` A entails ` (∀p∈P )(p F A)

2 But ` (∀p∈P )(p F A) for more formulas A (depending on P )

3 ` (∀p∈P )(p 6F ⊥) (consistency)

Remark: Forcing commutes with ⊥, >, ∧ and ∀, but not with ⇒, ¬, ∨, ∃
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Kripke forcing versus Cohen forcing

Kripke models for (classical) modal logic (S4)

p F A⇒ B ≡ (p F A)⇒ (p F B)

p F �A ≡ ∀q≤ p (q F A)

p F A⇒ B p F A

p F B

⇑
‖Gödel’s translation from LJ to S4 (A ⇒ B)† ≡ �(A† ⇒ B†)

Kripke models for intuitionistic logic (LJ)

p F A⇒ B ≡
∀q≤ p ((q F A)⇒ (q F B))

p F A⇒ B q F A

q F B
q≤p

⇑
‖¬¬-translation from LK to LJ (tricky!)

Forcing in classical logic (LK)

p F A⇒ B ≡
∀q ((q F A)⇒ ∀r≤ p, q (r F B))

p F A⇒ B q F A

r F B
r≤p,q
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Cohen forcing versus classical realizability

Cohen forcing Classical realizability

JAK ∈ P(P ) |A| ∈ P(Λc)

p F A t 
 A

p F A⇒ B q F A

pq︸︷︷︸
g.l.b.

F B
t 
 A⇒ B u 
 A

tu︸︷︷︸
application


 B

p F A q F B

pq F A ∧B
t 
 A u 
 B
〈t, u〉 
 A ∧B

A ∧B = A ∩B A ∧B 6= A ∩B

Slogan: Classical realizability = Non commutative forcing
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Combining Cohen forcing with classical realizability

Forcing in classical realizability [Krivine ’09]

Introduce realizability algebras, generalizing the λc-calculus

Discover the program transformation underlying forcing

Extend iterated forcing to classical realizability

Show how to force the existence of a well-ordering over R
(while keeping evaluation deterministic)

Computational analysis of forcing [M. ’11]

Focus on the underlying program transformation (no generic filter)

Hard-wire the program transformation into the abstract machine

Underlying methodology

Translation of
formulas & proofs

 
Classical program

transformation
 New abstract machine

(no transformation)
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Higher-order arithmetic (PAω+)

A multi-sorted language that allows to express

Individuals (sort ι)
Propositions (sort o)
Functions over individuals (ι→ ι, ι→ ι→ ι, ...)
Predicates over individuals (ι→ o, ι→ ι→ o, ...)
Predicates over predicates... ((ι→ o)→ o, ...)

Syntax of sorts (kinds) and higher-order terms

Sorts τ, σ ::= ι | o | τ → σ

Terms M,N,A,B ::= xτ | λxτ .M | MN | 0 | s | recτ
| A⇒ B | ∀xτ A | M = M ′ 7→ A

Proof terms t, u ::= (postponed)

Equational implication: M = M ′ 7→ A

Means: A if M = M ′ (equality of denotations)

> otherwise (> = type of all proofs)

Provably equivalent to: M =τ M
′ ⇒ A (Leibniz equality)
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Encodings

The logic of PAω+ is ultimately based on ⇒ and ∀.
Other constructions of logic are encoded as follows:

⊥ ≡ ∀zoz

¬A ≡ A⇒ ⊥

A ∧B ≡ ∀zo((A⇒ B ⇒ z)⇒ z)
A ∨B ≡ ∀zo((A⇒ z)⇒ (B ⇒ z)⇒ z)

∃xτA(x) ≡ ∀zo(∀xτ (A(x)⇒ z) ⇒ z)

M =τ M
′ ≡ ∀zτ→o(zM ⇒ zM ′)

(Absurdity)

(Negation)

(Conjunction)
(Disjunction

(∃ at sort τ)

(Leibniz equality)

M = M ′ 7→ A (equational implication) provably equivalent to
M =τ M

′ ⇒ A (combination of Leibniz equality and implication),
but has much more compact proof terms

Top proposition: > :≡ (tt = ff 7→ ⊥) (type of all proof-terms)

where tt ≡ λxoyo . x, ff ≡ λxoyo . y and ⊥ ≡ ∀zo z
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Conversion (1/2)

Conversion M ∼=E M ′ parameterized by a (finite) set of equations

E ≡ M1 = M ′1, . . . ,Mk = M ′k (non oriented, well sorted)

Reflexivity, symmetry, transitivity + base case:

M ∼=E M ′
(M=M′)∈E

β-conversion, recursion:

(λxτ .M)N ∼=E M [x := N ]

recτ MM ′ 0 ∼=E M
recτ MM ′ (sN) ∼=E M ′N (recτ MM ′N)

Usual context rules + extended rule for M = M ′ 7→ A:

A ∼=E,M=M′ A
′

M = M ′ 7→ A ∼=E M = M ′ 7→ A′
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Conversion (2/2)

Rules for identifying computationally equivalent propositions,
according to Curry-style proof terms (def. postponed):

∀xτ ∀yσ A ∼=E ∀yσ ∀xτ A
∀xτ A ∼=E A (if xτ /∈FV (A))

A⇒ ∀xτ B ∼=E ∀xτ (A⇒ B) (if xτ /∈FV (A))

M = M ′ 7→ N = N ′ 7→ A ∼=E N = N ′ 7→M = M ′ 7→ A
M = M 7→ A ∼=E A

A⇒ (M = M ′ 7→ B) ∼=E M = M ′ 7→ (A⇒ B)

∀xτ (M = M ′ 7→ A) ∼=E M = M ′ 7→ ∀xτA (if xτ /∈FV (M,M′))

Example: > :≡ (tt = ff 7→ ⊥) (type of all proof-terms)

where tt ≡ λxoyo . x, ff ≡ λxoyo . y and ⊥ ≡ ∀zo z

we can derive that: (A⇒ >) ∼= > (A any proposition)
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Deduction system (typing)

Proof terms: t, u ::= x | λx . t | tu | cc (Curry-style)

Contexts: Γ ::= x1 : A1, . . . , xn : An (Ai of sort o)

Deduction/typing rules

E ; Γ ` x : A
(x:A)∈Γ

E ; Γ ` t : A

E ; Γ ` t : A′
A∼=EA′

E ; Γ, x : A ` t : B

E ; Γ ` λx . t : A⇒ B

E ; Γ ` t : A⇒ B E ; Γ ` u : A

E ; Γ ` tu : B

E ,M = M ′; Γ ` t : A

E ; Γ ` t : M = M ′ 7→ A

E ; Γ ` t : M = M 7→ A

E ; Γ ` t : A

E ; Γ ` t : A

E ; Γ ` t : ∀xτA
xτ /∈FV (E;Γ)

E ; Γ ` t : ∀xτA
E ; Γ ` t : A[x := Nτ ]

E ; Γ ` cc : ((A⇒ B)⇒ A)⇒ A

Remark: All proof-terms have type > :≡ (tt = ff 7→ ⊥) (normalization fails)
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From operational semantics...

Krivine’s λc-calculus

λ-calculus with call/cc and continuation constants:

t, u ::= x | λx . t | tu | cc | kπ

An abstract machine with explicit stacks:

Stack = list of closed terms (notation: π, π′)
Process = closed term ? stack

Evaluation rules (weak head normalization, call by name)

(Grab)
(Push)
(Call/cc)
(Resume)

λx . t ? u · π � t[x := u] ? π
tu ? π � t ? u · π
cc ? t · π � t ? kπ · π

kπ ? t · π′ � t ? π
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... to classical realizability semantics

Interpreting higher-order terms:

Individuals interpreted as natural numbers JιK := N

Propositions interpreted as falsity values JoK := P(Π)
Functions interpreted set-theoretically Jτ → σK := JσKJτK

Parameterized by a pole ⊥⊥ ⊆ Λc ?Π (closed under anti-evaluation)

Interpreting logical constructions:

J∀xτAK =
⋃

v∈JτK

JA[x := v̇]K JA⇒ BK = JAK⊥⊥ · JBK

JM =M ′ 7→ AK =

{
JAK if JMK = JM ′K
∅ otherwise

Adequacy

If E ;x1 : A1, . . . , xn : An ` t : B (in PAω+)

ρ |= E , u1 
 A1[ρ], . . . , un 
 An[ρ]

then: t[x1 := u1, . . . , xn := un] 
 B[ρ]
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Representing conditions

Intuition: Represent the set of conditions as an upwards closed
subset of a meet-semilattice

Take:

A sort κ of conditions, equipped with

A binary product (p, q) 7→ pq (of sort κ→ κ→ κ)

A unit 1 (of sort κ)

A predicate p 7→ C[p] of well-formedness (of sort κ→ o)

Typical example: finite functions from τ to σ are modelled by

κ :≡ τ → σ → o (binary relations ⊆ τ × σ)

pq :≡ λxτyσ . p x y ∨ q x y (union of relations p and q)

1 :≡ λxτyσ .⊥ (empty relation)

C[p] :≡ “p is a finite function from τ to σ”
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Combinators

The forcing translation is parameterized by

The sort κ + closed terms ·, 1, C (logical level)
9 closed proof terms α∗, α1, . . . , α8 (computational level)

α∗ : C[1]

α1 : ∀pκ ∀qκ (C[pq]⇒ C[p])

α2 : ∀pκ ∀qκ (C[pq]⇒ C[q])

α3 : ∀pκ ∀qκ (C[pq]⇒ C[qp])

α4 : ∀pκ (C[p]⇒ C[pp])

α5 : ∀pκ ∀qκ ∀rκ (C[(pq)r]⇒ C[p(qr)])

α6 : ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[(pq)r])

α7 : ∀pκ (C[p]⇒ C[p1])

α8 : ∀pκ (C[p]⇒ C[1p])

This set is not minimal. One can take α∗, α1, α3, α4, α5, α7 and define:
α2 :≡ α1 ◦ α3, α6 :≡ α3 ◦ α5 ◦ α3 ◦ α5 ◦ α3, α8 :≡ α3 ◦ α7
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Derived combinators

The combinators α1, . . . , α8 can be composed:

Example: α1 ◦ α6 ◦ α3 : ∀pκ ∀qκ ∀rκ (C[(pq)r]⇒ C[rp])

We will also use the following derived combinators:

α9 :≡ α3 ◦ α1 ◦ α6 ◦ α3 : ∀pκ ∀qκ ∀rκ (C[(pq)r]⇒ C[pr])
α10 :≡ α2 ◦ α5 : ∀pκ ∀qκ ∀rκ (C[(pq)r]⇒ C[qr])
α11 :≡ α9 ◦ α4 : ∀pκ ∀qκ (C[pq]⇒ C[p(pq)])
α12 :≡ α5 ◦ α3 : ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[q(rp)])
α13 :≡ α3 ◦ α12 : ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[(rp)q])
α14 :≡ α5 ◦ α3 ◦ α10 ◦ α4 ◦ α2 : ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[q(rr)])
α15 :≡ α9 ◦ α3 : ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[qp])

Important remark:

C[pq]⇒ C[p] ∧ C[q], but C[p] ∧ C[q] 6⇒ C[pq] (in general)

Two conditions p and q are compatible when C[pq]
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Ordering

Let p ≤ q :≡ ∀rκ(C[pr]⇒ C[qr])

≤ is a preorder with greatest element 1:

λc . c : ∀pκ (p ≤ p)
λxyc . y(xc) : ∀pκ ∀qκ ∀rκ (p ≤ q ⇒ q ≤ r ⇒ p ≤ r)
α8 ◦ α2 : ∀pκ (p ≤ 1)

Product pq is the g.l.b. of p and q:

α9 : ∀pκ ∀qκ (pq ≤ p)
α10 : ∀pκ ∀qκ (pq ≤ q)
λxy . α13 ◦ y ◦ α12 ◦ x ◦ α11 : ∀pκ ∀qκ ∀rκ (r ≤ p⇒ r ≤ q ⇒ r ≤ pq)

C (set of ‘good’ conditions) is upwards closed:

λxc . α1 (x (α7 c)) : ∀pκ ∀qκ (p ≤ q ⇒ C[p]⇒ C[q])

Bad conditions are smallest elements:

λxc . x (α1 c) : ∀pκ (¬C[p]⇒ ∀qκ p ≤ q)
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The auxiliary translation ( )∗

Translating sorts: τ  τ∗

ι∗ :≡ ι o∗ :≡ κ→ o (τ → σ)∗ :≡ τ∗ → σ∗

Intuition: Propositions become sets of conditions

Translating terms: M  M∗

(xτ )∗ :≡ xτ
∗

0∗ :≡ 0

(λxτ .M)∗ :≡ λxτ
∗
.M∗ s∗ :≡ s

(MN)∗ :≡ M∗N∗ rec∗τ :≡ recτ∗

(∀xτA)∗ :≡ λrκ .∀xτ
∗
A∗r

(M1 = M2 7→ A)∗ :≡ λrκ .M∗1 = M∗2 7→ (A∗r)

(A⇒ B)∗ :≡ λrκ .∀qκ∀r′κ(r = qr′ 7→ ∀sκ(C[qs]⇒ A∗s)⇒ B∗r′)

Lemma

(M [xτ := N ])∗ ≡ M∗[xτ
∗

:= N∗] (substitutivity)

If M1
∼=E M2, then M∗1

∼=E∗ M∗2 (compatibility with conversion)
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The forcing translation

Given a proposition A and a condition p, let:

p F A :≡ ∀rκ(C[pr]⇒ A∗r)

The forcing translation is trivial on ∀ and = 7→ :

p F ∀xτA ∼=∅ ∀xτ
∗
(p F A)

p FM1 = M2 7→ A ∼=∅ M∗1 = M∗2 7→ (p F A)

All the complexity lies in implication! (cf next slide)

General properties

β1 :≡ λxyc . y (x c) : ∀pκ ∀qκ (q ≤ p⇒ (p F A)⇒ (q F A))

β2 :≡ λxc . x (α1 c) : ∀pκ (¬C[p]⇒ p F A)

β3 :≡ λxc . x (α9 c) : ∀pκ ∀qκ ((p F A)⇒ (pq F A))

β4 :≡ λxc . x (α10 c) : ∀pκ ∀qκ ((q F A)⇒ (pq F A))



Cohen forcing Higher-order arithmetic (tuned) The forcing transformation The forcing machine Realizability algebras Conclusion

Forcing an implication

Definition of p F A⇒ B looks strange:

p F A⇒ B ≡ ∀rκ(C[pr]⇒ (A⇒ B)∗r)

∼=∅ ∀rκ(C[pr]⇒ ∀qκ∀r′κ(r = qr′ 7→ (q F A)⇒ B∗r′))

But it is equivalent to

∀q ((q F A)⇒ (pq F B))

Hint:
p F A⇒ B q F A

pq F B



Coercions between p F A⇒ B and ∀q ((q F A)⇒ (pq F B))

γ1 :≡ λxcy . x y (α6 c) : (∀q ((q F A)⇒ (pq F B)) ⇒ p F A⇒ B)

γ2 :≡ λxyc . x (α5 c) y : (p F A⇒ B) ⇒ ∀q ((q F A)⇒ (pq F B))

γ3 :≡ λxyc . x (α11 c) y : (p F A⇒ B) ⇒ (p F A) ⇒ (p F B)

γ4 :≡ λxcy . x (y (α15 c)) : ¬A∗ p ⇒ p F A⇒ B
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The meaning of the definition of “p F A” (1/2)

Where does the definition of “p F A” come from?

p F A :≡ ∀rκ(C[pr]⇒ A∗r)

The Boolean algebra generated by the forcing structure

Given pκ, rκ let: p ⊥ r :≡ ¬C[pr] (“p and r are incompatible”)

To each set of conditions Sκ→o we associate its orthogonal

S⊥ := {pκ : ∀rκ (S r ⇒ p ⊥ r)} (: κ→ o)

Write: B := {Sκ→o : S = S⊥⊥} : (κ→ o)→ o
the set of all sets that are bi-orthogonally closed

Proposition

The poset (B,⊆) is a complete Boolean algebra

(B,⊆) is the Boolean algebra generated by the forcing structure (κ, ·, 1, C)
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The meaning of the definition of “p F A” (2/2)

Given p, r : κ, S : κ→ o, recall that:

p ⊥ r :≡ ¬C[pr]

S⊥ :≡ {pκ : ∀rκ (S r ⇒ p ⊥ r)}
B :≡ {Sκ→o : S = S⊥⊥}

Proposition

The poset (B,⊆) is a complete Boolean algebra

Fact: For each set Sκ→o, we have S⊥ = S⊥⊥⊥, hence S⊥ ∈ B

Recall that the translation M 7→M∗ turns each proposition A : o
into a set A∗ : κ→ o. Then we observe that:

{pκ : p F A} = {pκ : ∀rκ (C[pr]⇒ A∗r)}
= {pκ : ∀rκ (¬A∗ r ⇒ p ⊥ r)}
= ((A∗)c)⊥ ∈ B
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Translating proof-terms

Krivine’s program transformation t 7→ t∗:

x∗ ≡ x cc∗ ≡ λcx . cc (λk . x (α14 c) (γ4 k)) γ4 ≡λxcy . x (y (α15 c))

(t u)∗ ≡ γ3 t
∗ u∗ γ3 ≡λxyc . x (α11 c) y

(λx . t)∗ ≡ γ1 (λx . t∗ [x := β4 x]︸ ︷︷ ︸
bounded var

[xi := β3 xi]
n
i=1︸ ︷︷ ︸

other free vars of t

) γ1 ≡λxcy . x y (α6 c)

β3 ≡λxc . x (α9 c)

β4 ≡λxc . x (α10 c)

The translation inserts: γ3 (“apply”) in front of each app.
γ1 (“fold”) in front of each λ

A bound occurrence of x in t is translated as βk3 (β4 x),
where k is the de Bruijn index of this occurrence

Soundness (in PAω+)

If E ; x1 : A1, . . . , xn : An ` t : B
then E∗; x1 : (p F A1), . . . , xn : (p F An) ` t∗ : (p F B)
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Translating proof-terms (optimized)

The latter program transformation creates bureaucratic β-redexes
due to the macros β3, β4, γ3, γ1 and γ4

If we reduce them, we get the following transformation:

x∗ ≡ x cc∗ ≡ λcx . cc (λk . x (α14 c) (λcx . k (x (α15 c))))

(t u)∗ ≡ λc . t∗ (α6 c)u
∗

(λx . t)∗ ≡ λcx . t∗ [x := λc . x (α10 c)]︸ ︷︷ ︸
bounded var

[xi := λc . xi (α9 c)]
n
i=1︸ ︷︷ ︸

other free vars of t

(α11 c)

Soundness (in PAω+)

If E ; x1 : A1, . . . , xn : An ` t : B
then E∗; x1 : (p F A1), . . . , xn : (p F An) ` t∗ : (p F B)
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Computational meaning of the transformation

A proof of p F A ≡ ∀rκ(C[pr]⇒ A∗r) is a function waiting
an argument c : C[pr] (for some r)  computational condition

(λx . t)∗ ? c · u · π � t∗[x := λc′ . u (α10 c
′)] ? α6 c · π

(tu)∗ ? c · π � t∗ ? α11 c · u∗ · π

cc∗ ? c · t · π � t ? α14 c · k∗π · π

k∗π ? c · t · π′ � t ? α15 c · π

where: k∗π ≡ γ4 kπ (≈ λcx . kπ (x (α15 c)))

Evaluation combinators

α10 : C[(pq)r] ⇒ C[qr]
α6 : C[p(qr)] ⇒ C[(pq)r]
α11 : C[pr] ⇒ C[p(pr)]
α14 : C[p(qr)] ⇒ C[q(rr)]
α15 : C[p(qr)] ⇒ C[qp]
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Krivine Forcing Abstract Machine (KFAM)

Terms
Environments
Closures

Stacks

t, u ::= x | λx . t | tu | cc
e ::= ∅ | e, x = c
c ::= t[e] | kπ | t[e]∗ | k∗π︸ ︷︷ ︸

forcing closuresπ ::= � | c · π

Evaluation rules: real mode:

x[e, y = c] ? π � x[e] ? π (y 6≡ x)
x[e, x = c] ? π � c ? π
(λx . t)[e] ? c · π � t[e, x = c] ? π

(tu)[e] ? π � t[e] ? u[e] · π
cc[e] ? c · π � c ? kπ · π

kπ ? c · π′ � c ? π

Evaluation rules: forcing mode:

x[e, y = c]∗ ? c0 · π � x[e]∗ ? α9 c0 · π (y 6≡ x)
x[e, x = c]∗ ? c0 · π � c ? α10 c0 · π
(λx . t)[e]∗ ? c0 · c · π � t[e, x = c]∗ ? α6 c0 · π

(tu)[e]∗ ? c0 · π � t[e]∗ ? α11 c0 · u[e]∗ · π
cc[e]∗ ? c0 · c · π � c ? α14 c0 · k∗π · π

k∗π ? c0 · c · π′ � c ? α15 c0 · π
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Adequacy in real and forcing modes

New abstract machine means:

New classical realizability model (based on the KFAM)

New adequacy results

Adequacy (real mode)

If E ;x1 : A1, . . . , xn : An ` t : B (in PAω+)

ρ |= E , c1 
 A1[ρ], . . . , cn 
 An[ρ]

then: t[x1 = c1, . . . , xn = cn] 
 B[ρ] (real mode)

Assuming that αi 
 type of αi (for i = 6, 9, 10, 11, 14, 15)

Adequacy (forcing mode)

If E ;x1 : A1, . . . , xn : An ` t : B (in PAω+)

ρ |= E∗, c1 
 (p1 F A1[ρ]), . . . , cn 
 (pn F An[ρ])

then: t[x1 = c1, . . . , xn = cn]∗ 
 ((p0p1) · · · pn F B[ρ]) (forcing mode)
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Program extraction in presence of forcing

Assume that:

1 We got a proof of B under some axiom A

x : A ` u : B (user program)

2 Axiom A is not provable, but it can be forced using a suitable set of
forcing conditions (C,≤):

` s : (1 F A) (system program)

Then:

1 We have u[x = s[]]∗ 
 (1 F B)

2 If moreover B is an arithmetic formula

(ξB z)[z = u[x = s[]]∗] 
 B

using a suitable wrapper ξB 
 (1 F B)⇒ B
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Realizability algebras [Krivine ’10, M. ’11]

Definition

A realizability algebra A is given by:

3 sets Λ (A -terms), Π (A -stacks), Λ ?Π (A -processes)

3 functions (·) : Λ×Π→ Π, (?) : Λ×Π→ Λ ?Π, (k ) : Π→ Λ

A compilation function (t, σ) 7→ t[σ] that takes:

an open proof term t
a Λ-substitution σ closing t

and returns an A -term t[σ] ∈ Λ

A set of A -processes ⊥⊥ ⊆ Λ ?Π such that:

σ[x] ? π ∈ ⊥⊥ implies x[σ] ? π ∈ ⊥⊥
t[σ, x := a] ? π ∈ ⊥⊥ implies (λx . t)[σ] ? a · π ∈ ⊥⊥

t[σ] ? u[σ] · π ∈ ⊥⊥ implies (tu)[σ] ? π ∈ ⊥⊥
a ? kπ · π ∈ ⊥⊥ implies cc[σ] ? a · π ∈ ⊥⊥
a ? π ∈ ⊥⊥ implies kπ ? a · π′ ∈ ⊥⊥
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Realizability model of PAω+ (general case)

Parameterized by a realizability algebra A = (Λ,Π,Λ ?Π, . . . ,⊥⊥)

Interpreting higher-order terms:

Individuals interpreted as natural numbers JιK := N

Propositions interpreted as A -falsity values JoK := P(Π)
Functions interpreted set-theoretically Jτ → σK := JσKJτK

Interpreting logical constructions

J∀xτ AK =
⋃

v∈JτK

JA[x := v̇]K JA⇒ BK = JAK⊥⊥ · JBK

JM =M ′ 7→ AK =

{
JAK if JMK = JM ′K
∅ otherwise

Adequacy

If E ;x1 : A1, . . . , xk : Ak ` t : B (in PAω+)

ρ |= E , u1 
 A1[ρ], . . . , uk 
 Ak[ρ]

then: t[x1 := u1, . . . , xk := uk] 
 B[ρ]
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Examples (1/2)

From an implementation of the λc-calculus:

Standard realizability algebra

Λ := Λ, Π := Π, Λ ?Π := Λ ?Π

kπ, t · π, t ? π defined as themselves

Compilation function (t, σ) 7→ t[σ] defined as substitution

⊥⊥ := any saturated set of processes

We can do the same for all classical λ-calculi :

Parigot’s λµ-calculus

Curien-Herbelin’s λ̄µ-calculus (CBN or CBV)

Barbanera-Berardi’s symmetric λ-calculus (t comes for free)
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Examples (2/2)

From a meet semi-lattice L:

Λ = Π = Λ ?Π := L

kπ := π, t ? π = t ? π := tπ (product in L)

Compilation function (t, σ) 7→ t[σ]:

t[σ] :=
∏

x∈FV (t)

σ(x)

⊥⊥ := any ideal of L

Corresponding realizability model isomorphic to the
Boolean valued model on the complete Boolean algebra B(L)/⊥⊥
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KFAM: The realizability algebra of real mode

From a saturated set ⊥⊥ in the KFAM:

The realizability algebra A := (Λ,Π,Λ ?Π, . . . ,⊥⊥)

Λ , Π, Λ ?Π := sets of closures, stacks, processes of the KFAM

kπ (real mode), t · π, t ? π defined as in the KFAM

Compilation function: (t, [σ]) 7→ t[σ] := closure formation (real mode)

⊥⊥ := itself

Adequacy w.r.t. the algebra A =

Adequacy in the KFAM in real mode (w.r.t. the pole ⊥⊥)
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KFAM: The realizability algebra of forcing mode

Given A = (Λ,Π,Λ ?Π, . . . ,⊥⊥) (cf prev. slide)

+ a forcing structure (κ,C, ·, 1)

The realizability algebra A ∗ := (Λ∗,Π∗,Λ∗ ?Π∗, . . . ,⊥⊥∗)

Λ∗ := Λ× JκK, Π∗ := Π× JκK, Λ∗ ?Π∗ := (Λ ?Π)× JκK

k(π,p) := (k∗π, p) (forcing mode)

(t, p) · (π, q) := (t · π, pq)
(t, p) ? (π, q) := (t ? π, pq)

Compilation function:

t[x1 := (c1, p1), . . . , xk := (ck, pk)] :≡
(t[x1 := c1, . . . , xk := ck]∗, ((1p1) · · · )pk) (forcing mode)

⊥⊥∗ := {(t ? π, p) : ∀c∈Λ ((c 
A C[p])⇒ (t ? c · π) ∈ ⊥⊥)
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The connection lemma

Write J K (resp. J K∗) the interpretation w.r.t. A (resp. w.r.t. A ∗)

Notice that: JoK∗ = P(Π ? JκK) ' (P(Π))JκK = Jo∗K

Connection lemma

1 There exists an iso: ψτ : Jτ∗K ∼→ JτK∗

2 For all closed M of sort τ : JMK∗ = ψτ (JM∗K)

3 Given a closed formula A and a pair (c, p) ∈ Λ∗ (= Λ ? JκK)

(c, p) 
A ∗ A iff c 
A (p F A)

Connection lemma + Adequacy w.r.t. the algebra A ∗ =

Adequacy in the KFAM in forcing mode (w.r.t. the pole ⊥⊥)
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To sum up

From syntax...

The program transform t 7→ t∗ underlying Cohen forcing :

` t : A  ` t∗ : (p F A)

A new machine (KFAM) with two execution modes such that

t[]∗ has the same behavior as t∗[]

... to semantics : iterated forcing

Two realizability algebras A and A ∗ related by

(c, p) 
A ∗ A iff c 
A (p F A)

Two adequacy lemmas (real/forcing) as instances of the general
lemma of adequacy
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Conclusion

Underlying methodology

Translation of
formulas & proofs

 
Classical program

transformation
 New abstract machine

(no transformation)

This methodology applies to the forcing translation (Cohen)

Computational meaning of the underlying program transformation

A new abstract machine: the KFAM

Reminiscent from well-known tricks of computer architecture
(protection rings, virtualization, monitoring...)

New insights in logic:

Logical meaning of explicit environments

Logical meaning of a particular side effect

Backtrack defines the limit between the stack and the memory
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Related and future work

How this computation model works in practical cases of forcing?

 Need to take into account the generic set G

Particular case when C[p] is a data type:
Lionel Rieg: Herbrand theorem by forcing (PhD thesis) [2014]

Variations on the same theme, in a linear setting:
Alöıs Brunel: The Monitoring Power of Forcing (PhD) [2014]

Formalization of the generic set in PAω+ (general case):
Pierre Pradic (Master 2 thesis) [2015]

Does the same methodology apply to other logical translations?

Pierre-Marie Pédrot: A Materialist Dialectica (PhD) [2015]

Use this methodology the other way around!

Deduce new logical translations from computation models
borrowed to computer architecture, operating systems...

Towards an integration of side effects into the CH correspondence?
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