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EN: implicative adj.
1. Logic: relative to implication

ES: implicativo adj. (f. implicativa)
1. Lógica: relativo a la implicación

FR: implicatif adj. (f. implicative)
1. Logique: relatif à l’implication

DE: implikativ adj.
1. Logik: bezüglich der Implikation

. . .
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Different notions of models (1/2)

Tarski models: JφK ∈ {0; 1}
Interprets classical provability (correctness/completeness)

Intuitionistic realizability: JφK ∈ P(Λ) [Kleene ’45]

Interprets intuitionistic proofs
Independence results in intuitionistic theories
Definitely incompatible with classical logic

Cohen forcing: JφK ∈ P(C) [Cohen ’63]

Independence results, in classical theories
(Negation of continuum hypothesis, Solovay’s axiom, etc.)


Boolean-valued models: JφK ∈ B [Scott, Solovay, Vopěnka]

Classical realizability: JφK ∈ P(Λc) [Krivine ’94, ’01, ’03, ’09–]

Interprets classical proofs
Generalizes Tarski models... and forcing!
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Different notions of models (2/2)

HVM

BVM

TM

HVM = Heyting-valued models ≈ Kripke forcing
BVM = Boolean-valued models ≈ Cohen forcing
TM = Tarski models

Intuitionistic realizability
(with Partial Combinatory Algebras)

Classical realizability
(with Abstract Krivine Structures)

∀ = ∧ = ∩

∀ = ∩ , ∧ = ×
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The algebraic structures underlying forcing

Definition (Heyting/Boolean algebras)

1 A Heyting algebra is a bounded lattice (H,≤) that has relative
pseudo-complements

a→ b := max{c ∈ H : (c ∧ a) ≤ b} (Heyting’s implication)

for all a, b ∈ H, so that we get the adjunction:

(c ∧ a) ≤ b ⇔ c ≤ (a→ b) (Heyting’s adjunction)

2 A Boolean algebra is a Heyting algebra in which the operation of
negation ¬a := (a→ ⊥) is involutive:

¬¬a (= (a→ ⊥)→ ⊥) = a (a ∈ H)

3 A Heyting/Boolean algebra is complete when the underlying lattice is

Complete Heyting algebras ⇒ Kripke (i.e. intuitionistic) forcing

Complete Boolean algebras ⇒ Cohen (i.e. classical) forcing
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The algebraic structures underlying realizability (1/2)

Definition (Partial combinatory algebras)

1 A partial applicative structure (PAS) is a set P together with a
partial operation (·) : P × P ⇀ P called application

2 A partial combinatory algebra (PCA) is a PAS (P, · ) containing
two elements K,S ∈ P such that for all x, y, z ∈ P :

K · x · y ↓= x

S · x · y ↓
S · x · y · z ↓= (x · z) · (y · z) (whenever the rhs is defined)

3 A combinatory algebra (CA) is a PCA whose application is total

Examples:

P := Λ/βη equipped with application is a (total) CA

P := N equipped with Kleene application is a PCA
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The algebraic structures underlying realizability (2/2)

Definition (Abstract Krivine structure)

An Abstract Krivine structure (AKS) A is given by:

2 sets Λ (A -terms), Π (A -stacks)

3 functions (@) : Λ×Λ→ Λ, (·) : Λ×Π→ Π, (k ) : Π→ Λ

3 combinators S,K, cc ∈ Λ

A subset PL ⊆ Λ (of proof-like A -terms) that contains the combinators
S,K, cc and that is closed under application (@).

A binary relation ‚ ⊆ Λ×Π (the pole) such that:

t ? u · π ∈ ‚ implies tu ? π ∈ ‚
t ? π ∈ ‚ implies K ? t · u · π ∈ ‚

tv(uv) ? π ∈ ‚ implies S ? t · u · v · π ∈ ‚
t ? kπ · π ∈ ‚ implies cc ? t · π ∈ ‚
t ? π ∈ ‚ implies kπ ? t · π′ ∈ ‚



Intro Implicative structures Separators Separators and filters Concl

Unifying all kinds of models

Aim: Define an algebraic structure to encompass:

Complete Heyting Algebras (for Heyting-valued models, Kripke forcing)

Complete Boolean Algebras (for Boolean-valued models, Cohen forcing)

Partial Combinatory Algebras (for Intuitionistic realizability)

Ordered Combinatory Algebras (for Intuitionistic realizability)

Abstract Krivine Structures (for Classical realizability)

Implicative algebras can be used to construct:

Categorical models (triposes, toposes)

Models of (intuitionistic/classical) set theory

Underlying ideas are reminiscent from earlier work of

Ruyer ’07, Streicher ’13 (and many others!)
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Implicative structures

Definition (Implicative structure)

An implicative structure is a triple (A ,4,→) where

(1) (A ,4) is a complete (meet semi-)lattice

(2) (→) : A 2 → A is a binary operation such that:

(2a) a′ 4 a, b 4 b′ entails (a→ b) 4 (a′ → b′) (a, a′, b, b′ ∈ A )

(2b)
k

b∈B

(a→ b) = a→
k

b∈B

b (for all B ⊆ A )

Write ⊥ (resp. >) the smallest (resp. largest) element of A

When B = ∅, axiom (2b) gives: (a→ >) = > (a ∈ A )
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Examples of implicative structures

Complete Heyting algebras (A ,4), where → is defined by:

a→ b := max{c ∈ A : (cf a) 4 b} (Heyting’s implication)

+ complete Boolean algebras (as a particular case of Heyting algebras)

Given a (total) combinatory algebra (P, · ,K,S), we let:

A := P(P )
a 4 b := a ⊆ b
a→ b := {z ∈ P : ∀x∈ a, z · x ∈ b} (Kleene’s implication)

Note: if we do the same with a partial combinatory algebra (PCA), we only get
a quasi-implicative structure (cf next slide)

+ similar construction for ordered combinatory algebras (OCA)

Given an abstract Krivine structure (Λ,Π, . . . ,PL,‚), we let:

A := P(Π)
a 4 b := a ⊇ b
a→ b := a‚ · b (Krivine’s implication)
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Relaxing the definition

In some situations, it is desirable to have (a→ >) 6= >

Definition (Quasi-implicative structure)

Same definition as for an implicative structure, but axiom

(2b)
k

b∈B

(a→ b) = a→
k

b∈B

b (if B 6= ∅)

only required for the non-empty subsets B ⊆ A

Examples:

Each partial combinatory algebra (P, · ,K,S) more generally induces
a quasi-implicative structure: (P(P ),⊆,→)

This structure is an implicative structure iff application · is total

Usual notions of reducibility candidates (Tait, Girard, Parigot, etc.)
induce quasi-implicative structures (built from the λ-calculus)
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Viewing truth values as (generalized) realizers (1/2)

The Curry-Howard correspondence:

Syntax: Proof = Program : Formula = Type

Semantics: Realizer ∈ Truth value

But in most semantics, we can associate to every realizer t its
principal type [t], i.e. the smallest truth value containing t:

t : A (typing) iff [t] ⊆ A (subtyping)

Identifying t with [t], we get the inclusion:

Realizers ⊆ Truth values

Moreover, we shall see that application and abstraction can be lifted
at the level of truth values. Therefore:

Truth values = Generalized realizers
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Viewing truth values as (generalized) realizers (2/2)

Fundamental ideas underlying implicative structures:

1 Operations on λ-terms can be lifted to truth values

2 Truth values can be used as generalized realizers

3 Realizers and truth values live in the same world!

Proof = Program = Type = Formula

(The ultimate Curry-Howard identification)

In an implicative structure, the relation a 4 b may read:

a is a subtype of b (viewing a and b as truth values)

a has type b (viewing a as a realizer, b as a truth value)

a is more defined than b (viewing a and b as realizers)

In particular:

ordering of sybtyping 4 ≡ reverse Scott ordering w
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Encoding application & abstraction

Let A = (A ,4,→) be an implicative structure

Definition (Application & Abstraction)

Given a, b ∈ A and a function f : A → A , we let:

ab :=
k
{c ∈ A : a 4 (b→ c)}

λf :=
k

a∈A

(a→ f(a))

(application)

(abstraction)

Properties:

1 If a 4 a′ and b 4 b′, then ab 4 a′b′ (Monotonicity)

2 If f 4 g (pointwise), then λf 4 λg (Monotonicity)

3 (λf)a 4 f(a) (β-reduction)

4 a 4 λ(x 7→ ax) (η-expansion)

5 ab 4 c iff a 4 (b→ c) (Adjunction)
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Encoding the λ-calculus

Let A = (A ,4,→) be an implicative structure

To each closed λ-term t with parameters (i.e. constants) in A ,
we associate a truth value tA ∈ A :

aA := a
(λx . t)A := λ(a 7→ (t[x := a])A )

(tu)A := tA uA

Properties:

β-rule: If t�β t
′, then (t)A 4 (t′)A

η-rule: If t�η t
′, then (t)A < (t′)A

Remarks:

This is not a denotational model of the λ-calculus!

The map tA is not injective in general
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Semantic typing (1/2)

Elements of A can be used as semantic types for λ-terms:

Types: a ∈ A

Terms: λ-terms with parameters in A

Contexts: Γ ≡ x1 : a1, . . . , xn : an (a1, . . . , an ∈ A)

Judgment: Γ ` t : a

Remark: Each context Γ ≡ x1 : a1, . . . , xn : an can also be
used as a substitution: Γ ≡ x1 := a1, . . . , xn := an

The validity of a judgment is defined directly (i.e. semantically);
not from a set of inference rules:

Definition (Semantic validity)

Γ ` t : a :≡ FV (t) ⊆ dom(Γ) and (t[Γ])A 4 a
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Semantic typing (2/2)

Definition (Semantic validity)

Γ ` t : a :≡ FV (t) ⊆ dom(Γ) and (t[Γ])A 4 a

Proposition

The following semantic typing rules are valid:

Γ ` x : a
((x:a)∈Γ)

Γ ` a : a Γ ` t : >
(FV (t)⊆dom(Γ))

Γ, x : a ` t : b

Γ ` λx . t : a→ b
Γ ` t : a→ b Γ ` u : a

Γ ` tu : b

Γ ` t : ai (for all i∈I)

Γ ` t :
k

i∈I
ai

Γ ` t : a
Γ ` t : a′

(a4a′)
Γ ` t : a
Γ′ ` t : a

(Γ′4Γ)

Note: Γ′ 4 Γ means: Γ′(x) 4 Γ(x) for all x ∈ dom(Γ) ⊆ dom(Γ′).
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Remarkable identities (1/2)

Recall that in (Curry-style) system F, we have:

I := λx . x : ∀α (α→ α)

K := λxy . x : ∀α, β (α→ β → α)

S := λxyz . xz(yz) : ∀α, β, γ ((α→ β → γ)→ (α→ β)→ α→ γ)

Proposition

(?)

In any implicative structure A = (A ,4,→) we have:

IA := (λx . x)A =
k

a∈A

(a→ a)

KA := (λxy . x)A =
k

a,b∈A

(a→ b→ a)

SA := (λxyz . xz(yz))A =
k

a,b,c∈A

((a→ b→ c)→ (a→ b)→ a→ c)
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Remarkable identities (2/2)

The same property holds for:

C := λxyz . xzy : ∀α, β, γ ((α→ β → γ)→ β → α→ γ)

W := λxy . xyy : ∀α, β ((α→ α→ β)→ α→ β)

but not for

II := (λx . x)(λx . x) : ∀α (α→ α)

(Thanks to a remark of Étienne Miquey)

By analogy, we let:

ccA :=
k

a,b∈A

(((a→ b)→ a)→ a)

=
k

a∈A

((¬a→ a)→ a)

(Peirce’s law)

(where ¬a := (a→ ⊥))

From this, we extend the encoding of the λ-calculus to all λ-terms
enriched with the constant cc (= proof-like λc-terms)
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Particular case: A is a complete Heyting algebra (1/2)

Complete Heyting algebras are the particular implicative structures
A = (A ,4,→) where → is defined from the ordering 4 by

a→ b := max{c ∈ A : (cf a) 4 b}

Recall: Complete Heyting (or Boolean) algebras are the structures underlying forcing
(in the sense of Kripke or Cohen)

Proposition

When A = (A ,4,→) is a complete Heyting algebra:

1 For all a, b ∈ A : ab = af b (application = binary meet)

2 For all λ-terms t with free variables x1, . . . , xk (k ≥ 0)
and for all a1, . . . , ak ∈ A , we have:

(t[x1 := a1, . . . , xk := ak])A < a1 f · · ·f ak
3 In particular, when t is closed: (t)A = >
4 A is a (complete) Boolean algebra iff ccA = >
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Particular case: A is a complete Heyting algebra (2/2)

Proof.

1 For all c ∈ A , we have: ab 4 c ⇔ a 4 (b→ c) ⇔ a f b 4 c,
hence ab = a f b.

2 We prove that (t[~x := ~a])A < a1 f · · · f ak by induction on t

t ≡ x (variable). Obvious.

t ≡ t1t2 (application). Obvious from point 1.

t ≡ λx0 . t0 (abstraction). In this case, we have:

(t[~x := ~a])A =
k

a0

(
a0 → (t0[x0 := a0, ~x := ~a])A

)
<

k

a0

(
a0 → a0 f a1 f · · · f ak

)
(by IH)

< a1 f · · · f ak
using the relation b 4 (a→ a f b) of Heyting Algebras.

3 In particular, when t is closed, we get: (t)A < >

4 (A ,4) Boolean algebra iff ccA = >: Obvious.



Intro Implicative structures Separators Separators and filters Concl

Logical strength of an implicative structure

Warning! We may have (t)A = ⊥ for some closed λ-term t.

Intuitively, this means that the corresponding term is inconsistent in
(the logic represented by) the implicative structure A

We say that the implicative structure A is:

intuitionistically consistent when (t)A 6= ⊥ for all closed λ-terms

classically consistent when (t)A 6= ⊥ for all closed λ-terms with cc

Examples:

Every non-degenerated complete Heyting algebra is int. consistent

Every non-degenerated complete Boolean algebra is class. consistent

Every implicative structure induced by a total combinatory algebra is
intuitionistically consistent

Every implicative structure induced by an AKS whose pole ‚ is
coherent (cf [Krivine’12]) is classically consistent
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Two trivial examples...

Trivial example 1:

Given a complete lattice (A ,4), we let

a→ b := b (for all a, b ∈ A )

Clearly, (A ,4,→) is an implicative structure

In this structure, we have: IA :=
k

a∈A

(a→ a) =
k

a∈A

a = ⊥ (!)

Trivial example 2:

Given a complete lattice (A ,4), we let

a→ b := > (for all a, b ∈ A )

Again, (A ,4,→) is an implicative structure!

In this structure, we have: IA :=
k

a∈A

(a→ a) = >, but

(II)A := >> =
k
{c ∈ A : > 4 (> → c)} =

k
A = ⊥ (!)
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... and a non trivial example (1/2)

(The following example is inspired from Girard’s phase semantics for LL)

Let (M, ·, 1) be a commutative monoid. We let:

A := P(M)

a 4 b := a ⊆ b
a→ b := {γ ∈M : (∀α∈ a) γα ∈ b} (for all a, b ∈ A )

Clearly, (A ,4,→) is an implicative structure
(since the product · is a total operation)

We easily check that for all a, b ∈ A :

ab := a · b = {αβ : α ∈ a, β ∈ b}
Therefore:

ab = ba (application is commutative)

(ab)c = a(bc) (application is associative)

aa 6= a, in general (application is not idempotent)
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... and a non trivial example (2/2)

Proposition

1 In the implicative structure (A ,4,→) = (P(M),⊆,→):

IA := (λx . x)A = {1} 6= ⊥
CA := (λxyz . xzy)A = {1} 6= ⊥
BA := (λxyz . x(yz))A = {1} 6= ⊥

2 Moreover, if we assume that α2 6= α for some α ∈M , then:

KA := (λxy . x)A = ∅ = ⊥
WA := (λxy . xyy)A = ∅ = ⊥
SA := (λxyz . xz(yz))A = ∅ = ⊥

More generally, for each closed λ-term t, we (should) have:

(t)A =

{
{1} if t is linear

∅ otherwise
(to be checked)
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Separators

Let A = (A ,4,→) be an implicative structure

Definition (Separator)

A separator of A is a subset S ⊆ A such that:

(1) If a ∈ S and a 4 b, then b ∈ S (upwards closed)

(2) KA = (λxy . x)A ∈ S and SA = (λxyz . xz(yz))A ∈ S

(3) If (a→ b) ∈ S and a ∈ S, then b ∈ S (modus ponens)

We say that S is consistent (resp. classical) when ⊥ /∈ S (resp. ccA ∈ S)

Remarks:

Under (1), axiom (3) is equivalent to:

(3′) If a, b ∈ S, then ab ∈ S (closure under application)

In a complete Heyting algebra: separator = filter

But in general, separators are not closed under binary meets
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λ-terms and separators

Intuition: Separator S ⊆ A = criterion of truth (in A )

All separators are closed under the operations of the λ-calculus:

Proposition

Given a separator S ⊆ A :

1 For all λ-terms t with free variables x1, . . . , xk and for all a1, . . . , ak ∈ S,
we have: (t[x1 := a1, . . . , xk := ak])A ∈ S

2 For all closed λ-terms t: (t)A ∈ S

Alternative formulation:

Given a closed λ-term t with parameters in S:

` t : a implies a ∈ S
If a has a “proof” t (possibly using “axioms” ∈ S), then a is true (∈ S)
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Intuitionistic and classical cores

Definition (intuitionistic & classical cores)

Given an implicative algebra we write:

S 0
J (A ) the smallest separator of A (intuitionistic core)

S 0
K(A ) the smallest classical separator of A (classical core)

We easily check that:

S 0
J (A ) = ↑{(t)A : t closed λ-term}
S 0
K(A ) = ↑{(t)A : t closed λ-term with cc}

writing ↑B the upwards closure of a subset B ⊆ A

Proposition

An implicative algebra A is intuitionistically (resp. classically) consistent
if and only if ⊥ /∈ S 0

J (A ) (resp. ⊥ /∈ S 0
K(A ))
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Encoding conjunction and disjunction

In any implicative structure, conjunction and disjunction are defined by:

a× b :=
k

c∈A

(
(a→ b→ c)→ c

)
(conjunction)

a+ b :=
k

c∈A

(
(a→ c)→ (b→ c)→ c

)
(disjunction)

Proposition

The following semantic typing rules are valid:

Γ ` t : a Γ ` u : b
Γ ` λz . z t u : a× b

Γ ` t : a× b
Γ ` t (λxy . x) : a

Γ ` t : a× b
Γ ` t (λxy . y) : b

Γ ` t : a
Γ ` λzw . z t : a+ b

Γ ` t : b
Γ ` λzw .w t : a+ b

Γ ` t : a+ b Γ, x : a ` u : c Γ, y : b ` v : c

Γ ` t (λx . u) (λy . v) : c

Moreover, we have: (λz . z a b)A = 〈a, b〉A = a× b (pairing = conjunction)
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Encoding quantifiers

Given a family (ai)i∈I , we let:

∀
i∈I

ai :=
k

i∈I
ai

∃
i∈I

ai :=
k

c∈A

(k

i∈I

(
ai → c) → c

)

Proposition

The following semantic typing rules are valid:

Γ ` t : ai (for all i∈I)

Γ ` t : ∀i∈I ai
Γ ` t : ∀i∈I ai

Γ ` t : ai0
(i0∈I)

Γ ` t : ai0
Γ ` λz . z t : ∃i∈I ai

(i0∈I)
Γ ` t : ∃i∈I ai Γ, x : ai ` u : c (for all i∈I)

Γ ` t (λx . u) : c

Note: The simpler encoding ∃i∈I ai :=
b
i∈I ai does not work

in classical realizability
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A note on existential quantification

The interpretation of ∀ and ∃ is asymmetric:

∀(ai)i∈I :=
k

i∈I
ai ∃(ai)i∈I :=

k

c∈A

(k

i∈I

(
ai → c) → c

)
Why not taking ∃(ai)i∈I :=

j

i∈I
ai ?

Reason: The latter interpretation “∃ =
b

” fails to interpret the
elimination rule of ∃. In general:

∀(ai → b)i∈I →
b

(ai)i∈I → b /∈ S 0
J (A )

(There are counter-examples with Krivine realizability)

However, the interpretation “∃ =
b

” works when:

A is a complete Heyting/Boolean algebra

A = (P(A),⊆,→) is the implicative structure induced by a (total)
combinatory algebra (P, · ,K,S)
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Interpreting first-order logic

Formulas of first-order logic are interpreted by:

Jφ⇒ ψK = JφK→ JψK

J¬φK = JφK→ ⊥

Jφ ∧ ψK =
k

a∈A

(
(JφK→ JψK→ a)→ a

)
Jφ ∨ ψK =

k

a∈A

(
(JφK→ a)→ (JψK→ a)→ a

)
J∀xφ(x)K =

k

v∈M
Jφ(v)K

J∃xφ(x)K =
k

a∈A

(k

v∈M

(
Jφ(v)K→ a

)
→ a

)
Theorem (Soundness)

If `LJ φ (resp. `LK φ), then JφK ∈ S 0
J (A ) (resp. JφK ∈ S 0

K(A ))
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Implicative algebras

Definition (Implicative algebra)

An implicative algebra is a quadruple (A ,4,→, S) where

(A ,4,→) is an implicative structure (= algebra of truth values)

S ⊆ A is a separator (+ criterion of truth)

An implicative algebra (A ,4,→, S) is

consistent when ⊥ /∈ S
classical when ccA ∈ S

The separator S ⊆ A induces a preorder of entailment:

a `S b :≡ (a→ b) ∈ S (for all a, b ∈ A )

The poset reflection of (A ,`S) is written A /S:

[a] ≤S [b] iff a `S b (for all a, b ∈ A )
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The induced Heyting algebra

Proposition

Let A = (A ,4,→, S) be an implicative algebra

1 The quotient poset H = (A /S,≤S) is a Heyting algebra, where:

[a]→H [b] = [a→ b]

[a] ∧H [b] = [a× b] [a] ∨H [b] = [a+ b]

⊥H = [⊥] >H = [>] = S

2 When A is classical (i.e. ccA ∈ S), this poset is a Boolean algebra

The poset H = (A /S,≤S) is called the Heyting algebra induced by A

Remarks:

The Heyting algebra H is in general not complete

Beware! The ordering ≤S on H comes from `S (entailment), and not
from 4 (subtyping). However, we have: a 4 b ⇒ [a] ≤S [b].
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Ultraseparators (1/2)

Although separators are not filters (w.r.t. the order 4), they can be
manipulated similarly to filters. For instance:

We call an ultraseparator any separator S ⊆ A that is consistent
and maximal (w.r.t. inclusion) among consistent separators

By Zorn’s lemma, we easily check that any consistent separator can
be extended into an ultraseparator

Trivial Boolean algebra

S ⊆ A is an ultraseparator if and only if the induced Heyting algebra
(A /S,≤S) is the trivial Boolean algebra:

S ⊆ A ultraseparator iff (A /S,≤S) ≈ 2

Remark: Works even when the ultraseparator S ⊆ A is not classical!
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Ultraseparators (2/2)

Remark: There are non-classical ultraseparators!

Typical example is given by intuitionistic realizability:

Let (A ,4,→) be the implicative structure induced by a total
combinatory algebra (P, · ,K,S):

A := P(P ) (sets of combinators)

a 4 b := a ⊆ b (inclusion)

a→ b := {z ∈ P : ∀x∈ a, z · x ∈ b} (Kleene’s implication)

Let S = P(P ) \ {∅} = A \ {⊥}. We easily check that S is a
consistent separator, obviously maximal. Hence: A /S ≈ 2.

Identity A /S ≈ 2 reflects the fact that in intuitionistic
realizability, we have either 
 φ or 
 ¬φ for each closed formula φ.

On the other hand, we have: ccA =
k

a

((¬a→ a)→ a) = ∅

(Indeed, from a realizer t ∈ ccA , we would easily solve the halting problem)
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Separators and filters

In the theory of implicative algebras, separators play the same role
as filters in the theory of Heyting algebras.

However, separators S ⊆ A are in general not filters:

a, b ∈ S ⇒ ab ∈ S
a, b ∈ S ⇒ a× b ∈ S
a, b ∈ S 6⇒ af b ∈ S

On the other hand, in the particular case where A is (derived from)
a complete Heyting algebra, we have: separator = filter

We shall now study in the general case the situations where a
separator happens to be also a filter
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Non deterministic choice

Given an implicative structure A = (A ,4,→), we let:

tA :=
k

a,b

(a→ b→ af b) (non deterministic choice)

We shall also use the symbol t (non-deterministic choice operator) as an
extra constant of the λ-calculus (like cc), that is interpreted by tA

In Krivine’s λc-calculus, universal realizers of the “type” tA are the
instructions t with the non-deterministic evaluation rule:

t ? u · v · π �

{
u ? π

v ? π
[Guillermo & M., 2014]

“Attention à l’instruction fork qui a des effets dévastateurs!”
J.-L. Krivine, 12/03/2012
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Non deterministic choice and parallel ‘or’

Let NatA (n) :=
k

a∈A N

(
a(0)→

k

p∈N

(
a(p)→ a(p+ 1)

)
→ a(n)

)
Fact

1 tA = (λxy . x)A f (λxy . y)A (tt f ff)

2 tA a`S
k

n∈N

NatA (n) (in any separator S ⊆ A )

Non deterministic choice is related to the parallel ‘or’

p-orA := (⊥ → > → ⊥)f (> → ⊥ → ⊥) (parallel ‘or’)

Fact

1 tA 4 p-orA

2 tA a`S p-orA
(in any classical separator S ⊆ A )
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Non deterministic choice, parallel ‘or’ and filters

Let A = (A ,4,→) be an implicative structure

It is clear that a separator S ⊆ A is a filter if and only if it is closed
under binary meets: a, b ∈ S ⇒ af b ∈ S (for all a, b ∈ A )

Proposition (Characterizing filters)

1 A separator S ⊆ A is a filter if and only if: tA ∈ S
2 A classical separator S ⊆ A is a filter if and only if: p-orA ∈ S

Proof.

1 (⇒) In any separator S ⊆ A , we have (λxy . x)A , (λxy . y)A ∈ S. So that
when S is a filter, we get tA = (λxy . x)A f (λxy . y)A ∈ S.

(⇐) If tA ∈ S, then (a→ b→ a f b) ∈ S for all a, b ∈ A . So that if
a, b ∈ S, we get a f b (applying the modus ponens twice in S).

2 Obvious from item 1, since: tA ∈ S iff p-orA ∈ S.
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Generating separators

Given any subset X ⊆ A , we write:

App(X) the applicative algebra generated by X, i.e. the smallest
subset of A containing X and closed under application

↑X the upwards closure of X in A (w.r.t. 4)

Lemma (Separator generated by a subset of A )

For all X ⊆ A , the subset ↑App(X ∪ {KA ,SA }) ⊆ A is the
smallest separator of A containing X as a subset

A separator S ⊆ A is finitely generated when it is of the form

S = ↑App(X) for some finite subset X ⊆ A

We observe that both separators S 0
J (A ) ⊆ A (intuitionistic core)

and S 0
K(A ) ⊆ A (classical core) are finitely generated
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Finitely generated separators and principal filters (1/4)

Theorem

Given a separator S ⊆ A , the following are equivalent:

1 S is finitely generated and tA ∈ S

2 S is a principal filter: S = ↑{Θ} for some Θ ∈ S
(Θ is called the universal proof of S)

3 The induced Heyting algebra H := (A /S,≤S) is complete, and
the surjection [ · ] : A → H commutes with infinitary meets:[k

i∈I
ai

]
=

∧
i∈I

[ai]

In model theoretic terms, this situation corresponds to a collapse of
(intuitionistic/classical) realizability into (Kripke/Cohen) forcing!
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Finitely generated separators and principal filters (2/4)

Proof.

S finitely generated + tA ∈ S ⇒ S principal filter

Suppose that S = ↑App({g1, g2, . . . , gn}) and tA ∈ S. From the latter,
S is a filter, so that for all k ≥ 1, we have more generally:

tA
k :=

k

a1,...,ak

(a1 → · · · → ak → a1 f · · · f ak)

=
k

i=1..k

(λx1 · · ·xk . xi)A ∈ S

We let: Θ := (Y (λr .tA
n+1 g1 · · · gn (r r)))A ∈ S, where

Y ≡ (λyf . f(yyf))(λyf . f(yyf)) is Turing’s fixpoint combinator.

By construction we have Θ 4 tA
n+1 g1 · · · gn (Θ Θ), hence:

Θ 4 g1, ..., Θ 4 gn and Θ 4 Θ Θ

By induction, we get Θ 4 a for all a ∈ App(g1, . . . , gn), and thus Θ 4 a
for all a ∈ S. Therefore: Θ = min(S) and S = ↑{Θ}. (...)
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Finitely generated separators and principal filters (3/4)

Proof (continued).

S principal filter ⇒ H complete + commutation property

Suppose that S = ↑{Θ}, and let [ai]i∈I ∈ HI be a family of elements of H,
defined from a family of representatives (ai)i∈I ∈ A I . Since

(c
i∈I ai

)
4 ai for

all i ∈ I,
[c

i∈I ai
]

is a lower bound of the family [ai]i∈I in H.

Conversely, if [b] is a lower bound of the family [ai]i∈I in H, we have
(b→ ai) ∈ S for all i ∈ I. And since S = ↑{Θ}, we get Θ 4 (b→ ai) for all
i ∈ I, so that:

Θ 4
k

i∈I
(b→ ai) = b→

k

i∈I
ai.

Hence [b] ≤S
[c

i∈I ai
]
. Therefore,

[c
i∈I ai

]
is the g.l.b. of the family [ai]i∈I ,

hence the commutation property
[c

i∈I ai
]

=
∧
i∈I [ai]. (...)
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Finitely generated separators and principal filters (4/4)

Proof (continued).

H complete + commut. property ⇒ S finitely generated + tA ∈ S
Suppose that H = A /S is complete and that the surjection [ · ] : A → H
commutes with infinitary meets. Let Θ =

c
S. From the commutation property,

we have:

[Θ] =
[k
a∈S

a
]

=
∧
a∈S

[a] =
∧
a∈S
>H = >H ,

hence Θ ∈ S, so that Θ = min(S) and S = ↑{Θ}. Therefore the separator S is
a (principal) filter, hence we have tA ∈ S.

S is also finitely generated, by the unique generator Θ.
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Uniform existential quantification

We say that an implicative structure A = (A ,4,→) has uniform
existential quantification when for all (ai)i∈I ∈ A I and b ∈ A :

(∗)
k

i∈I
(ai → b) =

(j

i∈I
ai

)
→ b

This equality (that corresponds to ∃-elim) holds in:
all complete Heyting/Boolean algebras
all the implicative algebras induced by total combinatory algebras
(P, · ,K,S) (intuitionistic realizability)

When (∗) holds, we can let: ∃
i∈I

ai :=
j

i∈I
ai

Proposition

If A has uniform existential quantifications, then:

1 p-or := (⊥ → > → ⊥) f (> → ⊥ → ⊥) = >
2 All classical separators S ⊆ A are filters

Morality: Uniform ∃/∀ (both) are incompatible with classical realizability
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Conclusion

We introduced implicative algebras, a simple algebraic structure that is
common to forcing and realizability (intuitionistic & classical)

Relies on the fundamental idea that truth values can be manipulated
as generalized realizers (via the operations of the λ-calculus)

Proof = Program = Type = Formula

Criterion of truth given by a separator (generalizing filters)

Implicative algebras can be used to construct:

Models of 1st-order logic (implicative models)

Categorical models of higher-order logic: implicative triposes/toposes

Models of (I)ZF set theory

In this structure: forcing = non deterministic realizability

Remark: One can show that classical implicative algebras have the same
expressiveness as abstract Krivine structures (but with a lighter machinery)
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