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The categorical tradition of realizability

Categorical logic [Lawvere, Tierney ’70]

Hyperdoctrines = models of 1st order theories
(Slogan: ∃/∀ are left/right adjoints!)

Modern definition of the notion of topos
(generalizes Grothendieck’s definition)

Categorical realizability [Hyland, Johnstone, Pitts ’80]

Major input from forcing and Boolean-valued models [Scott]

The effective topos [Hyland]

Notion of tripos and tripos-to-topos construction [Pitts]

Generalization to partial combinatory algebras (PCAs)
... but incompatible with classical logic

Categorical classical realizability

Classical realizability from a categorical perspective [Streicher ’13]

Ordered combinatory algebras and realizability [Ferrer et al. ’17]

Implicative algebras [Miquel ’20]
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The categorical problem

Topos
(Set-like category)

Tripos
(categorical model of HOL)

Models of
set theory

cHA
(cBA) PCA AKS

cHA = complete Heyting algebra
cBA = complete Boolean algebra
PCA = partial combinatory algebra
OCA = ordered combinatory algebra
AKS = abstract Krivine structure

OCA

Implicative algebra
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Unifying all kinds of models

Implicative algebras: a simple algebraic structure that
encompasses:

Complete Heyting Algebras (for Heyting-valued models, Kripke forcing)

Complete Boolean Algebras (for Boolean-valued models, Cohen forcing)

Partial Combinatory Algebras (for Intuitionistic realizability)

Ordered Combinatory Algebras (for Intuitionistic realizability)

Abstract Krivine Structures (for Classical realizability)

Implicative algebras can be used to construct implicative triposes,
thus encompassing all the currently known (Set-based) triposes

But do implicative triposes encompass all (Set-based) triposes?

Yes! The aim of this talk is to prove the

Theorem (Completeness)

Every (Set-based) tripos is isomorphic to an implicative tripos
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Some notations

In what follows, we write:

Set the category of sets equipped with all maps

Pos the category of posets equipped with monotonic functions

HA the category of Heyting algebras equipped with the morphisms
of Heyting algebras (i.e. that commute with ⊥, >, ∧, ∨, →)

In the category Set, we write:

1 the terminal object (i.e. a fixed singleton)

1X : X → 1 the unique map from a given set X to 1

X × Y the Cartesian product of two sets X and Y , with the
associated projections πX,Y : X ×Y → X and π′X,Y : X ×Y → Y

Given maps f : Z → X and g : Z → Y , we write 〈f, g〉 : Z → X ×Y
the unique map such that πX,Y ◦ 〈f, g〉 = f and π′X,Y ◦ 〈f, g〉 = g
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Set-based triposes

Definition 1.1 (Set-based tripos)

A (Set-based) tripos is a contravariant functor P : Setop → HA such that:

1 For each map f : X → Y (in Set), the associated map Pf : PY → PX
(in HA) has left & right adjoints ∃f,∀f : PX → PY (in Pos)

2 Beck-Chevalley condition: Each pullback square in Set (on the lhs)
induces the following two commutative diagrams in Pos (on the rhs):

X
f1 //

f2

��

X1

g1

��
X2 g2

// Y

⇒

PX
∃f1 // PX1

PX2

Pf2

OO

∃g2
// PY

Pg1

OO PX
∀f1 // PX1

PX2

Pf2

OO

∀g2
// PY

Pg1

OO

3 The functor P : Setop → HA has a generic predicate trΣ ∈ PΣ (for some
set Σ), i.e. such that for all sets X, the following map is surjective:

ΣX → PX
σ 7→ Pσ(trΣ)
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On the definitions of the notion of tripos

The above definition is the initial definition of triposes, such as
introduced in Hyland, Johnstone, Pitts: Tripos theory (1980)

Pitts’ PhD The Theory of Triposes (1981) generalizes the notion
of tripos in essentially two directions:

1 The category Set is replaced by an arbitrary Cartesian category C
(intuitively: a category of ‘contexts’), and the generic predicate is
replaced by a more general membership predicate1

2 The Beck-Chevalley condition is only required for certain pullback
squares (the projection squares), and may not hold for all

However, all forcing/realizability/implicative triposes are triposes in
the sense of the initial definition (i.e. Set-based triposes); therefore
we shall only consider these

1Due to the fact that the Cartesian category C is not necessarily closed. But
when C is a ccc, the existence of the generic predicate is sufficient
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Isomorphism of (Set-based) triposes

Definition 1.2 (Isomorphism of triposes)

Two triposes P,P′ : Setop → HA are isomorphic when there is a
natural isomorphism ϕ : P⇒ P′, i.e. a family of isos ϕX : PX → P′X
(X ∈ Set) such that the following diagram commutes

PX
ϕX

∼
// P′X

PY

Pf

OO

ϕY

∼ // P′Y

P′f

OO

for all maps

X

f

��
Y

The notion of iso can be taken indifferently in HA or in Pos, since
a map ϕX : PX → P′X is an iso in HA iff it is an iso in Pos

There is no need to take care about generic predicates!

Reason: A natural iso will automatically map any generic predicate
of P to a generic predicate of P′ (generic predicates are not unique)
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Some properties of triposes (1/2)

Lemma 1.3 (Functoriality of ∀,∃)

The correspondences f 7→ ∃f and f 7→ ∀f are functorial:

∃idX = idPX ∃(g ◦ f) = ∃g ◦ ∃f
∀idX = idPX ∀(g ◦ f) = ∀g ◦ ∀f

for all maps f : X → Y and g : Y → Z (in Set)

Lemma 1.4 (Commutation with finite joins/meets)

Left adjoints ∃f : PX → PY commute with all finite joins whereas
right adjoints ∀f : PX → PY commute with all finite meets:

∃f(⊥X) = ⊥Y ∃f(p ∨ p′) = ∃f(p) ∨ ∃f(p′)

∀f(>X) = >Y ∀f(p ∧ p′) = ∀f(p) ∧ ∀f(p′)

for all maps f : X → Y (in Set) and for all predicates p, p ∈ PX

Remark: The same property holds more generally for infinitary joins/meets (when
they exist), but we shall never use this generalization
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Some properties of triposes (2/2)

Lemma 1.5 (Adjoints of inverses)

Given a map f : X → Y (in Set):

1 If f has an inverse, then ∃f, ∀f are the inverse of Pf :

∃f = ∀f = (Pf)−1 = Pf−1

2 If f has a right inverse, then ∃f and ∀f are left inverses of Pf :

∃f ◦Pf = ∀f ◦Pf = idPY

3 If f has a left inverse, then ∃f and ∀f are right inverses of Pf :

Pf ◦ ∃f = Pf ◦ ∀f = idPX

Recall that in Set, a map f : X → Y

has an inverse iff it is bijective

has a right inverse iff it is surjective (AC)

has a left inverse iff it is injective and (X = ∅⇒ Y = ∅)
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Implicative algebras

Definition 1.6 (Implicative algebra)

1 An implicative structure is a complete lattice (A ,4) equipped with
a binary operation (→) : A 2 → A such that:

(1) If a′ 4 a and b 4 b′, then (a→ b) 4 (a′ → b′)

(2) For all a ∈ A and B ⊆ A , we have: a→
k

b∈B

b =
k

b∈B

(a→ b)

2 A separator of (A ,4,→) is a subset S ⊆ A such that:

(1) If a ∈ S and a 4 a′, then a′ ∈ S

(2)
c
a,b∈A (a→ b→ c) (= KA ) ∈ S and

c
a,b,c∈A ((a→ b→ c)→ (a→ b)→ a→ c) (= SA ) ∈ S

(3) If (a→ b) ∈ S and a ∈ S, then b ∈ S

3 An implicative algebra is an implicative structure (A ,4,→)
together with a separator S ⊆ A
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Construction of the implicative tripos

Let (A ,4,→, S) be an implicative algebra

For each set X, we write PX := A X/S[X] the poset reflection of the
preordered set (A X ,`S[X]), where

a `S[X] b iff
k

x∈X

(ax → bx) ∈ S (for all a, b ∈ A X)

(By construction, PX is a Heyting algebra)

For each map f : X → Y , we write Pf : PY → PX the unique map
that factors the map A f = (a 7→ a ◦ f) : A Y → A X through the
quotients PY := A Y /S[Y ] and PX := A X/S[X].

(By construction, Pf : PY → PX is a morphism of Heyting algebras)

Theorem 1.7 (Implicative tripos)

The functor P : Setop → HA is a (Set-based) tripos

Remark: A generic predicate of P is given by Σ := A and trΣ := [idA ]/S[A ]
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The completeness theorem

Each tripos P : Setop → HA constructed from an implicative algebra
(A ,4,→, S) as shown above is called an implicative tripos

The aim of this talk is to show that:

Main Theorem (Completeness)

Each Set-based tripos is (isomorphic to) an implicative tripos

This theorem explains a fortiori why we succeeded to turn all the
well-known triposes (induced by HA/AKS/PCA/OCA/etc.) into
implicative triposes

From the point of view of foundations, the above theorem expresses
that the whole structure of a tripos (a structured proper class) can
be described by a single implicative algebra (a structured set)

⇒ Reduction of complexity
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Architecture of the proof (1/2)

The proof is organized in two parts:

Part 1: Anatomy of a tripos (“reducing the complexity”)2

Given

an arbitrary tripos P : Setop → HA
a generic predicate trΣ ∈ PΣ (over some set of propositions Σ)

we show that the whole structure of the functor P can be derived
from suitable (and non canonical) “connectives” and “quantifiers”

(∨̇), (∧̇), (→̇) : Σ2 → Σ (
∨̇

), (
∧̇

) : P(Σ)→ Σ

via a suitable (and canonical) “filter” Φ ⊆ Σ

So that, morally: “everything happens in Σ”

However, the set Σ equipped with these operations has no good
algebraic properties (it only looks like a complete Heyting algebra)

2This part is essentially taken from [Hyland, Johnstone, Pitts, 1980]
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Architecture of the proof (2/2)

Part 2: Extracting the implicative algebra (“regularizing Σ”)

We first observe that the whole structure of the functor P can be
derived from the only (non canonical) operations

(→̇) : Σ2 → Σ, (
∧̇

) : P(Σ)→ Σ via Φ ⊆ Σ

(the other connectives/quantifier being irrelevant)

Using domain-theoretic techniques, we turn Σ into an implicative
algebra A = (A ,4,→, S), that becomes a new set of propositions,
with its own generic predicate trA ∈ PA

However, when passing from Σ to A , the non canonical operations
on Σ are turned into the canonical operations

(→) : A 2 → A , (
c

) : P(A )→ A via S ⊆ A

(The “algebraic regularization” is achieved by the very construction of A )

Hence the functor P can be derived from (A ,→,
c
, S), which

precisely means that P is the implicative tripos induced by A
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The generic predicate (1/3)

From now on, we work with a fixed tripos P : Setop → HA

We take a generic predicate trΣ ∈ PΣ (for some set Σ). This means
that for each set X, the ‘decoding map’

J KX : ΣX → PX
σ 7→ Pσ(trΣ) is surjective

Intuitively, Σ is the set of (codes of) propositions, whereas ΣX is the
set of propositional functions over X

The condition of surjectivity expresses that each predicate p ∈ PX
is represented by at least one propositional function σ ∈ ΣX such
that JσKX = p, which we call a code for the predicate p

Remark: Since codes for predicates are not unique, all the
constructions involving such codes will be non canonical
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The generic predicate (2/3)

In a tripos P : Setop → HA, the generic predicate is never unique!

Lemma 2.1 (Non-uniqueness of generic predicates)

Given a generic predicate trΣ ∈ PΣ and a surjection h : Σ′ → Σ, the
predicate trΣ′ := Ph(trΣ) ∈ PΣ′ is another generic predicate of P

Proof: Uses the fact that h : Σ′ → Σ has a right inverse, by (AC). The same result
holds without (AC) by replacing ‘surjective’ by ‘having a right inverse’

More generally:

Lemma 2.2 (Conversion between generic predicates)

If trΣ ∈ PΣ and trΣ′ ∈ PΣ′ are two generic predicates of the tripos P,
then there exist two conversion maps h : Σ′ → Σ and h′ : Σ→ Σ′

such that trΣ′ = Ph(trΣ) and trΣ = Ph′(trΣ′)

In what follows, we work with a fixed generic predicate trΣ ∈ PΣ



Introduction Set-based triposes Anatomy of a Set-based tripos Extracting the implicative algebra

The generic predicate (3/3)

Recall that for each set X, the ‘decoding function’ J KX : ΣX → PX is
defined by JσKX = Pσ(trΣ) for all σ ∈ ΣX

Proposition 2.3 (Naturality of J KX)

The decoding map J KX : ΣX → PX is natural in X:

ΣX
J KX // PX

ΣY
J KY
//

◦f

OO

PY

Pf

OO

commutes for all

X

f

��
Y

Notations. Given σ = (σ)x∈X ∈ ΣX , we write JσxKx∈X := JσKX ∈ PX
In particular, given an individual code ξ ∈ Σ, we write

(ξ) ∈1 ∈ Σ1 the 1-element family formed by ξ

JξK ∈1 ∈ P1 the associated predicate
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Defining connectives in Σ (1/2)

Writing π, π′ : Σ× Σ→ Σ the two projections from Σ× Σ to Σ, we
choose codes (∧̇), (∨̇), (→̇) ∈ ΣΣ×Σ such that

J∧̇KΣ×Σ = JπKΣ×Σ ∧ Jπ′KΣ×Σ

J∨̇KΣ×Σ = JπKΣ×Σ ∨ Jπ′KΣ×Σ

J→̇KΣ×Σ = JπKΣ×Σ → Jπ′KΣ×Σ

(∈ P(Σ× Σ))

(∈ P(Σ× Σ))

(∈ P(Σ× Σ))

Proposition 2.4

For all sets X and for all codes σ, τ ∈ ΣX , we have

Jσx ∧̇ τxKx∈X = JσKX ∧ JτKX
Jσx ∨̇ τxKx∈X = JσKX ∨ JτKX

Jσx →̇ τxKx∈X = JσKX → JτKX

(∈ PX)

(∈ PX)

(∈ PX)

Intuitively, the (non-canonical) operations (∧̇), (∨̇), (→̇) : Σ2 → Σ allow to
compute ∧, ∨ and → in each Heyting algebra PX (for X ∈ Set)
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Defining connectives in Σ (2/2)

Similarly, we choose codes ⊥̇, >̇ ∈ Σ such that

J⊥̇K ∈1 = ⊥1 and J>̇K ∈1 = >1 (∈ P1)

Again, we easily check that:

Proposition 2.5

For each set X, we have:

J⊥̇Kx∈X = ⊥X and J>̇Kx∈X = >X (∈ PX)

Beware! Although the “connectives” (∧̇), (∨̇), (→̇) : Σ2 → Σ reflect
the corresponding operations on each Heyting algebra PX (for
X ∈ Set), they enjoy none of the expected algebraic properties:

ξ ∧̇ ξ 6= ξ ξ ∧̇ ξ′ 6= ξ′ ∧̇ ξ (ξ ∧̇ ξ′) ∧̇ ξ′′ 6= ξ ∧̇ (ξ′ ∧̇ ξ′′)
ξ ∨̇ ξ 6= ξ ξ ∨̇ ξ′ 6= ξ′ ∨̇ ξ (ξ ∨̇ ξ′) ∨̇ ξ′′ 6= ξ ∨̇ (ξ′ ∨̇ ξ′′)

etc.

In particular, Σ (with these operations) is not a Heyting algebra!
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Defining quantifiers in Σ (1/3)

Consider the membership relation

E := {(ξ, s) ∈ Σ×P(Σ) : ξ ∈ s}
together with its projections e1 : E → Σ and e2 : E → P(Σ)

We now choose codes (
∨̇

), (
∧̇

) ∈ ΣP(Σ) such that

J
∨̇

KP(Σ) = ∃e2(Je1KE)

J
∧̇

KP(Σ) = ∀e2(Je1KE)

(∈ P(P(Σ)))

(∈ P(P(Σ)))

Proposition 2.6

Given a code σ = (σx)x∈X ∈ ΣX and a map f : X → Y , we have:

q∨̇
{σx : x ∈ f−1(y)}

y
y∈Y = ∃f(JσKX)

q∧̇
{σx : x ∈ f−1(y)}

y
y∈Y = ∀f(JσKX)

(∈ PY )

(∈ PY )

Intuitively, the (non-canonical) operations (
∨̇

), (
∧̇

) : P(Σ)→ Σ allow to
compute left and right adjoints along all maps f : X → Y



Introduction Set-based triposes Anatomy of a Set-based tripos Extracting the implicative algebra

Defining quantifiers in Σ (2/3)

Proof of Proposition 2.6.

Define the map h : Y → P(Σ) by h(y) := {σx : x ∈ f−1(y)} for all y ∈ Y .

From this definition and from the definitions of
∨̇

,
∧̇

, we get

J
∨̇
{σx : x ∈ f−1(y)}Ky∈Y = J

∨̇
◦ hKY = Ph

(
J
∨̇

KP(Σ)

)
= Ph

(
∃e2(Je1KE)

)
J
∧̇
{σx : x ∈ f−1(y)}Ky∈Y = J

∧̇
◦ hKY = Ph

(
J
∧̇

KP(Σ)

)
= Ph

(
∀e2(Je1KE)

)
Let us now consider the set G ⊆ Σ× Y defined by G := {(σx, f(x)) : x ∈ X} as well
as the two functions g : G→ Y and g′ : G→ E given by

g(ξ, y) := y and g′(ξ, y) := (ξ, h(y)) (for all (ξ, y) ∈ G)

We observe that the following diagram is a pullback in Set:

G
g //

g′

��

Y

h

��
E

e2
// P(Σ)

Hence Ph ◦ ∃e2 = ∃g ◦Pg′ and Ph ◦ ∀e2 = ∀g ◦Pg′ (Beck-Chevalley). (...)
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Defining quantifiers in Σ (3/3)

Proof of Proposition 2.6 (continued).

From the equalities Ph ◦ ∃e2 = ∃g ◦Pg′ and Ph ◦ ∀e2 = ∀g ◦Pg′, we get:
q∨̇
{σx : x ∈ f−1(y)}

y
y∈Y = (Ph ◦ ∃e2)(Je1KE) = (∃g ◦Pg′)(Je1KE)

q∧̇
{σx : x ∈ f−1(y)}

y
y∈Y = (Ph ◦ ∀e2)(Je1KE) = (∀g ◦Pg′)(Je1KE)

Now we consider the map q : X → G defined by q(x) := (σx, f(x)) for all x ∈ X.

Since q is surjective, it has a right inverse by (AC), hence ∃q and ∀q are left inverses
of Pq (by Lemma 1.5 (2)), that is: ∃q ◦Pq = ∀q ◦Pq = idPG. Therefore:

q∨̇
{σx : x ∈ f−1(y)}

y
y∈Y = (∃g ◦Pg′)(Je1KE)

= (∃g ◦ ∃q ◦Pq ◦Pg′)(Je1KE)
=
(
∃(g ◦ q) ◦P(g′ ◦ q)

)
(Je1KE)

= ∃f
(
P(g′ ◦ q)(Je1KE)

)
= ∃f

(
Je1 ◦ g′ ◦ qKX

)
= ∃f(JσKX)

(since g ◦ q = f and e1 ◦ g′ ◦ q = σ). And similarly for ∀.
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To sum up...

We introduced codes (∧̇), (∨̇), (→̇) : Σ2 → Σ and
∨̇
,
∧̇

: P(Σ)→ Σ
such that for all sets X and for all predicates p, q ∈ PX:

If σ, τ ∈ ΣX are codes for p, q ∈ PX, respectively, then:

(σx ∧̇ τx)x∈X (∈ ΣX) is a code for p ∧ q (∈ PX)

(σx ∨̇ τx)x∈X (∈ ΣX) is a code for p ∨ q (∈ PX)

(σx →̇ τx)x∈X (∈ ΣX) is a code for p→ q (∈ PX)

If σ ∈ ΣX is a code for p ∈ PX and f : X → Y any map, then:(∨̇{
σx : x ∈ f−1(y)

})
y∈Y

(∈ ΣY ) is a code for ∃f(p) (∈ PY )(∧̇{
σx : x ∈ f−1(y)

})
y∈Y

(∈ ΣY ) is a code for ∀f(p) (∈ PY )

Beware! As for the “connectives” ∧̇, ∨̇ and →̇, the “quantifiers”
∨̇

and
∧̇

enjoy no good algebraic properties:∧̇
{ξ} 6= ξ,

∧̇
{ξ,
∧̇
{ξ′, ξ′′}} 6=

∧̇
{
∧̇
{ξ, ξ′}, ξ′′} 6=

∧̇
{ξ, ξ′, ξ′′} etc.



Introduction Set-based triposes Anatomy of a Set-based tripos Extracting the implicative algebra

Defining the “filter” Φ ⊆ Σ

It now remains to characterize the ordering on each PX. For that we let

Φ := {ξ ∈ Σ : JξK ∈1 = >1} (where >1 = max(P1))

Proposition 2.7 (Characterizing the order in PX)

For all X ∈ Set and σ, τ ∈ ΣX , we have

JσKX ≤ JτKX iff
∧̇
{σx →̇ τx : x ∈ X} ∈ Φ

This result implies that for each set X, the Heyting algebra PX is
(isomorphic to) the poset reflection of the preordered set (ΣX ,`X),
writing `X the preorder (on ΣX) defined by

σ `X τ iff
∧̇
{σx →̇ τx : x ∈ X} ∈ Φ

(for all σ, τ ∈ ΣX)

Conclusion: The tripos P is completely characterized by the set Σ
together with the operations →̇,

∧̇
and the “filter” Φ ⊆ Σ
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Other properties (1/2)

Proposition 2.8 (Merging quantifications)
q∨̇{∨̇

s : s ∈ S
}y

S∈P(P(Σ))
=

q∨̇(⋃
S
)y
S∈P(P(Σ))q∧̇{∧̇

s : s ∈ S
}y

S∈P(P(Σ))
=

q∧̇(⋃
S
)y
S∈P(P(Σ))

Proof. Apply the Beck-Chevalley condition to the suitable pullback!

Proposition 2.9 (Distributivity →/∀)
q∧̇
{θ →̇ ξ : ξ ∈ s}

y
(θ,s)∈Σ×P(Σ)

=
q
θ →̇

∧̇
s
y

(θ,s)∈Σ×P(Σ)

Corollary 2.10 (Distributivity →/∀)

Given a set X and two families σ ∈ ΣX and t ∈ P(Σ)X , we have

q∧̇
{σx →̇ ξ : ξ ∈ tx}

y
x∈X =

q
σx →̇

∧̇
tx

y
x∈X
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Other properties (2/2)

Consider the inclusion relation

F := {(s, s′) ∈ P(Σ)×P(Σ) : s ⊆ s′}

together with its two projections f1, f2 : F → P(Σ)

Proposition 2.11
q∨̇
◦ f1

y
F
≤

q∨̇
◦ f2

y
F

and
q∧̇
◦ f1

y
F
≥

q∧̇
◦ f2

y
F

Corollary 2.12

Given a set X and families a, b ∈ P(Σ)X such that ax ⊆ bx for all x ∈ X:

q∨̇
◦ a

y
X
≤

q∨̇
◦ b

y
X

and
q∧̇
◦ a

y
X
≥

q∧̇
◦ b

y
X
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How to regularize the set Σ of propositional codes?

We have seen that the structure of the tripos P : Setop → HA is
fully characterized from

the “implication” (→̇) : Σ2 → Σ

the “universal quantifier” (
∧̇

) : P(Σ)→ Σ
the “filter” Φ ⊆ Σ

via the equivalence

JσKX ≤ JτKX iff
∧̇
{σx →̇ τx : x ∈ X} ∈ Φ

However, due to the non canonical definition of the operations →̇
and

∧̇
(as codes for certain predicates), the structure (Σ, →̇,

∧̇
,Φ)

has no good algebraic properties

Question: How to make these operations more regular?

1 Via a suitable quotient? (I tried but did not find...)

2 By encapsulating codes into a larger well-behaved structure?
⇒ embedding Σ into an implicative structure (A ,4,→)
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The set of atoms A0

We first define a set A0 of atoms from the grammar:

Atoms α, β ::= ξ̇ | s 7→ α (ξ ∈ Σ, s ∈ P(Σ))

Each atom is a finite list/stack of the form s1 7→ · · · 7→ sn 7→ ξ̇,
where s1, . . . , sn ∈ P(Σ) and ξ ∈ Σ

The set A0 is equipped with the preorder α ≤ α′ that is inductively
defined from the two rules

ξ̇ ≤ ξ̇
s ⊆ s′ α ≤ α′
s 7→ α ≤ s′ 7→ α′

The set A0 of atoms is also equipped with a conversion function
ϕ0 : A0 → Σ, defined by

ϕ0(ξ̇) := ξ and ϕ0(s 7→ α) :=
(∧̇
s
)
→̇ ϕ0(α)

(By construction, the function ϕ0 : A0 → Σ is surjective)
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The complete lattice (A ,4)

From the set A0 of atoms equipped with the preorder α ≤ α′, we let:

A := P↑(A0) (set of upwards closed subsets of A0, w.r.t. ≤)

a 4 b :≡ a ⊇ b for all a, b ∈ A (reverse inclusion)

Fact: (A ,4) is a complete lattice

In this complete lattice, we have:
c

=
⋃

, ⊥A = A0, >A = ∅

Intuitions:

Each atom α = (s1 7→ · · · 7→ sn 7→ ξ̇) represents the code

ϕ0(α) :=
(∧̇
s1

)
→̇ · · · →̇

(∧̇
sn
)
→̇ ξ

Each (upwards-closed) set of atoms a ∈ A represents the code

ϕ(a) :=
∧̇ {

ϕ0(α) : α ∈ a
}
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Relationship with graph models (1/2)

Remark. The above construction is reminiscent from the construction
of graph models of the λ-calculus [Engeler ’81]

In the context of graph models, the set A0 would be defined from
the grammar

α, β ∈ A0 ::= ξ̇ | {α1, . . . , αn} 7→ β (ξ ∈ Σ)

that is, as the least solution of the set-theoretic equation

A0 = Σ + Pfin(A0)×A0

However, the set A := P↑(A0) induced by this A0 would be a
(D∞-like) model of the λ-calculus, but not an implicative structure

Reason: The application (a, b 7→ ab) : A 2 → A that naturally comes with
this definition of A0 has no right adjoint, due to the finiteness of the l.h.s. in
the construct {a1, . . . , αn} 7→ β. So that there is no implication in A
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Relationship with graph models (2/2)

To fix this problem, it would be natural to relax the condition of
finiteness, by considering instead the equation

A0 = Σ + P(A0)×A0

Alas, this equation has no solution! (for obvious cardinality reasons)

Trick: Replace arbitrary subsets a ⊆ A0 (in the l.h.s. of a 7→ β)
by arbitrary subsets of Σ, using the fact that subsets of A0 can be
converted (element-wise) into subsets of Σ, via ϕ0 : A0 → Σ

So that in the end, we obtain the set-theoretic equation

A0 = Σ + P(Σ)×A0,

whose least solution is generated from the grammar

α, β ∈ A0 ::= ξ̇ | s 7→ α (ξ ∈ Σ, s ∈ P(Σ))
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Defining the implication in (A ,4)

Recall that (A ,4) = (P↑(A0), ⊇), where:

α, β ∈ A0 ::= ξ̇ | s 7→ α (ξ ∈ Σ, s ∈ P(Σ))

ξ̇ ≤ ξ̇
s ⊆ s′ α ≤ α′

s 7→ α ≤ s′ 7→ α′

The conversion function ϕ0 : A0 → Σ naturally
extends to a function ϕ̃0 : A → P(Σ) (element-wise)

Given a, b ∈ A (= P↑(A0)), we let

a→ b :=
{
s 7→ β : s ∈ ϕ̃0(a)⊆, β ∈ b

}
(∈ A )

writing ϕ̃0(a)⊆ := {s ∈ P(Σ) : ϕ̃0(a) ⊆ s}

Proposition 3.1

The triple (A ,4,→) is an implicative structure
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Viewing A as a new set of propositions

Let us now define:

ϕ : A → Σ by ϕ(a) :=
∧̇
ϕ̃0(a) (for all a ∈ A )

ψ : Σ→ A by ψ(ξ) := {ξ̇} (for all ξ ∈ Σ)

trA ∈ PA by trA := Pϕ(trΣ)

Lemma 3.2

1 ϕ(ψ(ξ)) =
∧̇
{ξ} for all ξ ∈ Σ

2 Therefore: trΣ = Pψ(trA )

Proposition 3.3

For each set X, the function

〈〈 〉〉X : A X → PX
a 7→ Pa(trA ) is surjective

Which means that trA ∈ PA is a generic predicate of the tripos P
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Relating both generic predicates

From now on, we have:

Two sets of (codes of) propositions: Σ and A

Two generic predicates trΣ ∈ PΣ and trA ∈ PA

For each set X, two (surjective) decoding functions

J KX : ΣX → PX
σ 7→ Pσ(trΣ)

〈〈 〉〉X : A X → PX
a 7→ Pa(trA )

Proposition 3.4

For each set X, the following two diagrams commute:

ΣX
J KX // PX

A X

ϕX

OO

〈〈 〉〉X
// PX

ΣX

ψX

��

J KX // PX

A X

〈〈 〉〉X
// PX
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To sum up...

We started from Σ, equipped with non canonical operations

(→̇) : Σ2 → Σ and (
∧̇

) : P(Σ)→ Σ

acting as codes for implication and universal quantification, in the
sense of the initial generic predicate trΣ ∈ PΣ.

From Σ, →̇ and
∧̇

, we defined an implicative structure (A ,4,→)

whose implication encapsulates both operations →̇ and
∧̇

:

a→ b :=
{
s 7→ β : s ∈ ϕ̃0(a)⊆, β ∈ b

}
(∈ A )

(Recall that ϕ0 : A → Σ is defined from →̇ and
∧̇

)

We now want to show that the canonical operations

(→) : A 2 → A and (
c

) : P(A )→ A

still act as codes for implication and universal quantification, but
now in the sense of the new generic predicate trA ∈ PA
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Universal quantification in A (1/2)

Recall that we chose
(∧̇)

∈ ΣP(Σ) such that
q∧̇y

P(Σ)
= ∀e2(Je1KE),

where e1 : E → Σ and e2 : E → P(Σ) are the projections associated
with the membership relation E := {(ξ, s) ∈ Σ×P(Σ) : ξ ∈ s}

Let us now consider the membership relation

E′ := {(a,A) ∈ A ×P(A ) : a ∈ A}
together with its projections e′1 : E′ → A and e′2 : E′ → P(A )

Proposition 3.5

We have:
〈〈c

A
〉〉
A∈P(A )

= ∀e′2
(
〈〈e′1〉〉E′

)
Corollary 3.6

Given a code a = (ax)x∈X ∈ A X and a map f : X → Y , we have:〈〈c
{ax : x ∈ f−1(y)}

〉〉
y∈Y = ∀f(〈〈a〉〉X) (∈ PY )
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Universal quantification in A (2/2)

Proof of Proposition 3.5.

〈〈c
A
〉〉
A∈P(A )

=
〈〈⋃

A
〉〉
A∈P(A )

(since
c

=
⋃

)

=
q
ϕ
(⋃
A
)y
A∈P(A )

(Prop. 3.4)

=
q∧̇

ϕ̃0

(⋃
A
)y
A∈P(A )

(Def. of ϕ)

=
q∧̇⋃

Pϕ̃0(A)
y
A∈P(A )

(Def. of ϕ̃0)

= P(Pϕ̃0)
(q∧̇⋃

S
y
S∈P(P(Σ))

)
(Naturality of J K)

= P(Pϕ̃0)
(q∧̇{∧̇

s : s ∈ S
}y
S∈P(P(Σ))

)
(Prop. 2.8)

=
q∧̇{∧̇

ϕ̃0(a) : a ∈ A
}y
A∈P(A )

(Naturality of J K)

=
q∧̇{

ϕ(a) : a ∈ A
}y
A∈P(A )

(Def. of ϕ)

=
q∧̇{

ϕ(e′1(p)) : p ∈ e′−1
2 (A)}

y
A∈P(A )

(Def. of e′1, e2)

= ∀e′2
(
Jϕ ◦ e′1KE′

)
(Prop. 2.6)

= ∀e′2
(
〈〈e′1〉〉E′

)
(Prop. 3.4)
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Implication in A (1/2)

Recall that we chose (→̇) ∈ ΣΣ×Σ such that J→̇KΣ2 = JπKΣ2 → Jπ′KΣ2 ,
where π, π′ : Σ2 → Σ are the two projections from Σ2 to Σ

Proposition 3.6

We have: 〈〈a→ b〉〉(a,b)∈A 2 = 〈〈π〉〉A 2 → 〈〈π′〉〉A 2 ,

writing π, π′ : A 2 → A the two projections from A 2 to A

Proof of Prop. 3.6 relies on the following technical lemma:

Lemma 3.7
r∧̇{(∧̇

s′
)
→̇ξ : s′ ∈ s⊆, ξ ∈ t

}z

(s,t)∈P(Σ)2
=

r∧̇{(∧̇
s
)
→̇ξ : ξ ∈ t

}z

(s,t)∈P(Σ)2

Corollary 3.8

Let X be a set. For all codes a, b ∈ A X , we have

〈〈ax → bx〉〉x∈X = 〈〈a〉〉X → 〈〈b〉〉X (∈ PX)
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Implication in A (2/2)

Proof of Proposition 3.6.

〈〈a→ b〉〉(a,b)∈A 2

= Jϕ(a→ b)K(a,b)∈A 2 (Prop. 3.4)

=
q
ϕ
({
s′ 7→ β : s′ ∈ ϕ̃0(a)⊆, β ∈ b

})y
(a,b)∈A 2 (Def. of a→ b)

=
q∧̇{(∧̇

s′
)
→̇ ξ : s′ ∈ ϕ̃0(a)⊆, ξ ∈ ϕ̃0(b)

}y
(a,b)∈A 2 (Def. of ϕ)

= P(ϕ̃0 × ϕ̃0)
(r∧̇{(∧̇

s′
)
→̇ ξ : s′ ∈ s⊆, ξ ∈ t

}z

(s,t)∈P(Σ)2

)
(Nat. of J K)

= P(ϕ̃0 × ϕ̃0)
(r∧̇{(∧̇

s
)
→̇ ξ : ξ ∈ t

}z

(s,t)∈P(Σ)2

)
(Lemma 3.7)

= P(ϕ̃0 × ϕ̃0)
(q(∧̇

s
)
→̇
(∧̇
t
)y

(s,t)∈P(Σ)2

)
(Prop. 2.9)

=
q(∧̇

ϕ̃0(a)
)
→̇
(∧̇
ϕ̃0(b)

)y
(a,b)∈A 2 (Nat. of J K)

= Jϕ(a) →̇ ϕ(b)K(a,b)∈A 2 (Def. of ϕ)

= Jϕ(a)K(a,b)∈A 2 → Jϕ(b)K(a,b)∈A 2 (Prop. 2.4)

= Jϕ ◦ πKA 2 → Jϕ ◦ π′KA 2 (Def. of π, π′)

= 〈〈π〉〉A 2 → 〈〈π′〉〉A 2 (Prop. 3.4)
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Defining the separator S ⊆ A

By analogy with the definition of the “filter” Φ ⊆ Σ, we let

S := {a ∈ A : 〈〈a〉〉 ∈1 = >1} (where >1 = max(P1))

By construction, we have

S =
{
a ∈ A : Jϕ(a)K ∈1 = >1

}
=
{
a ∈ A : ϕ(a) ∈ Φ

}
= ϕ−1(Φ)

Proposition 3.9 (S is a separator)

The subset S ⊆ A is a separator of (A ,4,→)

Proposition 3.10 (Characterizing the ordering in PX)

For all sets X and for all codes a, b ∈ A X , we have:

〈〈a〉〉X ≤ 〈〈b〉〉X iff
k

x∈X
(ax → bx) ∈ S
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Constructing the isomorphism

Let us now write P′ : Setop → HA the implicative tripos induced by the
implicative algebra (A ,4,→, S)

Proposition (Conclusion of the Main Theorem)

The implicative tripos P′ is isomorphic to the initial tripos P

Proof.

Let us consider the family of maps ρX := 〈〈 〉〉X : A X → PX (which is natural
in X). From Prop. 3.10, we observe that for all a, b ∈ A X , we have

a `S[X] b iff
k

x∈X
(ax → bx) ∈ S iff ρX(a) ≤ ρX(b) .

Hence ρX : A X → PX induces a natural embedding of posets ρ̂X : P′X → PX
through the quotient P′X := A X/S[X]. Moreover, the embedding ρ̂X is surjective
(since ρX = 〈〈 〉〉X is), therefore it is an isomorphism.
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The case of classical triposes

Recall that:

Theorem (Classical implicative triposes)

Each tripos induced by a classical implicative algebra (A ,4,→, S) is
isomorphic to a tripos induced by an abstract Krivine structure

We also easily see that an implicative tripos is classical (as a tripos)
iff the underlying implicative algebra is. Therefore:

Theorem

Every (Set-based) tripos is isomorphic to a Krivine tripos

In conclusion:

Classical triposes
Classical implicative triposes
Krivine/Streicher triposes

are one and the same thing
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