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EN: implicative adj.
1. Locic: relative to implication

ES: implicativo adj. (f. implicativa)
1. LOcICA: relativo a la implicacién

FR: implicatif adj. (f implicative)
1. LOGIQUE: relatif a I'implication

DE: implikativ adj.
1. Locik: beziiglich der Implikation



Intro Implicative structures Separators Separators and filters Concl

0@000000 00000000000 0000000 000000000000 00000000000 [e]e)
Different notions of models (1/2)
o Tarski models: [¢] € {0;1}
o Interprets classical provability (correctness/completeness)
o Intuitionistic realizability: [¢] € PB(A) [Kleene '45]
o Interprets intuitionistic proofs
o Independence results in intuitionistic theories
o Definitely incompatible with classical logic
e Cohen forcing: [¢] € B(C) [Cohen '63]
o Independence results, in classical theories
(Negation of continuum hypothesis, Solovay's axiom, etc.)
o Boolean-valued models: [[Qﬁ]] eB [Scott, Solovay, Vopénkal]
o Classical realizability: [¢] € B(A.) [Krivine '94, '01, '03, '09-]

o Interprets classical proofs
o Generalizes Tarski models... and forcing!



Different notions of models (2/2)

HVM = Heyting-valued models = Kripke forcing
BVM = Boolean-valued models ~ Cohen forcing
TM = Tarski models

HVM ' Intuitionistic realizability
(with Partial Combinatory Algebras)

V=N # A=X
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The algebraic structures underlying forcing

Definition (Heyting/Boolean algebras)

© A Heyting algebra is a bounded lattice (H, <) that has relative
pseudo-complements

a—b := max{ce€ H: (cAa) <b} (Heyting's implication)
for all a,b € H, so that we get the adjunction:
(cha)<b & c¢<(a—b) (Heyting's adjunction)
@ A Boolean algebra is a Heyting algebra in which the operation of
negation —a := (a — L) is involutive:

-—a (=(a—1)—= 1) =a (a € H)

@ A Heyting/Boolean algebra is complete when the underlying lattice is

o Complete Heyting algebras = Kripke (i.e. intuitionistic) forcing

e Complete Boolean algebras = Cohen (i.e. classical) forcing



Intro Implicative structures Separators Separators and filters Concl
00008000 00000000000 0000000 000000000000 00000000000 (e]e]
The algebraic structures underlying realizability (1/2)

Definition (Partial combinatory algebras)

Q@ A partial applicative structure (PAS) is a set P together with a
partial operation (-): P x P — P called application

@ A partial combinatory algebra (PCA) is a PAS (P, -) containing
two elements K, S € P such that for all z,y, z € P:

K-z y |l=2
S-z-y |
Sz-y-z = (x-2) (y-2) (whenever the rhs is defined)

@ A combinatory algebra (CA) is a PCA whose application is total

Examples:
e P:=A/fBn equipped with application is a (total) CA
@ P :=IN equipped with Kleene application is a PCA
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The algebraic structures underlying realizability (2/2)

Definition (Abstract Krivine structure)
An Abstract Krivine structure (AKS) & is given by:

@ 2sets A (&/-terms), II (/-stacks)
@ 3 functions (@Q):AxA—A, ():AxI—-II (k):II—A
@ 3 combinators S, K,ac € A

@ A subset PL C A (of proof-like </-terms) that contains the combinators
S, K, cc and that is closed under application (@).

@ A binary relation 1L C A X IT (the pole) such that:

txu-m € 1 implies tu x e 1
txm e 1 implies Kxt-u-m e 1
to(uv) x e 1 implies Sxt-u-v-m € 1
txk, - m e I implies acrxt-T e 1
txm e 1 implies ky xt-7' e 1
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Unifying all kinds of models

Aim: Define an algebraic structure to encompass:

o Complete Heyting Algebras (for Heyting-valued models, Kripke forcing)

@ Complete Boolean Algebras (for Boolean-valued models, Cohen forcing)
o Partial Combinatory Algebras  (for Intuitionistic realizability)
@ Ordered Combinatory Algebras (for Intuitionistic realizability)
@ Abstract Krivine Structures (for Classical realizability)
Implicative algebras can be used to construct:

o Categorical models (triposes, toposes)

@ Models of (intuitionistic/classical) set theory

Underlying ideas are reminiscent from earlier work of

@ Ruyer '07, Streicher '13 (and many others!)
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Implicative structures

Definition (Implicative structure)

An implicative structure is a triple (27, <, —) where
(1) (&, <) is a complete (meet semi-)lattice

(2) (=) :9? — & is a binary operation such that:

(2a) a’ < a, bxb entails (a—b) < (a =) (a,a’,b,b' € o)
(2b) A(a—b) =a— A\ b (for all B C )
beB beB

4

o Write L (resp. T) the smallest (resp. largest) element of &7

@ When B = &, axiom (2b) gives: (a — T)=T (a € &)
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Examples of implicative structures
e Complete Heyting algebras (<7, <), where — is defined by:
a—b = max{c cd : (C A a) < b} (Heyting's implication)
+ complete Boolean algebras (as a particular case of Heyting algebras)

o Given a (total) combinatory algebra (P, -, K, S), we let:

o o/ = P(P)
eaxb:=aCd
ea—b:={2z€P:Vzx€a, z-x €b} (Kleene's implication)

Note: if we do the same with a partial combinatory algebra (PCA), we only get
a quasi-implicative structure (cf next slide)

+ similar construction for ordered combinatory algebras (OCA)

@ Given an abstract Krivine structure (A, IL,...,PL, 1), we let:
o o/ = P(II)
ea=<xb:=adbd
oa—b:=at-b (Krivine's implication)
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Relaxing the definition

In some situations, it is desirable to have (a — T)# T

Definition (Quasi-implicative structure)

Same definition as for an implicative structure, but axiom
(2b) AN(@—=b) =a— ADb (if B # 2)
beB beB

only required for the non-empty subsets B C o/

Examples:

@ Each partial combinatory algebra (P, -, K, S) more generally induces
a quasi-implicative structure:  (P(P), <, —)

This structure is an implicative structure iff application - is total

@ Usual notions of reducibility candidates (Tait, Girard, Parigot, etc.)
induce quasi-implicative structures (built from the A-calculus)
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Viewing truth values as (generalized) realizers (1/2)

@ The Curry-Howard correspondence:

Syntax: Proof = Program : Formula = Type
Semantics: Realizer € Truth value

@ But in most semantics, we can associate to every realizer t its
principal type [t], i.e. the smallest truth value containing ¢:

t : A (typing) iff [t] € A (subtyping)

o Identifying ¢ with [t], we get the inclusion:

Realizers C  Truth values

@ Moreover, we shall see that application and abstraction can be lifted
at the level of truth values. Therefore:

Truth values = Generalized realizers
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Viewing truth values as (generalized) realizers

@ Fundamental ideas underlying implicative structures:
@ Operations on A-terms can be lifted to truth values
@ Truth values can be used as generalized realizers

© Realizers and truth values live in the same world!
Proof = Program = Type = Formula

(The ultimate Curry-Howard identification)

@ In an implicative structure, the relation a < b may read:

Concl

2/2)

e ais a subtype of b (viewing a and b as truth values)
e a has type b (viewing a as a realizer, b as a truth value)
e a is more defined than b (viewing a and b as realizers)

@ In particular:
ordering of sybtyping < = reverse Scott ordering
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Encoding application & abstraction

Let o = (&, <, —) be an implicative structure

Definition (Application & Abstraction)

Given a,b € & and a function f: &/ — o/, we let:

ab = A{c ed :ax(b—o)} (application)
Af = A(a — f(a)) (abstraction)
acgl

o Properties:

Q@ Ifa<a and b ¥, then ab<a't’ (Monotonicity)
Q If f < g (pointwise), then Af < Ag (Monotonicity)
Q (Af)a = f(a) (B-reduction)
Q a < Az ax) (n-expansion)

Q abxc iff ax(b—c) (Adjunction)
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Encoding the A-calculus

Let & = (&, <, —) be an implicative structure

@ To each closed A-term t with parameters (i.e. constants) in &,
we associate a truth value t € o7:

a? = a
Az. )7 = Aaw (tfz:=a)?)
(tu)? = t7u”
o Properties:
o [-rule: If t—gt’, then ()7 <)
o n-rule: If t—,t, then ()7 = (t')”

@ Remarks:

o This is not a denotational model of the A-calculus!

o The map ¢ is not injective in general
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Semantic typing (1/2)

Elements of & can be used as semantic types for A-terms:

o Types: a€ A
Terms: A-terms with parameters in o/
Contexts: I = x1:a1,...,%,:ay (a1,...,an € A)

Judgment: T'Ht:a

@ Remark: Each context I' = z1:a1,...,2, :a, can also be
used as a substitution: T' = x1:=a1,...,Tn = ay

@ The validity of a judgment is defined directly (i.e. semantically);
not from a set of inference rules:

Definition (Semantic validity)

'kt:a = FV(t) Cdom(T) and (t[I)¥ <a
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Semantic typing (2/2)
Definition (Semantic validity)
Fkt:a = FV(t) Cdom(l') and (t[I)¥ < a
The following semantic typing rules are valid:
Traza Y Traia  Tre.7 FVOsen®
Lx:abt:b Fkt:a—b Thu:a
'FX.t:a—0 T'Ftu:b
I'Et:a; (forall icl) . .
FFt.a(aﬁa,) Fkt'a(r/sr)
Tht: \a; ThHt:a I
il
Note: IV T means: I'(z)<I'(z) for all z € dom(T") C dom(I").
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Remarkable identities (1/2)

@ Recall that in (Curry-style) system F, we have:

I = Az.x s Va(a— «)
K = \azy.x s Vo, B(a— B — «)
S = Azyz.zz(yz) : Vo,B,7((a—=B—=7) = (a—=F) = a—7)
In any implicative structure &/ = (&, <, —) we have:
I = (\z.2)? = A(a —a)
acd
K? = (\zy.xz)? = A(a —b—a)
a,bed
SY = (Awyz.zz(y2))? = A((a —b—=c¢)— (a—b) —a—c)
a,b,ceaf
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(2/2)
@ The same property holds for:

C Aryz.xzy 2 Vo,B,y(a—= B =)= 8—=a—7)
W = dzy.azyy : Va,B((a = a— 8) = a—f)
but not for

II A.z)(Az.z) : Va(a— a)
(Thanks to a remark of Etienne Miquey)

o By analogy, we let:

? = A(((a —b) —a) —a) (el )
a,beof
= A((—\a —a) —a) (where —a := (a — 1))
acd

From this, we extend the encoding of the A-calculus to all A\-terms
enriched with the constant « (= proof-like Ac-terms)
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Particular case: &7 is a complete Heyting algebra

Complete Heyting algebras are the particular implicative structures
of = (#,<,—) where — is defined from the ordering < by

a—b:= max{ce & : (cAa)=<b}

Concl

(1/2)

Recall: Complete Heyting (or Boolean) algebras are the structures underlying forcing

(in the sense of Kripke or Cohen)

Proposition

When o = (&7, <,—) is a complete Heyting algebra:

Q Foralla,beo/: ab=a A D (application = binary meet)
@ For all A\-terms ¢ with free variables x1, ...,z (k > 0)
and for all ay,...,ar € &7, we have:
(tlrxy :=a1,...,2p = ap))? = a1 A--- Aag

O |In particular, when ¢ is closed: ()7 =T

Q 7 is a (complete) Boolean algebra iff «® =T
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Particular case: &7 is a complete Heyting algebra

@ Forallce o, wehave: absc & ax(b—c) & aAibsxeg,
hence ab=a A b.

@ We prove that (t[Z:=a])® = a1 A--- Aap by induction on t

o ¢t =z (variable). Obvious.
o t = t1t2 (application). Obvious from point 1.

@ t = Axzg.to (abstraction). In this case, we have:

(tz:=a)” = A(ao — (to[zo := ao, T := o_i])“/)
= A(ag%aokalku-kak) (by IH)

= a1 A--- hag
<

using the relation b < (a — a A b) of Heyting Algebras.
© |In particular, when t is closed, we get: (t)”‘z{ =T

@ (,<) Boolean algebra iff €@ = T: Obvious.

Concl

2/2)
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Logical strength of an implicative structure

o Warning! We may have (£)” = L for some closed \-term .

Intuitively, this means that the corresponding term is inconsistent in
(the logic represented by) the implicative structure &/

@ We say that the implicative structure 7 is:
o intuitionistically consistent when (¢) # L for all closed A-terms

o classically consistent when (¢) # L for all closed A-terms with «

o Examples:
o Every non-degenerated complete Heyting algebra is int. consistent
o Every non-degenerated complete Boolean algebra is class. consistent
o Every implicative structure induced by a total combinatory algebra is
intuitionistically consistent
o Every implicative structure induced by an AKS whose pole L is
coherent (cf [Krivine'12]) is classically consistent
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Two trivial examples...

Trivial example 1:
@ Given a complete lattice (&7, <), we let
a—b:=b (for all a,b € &)
Clearly, (7, <,—) is an implicative structure

o In this structure, we have: I7 := A a— a) Aa =
acod aca

Trivial example 2:
o Given a complete lattice (7, <), we let

a—b =T (for all a,b € &)
Again, (&, <,—) is an implicative structure!

o In this structure, we have: I := A(a—>a) = T, but
acd
an“ = MNeed : T<(T=o} = \o =1 ()
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and a non trivial example

(The following example is inspired from Girard's phase semantics for LL)

o Let (M,-,1) be a commutative monoid. We let:
o of = P(M)
ea=<xb:=acChb

ea—b:={yeM:(Va€a)ya € b} (foralla,be )

Clearly, (&, <,—) is an implicative structure
(since the product - is a total operation)

o We easily check that for all a,b € &
ab := a-b = {af:a€a, b}

Concl

(1/2)

Therefore:
e ab=ba (application is commutative)
o (ab)c = a(be) (application is associative)

e aa # a, in general (application is not idempotent)
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. and a non trivial example (2/2)

@ In the implicative structure (&, <, —) = (B(M), S, —):

I = (\z.z)¥ = {1} # L
C¥ = (\zyz.z2y)? = {1} # L
BY = (\zyz.z(y2)? = {1} # 1

@ Moreover, if we assume that a? # o for some « € M, then:

K7 = (\zvy.z)? =g =1
W = (Azy.zyy)? =2 =1
S = (\zyz.z2(y2)? =@ = L

More generally, for each closed A-term ¢, we (should) have:

1} iftisli
)7 = {{ boiftis |-near (to be checked)
%] otherwise
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Separators

Let & = (&, <, —) be an implicative structure

Definition (Separator)
A separator of &7 is a subset S C &7 such that:

(1) If a€e S anda<b, then be S (upwards closed)
(2) KY = (Avy.2)? € S and S¥ = (A\vyz.2z(yz))? € S
(3) If (a—b)esS and a€ S, then be S (modus ponens)

We say that S is consistent (resp. classical) when L ¢ S (resp. «@ € S)

Remarks:
@ Under (1), axiom (3) is equivalent to:
(3) Ifa,be S, thenabe S (closure under application)

@ In a complete Heyting algebra: separator = filter

@ But in general, separators are not closed under binary meets
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A-terms and separators

Intuition: Separator S C &/ = criterion of truth (in &7)

@ All separators are closed under the operations of the A-calculus:

Proposition

Given a separator S C &7:

@ For all A-terms ¢ with free variables x1,...,z; and for all a1,...,ax € S,
we have: (t[z1:=ai,...,z, :=ag))¥ € S

© For all closed M\-terms t: (1) € S

@ Alternative formulation:
Given a closed A-term ¢ with parameters in S:
Ft:a implies a€S

If a has a “proof” t (possibly using “axioms” € S), then a is true (€ S)
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Intuitionistic and classical cores

Definition (intuitionistic & classical cores)

Given an implicative algebra we write:
o SY(/) the smallest separator of o7 (intuitionistic core)

o S2(<7) the smallest classical separator of &/ (classical core)

We easily check that:

S(e) = t{({t) : tclosed A\-term}
S2(e?) = M) : tclosed \-term with «}

writing 7B the upwards closure of a subset B C &/

Proposition

An implicative algebra o7 is intuitionistically (resp. classically) consistent
if and only if L & S%(<) (resp. L ¢ S2(«))

Concl
(e]e]
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Encoding conjunction and disjunction

In any implicative structure, conjunction and disjunction are defined by:

axb = A((a —b—c) = c) (conjunction)
ceof

a+b = A((a —¢) = (b—c) =) (disjunction)
ccof

Proposition

The following semantic typing rules are valid:

I'Ft:a THw:b IF'Ht:axb IF'Ht:axb
FEXz.ztu:axb PEt(Azy.z):a FEt(Azy.y):b
I'Ft:a FEt:b

I'FXXzw.zt:a+b I'EXXzw.wt:a+b

'kFt:a+b Tyz:abu:c T,y:bFuv:c
FEt(Az.u)(Ay.v):c

4

Moreover, we have: (Az.zab)? = (a,b)? =a x b (pairing = conjunction)

Concl
(e]e]
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Encoding quantifiers

Given a family (a;);cr, we let:

\v/ai = Aai

i€l iel
Elai = A(A(ai%c) %c)
iel ccef i€l

Proposition

The following semantic typing rules are valid:

T'Et:a; (forall icl) FEt:Vicrai )
TFt:V,a Trirag 0
THt:asg e FEt:d,ca Tiz:ai-wu:c (foralicn)
PEAz.z2t: 3, a F'Et(Az.u):c

Note: The simpler encoding
in classical realizability

ier @ Yie] a; does not work

Concl
(e]e]
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A note on existential quantification

@ The interpretation of V and 3 is asymmetric:

V(a;)ier = Aaz Aai)ier = A(A(ai%c) —>c)

el ced 1€l
Why not taking Hai)ier = Y @i
il

e Reason: The latter interpretation “3 = Y" fails to interpret the
elimination rule of 3. In general:

V(ai — b)iEI — Y(ai)iel —b ¢ SJO(JZ{)

(There are counter-examples with Krivine realizability)

@ However, the interpretation “J = Y" works when:

e o/ is a complete Heyting/Boolean algebra

o o = (P(A), C, —) is the implicative structure induced by a (total)
combinatory algebra (P, -, K, S)

Concl
(e]e]
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Interpreting first-order logic

@ Formulas of first-order logic are interpreted by:

[6=¢] = [¢] = V]

[-¢] = [¢] = L
[ nvy] = aé{(([@]] =[] = a) = a)
[Vl = é{(([w]]%a)%([waa)%a)
[Vz g(@)] = azw[w(v)ﬂ
[Bz ¢()] = Z{(éw(ﬂw)ﬂﬂ) ~ a)

Theorem (Soundness)
If Fu¢ (resp. ik @), then [¢] € S)() (resp. [¢] € S2(<))

Concl
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Implicative algebras

Definition (Implicative algebra)

An implicative algebra is a quadruple (<7, <, —,.S) where
o (&, <,—) is an implicative structure (= algebra of truth values)
e S C 4 is a separator (+ criterion of truth)
An implicative algebra («7, %, —,S) is

@ consistent when L ¢ S
@ classical when «® € S

@ The separator S C &7 induces a preorder of entailment:
absb = (a—b)es (for all a,b € &)
@ The poset reflection of (&7, Fg) is written &7 /S:
[a] <s [b] iff atgb (for all a,b € &)
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The induced Heyting algebra

Let &7 = (o, <, —,5) be an implicative algebra
@ The quotient poset H = (& /S, <g) is a Heyting algebra, where:

[a] > [b] = [a— 1]
la] Am [b] = [axD] [a) Ve [b] = [a+10]
1y = [1] Tg = [T] = S

@ When & is classical (i.e. a? € S), this poset is a Boolean algebra

The poset H = (&7 /S, <g) is called the Heyting algebra induced by o7

y

Remarks:
@ The Heyting algebra H is in general not complete

@ Beware! The ordering <g on H comes from g (entailment), and not
from < (subtyping). However, we have: a <b = [a] <g [b].
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Ultraseparators (1/2)

Although separators are not filters (w.r.t. the order <), they can be
manipulated similarly to filters. For instance:

@ We call an ultraseparator any separator S C o7 that is consistent
and maximal (w.r.t. inclusion) among consistent separators

@ By Zorn's lemma, we easily check that any consistent separator can
be extended into an ultraseparator

Trivial Boolean algebra

S C of is an ultraseparator if and only if the induced Heyting algebra
(#7/S,<g) is the trivial Boolean algebra:

S C of ultraseparator iff (7/S,<g) ~ 2

Remark: Works even when the ultraseparator S C & is not classical!
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Ultraseparators

Remark: There are non-classical ultraseparators!

Typical example is given by intuitionistic realizability:

o Let (&7, <,—) be the implicative structure induced by a total
combinatory algebra (P, -, K, S):

Concl

2/2)

o o/ = P(P) (sets of combinators)
eax<xb:=aCd (inclusion)
ea—b:={z€P:Vre€a, z-x € b} (Kleene's implication)

o Let S =P(P)\ {9} =\ {L}. We easily check that S is a
consistent separator, obviously maximal. Hence: &/S =~ 2.

o Identity <//S =~ 2 reflects the fact that in intuitionistic

realizability, we have either I ¢ or I —¢ for each closed formula ¢.

@ On the other hand, we have: «? = A((ﬁa —a)—>a)=0

a
(Indeed, from a realizer t € CC'Q{, we would easily solve the halting problem)
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Separators and filters

@ In the theory of implicative algebras, separators play the same role
as filters in the theory of Heyting algebras.

However, separators S C & are in general not filters:
a,besS = abes

a,beS = axbes
a,belS # airbesS

@ On the other hand, in the particular case where &7 is (derived from)
a complete Heyting algebra, we have: separator = filter

@ We shall now study in the general case the situations where a
separator happens to be also a filter
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Non deterministic choice

e Given an implicative structure & = (&, <, —), we let:

md = A(a —b—aAi b) (non deterministic choice)
a,b

We shall also use the symbol M (non-deterministic choice operator) as an
extra constant of the \-calculus (like ), that is interpreted by <

@ In Krivine's A.-calculus, universal realizers of the “type” h are the
instructions M with the non-deterministic evaluation rule:

U * T
Mxu-v-m = [Guillermo & M., 2014]

VxT

“Attention a l'instruction fork qui a des effets dévastateurs!”
J.-L. Krivine, 12/03/2012

Concl
(e]e]
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Non deterministic choice and parallel ‘or’

o Let Nat?(n) := A( — A ) = alp+1)) = (”))

aca/N p€EIN

Q W = (Oay.2)? A Azy.y)? (tt A ££)
Q h s A Natd(n) (in any separator S C &)
nelN

@ Non deterministic choice is related to the parallel ‘or’

por? == (L—-T—= 1) A(T—1L—1) (parallel ‘or’)

Q@ W < p-or?
o e s P-Ord (in any classical separator S C &)

Concl
(e]e]
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Non deterministic choice, parallel ‘or’ and filters

o Let & = (&, <,—) be an implicative structure

@ It is clear that a separator S C & is a filter if and only if it is closed
under binary meets: a,be S = aAbe S (for all a,b € &)

Proposition (Characterizing filters)

@ A separator S C & is a filter if and only if: M € §
@ A classical separator S C < is a filter if and only if: p-or? € S

@ (=) In any separator S C o7, we have (A\zy.z)?, (\zy.y)? € S. So that
when S is a filter, we get 7 = (A\zy.z)? A (Azy.y)< € 8.

(<) IfM? €8, then (a —b—aAb)e S forall a,b € o/. So that if
a,b €S, we get a A b (applying the modus ponens twice in ).

@ Obvious from item 1, since: h¥ € S iff p-or? € S. O

A,
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Generating separators

@ Given any subset X C &7, we write:

o App(X) the applicative algebra generated by X, i.e. the smallest
subset of & containing X and closed under application

o 11X the upwards closure of X in &7 (w.r.t. <)

Lemma (Separator generated by a subset of <)

For all X C o7, the subset 1App(X U{K% ,S“}) C &/ isthe
smallest separator of .« containing X as a subset

@ A separator S C & is finitely generated when it is of the form
S = tApp(X) for some finite subset X C &/

o We observe that both separators 5P («/) C & (intuitionistic core)
and S2 (o) C o (classical core) are finitely generated
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Finitely generated separators and principal filters (1/4)

Given a separator S C o7, the following are equivalent:

© S is finitely generated and M“ €

@ S'is a principal filter: S = t{O} for some © € S

(© is called the universal proof of S)

@ The induced Heyting algebra H := (&//S,<g) is complete, and

the surjection [-]: & — H commutes with infinitary meets:
[he] = A
i€l i€l

In model theoretic terms, this situation corresponds to a collapse of
(intuitionistic/classical) realizability into (Kripke/Cohen) forcing!
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Finitely generated separators and principal filters (2/4)

@ S finitely generated + M €. = S principal filter
Suppose that S = tApp({g1,92,---,9n}) and M € S. From the latter,
S is a filter, so that for all kK > 1, we have more generally:
e = A (1> o ap o ar Ao Kag)
@l pooog@l
= (Azlzkxl)d e S

i=1..k
We let: © = (Y ()\r.rhf;ilgl cogn (rm)? € S, where
Y = (A\yf. fyyf))Ayf . f(yyf)) is Turing's fixpoint combinator.

By construction we have © < mf+1 g1+ gn (©O), hence:
©<g91, ., ©<gn and ©6<5606

By induction, we get © < a for all a € App(g1,-..,9n), and thus © < a
for all @ € S. Therefore: © = min(S) and S =1{O6}. (.-r)
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Finitely generated separators and principal filters

Implicative structures Separators Separators and filters

Proof (continued).

@ S principal filter = H complete + commutation property
Suppose that S = {0}, and let [a;];c; € H' be a family of elements of H,
defined from a family of representatives (a;);c; € «/1. Since (Aie[ ai) < a; for
alli eI, [Aie[ ai] is a lower bound of the family [a;];cr in H.
Conversely, if [b] is a lower bound of the family [a;];cs in H, we have

(b — a;) € Sforall i €I. And since S =1{O}, we get © < (b — a;) for all
i € I, so that:

O x Nb—a) =0b— \a:
i€l i€l
Hence [b] <5 [A;cy ai]. Therefore, [ A;c; ai] is the g.l.b. of the family [a;]ier,
hence the commutation property [A;c; ai] = A;cladl- (..)

v

Concl

(3/4)
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Finitely generated separators and principal filters (4/4)

Proof (continued).

@ H complete + commut. property = S finitely generated + h? € S

Suppose that H = &7/S is complete and that the surjection [-]: & — H
commutes with infinitary meets. Let © = A S. From the commutation property,

we have:
© = [Aa] = Ald = ATw = Ta.

a€S a€S a€S

hence © € S, so that © = min(S) and S = 1{©}. Therefore the separator S is
a (principal) filter, hence we have M € S.

S is also finitely generated, by the unique generator ©. O

o’




Intro

Implicative structures Separators Separators and filters

00000000 00000000000 0000000 000000000000 0000000000e

Uniform existential quantification

@ We say that an implicative structure & = (&, <, —) has uniform
existential quantification when for all (a;)ie; € &/! and b € o7:

(%) NGRS (Y az-) —b
el i€l
@ This equality (that corresponds to 3-elim) holds in:
o all complete Heyting/Boolean algebras

o all the implicative algebras induced by total combinatory algebras
(P, -,K,S) (intuitionistic realizability)

@ When (x) holds, we can let: El a; = Yai
i€l i€l

Proposition

If o7 has uniform existential quantifications, then:
Qpo = (Lo>T—o>LOA(T—-L—-1) =T
@ All classical separators S C &7 are filters

Morality: Uniform 3/V (both) are incompatible with classical realizability

Concl
(e]e]
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Conclusion

We introduced implicative algebras, a simple algebraic structure that is
common to forcing and realizability (intuitionistic & classical)

@ Relies on the fundamental idea that truth values can be manipulated

as generalized realizers (via the operations of the A-calculus)
Proof = Program = Type = Formula )
o Criterion of truth given by a separator (generalizing filters)

@ Implicative algebras can be used to construct:
o Models of 1st-order logic (implicative models)

o Categorical models of higher-order logic: implicative triposes/toposes
o Models of (I)ZF set theory

@ In this structure: forcing = non deterministic realizability

@ Remark: One can show that classical implicative algebras have the same
expressiveness as abstract Krivine structures (but with a lighter machinery)

Concl
oce
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