

Implicative algebras: a new foundation for forcing and realizability

Alexandre Miquel

UNIVERSIDAD
DE LA REPUBLICA
URUGUAY

FACULTAD DE
INGENIERIA

April 21th, 28th, 2022

EN: **implicative** *adj.*

1. LOGIC: relative to implication

ES: **implicativo** *adj.* (*f. implicativa*)

1. LÓGICA: relativo a la implicación

FR: **implicatif** *adj.* (*f. implicative*)

1. LOGIQUE: relatif à l'implication

DE: **implikativ** *adj.*

1. LOGIK: bezüglich der Implikation

...

Different notions of models

(1/2)

- **Tarski models:** $[\![\phi]\!] \in \{0; 1\}$
 - Interprets **classical provability** (correctness/completeness)
- **Intuitionistic realizability:** $[\![\phi]\!] \in \mathfrak{P}(\Lambda)$ [Kleene '45]
 - Interprets **intuitionistic proofs**
 - Independence results in intuitionistic theories
 - Definitely incompatible with classical logic
- **Cohen forcing:** $[\![\phi]\!] \in \mathfrak{P}(C)$ [Cohen '63]
 - Independence results, in classical theories
(Negation of continuum hypothesis, Solovay's axiom, etc.)
- **Boolean-valued models:** $[\![\phi]\!] \in \mathcal{B}$ [Scott, Solovay, Vopěnka]
- **Classical realizability:** $[\![\phi]\!] \in \mathfrak{P}(\Lambda_c)$ [Krivine '94, '01, '03, '09–]
 - Interprets **classical proofs**
 - Generalizes Tarski models... and forcing!

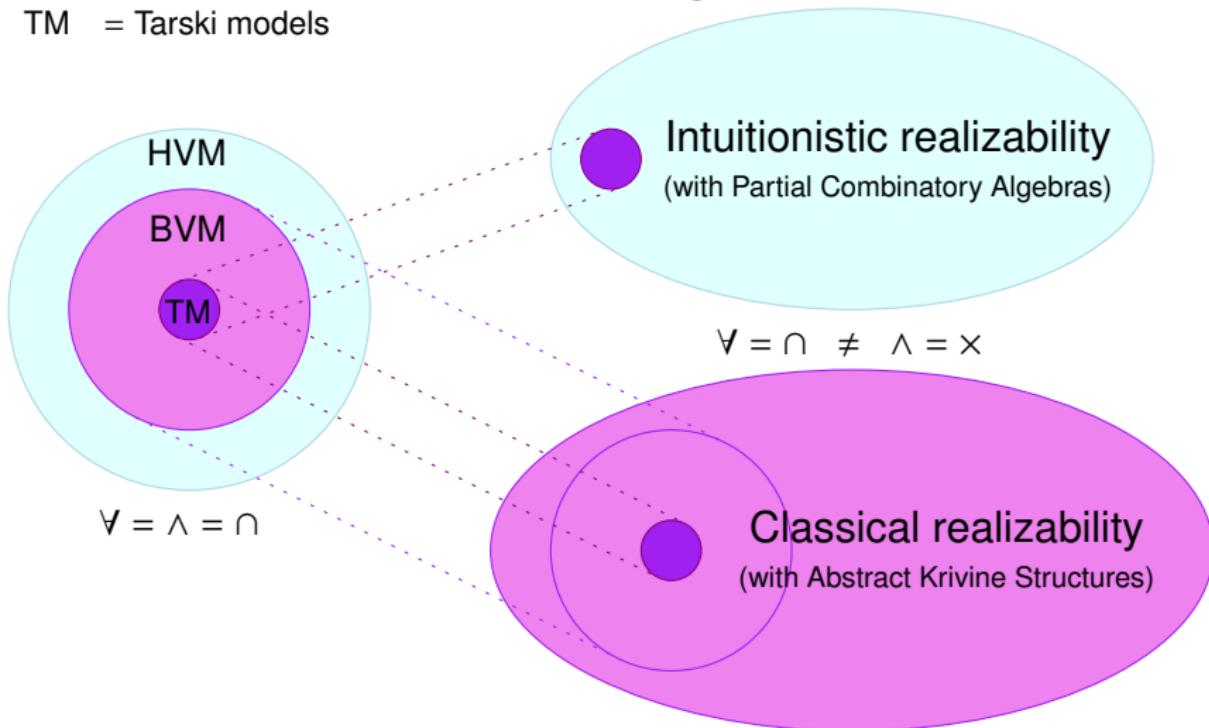
Different notions of models

(2/2)

HVM = Heyting-valued models \approx Kripke forcing

BVM = Boolean-valued models \approx Cohen forcing

TM = Tarski models



The algebraic structures underlying forcing

Definition (Heyting/Boolean algebras)

- ① A Heyting algebra is a bounded lattice (H, \leq) that has relative pseudo-complements

$$a \rightarrow b := \max\{c \in H : (c \wedge a) \leq b\} \quad (\text{Heyting's implication})$$

for all $a, b \in H$, so that we get the adjunction:

$$(c \wedge a) \leq b \Leftrightarrow c \leq (a \rightarrow b) \quad (\text{Heyting's adjunction})$$

② A **Boolean algebra** is a Heyting algebra in which the operation of negation $\neg a := (a \rightarrow \perp)$ is involutive:

$$\neg\neg a \quad (= (a \rightarrow \perp) \rightarrow \perp) \quad = \quad a \quad \quad \quad (a \in H)$$

- A Heyting/Boolean algebra is **complete** when the underlying lattice is

- Complete Heyting algebras \Rightarrow Kripke (i.e. intuitionistic) forcing
- Complete Boolean algebras \Rightarrow Cohen (i.e. classical) forcing

The algebraic structures underlying realizability

(1/2)

Definition (Partial combinatory algebras)

- ① A **partial applicative structure (PAS)** is a set P together with a partial operation $(\cdot) : P \times P \rightharpoonup P$ called **application**
- ② A **partial combinatory algebra (PCA)** is a PAS (P, \cdot) containing two elements $\mathbf{K}, \mathbf{S} \in P$ such that for all $x, y, z \in P$:

$$\mathbf{K} \cdot x \cdot y \downarrow = x$$

$$\mathbf{S} \cdot x \cdot y \downarrow$$

$$\mathbf{S} \cdot x \cdot y \cdot z \downarrow = (x \cdot z) \cdot (y \cdot z) \quad (\text{whenever the rhs is defined})$$

- ③ A **combinatory algebra (CA)** is a PCA whose application is total

Examples:

- $P := \Lambda/\beta\eta$ equipped with application is a (total) CA
- $P := \mathbb{N}$ equipped with Kleene application is a PCA

The algebraic structures underlying realizability

(2/2)

Definition (Abstract Krivine structure)

An **Abstract Krivine structure (AKS)** \mathcal{A} is given by:

- 2 sets Λ (\mathcal{A} -terms), Π (\mathcal{A} -stacks)
- 3 functions $(@) : \Lambda \times \Lambda \rightarrow \Lambda$, $(\cdot) : \Lambda \times \Pi \rightarrow \Pi$, $(k_{_}) : \Pi \rightarrow \Lambda$
- 3 combinators $S, K, \mathbf{c} \in \Lambda$
- A subset $PL \subseteq \Lambda$ (of **proof-like \mathcal{A} -terms**) that contains the combinators S, K, \mathbf{c} and that is closed under application $(@)$.
- A binary relation $\perp \perp \subseteq \Lambda \times \Pi$ (the **pole**) such that:

$t \star u \cdot \pi \in \perp \perp$	implies	$tu \star \pi \in \perp \perp$
$t \star \pi \in \perp \perp$	implies	$K \star t \cdot u \cdot \pi \in \perp \perp$
$tv(uv) \star \pi \in \perp \perp$	implies	$S \star t \cdot u \cdot v \cdot \pi \in \perp \perp$
$t \star k_{\pi} \cdot \pi \in \perp \perp$	implies	$\mathbf{c} \star t \cdot \pi \in \perp \perp$
$t \star \pi \in \perp \perp$	implies	$k_{\pi} \star t \cdot \pi' \in \perp \perp$

Unifying all kinds of models

Aim: Define an **algebraic structure** to encompass:

- Complete Heyting Algebras (for Heyting-valued models, Kripke forcing)
- Complete Boolean Algebras (for Boolean-valued models, Cohen forcing)
- Partial Combinatory Algebras (for Intuitionistic realizability)
- Ordered Combinatory Algebras (for Intuitionistic realizability)
- Abstract Krivine Structures (for Classical realizability)

Implicative algebras can be used to construct:

- Categorical models (triposes, toposes)
- Models of (intuitionistic/classical) set theory

Underlying ideas are reminiscent from earlier work of

- Ruyer '07, Streicher '13 (and many others!)

Plan

1 Introduction

2 Implicative structures

3 Separators

4 Separators and filters

5 Conclusion

Plan

1 Introduction

2 Implicative structures

3 Separators

4 Separators and filters

5 Conclusion

Implicative structures

Definition (Implicative structure)

An **implicative structure** is a triple $(\mathcal{A}, \preccurlyeq, \rightarrow)$ where

- (1) $(\mathcal{A}, \preccurlyeq)$ is a complete (meet semi-)lattice
- (2) $(\rightarrow) : \mathcal{A}^2 \rightarrow \mathcal{A}$ is a binary operation such that:

$$(2a) \quad a' \preccurlyeq a, \quad b \preccurlyeq b' \quad \text{entails} \quad (a \rightarrow b) \preccurlyeq (a' \rightarrow b') \quad (a, a', b, b' \in \mathcal{A})$$

$$(2b) \quad \bigwedge_{b \in B} (a \rightarrow b) = a \rightarrow \bigwedge_{b \in B} b \quad (\text{for all } B \subseteq \mathcal{A})$$

- Write \perp (resp. \top) the smallest (resp. largest) element of \mathcal{A}
- When $B = \emptyset$, axiom (2b) gives: $(a \rightarrow \top) = \top \quad (a \in \mathcal{A})$

Examples of implicative structures

- Complete Heyting algebras $(\mathcal{A}, \preccurlyeq)$, where \rightarrow is defined by:

$$a \rightarrow b := \max\{c \in \mathcal{A} : (c \curlywedge a) \preccurlyeq b\} \quad (\text{Heyting's implication})$$

+ complete Boolean algebras (as a particular case of Heyting algebras)

- Given a (total) **combinatory algebra** $(P, \cdot, \mathbf{K}, \mathbf{S})$, we let:

- $\mathcal{A} := \mathfrak{P}(P)$

- $a \preccurlyeq b := a \subseteq b$

- $a \rightarrow b := \{z \in P : \forall x \in a, z \cdot x \in b\} \quad (\text{Kleene's implication})$

Note: if we do the same with a **partial** combinatory algebra (PCA), we only get a **quasi-implicative structure** (cf next slide)

+ similar construction for **ordered combinatory algebras (OCA)**

- Given an **abstract Krivine structure** $(\Lambda, \Pi, \dots, \text{PL}, \perp\!\!\!\perp)$, we let:

- $\mathcal{A} := \mathfrak{P}(\Pi)$

- $a \preccurlyeq b := a \supseteq b$

- $a \rightarrow b := a^{\perp\!\!\!\perp} \cdot b \quad (\text{Krivine's implication})$

Relaxing the definition

In some situations, it is desirable to have $(a \rightarrow T) \neq T$

Definition (Quasi-implicative structure)

Same definition as for an implicative structure, but axiom

$$(2b) \quad \bigwedge_{b \in B} (a \rightarrow b) \quad = \quad a \rightarrow \bigwedge_{b \in B} b \quad (\text{if } B \neq \emptyset)$$

only required for the **non-empty** subsets $B \subseteq \mathcal{A}$

Examples:

- Each **partial combinatory algebra** $(P, \cdot, \mathbf{K}, \mathbf{S})$ more generally induces a quasi-implicative structure: $(\mathfrak{P}(P), \subseteq, \rightarrow)$

This structure is an implicative structure iff application \cdot is total

- Usual notions of **reducibility candidates** (Tait, Girard, Parigot, etc.) induce quasi-implicative structures (built from the λ -calculus)

Viewing truth values as (generalized) realizers

(1/2)

- The **Curry-Howard correspondence**:

$$\begin{array}{lll} \text{Syntax:} & \text{Proof} = \text{Program} & : \quad \text{Formula} = \text{Type} \\ \text{Semantics:} & \text{Realizer} & \in \quad \text{Truth value} \end{array}$$

- But in most semantics, we can associate to every realizer t its **principal type** $[t]$, i.e. the smallest truth value containing t :

$$t : A \text{ (typing)} \quad \text{iff} \quad [t] \subseteq A \text{ (subtyping)}$$

- Identifying t with $[t]$, we get the inclusion:

$$\text{Realizers} \subseteq \text{Truth values}$$

- Moreover, we shall see that **application** and **abstraction** can be lifted at the level of truth values. Therefore:

$$\text{Truth values} = \text{Generalized realizers}$$

Viewing truth values as (generalized) realizers

(2/2)

- Fundamental ideas underlying implicative structures:

- ① Operations on λ -terms can be lifted to truth values
- ② Truth values can be used as generalized realizers
- ③ Realizers and truth values live in the same world!

Proof = Program = Type = Formula

(The ultimate Curry-Howard identification)

- In an implicative structure, the relation $a \preceq b$ may read:

- a is a subtype of b (viewing a and b as truth values)
- a has type b (viewing a as a realizer, b as a truth value)
- a is **more defined** than b (viewing a and b as realizers)

- In particular:

ordering of subtyping \preceq \equiv reverse Scott ordering \sqsupseteq

Encoding application & abstraction

Let $\mathcal{A} = (\mathcal{A}, \preccurlyeq, \rightarrow)$ be an implicative structure

Definition (Application & Abstraction)

Given $a, b \in \mathcal{A}$ and a function $f : \mathcal{A} \rightarrow \mathcal{A}$, we let:

$$ab := \bigwedge \{c \in \mathcal{A} : a \preccurlyeq (b \rightarrow c)\} \quad (\text{application})$$

$$\lambda f := \bigwedge_{a \in \mathcal{A}} (a \rightarrow f(a)) \quad (\text{abstraction})$$

• Properties:

- ① If $a \preccurlyeq a'$ and $b \preccurlyeq b'$, then $ab \preccurlyeq a'b'$ (Monotonicity)
- ② If $f \preccurlyeq g$ (pointwise), then $\lambda f \preccurlyeq \lambda g$ (Monotonicity)
- ③ $(\lambda f)a \preccurlyeq f(a)$ (β -reduction)
- ④ $a \preccurlyeq \lambda(x \mapsto ax)$ (η -expansion)
- ⑤ $ab \preccurlyeq c \text{ iff } a \preccurlyeq (b \rightarrow c)$ (Adjunction)

Encoding the λ -calculus

Let $\mathcal{A} = (\mathcal{A}, \preccurlyeq, \rightarrow)$ be an implicative structure

- To each closed λ -term t with parameters (i.e. constants) in \mathcal{A} , we associate a truth value $t^{\mathcal{A}} \in \mathcal{A}$:

$$\begin{aligned} a^{\mathcal{A}} &:= a \\ (\lambda x . t)^{\mathcal{A}} &:= \lambda(a \mapsto (t[x := a])^{\mathcal{A}}) \\ (tu)^{\mathcal{A}} &:= t^{\mathcal{A}} u^{\mathcal{A}} \end{aligned}$$

- Properties:**

- β -rule: If $t \rightarrow_{\beta} t'$, then $(t)^{\mathcal{A}} \preccurlyeq (t')^{\mathcal{A}}$
- η -rule: If $t \rightarrow_{\eta} t'$, then $(t)^{\mathcal{A}} \succcurlyeq (t')^{\mathcal{A}}$

- Remarks:**

- This is *not* a denotational model of the λ -calculus!
- The map $t^{\mathcal{A}}$ is not injective in general

Semantic typing

(1/2)

Elements of \mathcal{A} can be used as **semantic types** for λ -terms:

- **Types:** $a \in \mathcal{A}$
- **Terms:** λ -terms with parameters in \mathcal{A}
- **Contexts:** $\Gamma \equiv x_1 : a_1, \dots, x_n : a_n \quad (a_1, \dots, a_n \in A)$
- **Judgment:** $\Gamma \vdash t : a$
- **Remark:** Each context $\Gamma \equiv x_1 : a_1, \dots, x_n : a_n$ can also be used as a **substitution**: $\Gamma \equiv x_1 := a_1, \dots, x_n := a_n$
- The validity of a judgment is defined directly (i.e. semantically); not from a set of inference rules:

Definition (Semantic validity)

$$\Gamma \vdash t : a \quad ::= \quad FV(t) \subseteq \text{dom}(\Gamma) \text{ and } (t[\Gamma])^{\mathcal{A}} \preceq a$$

Semantic typing

(2/2)

Definition (Semantic validity)

$$\Gamma \vdash t : a \quad \equiv \quad FV(t) \subseteq \text{dom}(\Gamma) \text{ and } (t[\Gamma])^{\mathcal{A}} \preccurlyeq a$$

Proposition

The following semantic typing rules are valid:

$$\frac{}{\Gamma \vdash x : a} \quad ((x:a) \in \Gamma) \quad \frac{}{\Gamma \vdash a : a} \quad \frac{}{\Gamma \vdash t : \top} \quad (FV(t) \subseteq \text{dom}(\Gamma))$$

$$\frac{\Gamma, x : a \vdash t : b}{\Gamma \vdash \lambda x . t : a \rightarrow b} \quad \frac{\Gamma \vdash t : a \rightarrow b \quad \Gamma \vdash u : a}{\Gamma \vdash tu : b}$$

$$\frac{\Gamma \vdash t : a_i \quad (\text{for all } i \in I)}{\Gamma \vdash t : \bigwedge_{i \in I} a_i} \quad \frac{\Gamma \vdash t : a \quad (a \preccurlyeq a')}{\Gamma \vdash t : a'} \quad \frac{\Gamma \vdash t : a}{\Gamma' \vdash t : a} \quad (\Gamma' \preccurlyeq \Gamma)$$

Note: $\Gamma' \preccurlyeq \Gamma$ means: $\Gamma'(x) \preccurlyeq \Gamma(x)$ for all $x \in \text{dom}(\Gamma) \subseteq \text{dom}(\Gamma')$.

Remarkable identities

(1/2)

- Recall that in (Curry-style) system F, we have:

$$\mathbf{I} := \lambda x . x \quad : \forall \alpha (\alpha \rightarrow \alpha)$$

$$\mathbf{K} := \lambda xy . x \quad : \forall \alpha, \beta (\alpha \rightarrow \beta \rightarrow \alpha)$$

$$\mathbf{S} := \lambda xyz . xz(yz) \quad : \forall \alpha, \beta, \gamma ((\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma)$$

Proposition

In any implicative structure $\mathcal{A} = (\mathcal{A}, \preccurlyeq, \rightarrow)$ we have:

$$\mathbf{I}^{\mathcal{A}} := (\lambda x . x)^{\mathcal{A}} \quad = \bigwedge_{a \in \mathcal{A}} (a \rightarrow a)$$

$$\mathbf{K}^{\mathcal{A}} := (\lambda xy . x)^{\mathcal{A}} \quad = \bigwedge_{a, b \in \mathcal{A}} (a \rightarrow b \rightarrow a)$$

$$\mathbf{S}^{\mathcal{A}} := (\lambda xyz . xz(yz))^{\mathcal{A}} \quad = \bigwedge_{a, b, c \in \mathcal{A}} ((a \rightarrow b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c)$$

Remarkable identities

(2/2)

- The same property holds for:

$$\mathbf{C} := \lambda xyz. xzy : \forall \alpha, \beta, \gamma ((\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow \beta \rightarrow \alpha \rightarrow \gamma)$$

$$\mathbf{W} := \lambda xy. xyy : \forall \alpha, \beta ((\alpha \rightarrow \alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta)$$

but not for

$$\mathbf{II} := (\lambda x. x)(\lambda x. x) : \forall \alpha (\alpha \rightarrow \alpha)$$

(Thanks to a remark of Étienne Miquey)

- By analogy, we let:

$$\textcolor{red}{\mathbf{C}^{\mathcal{A}}} := \bigwedge_{a,b \in \mathcal{A}} (((a \rightarrow b) \rightarrow a) \rightarrow a) \quad (\text{Peirce's law})$$

$$= \bigwedge_{a \in \mathcal{A}} ((\neg a \rightarrow a) \rightarrow a) \quad (\text{where } \neg a := (a \rightarrow \perp))$$

From this, we extend the encoding of the λ -calculus to all λ -terms enriched with the constant \mathbf{C}
 $(= \text{proof-like } \lambda_c\text{-terms})$

Particular case: \mathcal{A} is a complete Heyting algebra (1/2)

Complete Heyting algebras are the particular implicative structures $\mathcal{A} = (\mathcal{A}, \preccurlyeq, \rightarrow)$ where \rightarrow is defined from the ordering \preccurlyeq by

$$a \rightarrow b := \max\{c \in \mathcal{A} : (c \curlywedge a) \preccurlyeq b\}$$

Recall: Complete Heyting (or Boolean) algebras are the structures underlying **forcing** (in the sense of Kripke or Cohen)

Proposition

When $\mathcal{A} = (\mathcal{A}, \preccurlyeq, \rightarrow)$ is a complete Heyting algebra:

① For all $a, b \in \mathcal{A}$: $ab = a \curlywedge b$ (application = binary meet)

② For all λ -terms t with free variables x_1, \dots, x_k ($k \geq 0$) and for all $a_1, \dots, a_k \in \mathcal{A}$, we have:

$$(t[x_1 := a_1, \dots, x_k := a_k])^{\mathcal{A}} \succcurlyeq a_1 \curlywedge \dots \curlywedge a_k$$

③ In particular, when t is closed: $(t)^{\mathcal{A}} = \top$

④ \mathcal{A} is a (complete) Boolean algebra iff $\mathbf{c}^{\mathcal{A}} = \top$

Particular case: \mathcal{A} is a complete Heyting algebra (2/2)

Proof.

1 For all $c \in \mathcal{A}$, we have: $ab \preccurlyeq c \Leftrightarrow a \preccurlyeq (b \rightarrow c) \Leftrightarrow a \curlywedge b \preccurlyeq c$,
hence $ab = a \curlywedge b$.

2 We prove that $(t[\vec{x} := \vec{a}])^{\mathcal{A}} \succcurlyeq a_1 \curlywedge \dots \curlywedge a_k$ by induction on t

- $t \equiv x$ (variable). Obvious.
- $t \equiv t_1 t_2$ (application). Obvious from point 1.
- $t \equiv \lambda x_0 . t_0$ (abstraction). In this case, we have:

$$\begin{aligned}
 (t[\vec{x} := \vec{a}])^{\mathcal{A}} &= \bigwedge_{a_0} (a_0 \rightarrow (t_0[x_0 := a_0, \vec{x} := \vec{a}])^{\mathcal{A}}) \\
 &\succcurlyeq \bigwedge_{a_0} (a_0 \rightarrow a_0 \curlywedge a_1 \curlywedge \dots \curlywedge a_k) \quad (\text{by IH}) \\
 &\succcurlyeq a_1 \curlywedge \dots \curlywedge a_k
 \end{aligned}$$

using the relation $b \preccurlyeq (a \rightarrow a \curlywedge b)$ of Heyting Algebras.

3 In particular, when t is closed, we get: $(t)^{\mathcal{A}} \succcurlyeq \top$

4 $(\mathcal{A}, \preccurlyeq)$ Boolean algebra iff $\mathbf{c}^{\mathcal{A}} = \top$: Obvious. □

Logical strength of an implicative structure

- **Warning!** We may have $(t)^{\mathcal{A}} = \perp$ for some closed λ -term t .

Intuitively, this means that the corresponding term is **inconsistent** in (the logic represented by) the implicative structure \mathcal{A}

- We say that the implicative structure \mathcal{A} is:
 - **intuitionistically consistent** when $(t)^{\mathcal{A}} \neq \perp$ for all closed λ -terms
 - **classically consistent** when $(t)^{\mathcal{A}} \neq \perp$ for all closed λ -terms with α

- **Examples:**

- Every non-degenerated complete Heyting algebra is int. consistent
- Every non-degenerated complete Boolean algebra is class. consistent
- Every implicative structure induced by a total combinatory algebra is intuitionistically consistent
- Every implicative structure induced by an AKS whose pole $\perp\!\!\!\perp$ is coherent (cf [Krivine'12]) is classically consistent

Two trivial examples...

Trivial example 1:

- Given a complete lattice $(\mathcal{A}, \preccurlyeq)$, we let

$$a \rightarrow b := b \quad (\text{for all } a, b \in \mathcal{A})$$

Clearly, $(\mathcal{A}, \preccurlyeq, \rightarrow)$ is an implicative structure

- In this structure, we have: $\mathbf{I}^{\mathcal{A}} := \bigwedge_{a \in \mathcal{A}} (a \rightarrow a) = \bigwedge_{a \in \mathcal{A}} a = \perp$ (!)

Trivial example 2:

- Given a complete lattice $(\mathcal{A}, \preccurlyeq)$, we let

$$a \rightarrow b := \top \quad (\text{for all } a, b \in \mathcal{A})$$

Again, $(\mathcal{A}, \preccurlyeq, \rightarrow)$ is an implicative structure!

- In this structure, we have: $\mathbf{I}^{\mathcal{A}} := \bigwedge_{a \in \mathcal{A}} (a \rightarrow a) = \top$, but

$$(\mathbf{II})^{\mathcal{A}} := \top \top = \bigwedge \{c \in \mathcal{A} : \top \preccurlyeq (\top \rightarrow c)\} = \bigwedge \mathcal{A} = \perp$$

... and a non trivial example

(1/2)

(The following example is inspired from Girard's **phase semantics** for LL)

- Let $(M, \cdot, 1)$ be a commutative monoid. We let:
 - $\mathcal{A} := \mathfrak{P}(M)$
 - $a \preccurlyeq b := a \subseteq b$
 - $a \rightarrow b := \{\gamma \in M : (\forall \alpha \in a) \gamma\alpha \in b\}$ (for all $a, b \in \mathcal{A}$)

Clearly, $(\mathcal{A}, \preccurlyeq, \rightarrow)$ is an implicative structure
(since the product \cdot is a total operation)

- We easily check that for all $a, b \in \mathcal{A}$:

$$ab := a \cdot b = \{\alpha\beta : \alpha \in a, \beta \in b\}$$

Therefore:

- $ab = ba$ (application is commutative)
- $(ab)c = a(bc)$ (application is associative)
- $aa \neq a$, in general (application is not idempotent)

... and a non trivial example

(2/2)

Proposition

① In the implicative structure $(\mathcal{A}, \preccurlyeq, \rightarrow) = (\mathfrak{P}(M), \subseteq, \rightarrow)$:

$$\mathbf{I}^{\mathcal{A}} := (\lambda x . x)^{\mathcal{A}} = \{1\} \neq \perp$$

$$\mathbf{C}^{\mathcal{A}} := (\lambda xyz . xzy)^{\mathcal{A}} = \{1\} \neq \perp$$

$$\mathbf{B}^{\mathcal{A}} := (\lambda xyz . x(yz))^{\mathcal{A}} = \{1\} \neq \perp$$

② Moreover, if we assume that $\alpha^2 \neq \alpha$ for some $\alpha \in M$, then:

$$\mathbf{K}^{\mathcal{A}} := (\lambda xy . x)^{\mathcal{A}} = \emptyset = \perp$$

$$\mathbf{W}^{\mathcal{A}} := (\lambda xy . xyy)^{\mathcal{A}} = \emptyset = \perp$$

$$\mathbf{S}^{\mathcal{A}} := (\lambda xyz . xz(yz))^{\mathcal{A}} = \emptyset = \perp$$

More generally, for each closed λ -term t , we (should) have:

$$(t)^{\mathcal{A}} = \begin{cases} \{1\} & \text{if } t \text{ is linear} \\ \emptyset & \text{otherwise} \end{cases} \quad (\text{to be checked})$$

Plan

1 Introduction

2 Implicative structures

3 Separators

4 Separators and filters

5 Conclusion

Separators

Let $\mathcal{A} = (\mathcal{A}, \preccurlyeq, \rightarrow)$ be an implicative structure

Definition (Separator)

A **separator** of \mathcal{A} is a subset $S \subseteq \mathcal{A}$ such that:

- (1) If $a \in S$ and $a \preccurlyeq b$, then $b \in S$ (upwards closed)
- (2) $\mathbf{K}^{\mathcal{A}} = (\lambda xy . x)^{\mathcal{A}} \in S$ and $\mathbf{S}^{\mathcal{A}} = (\lambda xyz . xz(yz))^{\mathcal{A}} \in S$
- (3) If $(a \rightarrow b) \in S$ and $a \in S$, then $b \in S$ (modus ponens)

We say that S is **consistent** (resp. **classical**) when $\perp \notin S$ (resp. $\mathbf{c}^{\mathcal{A}} \in S$)

Remarks:

- Under (1), axiom (3) is equivalent to:
 - (3') If $a, b \in S$, then $ab \in S$ (closure under application)
- In a complete Heyting algebra: separator = filter
- But in general, separators are **not closed** under binary meets

λ -terms and separators

Intuition: Separator $S \subseteq \mathcal{A}$ = criterion of truth (in \mathcal{A})

- All separators are closed under the operations of the λ -calculus:

Proposition

Given a separator $S \subseteq \mathcal{A}$:

- ① For all λ -terms t with free variables x_1, \dots, x_k and for all $a_1, \dots, a_k \in S$, we have: $(t[x_1 := a_1, \dots, x_k := a_k])^{\mathcal{A}} \in S$
- ② For all closed λ -terms t : $(t)^{\mathcal{A}} \in S$

- Alternative formulation:

Given a closed λ -term t with parameters in S :

$$\vdash t : a \quad \text{implies} \quad a \in S$$

If a has a “proof” t (possibly using “axioms” $\in S$), then a is true ($\in S$)

Intuitionistic and classical cores

Definition (intuitionistic & classical cores)

Given an implicative algebra we write:

- $S_J^0(\mathcal{A})$ the smallest separator of \mathcal{A} (intuitionistic core)
- $S_K^0(\mathcal{A})$ the smallest classical separator of \mathcal{A} (classical core)

We easily check that:

$$\begin{aligned} S_J^0(\mathcal{A}) &= \uparrow\{(t)^\mathcal{A} : t \text{ closed } \lambda\text{-term}\} \\ S_K^0(\mathcal{A}) &= \uparrow\{(t)^\mathcal{A} : t \text{ closed } \lambda\text{-term with } \alpha\} \end{aligned}$$

writing $\uparrow B$ the upwards closure of a subset $B \subseteq \mathcal{A}$

Proposition

An implicative algebra \mathcal{A} is intuitionistically (resp. classically) consistent if and only if $\perp \notin S_J^0(\mathcal{A})$ (resp. $\perp \notin S_K^0(\mathcal{A})$)

Encoding conjunction and disjunction

In any implicative structure, conjunction and disjunction are defined by:

$$a \times b := \bigwedge_{c \in \mathcal{A}} ((a \rightarrow b \rightarrow c) \rightarrow c) \quad (\text{conjunction})$$

$$a + b := \bigwedge_{c \in \mathcal{A}} ((a \rightarrow c) \rightarrow (b \rightarrow c) \rightarrow c) \quad (\text{disjunction})$$

Proposition

The following semantic typing rules are valid:

$$\frac{\Gamma \vdash t : a \quad \Gamma \vdash u : b}{\Gamma \vdash \lambda z. z t u : a \times b} \quad \frac{\Gamma \vdash t : a \times b}{\Gamma \vdash t(\lambda xy. x) : a} \quad \frac{\Gamma \vdash t : a \times b}{\Gamma \vdash t(\lambda xy. y) : b}$$

$$\frac{\Gamma \vdash t : a}{\Gamma \vdash \lambda z w. z t : a + b} \quad \frac{\Gamma \vdash t : b}{\Gamma \vdash \lambda z w. w t : a + b}$$

$$\frac{\Gamma \vdash t : a + b \quad \Gamma, x : a \vdash u : c \quad \Gamma, y : b \vdash v : c}{\Gamma \vdash t(\lambda x. u)(\lambda y. v) : c}$$

Moreover, we have: $(\lambda z. z a b)^{\mathcal{A}} = \langle a, b \rangle^{\mathcal{A}} = a \times b$ (pairing = conjunction)

Encoding quantifiers

Given a family $(a_i)_{i \in I}$, we let:

$$\begin{aligned}\forall_{i \in I} a_i &:= \bigwedge_{i \in I} a_i \\ \exists_{i \in I} a_i &:= \bigvee_{c \in \mathcal{A}} \left(\bigwedge_{i \in I} (a_i \rightarrow c) \rightarrow c \right)\end{aligned}$$

Proposition

The following semantic typing rules are valid:

$$\begin{array}{c} \frac{\Gamma \vdash t : a_i \quad (\text{for all } i \in I)}{\Gamma \vdash t : \forall_{i \in I} a_i} \quad \frac{\Gamma \vdash t : \forall_{i \in I} a_i \quad (i_0 \in I)}{\Gamma \vdash t : a_{i_0}} \\ \\ \frac{\Gamma \vdash t : a_{i_0} \quad (i_0 \in I)}{\Gamma \vdash \lambda z. z t : \exists_{i \in I} a_i} \quad \frac{\Gamma \vdash t : \exists_{i \in I} a_i \quad \Gamma, x : a_i \vdash u : c \quad (\text{for all } i \in I)}{\Gamma \vdash t (\lambda x. u) : c}\end{array}$$

Note: The simpler encoding $\exists_{i \in I} a_i := \bigvee_{i \in I} a_i$ does not work in classical realizability

A note on existential quantification

- The interpretation of \forall and \exists is asymmetric:

$$\forall(a_i)_{i \in I} := \bigwedge_{i \in I} a_i \quad \exists(a_i)_{i \in I} := \bigvee_{c \in \mathcal{A}} \left(\bigwedge_{i \in I} (a_i \rightarrow c) \rightarrow c \right)$$

Why not taking

$$\exists(a_i)_{i \in I} := \bigvee_{i \in I} a_i ?$$

- Reason:** The latter interpretation " $\exists = \bigvee$ " fails to interpret the elimination rule of \exists . In general:

$$\forall(a_i \rightarrow b)_{i \in I} \rightarrow \bigvee(a_i)_{i \in I} \rightarrow b \notin S_J^0(\mathcal{A})$$

(There are counter-examples with Krivine realizability)

- However, the interpretation " $\exists = \bigvee$ " works when:

- \mathcal{A} is a complete Heyting/Boolean algebra
- $\mathcal{A} = (\mathfrak{P}(A), \subseteq, \rightarrow)$ is the implicative structure induced by a (total) combinatory algebra $(P, \cdot, \mathbf{K}, \mathbf{S})$

Interpreting first-order logic

- Formulas of first-order logic are interpreted by:

$$[\![\phi \Rightarrow \psi]\!] = [\![\phi]\!] \rightarrow [\![\psi]\!]$$

$$[\![\neg \phi]\!] = [\![\phi]\!] \rightarrow \perp$$

$$[\![\phi \wedge \psi]\!] = \bigwedge_{a \in \mathcal{A}} (([\![\phi]\!] \rightarrow [\![\psi]\!] \rightarrow a) \rightarrow a)$$

$$[\![\phi \vee \psi]\!] = \bigvee_{a \in \mathcal{A}} (([\![\phi]\!] \rightarrow a) \rightarrow ([\![\psi]\!] \rightarrow a) \rightarrow a)$$

$$[\![\forall x \phi(x)]!] = \bigwedge_{v \in M} [\![\phi(v)]!]$$

$$[\![\exists x \phi(x)]!] = \bigwedge_{a \in \mathcal{A}} \left(\bigwedge_{v \in M} ([\![\phi(v)]!] \rightarrow a) \rightarrow a \right)$$

Theorem (Soundness)

If $\vdash_{\mathcal{LJ}} \phi$ (resp. $\vdash_{\mathcal{LK}} \phi$), then $[\![\phi]\!] \in S_J^0(\mathcal{A})$ (resp. $[\![\phi]\!] \in S_K^0(\mathcal{A})$)

Implicative algebras

Definition (Implicative algebra)

An **implicative algebra** is a quadruple $(\mathcal{A}, \preccurlyeq, \rightarrow, S)$ where

- $(\mathcal{A}, \preccurlyeq, \rightarrow)$ is an implicative structure (= algebra of truth values)
- $S \subseteq \mathcal{A}$ is a separator (+ criterion of truth)

An implicative algebra $(\mathcal{A}, \preccurlyeq, \rightarrow, S)$ is

- consistent when $\perp \notin S$
- classical when $\mathbf{c}^{\mathcal{A}} \in S$

- The separator $S \subseteq \mathcal{A}$ induces a **preorder of entailment**:

$$a \vdash_S b \quad := \quad (a \rightarrow b) \in S \quad \text{(for all } a, b \in \mathcal{A})$$

- The **poset reflection** of (\mathcal{A}, \vdash_S) is written \mathcal{A}/S :

$$[a] \leq_S [b] \quad \text{iff} \quad a \vdash_S b \quad \text{(for all } a, b \in \mathcal{A})$$

The induced Heyting algebra

Proposition

Let $\mathcal{A} = (\mathcal{A}, \preccurlyeq, \rightarrow, S)$ be an implicative algebra

- 1 The quotient poset $H = (\mathcal{A}/S, \leq_S)$ is a **Heyting algebra**, where:

$$[a] \rightarrow_H [b] = [a \rightarrow b]$$

$$[a] \wedge_H [b] = [a \times b] \quad [a] \vee_H [b] = [a + b]$$

$$\perp_H = [\perp] \quad \top_H = [\top] = S$$

- 2 When \mathcal{A} is classical (i.e. $\alpha^{\mathcal{A}} \in S$), this poset is a **Boolean algebra**

The poset $H = (\mathcal{A}/S, \leq_S)$ is called the **Heyting algebra induced by \mathcal{A}**

Remarks:

- The Heyting algebra H is in general **not complete**
- **Beware!** The ordering \leq_S on H comes from \vdash_S (entailment), and not from \preccurlyeq (subtyping). However, we have: $a \preccurlyeq b \Rightarrow [a] \leq_S [b]$.

Ultraseparators

(1/2)

Although separators are *not* filters (w.r.t. the order \preccurlyeq), they can be manipulated similarly to filters. For instance:

- We call an **ultraseparator** any separator $S \subseteq \mathcal{A}$ that is consistent and maximal (w.r.t. inclusion) among consistent separators
- By Zorn's lemma, we easily check that any consistent separator can be extended into an ultraseparator

Trivial Boolean algebra

$S \subseteq \mathcal{A}$ is an **ultraseparator** if and only if the induced Heyting algebra $(\mathcal{A}/S, \leq_S)$ is the **trivial Boolean algebra**:

$$S \subseteq \mathcal{A} \text{ ultraseparator} \quad \text{iff} \quad (\mathcal{A}/S, \leq_S) \approx \mathbf{2}$$

Remark: Works even when the ultraseparator $S \subseteq \mathcal{A}$ is not classical!

Ultraseparators

(2/2)

Remark: There are non-classical ultraseparators!

Typical example is given by **intuitionistic realizability**:

- Let $(\mathcal{A}, \preccurlyeq, \rightarrow)$ be the implicative structure induced by a **total combinatory algebra** $(P, \cdot, \mathbf{K}, \mathbf{S})$:
 - $\mathcal{A} := \mathfrak{P}(P)$ (sets of combinators)
 - $a \preccurlyeq b := a \subseteq b$ (inclusion)
 - $a \rightarrow b := \{z \in P : \forall x \in a, z \cdot x \in b\}$ (Kleene's implication)
- Let $S = \mathfrak{P}(P) \setminus \{\emptyset\} = \mathcal{A} \setminus \{\perp\}$. We easily check that S is a consistent separator, obviously maximal. Hence: $\mathcal{A}/S \approx 2$.
- Identity $\mathcal{A}/S \approx 2$ reflects the fact that in intuitionistic realizability, we have either $\Vdash \phi$ or $\Vdash \neg\phi$ for each **closed** formula ϕ .
- On the other hand, we have: $\mathfrak{C}^{\mathcal{A}} = \bigwedge_a ((\neg a \rightarrow a) \rightarrow a) = \emptyset$
(Indeed, from a realizer $t \in \mathfrak{C}^{\mathcal{A}}$, we would easily solve the halting problem)

Plan

1 Introduction

2 Implicative structures

3 Separators

4 Separators and filters

5 Conclusion

Separators and filters

- In the theory of implicative algebras, separators play the same role as filters in the theory of Heyting algebras.

However, separators $S \subseteq \mathcal{A}$ are in general *not* filters:

$$a, b \in S \Rightarrow ab \in S$$

$$a, b \in S \Rightarrow a \times b \in S$$

$$a, b \in S \quad \not\Rightarrow \quad a \curlywedge b \in S$$

- On the other hand, in the particular case where \mathcal{A} is (derived from) a **complete Heyting algebra**, we have: **separator = filter**
- We shall now study in the general case the situations where a separator happens to be also a filter

Non deterministic choice

- Given an implicative structure $\mathcal{A} = (\mathcal{A}, \preceq, \rightarrow)$, we let:

$$\text{ḥ}^{\mathcal{A}} := \bigwedge_{a,b} (a \rightarrow b \rightarrow a \wedge b) \quad (\text{non deterministic choice})$$

We shall also use the symbol ḥ (non-deterministic choice operator) as an extra constant of the λ -calculus (like ∞), that is interpreted by $\text{ḥ}^{\mathcal{A}}$

- In Krivine's λ_c -calculus, universal realizers of the “type” $\text{ḥ}^{\mathcal{A}}$ are the instructions ḥ with the non-deterministic evaluation rule:

$$\text{ḥ} \star u \cdot v \cdot \pi \succ \begin{cases} u \star \pi \\ v \star \pi \end{cases} \quad [\text{Guillermo \& M., 2014}]$$

“Attention à l'instruction fork qui a des effets dévastateurs!”

J.-L. Krivine, 12/03/2012

Non deterministic choice and parallel 'or'

- Let $\text{Nat}^{\mathcal{A}}(n) := \bigwedge_{a \in \mathcal{A}^{\mathbb{N}}} \left(a(0) \rightarrow \bigwedge_{p \in \mathbb{N}} (a(p) \rightarrow a(p+1)) \rightarrow a(n) \right)$

Fact

- $\vdash^{\mathcal{A}} = (\lambda xy . x)^{\mathcal{A}} \wedge (\lambda xy . y)^{\mathcal{A}}$ (tt \wedge ff)
- $\vdash^{\mathcal{A}} \dashv\vdash_S \bigwedge_{n \in \mathbb{N}} \text{Nat}^{\mathcal{A}}(n)$ (in any separator $S \subseteq \mathcal{A}$)

- Non deterministic choice is related to the **parallel 'or'**

$$\text{p-or}^{\mathcal{A}} := (\perp \rightarrow \top \rightarrow \perp) \wedge (\top \rightarrow \perp \rightarrow \perp) \quad (\text{parallel 'or'})$$

Fact

- $\vdash^{\mathcal{A}} \preccurlyeq \text{p-or}^{\mathcal{A}}$
- $\vdash^{\mathcal{A}} \dashv\vdash_S \text{p-or}^{\mathcal{A}}$ (in any **classical** separator $S \subseteq \mathcal{A}$)

Non deterministic choice, parallel 'or' and filters

- Let $\mathcal{A} = (\mathcal{A}, \preceq, \rightarrow)$ be an implicative structure
- It is clear that a separator $S \subseteq \mathcal{A}$ is a **filter** if and only if it is closed under binary meets: $a, b \in S \Rightarrow a \wedge b \in S$ (for all $a, b \in \mathcal{A}$)

Proposition (Characterizing filters)

- A separator $S \subseteq \mathcal{A}$ is a filter if and only if: $\perp^{\mathcal{A}} \in S$
- A classical separator $S \subseteq \mathcal{A}$ is a filter if and only if: $\text{p-or}^{\mathcal{A}} \in S$

Proof.

- (\Rightarrow) In any separator $S \subseteq \mathcal{A}$, we have $(\lambda xy . x)^{\mathcal{A}}, (\lambda xy . y)^{\mathcal{A}} \in S$. So that when S is a filter, we get $\perp^{\mathcal{A}} = (\lambda xy . x)^{\mathcal{A}} \wedge (\lambda xy . y)^{\mathcal{A}} \in S$.
(\Leftarrow) If $\perp^{\mathcal{A}} \in S$, then $(a \rightarrow b \rightarrow a \wedge b) \in S$ for all $a, b \in \mathcal{A}$. So that if $a, b \in S$, we get $a \wedge b$ (applying the modus ponens twice in S).
- Obvious from item 1, since: $\perp^{\mathcal{A}} \in S$ iff $\text{p-or}^{\mathcal{A}} \in S$. □

Generating separators

- Given any subset $X \subseteq \mathcal{A}$, we write:
 - $\text{App}(X)$ the **applicative algebra generated by X** , i.e. the smallest subset of \mathcal{A} containing X and closed under application
 - $\uparrow X$ the upwards closure of X in \mathcal{A} (w.r.t. \preccurlyeq)

Lemma (Separator generated by a subset of \mathcal{A})

For all $X \subseteq \mathcal{A}$, the subset $\uparrow \text{App}(X \cup \{\mathbf{K}^{\mathcal{A}}, \mathbf{S}^{\mathcal{A}}\}) \subseteq \mathcal{A}$ is the smallest separator of \mathcal{A} containing X as a subset

- A separator $S \subseteq \mathcal{A}$ is **finitely generated** when it is of the form

$$S = \uparrow \text{App}(X) \quad \text{for some finite subset } X \subseteq \mathcal{A}$$
- We observe that both separators $S_J^0(\mathcal{A}) \subseteq \mathcal{A}$ (**intuitionistic core**) and $S_K^0(\mathcal{A}) \subseteq \mathcal{A}$ (**classical core**) are finitely generated

Finitely generated separators and principal filters (1/4)

Theorem

Given a separator $S \subseteq \mathcal{A}$, the following are equivalent:

- ① S is finitely generated and $\top^{\mathcal{A}} \in S$
- ② S is a **principal filter**: $S = \uparrow\{\Theta\}$ for some $\Theta \in S$
(Θ is called the **universal proof** of S)
- ③ The induced Heyting algebra $H := (\mathcal{A}/S, \leq_S)$ is **complete**, and the surjection $[\cdot] : \mathcal{A} \rightarrow H$ commutes with **infinitary meets**:

$$\left[\bigwedge_{i \in I} a_i \right] = \bigwedge_{i \in I} [a_i]$$

In model theoretic terms, this situation corresponds to a **collapse** of (intuitionistic/classical) realizability into (Kripke/Cohen) forcing!

Finitely generated separators and principal filters (2/4)

Proof.

- S finitely generated + $\pitchfork^{\mathcal{A}} \in S \Rightarrow S$ principal filter

Suppose that $S = \uparrow \text{App}(\{g_1, g_2, \dots, g_n\})$ and $\pitchfork^{\mathcal{A}} \in S$. From the latter, S is a filter, so that for all $k \geq 1$, we have more generally:

$$\begin{aligned}\pitchfork_k^{\mathcal{A}} &:= \bigwedge_{a_1, \dots, a_k} (a_1 \rightarrow \dots \rightarrow a_k \rightarrow a_1 \wedge \dots \wedge a_k) \\ &= \bigwedge_{i=1..k} (\lambda x_1 \dots x_k . x_i)^{\mathcal{A}} \in S\end{aligned}$$

We let: $\Theta := (\mathbf{Y}(\lambda r . \pitchfork_{n+1}^{\mathcal{A}} g_1 \dots g_n (r r)))^{\mathcal{A}} \in S$, where $\mathbf{Y} \equiv (\lambda y f . f(y y f))(\lambda y f . f(y y f))$ is Turing's fixpoint combinator.

By construction we have $\Theta \preccurlyeq \pitchfork_{n+1}^{\mathcal{A}} g_1 \dots g_n (\Theta \Theta)$, hence:

$$\Theta \preccurlyeq g_1, \dots, \Theta \preccurlyeq g_n \text{ and } \Theta \preccurlyeq \Theta \Theta$$

By induction, we get $\Theta \preccurlyeq a$ for all $a \in \text{App}(g_1, \dots, g_n)$, and thus $\Theta \preccurlyeq a$ for all $a \in S$. Therefore: $\Theta = \min(S)$ and $S = \uparrow\{\Theta\}$.

(...)

Finitely generated separators and principal filters (3/4)

Proof (continued).

- *S* principal filter $\Rightarrow H$ complete + commutation property

Suppose that $S = \uparrow\{\Theta\}$, and let $[a_i]_{i \in I} \in H^I$ be a family of elements of H , defined from a family of representatives $(a_i)_{i \in I} \in \mathcal{A}^I$. Since $(\bigwedge_{i \in I} a_i) \preccurlyeq a_i$ for all $i \in I$, $[\bigwedge_{i \in I} a_i]$ is a lower bound of the family $[a_i]_{i \in I}$ in H .

Conversely, if $[b]$ is a lower bound of the family $[a_i]_{i \in I}$ in H , we have $(b \rightarrow a_i) \in S$ for all $i \in I$. And since $S = \uparrow\{\Theta\}$, we get $\Theta \preccurlyeq (b \rightarrow a_i)$ for all $i \in I$, so that:

$$\Theta \preccurlyeq \bigwedge_{i \in I} (b \rightarrow a_i) = b \rightarrow \bigwedge_{i \in I} a_i.$$

Hence $[b] \leq_S [\bigwedge_{i \in I} a_i]$. Therefore, $[\bigwedge_{i \in I} a_i]$ is the g.l.b. of the family $[a_i]_{i \in I}$, hence the commutation property $[\bigwedge_{i \in I} a_i] = \bigwedge_{i \in I} [a_i]$. (...)

Finitely generated separators and principal filters (4/4)

Proof (continued).

- H complete + commut. property $\Rightarrow S$ finitely generated + $\pitchfork^{\mathcal{A}} \in S$

Suppose that $H = \mathcal{A}/S$ is complete and that the surjection $[\cdot] : \mathcal{A} \rightarrow H$ commutes with infinitary meets. Let $\Theta = \bigwedge S$. From the commutation property, we have:

$$[\Theta] = \left[\bigwedge_{a \in S} a \right] = \bigwedge_{a \in S} [a] = \bigwedge_{a \in S} \top_H = \top_H,$$

hence $\Theta \in S$, so that $\Theta = \min(S)$ and $S = \uparrow\{\Theta\}$. Therefore the separator S is a (principal) filter, hence we have $\pitchfork^{\mathcal{A}} \in S$.

S is also finitely generated, by the unique generator Θ . □

Uniform existential quantification

- We say that an implicative structure $\mathcal{A} = (\mathcal{A}, \preccurlyeq, \rightarrow)$ has **uniform existential quantification** when for all $(a_i)_{i \in I} \in \mathcal{A}^I$ and $b \in \mathcal{A}$:

$$(*) \quad \bigwedge_{i \in I} (a_i \rightarrow b) = \left(\bigvee_{i \in I} a_i \right) \rightarrow b$$

- This equality (that corresponds to \exists -elim) holds in:
 - all complete Heyting/Boolean algebras
 - all the implicative algebras induced by total combinatory algebras $(P, \cdot, \mathbf{K}, \mathbf{S})$ (**intuitionistic realizability**)
- When $(*)$ holds, we can let: $\bigexists_{i \in I} a_i := \bigvee_{i \in I} a_i$

Proposition

If \mathcal{A} has uniform existential quantifications, then:

- 1 p-or $:= (\perp \rightarrow \top \rightarrow \perp) \wedge (\top \rightarrow \perp \rightarrow \perp) = \top$
- 2 All classical separators $S \subseteq \mathcal{A}$ are filters

Morality: Uniform \exists/\forall (both) are incompatible with classical realizability

Plan

1 Introduction

2 Implicative structures

3 Separators

4 Separators and filters

5 Conclusion

Conclusion

We introduced **implicative algebras**, a simple algebraic structure that is common to **forcing** and **realizability** (intuitionistic & classical)

- Relies on the fundamental idea that **truth values** can be manipulated as **generalized realizers** (via the operations of the λ -calculus)

Proof = Program = Type = Formula

- Criterion of truth given by a **separator** (generalizing filters)
- Implicative algebras can be used to construct:
 - Models of 1st-order logic (**implicative models**)
 - Categorical models of higher-order logic: **implicative triposes/toposes**
 - Models of (I)ZF set theory
- In this structure: **forcing** = **non deterministic realizability**
- **Remark:** One can show that **classical implicative algebras** have the same expressiveness as **abstract Krivine structures** (but with a lighter machinery)