

Forcing as a program transformation

Alexandre Miquel

UNIVERSIDAD
DE LA REPUBLICA
URUGUAY

April 8th, 14th, 2022

Different notions of models

- **Tarski models:** $\llbracket A \rrbracket \in \{0, 1\}$
 - Interprets **classical provability** (correctness/completeness)
- **Intuitionistic realizability:** $\llbracket A \rrbracket \in \mathfrak{P}(\Lambda)$ [Kleene '45]
 - Interprets **intuitionistic proofs**
 - Independence results, in intuitionistic theories
 - Definitely incompatible with classical logic
- **Cohen forcing:** $\llbracket A \rrbracket \in \mathfrak{P}(P)$ [Cohen '63]
 - Independence results, in classical theories
(Negation of the continuum hypothesis, Solovay's axiom, etc.)
- **Classical realizability:** $\llbracket A \rrbracket \in \mathfrak{P}(\Pi)$ [Krivine '94, '01, '09, ...]
 - Interprets **classical proofs**
 - Generalizes Tarski models... and forcing

Plan

- 1 Cohen forcing
- 2 Higher-order arithmetic (tuned)
- 3 The forcing transformation
- 4 The forcing machine
- 5 Realizability algebras
- 6 Conclusion

Plan

- 1 Cohen forcing
- 2 Higher-order arithmetic (tuned)
- 3 The forcing transformation
- 4 The forcing machine
- 5 Realizability algebras
- 6 Conclusion

What is forcing?

- A technique invented by Cohen ('63) to prove the independence of the **continuum hypothesis (CH)** w.r.t. ZFC:

The continuum hypothesis (CH), Hilbert's 1st problem

For every infinite subset $S \subseteq \mathbb{R}$:

- Either S is **denumerable** (i.e. in bijection with \mathbb{N})
- Either S has the **power of continuum** (i.e. is in bijection with \mathbb{R})

In symbols:

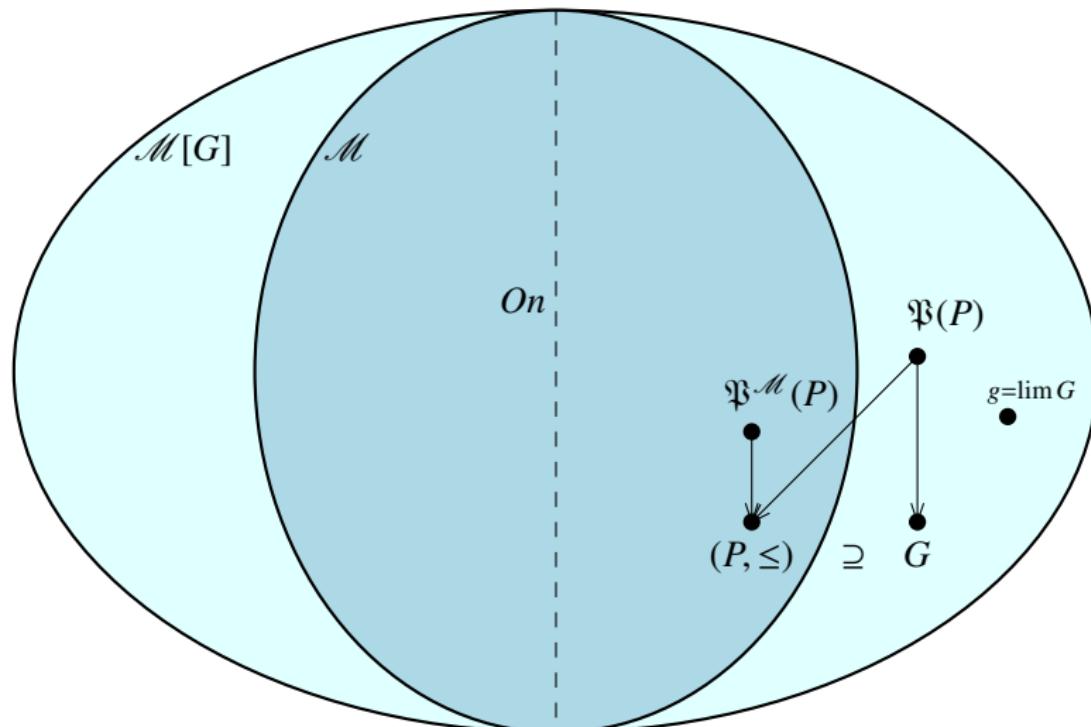
$$2^{\aleph_0} = \aleph_1$$

- Gödel ('38) proved $\text{ZFC} \not\vdash \neg\text{CH}$ introducing **constructible sets**
- Cohen ('63) proved $\text{ZFC} \not\vdash \text{CH}$ introducing **forcing**
- Related to **Boolean-valued models** [Scott, Solovay, Vopěnka]
- Used to prove the consistency/independence of many axioms [Solovay, Shelah, Woodin, etc.]

How does forcing work?

Exploit the underspecification of the powerset $\mathfrak{P}(X)$

(X infinite)



An analogy with algebra

Set theory

Start from a ground model \mathcal{M}

We want to add a new set approximated
by the elements of a given
forcing poset $(P, \leq) \in \mathcal{M}$

This defines a fictitious
generic filter $G \subseteq P$ (outsize \mathcal{M})

which generates around \mathcal{M} a
generic extension $\mathcal{M}[G]$

Construction:
 $\mathcal{M}[G] := \mathcal{M}^{(P)}/\sim_{\text{Ext}}$

Algebra

Start from a ground field F

We want to add a new point
that should be a root of a given
polynomial $P \in F[X]$

This defines a fictitious
root α of P (outsize F)

which generates around F a
field extension $F[\alpha]$

Construction:
 $F[\alpha] := F[X]/P[X]$

Example: forcing $\neg\text{CH}$

- **Aim:** Force the existence of an **injection** $h : \aleph_2 \rightarrow \mathfrak{P}(\omega)$
We shall build it as a characteristic function $g : \aleph_2 \times \omega \rightarrow 2$
- The ideal object g is approximated in the ground model \mathcal{M} by elements of $(P, \leq) := (\text{Fin}(\aleph_2 \times \omega, 2), \supseteq)$ **(forcing poset)**
- **Forcing invocation:** Let $\mathcal{M}[G]$ be the generic extension generated by an \mathcal{M} -generic filter $G \subseteq P$ **(always exists!)**
- In $\mathcal{M}[G]$, we let: $g := \lim G = \bigcup G$ ($: \aleph_2 \times \omega \rightarrow 2$)
Using the \mathcal{M} -genericity of the filter $G \subseteq P$, we prove that:
 - Partial function $g : \aleph_2 \times \omega \rightarrow 2$ is actually **total**
 - Corresponding function $h : \aleph_2 \rightarrow \mathfrak{P}(\omega)$ is actually **injective**

Technicalities (countable chain condition) under the carpet

Compared properties of \mathcal{M} and $\mathcal{M}[G]$

Forcing theorem: Given a model \mathcal{M} and a forcing poset $(P, \leq) \in \mathcal{M}$, the generic extension $\mathcal{M}[G]$ always exists

- \mathcal{M} and $\mathcal{M}[G]$ have the very same ordinals
- If Axiom of Choice (AC) holds in \mathcal{M} , then it holds in $\mathcal{M}[G]$ too
- Finite cardinals and \aleph_0 ($= \omega$) are the same in \mathcal{M} and in $\mathcal{M}[G]$
- $\mathcal{M}[G]$ has in general **fewer cardinals** than \mathcal{M}
 - **Intuition:** new bijections may appear in $\mathcal{M}[G]$ between sets in \mathcal{M} , thus identifying their cardinals in $\mathcal{M}[G]$
 - Cardinals are preserved if P fulfils the **countable chain condition** (This was the case for $P = \text{Fin}(E, 2)$ used for forcing $\neg\text{CH}$)
 - But in some circumstances, one may use forcing to kill cardinals: Levy collapse, Solovay's axiom, etc.

The proof-theoretic point of view

- Construction of $\mathcal{M}[G]$ parameterized by a **forcing poset** (P, \leq) , whose elements are called **forcing conditions**
 - $p \leq q$ reads: 'p is stronger than q'
- Internally relies on a logical translation

$$A \mapsto p \mathbb{F} A \quad ('p \text{ forces } A')$$

where p is a fresh variable (representing a condition)

- Complex definition by induction on A , using the poset (P, \leq)

Properties

- ① $\vdash A$ entails $\vdash (\forall p \in P)(p \mathbb{F} A)$
- ② But $\vdash (\forall p \in P)(p \mathbb{F} A)$ for more formulas A (depending on P)
- ③ $\vdash (\forall p \in P)(p \mathbb{F} \perp)$ (consistency)

- **Remark:** Forcing commutes with \perp , \top , \wedge and \forall , but **not with \Rightarrow , \neg , \vee , \exists**

Kripke forcing versus Cohen forcing

Kripke models for (classical) modal logic (S4)

$$\begin{array}{lcl} p \text{ IF } A \Rightarrow B & \equiv & (p \text{ IF } A) \Rightarrow (p \text{ IF } B) \\ p \text{ IF } \Box A & \equiv & \forall q \leq p (q \text{ IF } A) \end{array}$$

$$\frac{p \text{ IF } A \Rightarrow B \quad p \text{ IF } A}{p \text{ IF } B}$$

\uparrow
Gödel's translation from LJ to S4
 \Downarrow

$$(A \Rightarrow B)^\dagger \equiv \Box(A^\dagger \Rightarrow B^\dagger)$$

Kripke models for intuitionistic logic (LJ)

$$\begin{array}{lcl} p \text{ IF } A \Rightarrow B & \equiv & \\ \forall q \leq p ((q \text{ IF } A) \Rightarrow (q \text{ IF } B)) & & \end{array}$$

$$\frac{p \text{ IF } A \Rightarrow B \quad q \text{ IF } A}{q \text{ IF } B} \quad q \leq p$$

\uparrow
¬¬-translation from LK to LJ
 \Downarrow

$$(tricky!)$$

Forcing in classical logic (LK)

$$\begin{array}{lcl} p \text{ IF } A \Rightarrow B & \equiv & \\ \forall q ((q \text{ IF } A) \Rightarrow \forall r \leq p, q \text{ (} r \text{ IF } B)) & & \end{array}$$

$$\frac{p \text{ IF } A \Rightarrow B \quad q \text{ IF } A}{r \text{ IF } B} \quad r \leq p, q$$

Cohen forcing versus classical realizability

Cohen forcing

$$[\![A]\!] \in \mathfrak{P}(P)$$

$$p \Vdash A$$

$$\frac{p \Vdash A \Rightarrow B \quad q \Vdash A}{\underbrace{pq \Vdash B}_{\text{g.l.b.}}}$$

$$\frac{p \Vdash A \quad q \Vdash B}{pq \Vdash A \wedge B}$$

$$A \wedge B = A \cap B$$

Classical realizability

$$|A| \in \mathfrak{P}(\Lambda_c)$$

$$t \Vdash A$$

$$\frac{t \Vdash A \Rightarrow B \quad u \Vdash A}{\underbrace{tu \Vdash B}_{\text{application}}}$$

$$\frac{t \Vdash A \quad u \Vdash B}{\langle t, u \rangle \Vdash A \wedge B}$$

$$A \wedge B \neq A \cap B$$

- **Slogan:** Classical realizability = Non commutative forcing

Combining Cohen forcing with classical realizability

• Forcing in classical realizability

[Krivine '09]

- Introduce **realizability algebras**, generalizing the λ_c -calculus
- Discover the program transformation underlying forcing
- Extend iterated forcing to classical realizability
- Show how to force the existence of a well-ordering over \mathbb{IR} (while keeping evaluation deterministic)

• Computational analysis of forcing

[M. '11]

- Focus on the underlying program transformation (no generic filter)
- Hard-wire the program transformation into the abstract machine

Underlying methodology

Translation of
formulas & proofs

~~~

Classical program  
transformation

~~~

New abstract machine
(no transformation)

Plan

- 1 Cohen forcing
- 2 Higher-order arithmetic (tuned)
- 3 The forcing transformation
- 4 The forcing machine
- 5 Realizability algebras
- 6 Conclusion

Higher-order arithmetic (PA^{ω^+})

- A multi-sorted language that allows to express

- Individuals $(\text{sort } \iota)$
- Propositions $(\text{sort } o)$
- Functions over individuals $(\iota \rightarrow \iota, \quad \iota \rightarrow \iota \rightarrow \iota, \quad \dots)$
- Predicates over individuals $(\iota \rightarrow o, \quad \iota \rightarrow \iota \rightarrow o, \quad \dots)$
- Predicates over predicates... $((\iota \rightarrow o) \rightarrow o, \quad \dots)$

Syntax of sorts (kinds) and higher-order terms

Sorts $\tau, \sigma ::= \iota \quad | \quad o \quad | \quad \tau \rightarrow \sigma$

Terms $M, N, A, B ::= x^\tau \quad | \quad \lambda x^\tau . M \quad | \quad MN \quad | \quad 0 \quad | \quad s \quad | \quad \text{rec}_\tau$
 $\quad \quad \quad | \quad A \Rightarrow B \quad | \quad \forall x^\tau A \quad | \quad \textcolor{red}{M = M' \mapsto A}$

Proof terms $t, u ::= (\text{postponed})$

- Equational implication: $\textcolor{red}{M = M' \mapsto A}$

- Means: A if $M = M'$ $(\text{equality of denotations})$
 \top otherwise $(\top = \text{type of all proofs})$
- Provably equivalent to: $M =_\tau M' \Rightarrow A$ $(\text{Leibniz equality})$

Encodings

- The logic of PA^{ω^+} is ultimately based on \Rightarrow and \forall .
Other constructions of logic are encoded as follows:

$$\perp \equiv \forall z^o z \quad (\text{Absurdity})$$

$$\neg A \equiv A \Rightarrow \perp \quad (\text{Negation})$$

$$A \wedge B \equiv \forall z^o((A \Rightarrow B \Rightarrow z) \Rightarrow z) \quad (\text{Conjunction})$$

$$A \vee B \equiv \forall z^o((A \Rightarrow z) \Rightarrow (B \Rightarrow z) \Rightarrow z) \quad (\text{Disjunction})$$

$$\exists x^\tau A(x) \equiv \forall z^o(\forall x^\tau(A(x) \Rightarrow z) \Rightarrow z) \quad (\exists \text{ at sort } \tau)$$

$$M =_\tau M' \equiv \forall z^{\tau \rightarrow o}(z M \Rightarrow z M') \quad (\text{Leibniz equality})$$

- $M = M' \mapsto A$ (**equational implication**) provably equivalent to $M =_\tau M' \Rightarrow A$ (combination of Leibniz equality and implication), but has much more compact proof terms
- Top proposition: $\top : \equiv (\text{tt} = \text{ff} \mapsto \perp)$ (type of all proof-terms)
where $\text{tt} \equiv \lambda x^o y^o . x$, $\text{ff} \equiv \lambda x^o y^o . y$ and $\perp \equiv \forall z^o z$

Conversion

(1/2)

- Conversion $M \cong_{\mathcal{E}} M'$ parameterized by a (finite) set of equations

$$\mathcal{E} \equiv M_1 = M'_1, \dots, M_k = M'_k \quad (\text{non oriented, well sorted})$$

- Reflexivity, symmetry, transitivity + base case:

$$\frac{}{M \cong_{\mathcal{E}} M'} \quad (M = M') \in \mathcal{E}$$

- β -conversion, recursion:

$$\begin{aligned} (\lambda x^{\tau} . M)N &\cong_{\mathcal{E}} M[x := N] \\ \text{rec}_{\tau} M M' 0 &\cong_{\mathcal{E}} M \\ \text{rec}_{\tau} M M' (\text{s } N) &\cong_{\mathcal{E}} M' N (\text{rec}_{\tau} M M' N) \end{aligned}$$

- Usual context rules + extended rule for $M = M' \mapsto A$:

$$\frac{A \cong_{\mathcal{E}, M=M'} A'}{M = M' \mapsto A \cong_{\mathcal{E}} M = M' \mapsto A'}$$

Conversion

(2/2)

- Rules for identifying computationally equivalent propositions, according to Curry-style proof terms (def. postponed):

$$\begin{array}{lcl} \forall x^\tau \forall y^\sigma A & \cong_{\mathcal{E}} & \forall y^\sigma \forall x^\tau A \\ \forall x^\tau A & \cong_{\mathcal{E}} & A \end{array} \quad (\text{if } x^\tau \notin FV(A))$$

$$A \Rightarrow \forall x^\tau B \cong_{\mathcal{E}} \forall x^\tau (A \Rightarrow B) \quad (\text{if } x^\tau \notin FV(A))$$

$$\begin{array}{lcl} M = M' \mapsto N = N' \mapsto A & \cong_{\mathcal{E}} & N = N' \mapsto M = M' \mapsto A \\ M = M \mapsto A & \cong_{\mathcal{E}} & A \end{array}$$

$$A \Rightarrow (M = M' \mapsto B) \cong_{\mathcal{E}} M = M' \mapsto (A \Rightarrow B)$$

$$\forall x^\tau (M = M' \mapsto A) \cong_{\mathcal{E}} M = M' \mapsto \forall x^\tau A \quad (\text{if } x^\tau \notin FV(M, M'))$$

- Example: $\top : \equiv (tt = ff \mapsto \perp)$ (type of all proof-terms)

where $tt \equiv \lambda x^o y^o . x$, $ff \equiv \lambda x^o y^o . y$ and $\perp \equiv \forall z^o z$

we can derive that: $(A \Rightarrow \top) \cong \top$ (A any proposition)

Deduction system (typing)

- Proof terms: $t, u ::= x \mid \lambda x . t \mid tu \mid \mathbf{c}$ (Curry-style)
- Contexts: $\Gamma ::= x_1 : A_1, \dots, x_n : A_n$ (A_i of sort o)

Deduction/typing rules

$$\frac{}{\mathcal{E}; \Gamma \vdash x : A} \quad (x:A) \in \Gamma$$

$$\frac{\mathcal{E}; \Gamma \vdash t : A \quad A \cong_{\mathcal{E}} A'}{\mathcal{E}; \Gamma \vdash t : A'}$$

$$\frac{\mathcal{E}; \Gamma, x : A \vdash t : B}{\mathcal{E}; \Gamma \vdash \lambda x . t : A \Rightarrow B}$$

$$\frac{\mathcal{E}; \Gamma \vdash t : A \Rightarrow B \quad \mathcal{E}; \Gamma \vdash u : A}{\mathcal{E}; \Gamma \vdash tu : B}$$

$$\frac{\mathcal{E}, M = M'; \Gamma \vdash t : A}{\mathcal{E}; \Gamma \vdash t : M = M' \mapsto A}$$

$$\frac{\mathcal{E}; \Gamma \vdash t : M = M \mapsto A}{\mathcal{E}; \Gamma \vdash t : A}$$

$$\frac{\mathcal{E}; \Gamma \vdash t : A \quad x^\tau \notin FV(\mathcal{E}; \Gamma)}{\mathcal{E}; \Gamma \vdash t : \forall x^\tau A}$$

$$\frac{\mathcal{E}; \Gamma \vdash t : \forall x^\tau A}{\mathcal{E}; \Gamma \vdash t : A[x := N^\tau]}$$

$$\frac{}{\mathcal{E}; \Gamma \vdash \mathbf{c} : ((A \Rightarrow B) \Rightarrow A) \Rightarrow A}$$

Remark: All proof-terms have type $\top \equiv (\text{tt} = \text{ff} \mapsto \perp)$ (normalization fails)

From operational semantics...

- Krivine's λ_c -calculus

- λ -calculus with call/cc and **continuation constants**:

$$t, u ::= x \mid \lambda x . t \mid tu \mid \infty \mid k_\pi$$

- An abstract machine with explicit stacks:

- Stack = list of closed terms (notation: π, π')
- Process = closed term \star stack

- Evaluation rules

(weak head normalization, call by name)

(Grab)	$\lambda x . t \star u \cdot \pi$	\succ	$t[x := u] \star \pi$
(Push)	$tu \star \pi$	\succ	$t \star u \cdot \pi$
(Call/cc)	$\infty \star t \cdot \pi$	\succ	$t \star k_\pi \cdot \pi$
(Resume)	$k_\pi \star t \cdot \pi'$	\succ	$t \star \pi$

... to classical realizability semantics

- Interpreting higher-order terms:

- Individuals interpreted as natural numbers
- Propositions interpreted as **falsity values**
- Functions interpreted set-theoretically

$$\begin{aligned} \llbracket \iota \rrbracket &:= \mathbb{N} \\ \llbracket o \rrbracket &:= \mathfrak{P}(\Pi) \\ \llbracket \tau \rightarrow \sigma \rrbracket &:= \llbracket \sigma \rrbracket^{\llbracket \tau \rrbracket} \end{aligned}$$

- Parameterized by a pole $\perp \subseteq \Lambda_c \star \Pi$

(closed under anti-evaluation)

- Interpreting logical constructions:

$$\begin{aligned} \llbracket \forall x^\tau A \rrbracket &= \bigcup_{v \in \llbracket \tau \rrbracket} \llbracket A[x := v] \rrbracket & \llbracket A \Rightarrow B \rrbracket &= \llbracket A \rrbracket^\perp \cdot \llbracket B \rrbracket \\ \llbracket M = M' \mapsto A \rrbracket &= \begin{cases} \llbracket A \rrbracket & \text{if } \llbracket M \rrbracket = \llbracket M' \rrbracket \\ \emptyset & \text{otherwise} \end{cases} \end{aligned}$$

Adequacy

If

- $\mathcal{E}; x_1 : A_1, \dots, x_n : A_n \vdash t : B$ (in $\text{PA}\omega^+$)
- $\rho \models \mathcal{E}, u_1 \Vdash A_1[\rho], \dots, u_n \Vdash A_n[\rho]$

then: $t[x_1 := u_1, \dots, x_n := u_n] \Vdash B[\rho]$

Cohen forcing
oooooooooooo

Higher-order arithmetic (tuned)
oooooooooooo

The forcing transformation
●oooooooooooo

The forcing machine
oooo

Realizability algebras
oooooooooooo

Conclusion
ooo

Plan

- 1 Cohen forcing
- 2 Higher-order arithmetic (tuned)
- 3 The forcing transformation
- 4 The forcing machine
- 5 Realizability algebras
- 6 Conclusion

Representing conditions

- **Intuition:** Represent the set of conditions as an upwards closed subset of a meet-semilattice
- Take:
 - A sort κ of conditions, equipped with
 - A binary product $(p, q) \mapsto pq$ (of sort $\kappa \rightarrow \kappa \rightarrow \kappa$)
 - A unit 1 (of sort κ)
 - A predicate $p \mapsto C[p]$ of well-formedness (of sort $\kappa \rightarrow o$)
- **Typical example:** finite functions from τ to σ are modelled by
 - $\kappa : \equiv \tau \rightarrow \sigma \rightarrow o$ (binary relations $\subseteq \tau \times \sigma$)
 - $pq : \equiv \lambda x^\tau y^\sigma . p x y \vee q x y$ (union of relations p and q)
 - $1 : \equiv \lambda x^\tau y^\sigma . \perp$ (empty relation)
 - $C[p] : \equiv "p \text{ is a finite function from } \tau \text{ to } \sigma"$

Combinators

- The forcing translation is parameterized by

- The sort $\kappa + \text{closed terms } \cdot, 1, C$ (logical level)
- 9 closed proof terms $\alpha_*, \alpha_1, \dots, \alpha_8$ (computational level)

$$\alpha_* : C[1]$$

$$\alpha_1 : \forall p^\kappa \forall q^\kappa (C[pq] \Rightarrow C[p])$$

$$\alpha_2 : \forall p^\kappa \forall q^\kappa (C[pq] \Rightarrow C[q])$$

$$\alpha_3 : \forall p^\kappa \forall q^\kappa (C[pq] \Rightarrow C[qp])$$

$$\alpha_4 : \forall p^\kappa (C[p] \Rightarrow C[pp])$$

$$\alpha_5 : \forall p^\kappa \forall q^\kappa \forall r^\kappa (C[(pq)r] \Rightarrow C[p(qr)])$$

$$\alpha_6 : \forall p^\kappa \forall q^\kappa \forall r^\kappa (C[p(qr)] \Rightarrow C[(pq)r])$$

$$\alpha_7 : \forall p^\kappa (C[p] \Rightarrow C[p1])$$

$$\alpha_8 : \forall p^\kappa (C[p] \Rightarrow C[1p])$$

This set is not minimal. One can take $\alpha_*, \alpha_1, \alpha_3, \alpha_4, \alpha_5, \alpha_7$ and define:
 $\alpha_2 := \alpha_1 \circ \alpha_3$, $\alpha_6 := \alpha_3 \circ \alpha_5 \circ \alpha_3 \circ \alpha_5 \circ \alpha_3$, $\alpha_8 := \alpha_3 \circ \alpha_7$

Derived combinators

- The combinators $\alpha_1, \dots, \alpha_8$ can be composed:

Example: $\alpha_1 \circ \alpha_6 \circ \alpha_3 : \forall p^\kappa \forall q^\kappa \forall r^\kappa (C[(pq)r] \Rightarrow C[rp])$

- We will also use the following derived combinators:

α_9	\equiv	$\alpha_3 \circ \alpha_1 \circ \alpha_6 \circ \alpha_3$	$: \forall p^\kappa \forall q^\kappa \forall r^\kappa (C[(pq)r] \Rightarrow C[pr])$
α_{10}	\equiv	$\alpha_2 \circ \alpha_5$	$: \forall p^\kappa \forall q^\kappa \forall r^\kappa (C[(pq)r] \Rightarrow C[qr])$
α_{11}	\equiv	$\alpha_9 \circ \alpha_4$	$: \forall p^\kappa \forall q^\kappa (C[pq] \Rightarrow C[p(pq)])$
α_{12}	\equiv	$\alpha_5 \circ \alpha_3$	$: \forall p^\kappa \forall q^\kappa \forall r^\kappa (C[p(qr)] \Rightarrow C[q(rp)])$
α_{13}	\equiv	$\alpha_3 \circ \alpha_{12}$	$: \forall p^\kappa \forall q^\kappa \forall r^\kappa (C[p(qr)] \Rightarrow C[(rp)q])$
α_{14}	\equiv	$\alpha_5 \circ \alpha_3 \circ \alpha_{10} \circ \alpha_4 \circ \alpha_2$	$: \forall p^\kappa \forall q^\kappa \forall r^\kappa (C[p(qr)] \Rightarrow C[q(rr)])$
α_{15}	\equiv	$\alpha_9 \circ \alpha_3$	$: \forall p^\kappa \forall q^\kappa \forall r^\kappa (C[p(qr)] \Rightarrow C[qp])$

- Important remark:**

- $C[pq] \Rightarrow C[p] \wedge C[q]$, but $C[p] \wedge C[q] \not\Rightarrow C[pq]$ (in general)
- Two conditions p and q are **compatible** when $C[pq]$

Ordering

- Let $p \leq q \quad := \quad \forall r^\kappa (C[pr] \Rightarrow C[qr])$

- \leq is a preorder with greatest element 1:

$$\begin{aligned}\lambda c . c &: \forall p^\kappa (p \leq p) \\ \lambda xyc . y(xc) &: \forall p^\kappa \forall q^\kappa \forall r^\kappa (p \leq q \Rightarrow q \leq r \Rightarrow p \leq r) \\ \alpha_8 \circ \alpha_2 &: \forall p^\kappa (p \leq 1)\end{aligned}$$

- Product pq is the g.l.b. of p and q :

$$\begin{aligned}\alpha_9 &: \forall p^\kappa \forall q^\kappa (pq \leq p) \\ \alpha_{10} &: \forall p^\kappa \forall q^\kappa (pq \leq q) \\ \lambda xy . \alpha_{13} \circ y \circ \alpha_{12} \circ x \circ \alpha_{11} &: \forall p^\kappa \forall q^\kappa \forall r^\kappa (r \leq p \Rightarrow r \leq q \Rightarrow r \leq pq)\end{aligned}$$

- C (set of 'good' conditions) is upwards closed:

$$\lambda xc . \alpha_1 (x (\alpha_7 c)) \quad : \quad \forall p^\kappa \forall q^\kappa (p \leq q \Rightarrow C[p] \Rightarrow C[q])$$

- Bad conditions are smallest elements:

$$\lambda xc . x (\alpha_1 c) \quad : \quad \forall p^\kappa (\neg C[p] \Rightarrow \forall q^\kappa p \leq q)$$

The auxiliary translation $(_)^*$

- Translating sorts: $\tau \rightsquigarrow \tau^*$

$$\iota^* : \equiv \iota \quad o^* : \equiv \kappa \rightarrow o \quad (\tau \rightarrow \sigma)^* : \equiv \tau^* \rightarrow \sigma^*$$

Intuition: Propositions become **sets of conditions**

- Translating terms: $M \rightsquigarrow M^*$

$$\begin{array}{ll} (x^\tau)^* : \equiv x^{\tau^*} & 0^* : \equiv 0 \\ (\lambda x^\tau . M)^* : \equiv \lambda x^{\tau^*} . M^* & s^* : \equiv s \\ (MN)^* : \equiv M^* N^* & \text{rec}_\tau^* : \equiv \text{rec}_{\tau^*} \end{array}$$

$$\begin{array}{ll} (\forall x^\tau A)^* : \equiv \lambda r^\kappa . \forall x^{\tau^*} A^* r & \\ (M_1 = M_2 \mapsto A)^* : \equiv \lambda r^\kappa . M_1^* = M_2^* \mapsto (A^* r) & \\ (A \Rightarrow B)^* : \equiv \lambda r^\kappa . \forall q^\kappa \forall r'^\kappa (r = qr' \mapsto \forall s^\kappa (C[qs] \Rightarrow A^* s) \Rightarrow B^* r') & \end{array}$$

Lemma

- $(M[x^\tau := N])^* \equiv M^*[x^{\tau^*} := N^*]$ (substitutivity)
- If $M_1 \cong_{\mathcal{E}} M_2$, then $M_1^* \cong_{\mathcal{E}^*} M_2^*$ (compatibility with conversion)

The forcing translation

- Given a proposition A and a condition p , let:

$$p \Vdash A \quad := \quad \forall r^\kappa (C[pr] \Rightarrow A^*r)$$

- The forcing translation is trivial on \forall and $_ = _ \mapsto _$:

$$\begin{aligned} p \Vdash \forall x^\tau A &\cong_\emptyset \forall x^{\tau^*} (p \Vdash A) \\ p \Vdash M_1 = M_2 \mapsto A &\cong_\emptyset M_1^* = M_2^* \mapsto (p \Vdash A) \end{aligned}$$

- All the complexity lies in implication! (cf next slide)

General properties

$$\begin{aligned} \beta_1 &:= \lambda xyc.y(xc) : \forall p^\kappa \forall q^\kappa (q \leq p \Rightarrow (p \Vdash A) \Rightarrow (q \Vdash A)) \\ \beta_2 &:= \lambda xc.x(\alpha_1 c) : \forall p^\kappa (\neg C[p] \Rightarrow p \Vdash A) \\ \beta_3 &:= \lambda xc.x(\alpha_9 c) : \forall p^\kappa \forall q^\kappa ((p \Vdash A) \Rightarrow (pq \Vdash A)) \\ \beta_4 &:= \lambda xc.x(\alpha_{10} c) : \forall p^\kappa \forall q^\kappa ((q \Vdash A) \Rightarrow (pq \Vdash A)) \end{aligned}$$

Forcing an implication

- Definition of $p \Vdash A \Rightarrow B$ looks strange:

$$\begin{aligned}
 p \Vdash A \Rightarrow B &\equiv \forall r^\kappa (C[pr] \Rightarrow (A \Rightarrow B)^* r) \\
 &\cong_\emptyset \forall r^\kappa (C[pr] \Rightarrow \forall q^\kappa \forall r'^\kappa (r = qr' \mapsto (q \Vdash A \Rightarrow B^* r')))
 \end{aligned}$$

- But it is equivalent to

$$\forall q ((q \Vdash A) \Rightarrow (pq \Vdash B)) \quad \left(\text{Hint: } \frac{p \Vdash A \Rightarrow B \quad q \Vdash A}{pq \Vdash B} \right)$$

Coercions between $p \Vdash A \Rightarrow B$ and $\forall q ((q \Vdash A) \Rightarrow (pq \Vdash B))$

$\gamma_1 : \equiv \lambda xcy . x y (\alpha_6 c)$: $(\forall q ((q \Vdash A) \Rightarrow (pq \Vdash B)) \Rightarrow p \Vdash A \Rightarrow B)$
$\gamma_2 : \equiv \lambda xyc . x (\alpha_5 c) y$: $(p \Vdash A \Rightarrow B) \Rightarrow \forall q ((q \Vdash A) \Rightarrow (pq \Vdash B))$
$\gamma_3 : \equiv \lambda xyc . x (\alpha_{11} c) y$: $(p \Vdash A \Rightarrow B) \Rightarrow (p \Vdash A) \Rightarrow (p \Vdash B)$
$\gamma_4 : \equiv \lambda xcy . x (y (\alpha_{15} c))$: $\neg A^* p \Rightarrow p \Vdash A \Rightarrow B$

The meaning of the definition of “ $p \Vdash A$ ”

(1/2)

Where does the definition of “ $p \Vdash A$ ” come from?

$$p \Vdash A \quad : \equiv \quad \forall r^\kappa (C[pr] \Rightarrow A^*r)$$

The Boolean algebra generated by the forcing structure

- Given p^κ, r^κ let: $p \perp r : \equiv \neg C[pr]$ (“ p and r are **incompatible**”)
- To each set of conditions $S^{\kappa \rightarrow o}$ we associate its **orthogonal**
$$S^\perp := \{p^\kappa : \forall r^\kappa (S r \Rightarrow p \perp r)\} \quad (: \kappa \rightarrow o)$$
- Write: $\mathcal{B} := \{S^{\kappa \rightarrow o} : S = S^{\perp\perp}\} : (\kappa \rightarrow o) \rightarrow o$
the set of all sets that are **bi-orthogonally closed**

Proposition

The poset (\mathcal{B}, \subseteq) is a **complete Boolean algebra**

(\mathcal{B}, \subseteq) is the **Boolean algebra** generated by the forcing structure $(\kappa, \cdot, 1, C)$

The meaning of the definition of “ $p \Vdash A$ ”

(2/2)

- Given $p, r : \kappa$, $S : \kappa \rightarrow o$, recall that:

$$p \perp r \ := \ \neg C[pr]$$

$$S^\perp \ := \ \{p^\kappa : \forall r^\kappa (Sr \Rightarrow p \perp r)\}$$

$$\mathcal{B} \ := \ \{S^{\kappa \rightarrow o} : S = S^{\perp\perp}\}$$

Proposition

The poset (\mathcal{B}, \subseteq) is a **complete Boolean algebra**

- Fact:** For each set $S^{\kappa \rightarrow o}$, we have $S^\perp = S^{\perp\perp\perp}$, hence $S^\perp \in \mathcal{B}$
- Recall that the translation $M \mapsto M^*$ turns each proposition $A : o$ into a set $A^* : \kappa \rightarrow o$. Then we observe that:

$$\begin{aligned} \{p^\kappa : p \Vdash A\} &= \{p^\kappa : \forall r^\kappa (C[pr] \Rightarrow A^*r)\} \\ &= \{p^\kappa : \forall r^\kappa (\neg A^*r \Rightarrow p \perp r)\} \\ &= ((A^*)^c)^\perp \in \mathcal{B} \end{aligned}$$

Translating proof-terms

- Krivine's program transformation $t \mapsto t^*$:

$$\begin{aligned}
 x^* &\equiv x & \mathfrak{c}^* &\equiv \lambda cx . \mathfrak{c} (\lambda k . x (\alpha_{14} c) (\gamma_4 k)) & \gamma_4 &\equiv \lambda xcy . x (y (\alpha_{15} c)) \\
 (tu)^* &\equiv \gamma_3 t^* u^* & & & \gamma_3 &\equiv \lambda xyc . x (\alpha_{11} c) y \\
 (\lambda x . t)^* &\equiv \gamma_1 (\lambda x . t^* \underbrace{[x := \beta_4 x]}_{\text{bounded var}} \underbrace{[x_i := \beta_3 x_i]_{i=1}^n}_{\text{other free vars of } t}) & & & \gamma_1 &\equiv \lambda xcy . x y (\alpha_6 c) \\
 & & & & \beta_3 &\equiv \lambda xc . x (\alpha_9 c) \\
 & & & & \beta_4 &\equiv \lambda xc . x (\alpha_{10} c)
 \end{aligned}$$

- The translation inserts:
 - γ_3 ("apply") in front of each app.
 - γ_1 ("fold") in front of each λ
- A bound occurrence of x in t is translated as $\beta_3^k (\beta_4 x)$,
where k is the **de Bruijn index** of this occurrence

Soundness (in $\text{PA}\omega^+$)

If $\mathcal{E}; x_1 : A_1, \dots, x_n : A_n \vdash t : B$
 then $\mathcal{E}^*; x_1 : (p \Vdash A_1), \dots, x_n : (p \Vdash A_n) \vdash t^* : (p \Vdash B)$

Translating proof-terms (optimized)

- The latter program transformation creates bureaucratic β -redexes due to the macros $\beta_3, \beta_4, \gamma_3, \gamma_1$ and γ_4
- If we reduce them, we get the following transformation:

$$x^* \equiv x \quad \mathfrak{c}^* \equiv \lambda cx . \mathfrak{c} (\lambda k . x (\alpha_{14} c) (\lambda cx . k (x (\alpha_{15} c))))$$

$$(tu)^* \equiv \lambda c . t^* (\alpha_6 c) u^*$$

$$(\lambda x . t)^* \equiv \lambda cx . t^* \underbrace{[x := \lambda c . x (\alpha_{10} c)]}_{\text{bounded var}} \underbrace{[x_i := \lambda c . x_i (\alpha_9 c)]_{i=1}^n}_{\text{other free vars of } t} (\alpha_{11} c)$$

Soundness (in $\text{PA}\omega^+$)

If $\mathcal{E}; x_1 : A_1, \dots, x_n : A_n \vdash t : B$
 then $\mathcal{E}^*; x_1 : (p \mathrel{\text{IF}} A_1), \dots, x_n : (p \mathrel{\text{IF}} A_n) \vdash t^* : (p \mathrel{\text{IF}} B)$

Computational meaning of the transformation

- A proof of $p \text{ IF } A \equiv \forall r^\kappa (C[pr] \Rightarrow A^*r)$ is a function waiting an argument $c : C[pr]$ (for some r) \rightsquigarrow computational condition

$$\begin{array}{llll}
 (\lambda x . t)^* \star c \cdot u \cdot \pi & \succ & t^*[x := \lambda c' . u (\alpha_{10} c')] \star \alpha_6 c \cdot \pi \\
 (tu)^* \star c \cdot \pi & \succ & t^* \star \alpha_{11} c \cdot u^* \cdot \pi \\
 \alpha^* \star c \cdot t \cdot \pi & \succ & t \star \alpha_{14} c \cdot k_\pi^* \cdot \pi \\
 k_\pi^* \star c \cdot t \cdot \pi' & \succ & t \star \alpha_{15} c \cdot \pi
 \end{array}$$

where:

$$k_\pi^* \equiv \gamma_4 k_\pi \ (\approx \lambda cx . k_\pi (x (\alpha_{15} c)))$$

Evaluation combinators

$$\begin{array}{llll}
 \alpha_{10} & : & C[(pq)r] & \Rightarrow C[qr] \\
 \alpha_6 & : & C[p(qr)] & \Rightarrow C[(pq)r] \\
 \alpha_{11} & : & C[pr] & \Rightarrow C[p(pr)] \\
 \alpha_{14} & : & C[p(qr)] & \Rightarrow C[q(rr)] \\
 \alpha_{15} & : & C[p(qr)] & \Rightarrow C[qp]
 \end{array}$$

Plan

- 1 Cohen forcing
- 2 Higher-order arithmetic (tuned)
- 3 The forcing transformation
- 4 The forcing machine
- 5 Realizability algebras
- 6 Conclusion

Krivine Forcing Abstract Machine (KFAM)

Terms	$t, u ::= x \mid \lambda x . t \mid tu \mid \infty$
Environments	$e ::= \emptyset \mid e, x = c$
Closures	$c ::= t[e] \mid k_\pi \mid \underbrace{t[e]^* \mid k_\pi^*}_{\text{forcing closures}}$
Stacks	$\pi ::= \diamond \mid c \cdot \pi$

- Evaluation rules: real mode:

$x[e, y = c] \star \pi$	\succ	$x[e] \star \pi$	$(y \not\equiv x)$
$x[e, x = c] \star \pi$	\succ	$c \star \pi$	
$(\lambda x . t)[e] \star c \cdot \pi$	\succ	$t[e, x = c] \star \pi$	
$(tu)[e] \star \pi$	\succ	$t[e] \star u[e] \cdot \pi$	
$\infty[e] \star c \cdot \pi$	\succ	$c \star k_\pi \cdot \pi$	
$k_\pi \star c \cdot \pi'$	\succ	$c \star \pi$	

- Evaluation rules: forcing mode:

$x[e, y = c]^* \star c_0 \cdot \pi$	\succ	$x[e]^* \star \alpha_9 c_0 \cdot \pi$	$(y \not\equiv x)$
$x[e, x = c]^* \star c_0 \cdot \pi$	\succ	$c \star \alpha_{10} c_0 \cdot \pi$	
$(\lambda x . t)[e]^* \star c_0 \cdot c \cdot \pi$	\succ	$t[e, x = c]^* \star \alpha_6 c_0 \cdot \pi$	
$(tu)[e]^* \star c_0 \cdot \pi$	\succ	$t[e]^* \star \alpha_{11} c_0 \cdot u[e]^* \cdot \pi$	
$\infty[e]^* \star c_0 \cdot c \cdot \pi$	\succ	$c \star \alpha_{14} c_0 \cdot k_\pi^* \cdot \pi$	
$k_\pi^* \star c_0 \cdot c \cdot \pi'$	\succ	$c \star \alpha_{15} c_0 \cdot \pi$	

Adequacy in real and forcing modes

- New abstract machine means:
 - New classical realizability model (based on the KFAM)
 - New adequacy results

Adequacy (real mode)

If

- $\mathcal{E}; x_1 : A_1, \dots, x_n : A_n \vdash t : B$ (in $\text{PA}\omega^+$)
- $\rho \models \mathcal{E}, c_1 \Vdash A_1[\rho], \dots, c_n \Vdash A_n[\rho]$

then: $t[x_1 = c_1, \dots, x_n = c_n] \Vdash B[\rho]$ (real mode)

- Assuming that $\alpha_i \Vdash \text{type of } \alpha_i$ (for $i = 6, 9, 10, 11, 14, 15$)

Adequacy (forcing mode)

If

- $\mathcal{E}; x_1 : A_1, \dots, x_n : A_n \vdash t : B$ (in $\text{PA}\omega^+$)
- $\rho \models \mathcal{E}^*, c_1 \Vdash (\textcolor{red}{p_1} \text{ IF } A_1[\rho]), \dots, c_n \Vdash (\textcolor{red}{p_n} \text{ IF } A_n[\rho])$

then: $t[x_1 = c_1, \dots, x_n = c_n]^* \Vdash ((\textcolor{red}{p_0}p_1) \cdots \textcolor{red}{p_n} \text{ IF } B[\rho])$ (forcing mode)

Program extraction in presence of forcing

- Assume that:

- We got a proof of B under some axiom A

$$x : A \vdash u : B \quad (\text{user program})$$

- Axiom A is not provable, but it can be forced using a suitable set of forcing conditions (C, \leq) :

$$\vdash s : (1 \text{ IF } A) \quad (\text{system program})$$

- Then:

- We have

$$u[x = s[]]^* \Vdash (1 \text{ IF } B)$$

- If moreover B is an arithmetic formula

$$(\xi_B z)[z = u[x = s[]]^*] \Vdash B$$

using a suitable wrapper $\xi_B \Vdash (1 \text{ IF } B) \Rightarrow B$

Plan

- 1 Cohen forcing
- 2 Higher-order arithmetic (tuned)
- 3 The forcing transformation
- 4 The forcing machine
- 5 Realizability algebras
- 6 Conclusion

Realizability algebras

[Krivine '10, M. '11]

Definition

A **realizability algebra** \mathcal{A} is given by:

- 3 sets Λ (\mathcal{A} -terms), Π (\mathcal{A} -stacks), $\Lambda \star \Pi$ (\mathcal{A} -processes)
- 3 functions $(\cdot) : \Lambda \times \Pi \rightarrow \Pi$, $(\star) : \Lambda \times \Pi \rightarrow \Lambda \star \Pi$, $(k_{\cdot}) : \Pi \rightarrow \Lambda$
- A **compilation function** $(t, \sigma) \mapsto t[\sigma]$ that takes:
 - an open proof term t
 - a Λ -substitution σ closing t
 and returns an \mathcal{A} -term $t[\sigma] \in \Lambda$

- A set of \mathcal{A} -processes $\perp \subseteq \Lambda \star \Pi$ such that:

$$\begin{array}{llll}
 \sigma[x] \star \pi & \in \perp & \text{implies} & x[\sigma] \star \pi \in \perp \\
 t[\sigma, x := a] \star \pi & \in \perp & \text{implies} & (\lambda x . t)[\sigma] \star a \cdot \pi \in \perp \\
 t[\sigma] \star u[\sigma] \cdot \pi & \in \perp & \text{implies} & (tu)[\sigma] \star \pi \in \perp \\
 a \star k_{\pi} \cdot \pi & \in \perp & \text{implies} & \varpi[\sigma] \star a \cdot \pi \in \perp \\
 a \star \pi & \in \perp & \text{implies} & k_{\pi} \star a \cdot \pi' \in \perp
 \end{array}$$

Realizability model of $\text{PA}\omega^+$ (general case)

- Parameterized by a realizability algebra $\mathcal{A} = (\Lambda, \Pi, \Lambda \star \Pi, \dots, \perp)$
- Interpreting higher-order terms:
 - Individuals interpreted as natural numbers $\llbracket i \rrbracket := \mathbb{N}$
 - Propositions interpreted as \mathcal{A} -falsity values $\llbracket o \rrbracket := \mathfrak{P}(\Pi)$
 - Functions interpreted set-theoretically $\llbracket \tau \rightarrow \sigma \rrbracket := \llbracket \sigma \rrbracket^{\llbracket \tau \rrbracket}$
- Interpreting logical constructions

$$\llbracket \forall x^\tau A \rrbracket = \bigcup_{v \in \llbracket \tau \rrbracket} \llbracket A[x := v] \rrbracket \quad \llbracket A \Rightarrow B \rrbracket = \llbracket A \rrbracket^\perp \cdot \llbracket B \rrbracket$$

$$\llbracket M = M' \mapsto A \rrbracket = \begin{cases} \llbracket A \rrbracket & \text{if } \llbracket M \rrbracket = \llbracket M' \rrbracket \\ \emptyset & \text{otherwise} \end{cases}$$

Adequacy

If

- $\mathcal{E}; x_1 : A_1, \dots, x_k : A_k \vdash t : B$ (in $\text{PA}\omega^+$)
- $\rho \models \mathcal{E}, u_1 \Vdash A_1[\rho], \dots, u_k \Vdash A_k[\rho]$

then: $t[x_1 := u_1, \dots, x_k := u_k] \Vdash B[\rho]$

Examples

(1/2)

- From an implementation of the λ_c -calculus:

Standard realizability algebra

- $\Lambda := \Lambda, \quad \Pi := \Pi, \quad \Lambda \star \Pi := \Lambda \star \Pi$
- $k_\pi, \quad t \cdot \pi, \quad t \star \pi$ defined as themselves
- Compilation function $(t, \sigma) \mapsto t[\sigma]$ defined as substitution
- $\perp :=$ any saturated set of processes

- We can do the same for all classical λ -calculi :

- Parigot's $\lambda\mu$ -calculus
- Curien-Herbelin's $\bar{\lambda}\mu$ -calculus (CBN or CBV)
- Barbanera-Berardi's symmetric λ -calculus (\dagger comes for free)

Examples

(2/2)

- From a meet semi-lattice L :

- $\Lambda = \Pi = \Lambda \star \Pi := L$
- $k_\pi := \pi, t \star \pi = t \star \pi := t\pi$ (product in L)
- Compilation function $(t, \sigma) \mapsto t[\sigma]$:

$$t[\sigma] := \prod_{x \in FV(t)} \sigma(x)$$

- $\perp :=$ any ideal of L

- Corresponding **realizability model** isomorphic to the **Boolean valued model** on the complete Boolean algebra $\mathcal{B}(L)/\perp$

KFAM: The realizability algebra of real mode

- From a saturated set $\perp\!\!\!\perp$ in the KFAM:

The realizability algebra $\mathcal{A} := (\Lambda, \Pi, \Lambda \star \Pi, \dots, \perp\!\!\!\perp)$

- $\Lambda, \Pi, \Lambda \star \Pi$:= sets of closures, stacks, processes of the KFAM
- k_π (real mode), $t \cdot \pi, t \star \pi$ defined as in the KFAM
- Compilation function: $(t, [\sigma]) \mapsto t[\sigma]$:= closure formation (real mode)
- \perp := itself

- Adequacy w.r.t. the algebra $\mathcal{A} =$

Adequacy in the KFAM in real mode (w.r.t. the pole \perp)

KFAM: The realizability algebra of forcing models

- Given $\mathcal{A} = (\Lambda, \Pi, \Lambda \star \Pi, \dots, \perp\!\!\!\perp)$ (cf prev. slide)
+ a forcing structure $(\kappa, C, \cdot, 1)$

The realizability algebra $\mathcal{A}^* := (\Lambda^*, \Pi^*, \Lambda^* \star \Pi^*, \dots, \perp^*)$

- $\Lambda^* := \Lambda \times \llbracket \kappa \rrbracket$, $\Pi^* := \Pi \times \llbracket \kappa \rrbracket$, $\Lambda^* \star \Pi^* := (\Lambda \star \Pi) \times \llbracket \kappa \rrbracket$
- $k_{(\pi, p)} := (k_\pi^*, p)$ (forcing mode)
- $(t, p) \cdot (\pi, q) := (t \cdot \pi, pq)$
- $(t, p) \star (\pi, q) := (t \star \pi, pq)$
- Compilation function:

$$t[x_1 := (c_1, p_1), \dots, x_k := (c_k, p_k)] \ \equiv \\ (t[x_1 := c_1, \dots, x_k := c_k]^*, ((1p_1) \dots) p_k) \quad \text{(forcing mode)}$$

- $\mathbb{U}^* := \{(t \star \pi, p) : \forall c \in \Lambda ((c \Vdash_{\mathcal{A}} C[p]) \Rightarrow (t \star c \cdot \pi) \in \mathbb{U})\}$

The connection lemma

- Write $\llbracket _ \rrbracket$ (resp. $\llbracket _ \rrbracket^*$) the interpretation w.r.t. \mathcal{A} (resp. w.r.t. \mathcal{A}^*)
- Notice that: $\llbracket o \rrbracket^* = \mathfrak{P}(\Pi \star \llbracket \kappa \rrbracket) \simeq (\mathfrak{P}(\Pi))^{\llbracket \kappa \rrbracket} = \llbracket o^* \rrbracket$

Connection lemma

- ① There exists an iso: $\psi_\tau : \llbracket \tau^* \rrbracket \xrightarrow{\sim} \llbracket \tau \rrbracket^*$
- ② For all closed M of sort τ : $\llbracket M \rrbracket^* = \psi_\tau(\llbracket M^* \rrbracket)$
- ③ Given a closed formula A and a pair $(c, p) \in \Lambda^*$ ($= \Lambda \star \llbracket \kappa \rrbracket$)

$$(c, p) \Vdash_{\mathcal{A}^*} A \quad \text{iff} \quad c \Vdash_{\mathcal{A}} (p \mathrel{\text{IF}} A)$$

- Connection lemma + Adequacy w.r.t. the algebra $\mathcal{A}^* =$
 Adequacy in the KFAM in **forcing mode** (w.r.t. the pole \perp)

To sum up

- **From syntax...**

- The program transform $t \mapsto t^*$ underlying Cohen forcing :

$$\vdash t : A \quad \rightsquigarrow \quad \vdash t^* : (p \mathbin{\textup{\texttt{IF}}} A)$$

- A new machine (KFAM) with two execution modes such that

$$t[]^* \text{ has the same behavior as } t^*[]$$

- **... to semantics : iterated forcing**

- Two realizability algebras \mathcal{A} and \mathcal{A}^* related by

$$(c, p) \Vdash_{\mathcal{A}^*} A \quad \text{iff} \quad c \Vdash_{\mathcal{A}} (p \mathbin{\textup{\texttt{IF}}} A)$$

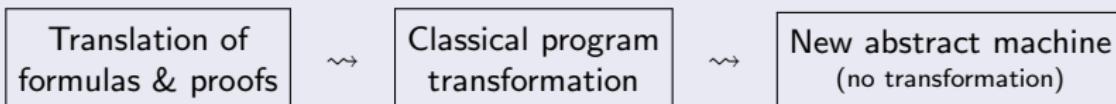
- Two adequacy lemmas (real/forcing) as instances of the general lemma of adequacy

Plan

- 1 Cohen forcing
- 2 Higher-order arithmetic (tuned)
- 3 The forcing transformation
- 4 The forcing machine
- 5 Realizability algebras
- 6 Conclusion

Conclusion

Underlying methodology



- This methodology applies to the forcing translation (Cohen)
 - Computational meaning of the underlying program transformation
 - A new abstract machine: the KFAM
 - Reminiscent from well-known tricks of computer architecture (protection rings, virtualization, monitoring...)
- New insights in logic:
 - Logical meaning of explicit environments
 - Logical meaning of a particular side effect
 - Backtrack defines the limit between the stack and the memory

Related and future work

- How this computation model works in practical cases of forcing?
 - ~~ Need to take into account the **generic set** G
 - Particular case when $C[p]$ is a data type:
Lionel Rieg: *Herbrand theorem by forcing* (PhD thesis) [2014]
 - Variations on the same theme, in a linear setting:
Aloïs Brunel: *The Monitoring Power of Forcing* (PhD) [2014]
 - Formalization of the generic set in $\text{PA}\omega^+$ (general case):
Pierre Pradic (Master 2 thesis) [2015]
- Does the same methodology apply to other logical translations?
 - Pierre-Marie Pédrot: *A Materialist Dialectica* (PhD) [2015]
- Use this methodology the other way around!
 - Deduce new logical translations from computation models borrowed to computer architecture, operating systems...
- Towards an integration of side effects into the CH correspondence?