

Implicative algebras II: completeness w.r.t. Set-based triposes

Alexandre Miquel

June 3th, 10th, 2022 – IMERL

The categorical tradition of realizability

• Categorical logic

[Lawvere, Tierney '70]

- Hyperdoctrines = models of 1st order theories
(Slogan: \exists/\forall are left/right adjoints!)
- Modern definition of the notion of **topos**
(generalizes Grothendieck's definition)

• Categorical realizability

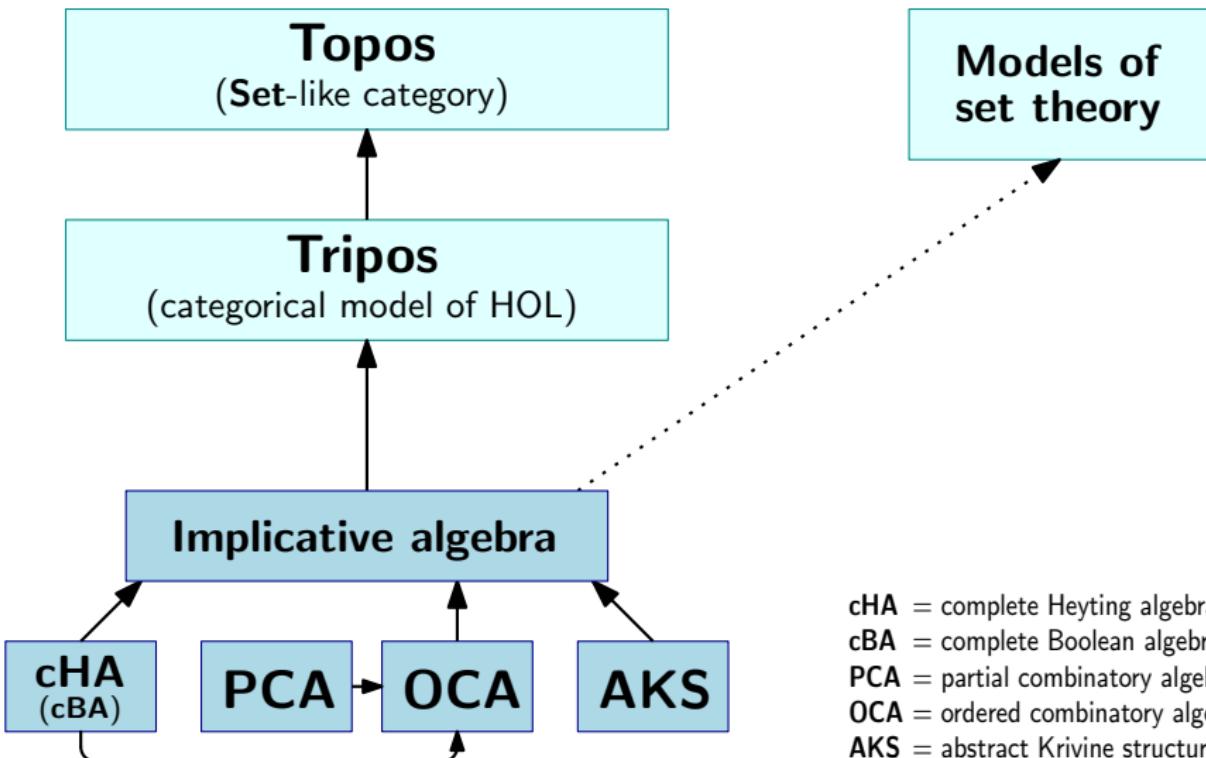
[Hyland, Johnstone, Pitts '80]

- Major input from **forcing** and **Boolean-valued models** [Scott]
- The **effective topos** [Hyland]
- Notion of **tripos** and **tripos-to-topos construction** [Pitts]
- Generalization to **partial combinatory algebras (PCAs)**
... but incompatible with classical logic

• Categorical classical realizability

- Classical realizability from a categorical perspective [Streicher '13]
- Ordered combinatory algebras and realizability [Ferrer et al. '17]
- Implicative algebras [Miquel '20]

The categorical problem



Unifying all kinds of models

- **Implicative algebras:** a simple algebraic structure that encompasses:
 - Complete Heyting Algebras (for Heyting-valued models, Kripke forcing)
 - Complete Boolean Algebras (for Boolean-valued models, Cohen forcing)
 - Partial Combinatory Algebras (for Intuitionistic realizability)
 - Ordered Combinatory Algebras (for Intuitionistic realizability)
 - Abstract Krivine Structures (for Classical realizability)
- Implicative algebras can be used to construct implicative triposes, thus encompassing all the currently known (Set-based) triposes
- But do implicative triposes encompass all (Set-based) triposes?
- Yes! The aim of this talk is to prove the

Theorem (Completeness)

Every (Set-based) tripos is isomorphic to an implicative tripos

Plan

- 1 Introduction
- 2 Set-based triposes
- 3 Anatomy of a Set-based tripos
- 4 Extracting the implicative algebra

Plan

1 Introduction

2 Set-based triposes

3 Anatomy of a Set-based tripos

4 Extracting the implicative algebra

Some notations

- In what follows, we write:
 - **Set** the category of sets equipped with all maps
 - **Pos** the category of posets equipped with monotonic functions
 - **HA** the category of Heyting algebras equipped with the morphisms of Heyting algebras (i.e. that commute with $\perp, \top, \wedge, \vee, \rightarrow$)
- In the category **Set**, we write:
 - 1 the terminal object (i.e. a fixed singleton)
 - $1_X : X \rightarrow 1$ the unique map from a given set X to 1
 - $X \times Y$ the Cartesian product of two sets X and Y , with the associated projections $\pi_{X,Y} : X \times Y \rightarrow X$ and $\pi'_{X,Y} : X \times Y \rightarrow Y$
 - Given maps $f : Z \rightarrow X$ and $g : Z \rightarrow Y$, we write $\langle f, g \rangle : Z \rightarrow X \times Y$ the unique map such that $\pi_{X,Y} \circ \langle f, g \rangle = f$ and $\pi'_{X,Y} \circ \langle f, g \rangle = g$

Set-based triposes

Definition 1.1 (Set-based tripos)

A (**Set-based**) **tripos** is a contravariant functor $\mathbf{P} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ such that:

- For each map $f : X \rightarrow Y$ (in **Set**), the associated map $\mathbf{P}f : \mathbf{P}Y \rightarrow \mathbf{P}X$ (in **HA**) has **left & right adjoints** $\exists f, \forall f : \mathbf{P}X \rightarrow \mathbf{P}Y$ (in **Pos**)
- Beck-Chevalley condition:** Each pullback square in **Set** (on the lhs) induces the following two commutative diagrams in **Pos** (on the rhs):

$$\begin{array}{ccc}
 \begin{array}{ccc}
 X & \xrightarrow{f_1} & X_1 \\
 f_2 \downarrow & \lrcorner & \downarrow g_1 \\
 X_2 & \xrightarrow{g_2} & Y
 \end{array} & \Rightarrow &
 \begin{array}{ccc}
 \mathbf{P}X & \xrightarrow{\exists f_1} & \mathbf{P}X_1 \\
 \mathbf{P}f_2 \uparrow & & \uparrow \mathbf{P}g_1 \\
 \mathbf{P}X_2 & \xrightarrow{\exists g_2} & \mathbf{P}Y
 \end{array} &
 \begin{array}{ccc}
 \mathbf{P}X & \xrightarrow{\forall f_1} & \mathbf{P}X_1 \\
 \mathbf{P}f_2 \uparrow & & \uparrow \mathbf{P}g_1 \\
 \mathbf{P}X_2 & \xrightarrow{\forall g_2} & \mathbf{P}Y
 \end{array}
 \end{array}$$

- The functor $\mathbf{P} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ has a **generic predicate** $tr_{\Sigma} \in \mathbf{P}\Sigma$ (for some set Σ), i.e. such that for all sets X , the following map is surjective:

$$\begin{aligned}
 \Sigma^X &\rightarrow \mathbf{P}X \\
 \sigma &\mapsto \mathbf{P}\sigma(tr_{\Sigma})
 \end{aligned}$$

On the definitions of the notion of tripos

- The above definition is the initial definition of triposes, such as introduced in [Hyland, Johnstone, Pitts: *Tripos theory* \(1980\)](#)
- Pitts' PhD [The Theory of Triposes \(1981\)](#) generalizes the notion of tripos in essentially two directions:
 - ① The category **Set** is replaced by an arbitrary Cartesian category **C** (intuitively: a category of 'contexts'), and the **generic predicate** is replaced by a more general **membership predicate**¹
 - ② The Beck-Chevalley condition is only required for certain pullback squares (the projection squares), and may not hold for all
- However, all **forcing/realizability/implicative triposes** are triposes in the sense of the initial definition (i.e. Set-based triposes); therefore we shall only consider these

¹Due to the fact that the Cartesian category \mathbf{C} is not necessarily closed. But when \mathbf{C} is a ccc, the existence of the generic predicate is sufficient

Isomorphism of (Set-based) triposes

Definition 1.2 (Isomorphism of triposes)

Two triposes $\mathbf{P}, \mathbf{P}' : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ are **isomorphic** when there is a **natural isomorphism** $\varphi : \mathbf{P} \Rightarrow \mathbf{P}'$, i.e. a family of isos $\varphi_X : \mathbf{P}X \rightarrow \mathbf{P}'X$ ($X \in \mathbf{Set}$) such that the following diagram commutes

$$\begin{array}{ccc}
 \mathbf{P}X & \xrightarrow[\sim]{\varphi_X} & \mathbf{P}'X \\
 \mathbf{P}f \uparrow & & \uparrow \mathbf{P}'f \\
 \mathbf{P}Y & \xrightarrow[\sim]{\varphi_Y} & \mathbf{P}'Y
 \end{array}
 \quad \text{for all maps } f: X \rightarrow Y$$

- The notion of iso can be taken indifferently in **HA** or in **Pos**, since a map $\varphi_X : \mathbf{P}X \rightarrow \mathbf{P}'X$ is an iso in **HA** iff it is an iso in **Pos**

- There is no need to take care about generic predicates!

Reason: A natural iso will automatically map any generic predicate of P to a generic predicate of P' (generic predicates are not unique)

Some properties of triposes

(1/2)

Lemma 1.3 (Functionality of \forall, \exists)

The correspondences $f \mapsto \exists f$ and $f \mapsto \forall f$ are functorial:

$$\begin{array}{ll} \exists \text{id}_X = \text{id}_{\mathbf{P} X} & \exists(g \circ f) = \exists g \circ \exists f \\ \forall \text{id}_X = \text{id}_{\mathbf{P} X} & \forall(q \circ f) = \forall q \circ \forall f \end{array}$$

for all maps $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ (in **Set**)

Lemma 1.4 (Commutation with finite joins/meets)

Left adjoints $\exists f : \mathbf{P}X \rightarrow \mathbf{P}Y$ commute with all finite joins whereas right adjoints $\forall f : \mathbf{P}X \rightarrow \mathbf{P}Y$ commute with all finite meets:

$$\begin{array}{ll} \exists f(\perp_X) = \perp_Y & \exists f(p \vee p') = \exists f(p) \vee \exists f(p') \\ \forall f(\top_X) = \top_Y & \forall f(p \wedge p') = \forall f(p) \wedge \forall f(p') \end{array}$$

for all maps $f : X \rightarrow Y$ (in **Set**) and for all predicates $p, p \in \mathbf{P}X$

Remark: The same property holds more generally for infinitary joins/meets (when they exist), but we shall never use this generalization

Some properties of triposes

(2/2)

Lemma 1.5 (Adjoints of inverses)

Given a map $f : X \rightarrow Y$ (in **Set**):

① If f has an inverse, then $\exists f, \forall f$ are the inverse of Pf :

$$\exists f \equiv \forall f \equiv (\mathbf{P} f)^{-1} \equiv \mathbf{P} f^{-1}$$

② If f has a right inverse, then $\exists f$ and $\forall f$ are left inverses of $\mathbf{P}f$:

$$\exists f \circ \mathbf{P} f = \forall f \circ \mathbf{P} f = \text{id}_{\mathbf{P} Y}$$

③ If f has a **left inverse**, then $\exists f$ and $\forall f$ are **right inverses** of $\mathbf{P}f$:

$$\mathbf{P}f \circ \exists f = \mathbf{P}f \circ \forall f = \text{id}_{\mathbf{P}X}$$

Recall that in **Set**, a map $f : X \rightarrow Y$

- has an **inverse** iff it is **bijective**
- has a **right inverse** iff it is **surjective** (AC)
- has a **left inverse** iff it is **injective** and $(X = \emptyset \Rightarrow Y = \emptyset)$

Implicative algebras

Definition 1.6 (Implicative algebra)

- ① An **implicative structure** is a complete lattice (\mathcal{A}, \preceq) equipped with a binary operation $(\rightarrow) : \mathcal{A}^2 \rightarrow \mathcal{A}$ such that:
 - (1) If $a' \preceq a$ and $b \preceq b'$, then $(a \rightarrow b) \preceq (a' \rightarrow b')$
 - (2) For all $a \in \mathcal{A}$ and $B \subseteq \mathcal{A}$, we have: $a \rightarrow \bigwedge_{b \in B} b = \bigwedge_{b \in B} (a \rightarrow b)$
- ② A **separator** of $(\mathcal{A}, \preceq, \rightarrow)$ is a subset $S \subseteq \mathcal{A}$ such that:
 - (1) If $a \in S$ and $a \preceq a'$, then $a' \in S$
 - (2) $\bigwedge_{a,b \in \mathcal{A}} (a \rightarrow b \rightarrow c) \ (= \mathbf{K}^{\mathcal{A}}) \in S$ and
 $\bigwedge_{a,b,c \in \mathcal{A}} ((a \rightarrow b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c) \ (= \mathbf{S}^{\mathcal{A}}) \in S$
 - (3) If $(a \rightarrow b) \in S$ and $a \in S$, then $b \in S$
- ③ An **implicative algebra** is an implicative structure $(\mathcal{A}, \preceq, \rightarrow)$ together with a separator $S \subseteq \mathcal{A}$

Construction of the implicative tripos

Let $(\mathcal{A}, \preccurlyeq, \rightarrow, S)$ be an implicative algebra

- For each set X , we write $\mathbf{P}X := \mathcal{A}^X / S[X]$ the **poset reflection** of the preordered set $(\mathcal{A}^X, \vdash_{S[X]})$, where

$$a \vdash_{S[X]} b \quad \text{iff} \quad \bigwedge_{x \in X} (a_x \rightarrow b_x) \in S \quad \text{(for all } a, b \in \mathcal{A}^X\text{)}$$

(By construction, $\mathbf{P}X$ is a Heyting algebra)

- For each map $f : X \rightarrow Y$, we write $\mathbf{P}f : \mathbf{P}Y \rightarrow \mathbf{P}X$ the unique map that factors the map $\mathcal{A}^f = (a \mapsto a \circ f) : \mathcal{A}^Y \rightarrow \mathcal{A}^X$ through the quotients $\mathbf{P}Y := \mathcal{A}^Y / S[Y]$ and $\mathbf{P}X := \mathcal{A}^X / S[X]$.

(By construction, $\mathbf{P}f : \mathbf{P}Y \rightarrow \mathbf{P}X$ is a **morphism of Heyting algebras**)

Theorem 1.7 (Implicative tripos)

The functor $\mathbf{P} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ is a (Set-based) tripos

Remark: A generic predicate of \mathbf{P} is given by $\Sigma := \mathcal{A}$ and $tr_{\Sigma} := [\text{id}_{\mathcal{A}}]_{/\mathcal{S}[\mathcal{A}]}$

The completeness theorem

Each tripos $P : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ constructed from an implicative algebra $(\mathcal{A}, \preccurlyeq, \rightarrow, S)$ as shown above is called an **implicative tripos**.

The aim of this talk is to show that:

Main Theorem (Completeness)

Each Set-based tripos is (isomorphic to) an implicative tripos

- This theorem explains *a fortiori* why we succeeded to turn all the well-known triposes (induced by HA/AKS/PCA/OCA/etc.) into implicative triposes
- From the point of view of foundations, the above theorem expresses that the whole structure of a tripos (a structured **proper class**) can be described by a single implicative algebra (a structured **set**)
⇒ **Reduction of complexity**

Architecture of the proof

(1/2)

The proof is organized in two parts:

Part 1: Anatomy of a tripos (“reducing the complexity”)²

- Given
 - an arbitrary tripos $P : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$
 - a generic predicate $tr_{\Sigma} \in P\Sigma$ (over some set of propositions Σ)

we show that the whole structure of the functor \mathbf{P} can be derived from suitable (and non canonical) “connectives” and “quantifiers”

$$(\dot{\vee}), (\dot{\wedge}), (\dot{\rightarrow}) : \Sigma^2 \rightarrow \Sigma \quad (\dot{\bigvee}), (\dot{\bigwedge}) : \mathfrak{P}(\Sigma) \rightarrow \Sigma$$

via a suitable (and canonical) “filter” $\Phi \subseteq \Sigma$

- So that, morally: “**everything happens in Σ** ”
- However, the set Σ equipped with these operations has no good algebraic properties (it only looks like a complete Heyting algebra)

²This part is essentially taken from [Hyland, Johnstone, Pitts, 1980]

Architecture of the proof

(2/2)

Part 2: Extracting the implicative algebra (“regularizing Σ ”)

- We first observe that the whole structure of the functor **P** can be derived from the only (non canonical) operations

$$(\dot{\rightarrow}) : \Sigma^2 \rightarrow \Sigma, \quad (\dot{\wedge}) : \mathfrak{P}(\Sigma) \rightarrow \Sigma \quad \text{via} \quad \Phi \subseteq \Sigma$$

(the other connectives/quantifier being irrelevant)

- Using domain-theoretic techniques, we turn Σ into an implicative algebra $\mathcal{A} = (\mathcal{A}, \preceq, \rightarrow, S)$, that becomes a **new set of propositions**, with its own generic predicate $tr_{\mathcal{A}} \in \mathbf{PA}$
- However, when passing from Σ to \mathcal{A} , the non canonical operations on Σ are turned into the canonical operations

$$(\rightarrow) : \mathcal{A}^2 \rightarrow \mathcal{A}, \quad (\curlywedge) : \mathfrak{P}(\mathcal{A}) \rightarrow \mathcal{A} \quad \text{via} \quad S \subseteq \mathcal{A}$$

(The “algebraic regularization” is achieved by the very construction of \mathcal{A})

- Hence the functor \mathbf{P} can be derived from $(\mathcal{A}, \rightarrow, \wedge, S)$, which precisely means that \mathbf{P} is the implicative tripos induced by \mathcal{A}

Plan

- 1 Introduction
- 2 Set-based triposes
- 3 Anatomy of a Set-based tripos
- 4 Extracting the implicative algebra

The generic predicate

(1/3)

From now on, we work with a fixed tripos $\mathbf{P} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$

- We take a **generic predicate** $tr_{\Sigma} \in \mathbf{P}\Sigma$ (for some set Σ). This means that for each set X , the ‘decoding map’

$$\llbracket _ \rrbracket_X : \Sigma^X \rightarrow \mathbf{P}X$$

$$\sigma \mapsto \mathbf{P}\sigma(tr_\Sigma) \quad \text{is surjective}$$

- Intuitively, Σ is the set of (codes of) propositions, whereas Σ^X is the set of propositional functions over X
- The condition of surjectivity expresses that each predicate $p \in \mathbf{P}X$ is represented by *at least* one propositional function $\sigma \in \Sigma^X$ such that $[\![\sigma]\!]_X = p$, which we call a **code** for the predicate p
- **Remark:** Since codes for predicates are not unique, all the constructions involving such codes will be **non canonical**

The generic predicate

(2/3)

In a tripos $P : \mathbf{Set}^{\mathbf{op}} \rightarrow \mathbf{HA}$, the generic predicate is never unique!

Lemma 2.1 (Non-uniqueness of generic predicates)

Given a generic predicate $tr_{\Sigma} \in \mathbf{P}\Sigma$ and a surjection $h : \Sigma' \rightarrow \Sigma$, the predicate $tr_{\Sigma'} := \mathbf{P}h(tr_{\Sigma}) \in \mathbf{P}\Sigma'$ is another generic predicate of \mathbf{P} .

Proof: Uses the fact that $h : \Sigma' \rightarrow \Sigma$ has a right inverse, by (AC). The same result holds without (AC) by replacing 'surjective' by 'having a right inverse'

More generally:

Lemma 2.2 (Conversion between generic predicates)

If $tr_{\Sigma} \in \mathbf{P}\Sigma$ and $tr_{\Sigma'} \in \mathbf{P}\Sigma'$ are two generic predicates of the tripos \mathbf{P} , then there exist two conversion maps $h : \Sigma' \rightarrow \Sigma$ and $h' : \Sigma \rightarrow \Sigma'$ such that $tr_{\Sigma'} = \mathbf{P}h(tr_{\Sigma})$ and $tr_{\Sigma} = \mathbf{P}h'(tr_{\Sigma'})$

In what follows, we work with a fixed generic predicate $tr_{\Sigma} \in \mathbf{P}\Sigma$

The generic predicate

(3/3)

Recall that for each set X , the ‘decoding function’ $\llbracket _ \rrbracket_X : \Sigma^X \rightarrow \mathbf{P}X$ is defined by $\llbracket \sigma \rrbracket_X = \mathbf{P}\sigma(tr_\Sigma)$ for all $\sigma \in \Sigma^X$

Proposition 2.3 (Naturality of $\llbracket _ \rrbracket_X$)

The decoding map $\llbracket _ \rrbracket_X : \Sigma^X \rightarrow \mathbf{P}X$ is natural in X :

$$\begin{array}{ccc}
 \Sigma^X & \xrightarrow{\llbracket _ \rrbracket_X} & \mathbf{P}X \\
 \uparrow \lrcorner \circ f & & \uparrow \mathbf{P}f \\
 \Sigma^Y & \xrightarrow{\llbracket _ \rrbracket_Y} & \mathbf{P}Y
 \end{array}
 \quad \text{commutes for all } \begin{array}{c} X \\ \downarrow f \\ Y \end{array}$$

Notations. Given $\sigma = (\sigma)_{x \in X} \in \Sigma^X$, we write $\llbracket \sigma_x \rrbracket_{x \in X} := \llbracket \sigma \rrbracket_X \in \mathbf{P}X$. In particular, given an individual code $\xi \in \Sigma$, we write

- $(\xi)_{\in 1} \in \Sigma^1$ the 1-element family formed by ξ
- $\llbracket \xi \rrbracket_{\in 1} \in \mathbf{P}1$ the associated predicate

Defining connectives in Σ

(1/2)

- Writing $\pi, \pi' : \Sigma \times \Sigma \rightarrow \Sigma$ the two projections from $\Sigma \times \Sigma$ to Σ , we choose codes $(\dot{\wedge}), (\dot{\vee}), (\dot{\rightarrow}) \in \Sigma^{\Sigma \times \Sigma}$ such that

$$\llbracket \dot{\wedge} \rrbracket_{\Sigma \times \Sigma} = \llbracket \pi \rrbracket_{\Sigma \times \Sigma} \wedge \llbracket \pi' \rrbracket_{\Sigma \times \Sigma} \quad (\in \mathbf{P}(\Sigma \times \Sigma))$$

$$\llbracket \dot{\vee} \rrbracket_{\Sigma \times \Sigma} = \llbracket \pi \rrbracket_{\Sigma \times \Sigma} \vee \llbracket \pi' \rrbracket_{\Sigma \times \Sigma} \quad (\in \mathbf{P}(\Sigma \times \Sigma))$$

$$\llbracket \dot{\rightarrow} \rrbracket_{\Sigma \times \Sigma} = \llbracket \pi \rrbracket_{\Sigma \times \Sigma} \rightarrow \llbracket \pi' \rrbracket_{\Sigma \times \Sigma} \quad (\in \mathbf{P}(\Sigma \times \Sigma))$$

Proposition 2.4

For all sets X and for all codes $\sigma, \tau \in \Sigma^X$, we have

$$[\![\sigma_x \wedge \tau_x]\!]_{x \in X} = [\![\sigma]\!]_X \wedge [\![\tau]\!]_X \quad (\in \mathbf{P}X)$$

$$\llbracket \sigma_x \dot{\vee} \tau_x \rrbracket_{x \in X} = \llbracket \sigma \rrbracket_X \vee \llbracket \tau \rrbracket_X \quad (\in \mathbf{P}X)$$

$$\|\sigma_x \dot{\rightarrow} \tau_x\|_{x \in X} = \|\sigma\|_X \rightarrow \|\tau\|_X \quad (\in \mathbf{P}X)$$

Intuitively, the (non-canonical) operations $(\dot{\wedge}), (\dot{\vee}), (\dot{\rightarrow}) : \Sigma^2 \rightarrow \Sigma$ allow to compute \wedge, \vee and \rightarrow in each Heyting algebra $\mathbf{P}X$ (for $X \in \mathbf{Set}$)

Defining connectives in Σ

(2/2)

- Similarly, we choose codes $\dot{\perp}, \dot{\top} \in \Sigma$ such that

$$\llbracket \dot{\perp} \rrbracket_{\in 1} = \perp_1 \quad \text{and} \quad \llbracket \dot{\top} \rrbracket_{\in 1} = \top_1 \quad (\in \mathbf{P1})$$

Again, we easily check that:

Proposition 2.5

For each set X , we have:

$$[\![\perp]\!]_{x \in X} = \perp_X \quad \text{and} \quad [\![\top]\!]_{x \in X} = \top_X \quad (\in \mathbf{P} X)$$

Beware! Although the “connectives” $(\wedge), (\vee), (\rightarrow) : \Sigma^2 \rightarrow \Sigma$ reflect the corresponding operations on each Heyting algebra $\mathbf{P}X$ (for $X \in \mathbf{Set}$), they enjoy none of the expected algebraic properties:

$$\begin{array}{lll} \xi \dotwedge \xi \neq \xi & \xi \dotwedge \xi' \neq \xi' \dotwedge \xi & (\xi \dotwedge \xi') \dotwedge \xi'' \neq \xi \dotwedge (\xi' \dotwedge \xi'') \\ \xi \dotvee \xi \neq \xi & \xi \dotvee \xi' \neq \xi' \dotvee \xi & (\xi \dotvee \xi') \dotvee \xi'' \neq \xi \dotvee (\xi' \dotvee \xi'') \end{array}$$

etc.

In particular, Σ (with these operations) is **not** a Heyting algebra!

Defining quantifiers in Σ

(1/3)

- Consider the membership relation

$$E := \{(\xi, s) \in \Sigma \times \mathfrak{P}(\Sigma) : \xi \in s\}$$

together with its projections $e_1 : E \rightarrow \Sigma$ and $e_2 : E \rightarrow \mathfrak{P}(\Sigma)$

- We now choose codes $(\dot{V}), (\dot{\wedge}) \in \Sigma^{\mathfrak{P}(\Sigma)}$ such that

$$\dot{\llbracket \bigvee \rrbracket}_{\mathfrak{P}(\Sigma)} = \exists e_2(\llbracket e_1 \rrbracket_E) \quad (\in \mathbf{P}(\mathfrak{P}(\Sigma)))$$

$$[\dot{\wedge}]_{\mathfrak{P}(\Sigma)} = \forall e_2([\![e_1]\!]_E) \quad (\in \mathbf{P}(\mathfrak{P}(\Sigma)))$$

Proposition 2.6

Given a code $\sigma = (\sigma_x)_{x \in X} \in \Sigma^X$ and a map $f : X \rightarrow Y$, we have:

$$\llbracket \dot{\bigvee} \{\sigma_x : x \in f^{-1}(y)\} \rrbracket_{y \in Y} = \exists f(\llbracket \sigma \rrbracket_X) \quad (\in \mathbf{P}Y)$$

$$\llbracket \dot{\bigwedge} \{\sigma_x : x \in f^{-1}(y)\} \rrbracket_{y \in Y} = \forall f(\llbracket \sigma \rrbracket_X) \quad (\in \mathbf{P}Y)$$

Intuitively, the (non-canonical) operations $(\dot{\vee}), (\dot{\wedge}) : \mathfrak{P}(\Sigma) \rightarrow \Sigma$ allow to compute left and right adjoints along all maps $f : X \rightarrow Y$

Defining quantifiers in Σ

(2/3)

Proof of Proposition 2.6.

Define the map $h : Y \rightarrow \mathfrak{P}(\Sigma)$ by $h(y) := \{\sigma_x : x \in f^{-1}(y)\}$ for all $y \in Y$.

From this definition and from the definitions of \vee , \wedge , we get

$$\begin{aligned} \llbracket \dot{\bigvee} \{\sigma_x : x \in f^{-1}(y)\} \rrbracket_{y \in Y} &= \llbracket \dot{\bigvee} \circ h \rrbracket_Y = \mathbf{Ph}(\llbracket \dot{\bigvee} \rrbracket_{\mathfrak{P}(\Sigma)}) = \mathbf{Ph}(\exists e_2(\llbracket e_1 \rrbracket_E)) \\ \llbracket \dot{\bigwedge} \{\sigma_x : x \in f^{-1}(y)\} \rrbracket_{y \in Y} &= \llbracket \dot{\bigwedge} \circ h \rrbracket_Y = \mathbf{Ph}(\llbracket \dot{\bigwedge} \rrbracket_{\mathfrak{P}(\Sigma)}) = \mathbf{Ph}(\forall e_2(\llbracket e_1 \rrbracket_E)) \end{aligned}$$

Let us now consider the set $G \subseteq \Sigma \times Y$ defined by $G := \{(\sigma_x, f(x)) : x \in X\}$ as well as the two functions $g : G \rightarrow Y$ and $g' : G \rightarrow E$ given by

$$g(\xi, y) := y \quad \text{and} \quad g'(\xi, y) := (\xi, h(y)) \quad \text{(for all } (\xi, y) \in G\text{)}$$

We observe that the following diagram is a pullback in \mathbf{Set} :

$$\begin{array}{ccc} G & \xrightarrow{g} & Y \\ g' \downarrow & \lrcorner & \downarrow h \\ E & \xrightarrow{e_2} & \mathfrak{P}(\Sigma) \end{array}$$

Hence $\mathbf{P}h \circ \exists e_2 = \exists g \circ \mathbf{P}g'$ and $\mathbf{P}h \circ \forall e_2 = \forall g \circ \mathbf{P}g'$ (Beck-Chevalley). \dots

Defining quantifiers in Σ

(3/3)

Proof of Proposition 2.6 (continued).

From the equalities $\mathbf{P}h \circ \exists e_2 = \exists q \circ \mathbf{P}g'$ and $\mathbf{P}h \circ \forall e_2 = \forall q \circ \mathbf{P}g'$, we get:

$$\begin{aligned} \llbracket \dot{\bigvee} \{\sigma_x : x \in f^{-1}(y)\} \rrbracket_{y \in Y} &= (\mathbf{P}h \circ \exists e_2)(\llbracket e_1 \rrbracket_E) = (\exists g \circ \mathbf{P}g')(\llbracket e_1 \rrbracket_E) \\ \llbracket \dot{\bigwedge} \{\sigma_x : x \in f^{-1}(y)\} \rrbracket_{y \in Y} &= (\mathbf{P}h \circ \forall e_2)(\llbracket e_1 \rrbracket_E) = (\forall g \circ \mathbf{P}g')(\llbracket e_1 \rrbracket_E) \end{aligned}$$

Now we consider the map $g : X \rightarrow G$ defined by $g(x) := (\sigma_x, f(x))$ for all $x \in X$.

Since q is surjective, it has a right inverse by (AC), hence $\exists q$ and $\forall q$ are left inverses of Pq (by Lemma 1.5 (2)), that is: $\exists q \circ Pq = \forall q \circ Pq = \text{id}_{PG}$. Therefore:

$$\begin{aligned}
\llbracket \dot{\bigvee} \{\sigma_x : x \in f^{-1}(y)\} \rrbracket_{y \in Y} &= (\exists g \circ \mathbf{P}g')(\llbracket e_1 \rrbracket_E) \\
&= (\exists g \circ \exists q \circ \mathbf{P}q \circ \mathbf{P}g')(\llbracket e_1 \rrbracket_E) \\
&= (\exists (g \circ q) \circ \mathbf{P}(g' \circ q))(\llbracket e_1 \rrbracket_E) \\
&= \exists f(\mathbf{P}(g' \circ q)(\llbracket e_1 \rrbracket_E)) \\
&= \exists f(\llbracket e_1 \circ g' \circ q \rrbracket_X) \\
&= \exists f(\llbracket \sigma \rrbracket_X)
\end{aligned}$$

(since $g \circ q = f$ and $e_1 \circ g' \circ q = \sigma$). And similarly for \forall .

To sum up...

We introduced codes $(\dot{\wedge}), (\dot{\vee}), (\dot{\rightarrow}) : \Sigma^2 \rightarrow \Sigma$ and $\dot{\vee}, \dot{\wedge} : \mathfrak{P}(\Sigma) \rightarrow \Sigma$ such that for all sets X and for all predicates $p, q \in \mathbf{P}X$:

- If $\sigma, \tau \in \Sigma^X$ are codes for $p, q \in \mathbf{P}X$, respectively, then:

$(\sigma_x \dot{\wedge} \tau_x)_{x \in X}$ ($\in \Sigma^X$) is a code for $p \wedge q$ ($\in \mathbf{P}X$)

$(\sigma_x \dot{\vee} \tau_x)_{x \in X}$ ($\in \Sigma^X$) is a code for $p \vee q$ ($\in \mathbf{P}X$)

$(\sigma_x \dot{\rightarrow} \tau_x)_{x \in X}$ ($\in \Sigma^X$) is a code for $p \rightarrow q$ ($\in \mathbf{P}X$)

- If $\sigma \in \Sigma^X$ is a code for $p \in \mathbf{P}X$ and $f : X \rightarrow Y$ any map, then:

$\left(\dot{\vee} \{ \sigma_x : x \in f^{-1}(y) \} \right)_{y \in Y} \quad (\in \Sigma^Y) \quad \text{is a code for} \quad \exists f(p) \quad (\in \mathbf{P}Y)$

$\left(\bigwedge \{\sigma_x : x \in f^{-1}(y)\} \right)_{y \in Y} \quad (\in \Sigma^Y) \quad \text{is a code for} \quad \forall f(p) \quad (\in \mathbf{P}Y)$

Beware! As for the “connectives” \wedge , \vee and \rightarrow , the “quantifiers” \forall and \exists enjoy no good algebraic properties:

$$\dot{\wedge}\{\xi\} \neq \xi, \quad \dot{\wedge}\{\xi, \dot{\wedge}\{\xi', \xi''\}\} \neq \dot{\wedge}\{\dot{\wedge}\{\xi, \xi'\}, \xi''\} \neq \dot{\wedge}\{\xi, \xi', \xi''\} \quad \text{etc.}$$

Defining the “filter” $\Phi \subseteq \Sigma$

It now remains to characterize the ordering on each PX . For that we let

$$\Phi := \{\xi \in \Sigma : \llbracket \xi \rrbracket_{\epsilon 1} = \top_1\} \quad (\text{where } \top_1 = \max(\mathbf{P1}))$$

Proposition 2.7 (Characterizing the order in $\mathbf{P}X$)

For all $X \in \mathbf{Set}$ and $\sigma, \tau \in \Sigma^X$, we have

$$\llbracket \sigma \rrbracket_X \leq \llbracket \tau \rrbracket_X \quad \text{iff} \quad \bigwedge \{\sigma_x \dot{\rightarrow} \tau_x : x \in X\} \in \Phi$$

- This result implies that for each set X , the Heyting algebra $\mathbf{P}X$ is (isomorphic to) the poset reflection of the preordered set (Σ^X, \vdash_X) , writing \vdash_X the preorder (on Σ^X) defined by

$$\sigma \vdash_X \tau \quad \text{iff} \quad \dot{\wedge} \{\sigma_x \dot{\rightarrow} \tau_x : x \in X\} \in \Phi$$

(for all $\sigma, \tau \in \Sigma^X$)

- **Conclusion:** The tripos \mathbf{P} is completely characterized by the set Σ together with the operations $\dot{\rightarrow}$, $\dot{\wedge}$ and the “filter” $\Phi \subseteq \Sigma$

Other properties

(1/2)

Proposition 2.8 (Merging quantifications)

$$\begin{aligned} \llbracket \dot{\bigvee} \{ \dot{\bigvee} s : s \in S \} \rrbracket_{S \in \mathfrak{P}(\mathfrak{P}(\Sigma))} &= \llbracket \dot{\bigvee} (\bigcup S) \rrbracket_{S \in \mathfrak{P}(\mathfrak{P}(\Sigma))} \\ \llbracket \dot{\bigwedge} \{ \dot{\bigwedge} s : s \in S \} \rrbracket_{S \in \mathfrak{P}(\mathfrak{P}(\Sigma))} &= \llbracket \dot{\bigwedge} (\bigcup S) \rrbracket_{S \in \mathfrak{P}(\mathfrak{P}(\Sigma))} \end{aligned}$$

Proof. Apply the Beck-Chevalley condition to the suitable pullback!

Proposition 2.9 (Distributivity \rightarrow/\forall)

$$\llbracket \dot{\bigwedge} \{ \theta \dot{\rightarrow} \xi : \xi \in s \} \rrbracket_{(\theta, s) \in \Sigma \times \mathfrak{P}(\Sigma)} = \llbracket \theta \dot{\rightarrow} \dot{\bigwedge} s \rrbracket_{(\theta, s) \in \Sigma \times \mathfrak{P}(\Sigma)}$$

Corollary 2.10 (Distributivity \rightarrow/\forall)

Given a set X and two families $\sigma \in \Sigma^X$ and $t \in \mathfrak{P}(\Sigma)^X$, we have

$$\llbracket \dot{\bigwedge} \{ \sigma_x \dot{\rightarrow} \xi : \xi \in t_x \} \rrbracket_{x \in X} = \llbracket \sigma_x \dot{\rightarrow} \dot{\bigwedge} t_x \rrbracket_{x \in X}$$

Other properties

(2/2)

Consider the inclusion relation

$$F := \{(s, s') \in \mathfrak{P}(\Sigma) \times \mathfrak{P}(\Sigma) : s \subseteq s'\}$$

together with its two projections $f_1, f_2 : F \rightarrow \mathfrak{P}(\Sigma)$

Proposition 2.11

$$[\dot{\vee} \circ f_1]_F \leq [\dot{\vee} \circ f_2]_F \quad \text{and} \quad [\dot{\wedge} \circ f_1]_F \geq [\dot{\wedge} \circ f_2]_F$$

Corollary 2.12

Given a set X and families $a, b \in \mathfrak{P}(\Sigma)^X$ such that $a_x \subseteq b_x$ for all $x \in X$:

$$[\dot{\vee} \circ a]_X \leq [\dot{\vee} \circ b]_X \quad \text{and} \quad [\dot{\wedge} \circ a]_X \geq [\dot{\wedge} \circ b]_X$$

Plan

- 1 Introduction
- 2 Set-based triposes
- 3 Anatomy of a Set-based tripos
- 4 Extracting the implicative algebra

How to regularize the set Σ of propositional codes?

- We have seen that the structure of the tripos $\mathbf{P} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ is fully characterized from
 - the “implication” $(\dot{\rightarrow}) : \Sigma^2 \rightarrow \Sigma$
 - the “universal quantifier” $(\dot{\wedge}) : \dot{\mathfrak{P}}(\Sigma) \rightarrow \Sigma$
 - the “filter” $\Phi \subseteq \Sigma$

via the equivalence

$$[\![\sigma]\!]_X \leq [\![\tau]\!]_X \quad \text{iff} \quad \dot{\wedge}\{\sigma_x \dot{\rightarrow} \tau_x : x \in X\} \in \Phi$$

- However, due to the non canonical definition of the operations $\dot{\rightarrow}$ and $\dot{\wedge}$ (as codes for certain predicates), the structure $(\Sigma, \dot{\rightarrow}, \dot{\wedge}, \Phi)$ has no good algebraic properties
- **Question:** How to make these operations more regular?
 - 1 Via a suitable quotient? (I tried but did not find...)
 - 2 By encapsulating codes into a larger well-behaved structure?
 \Rightarrow embedding Σ into an **implicative structure** $(\mathcal{A}, \preccurlyeq, \rightarrow)$

The set of atoms \mathcal{A}_0

- We first define a set \mathcal{A}_0 of **atoms** from the grammar:

$$\textbf{Atoms} \quad \alpha, \beta ::= \dot{\xi} \mid s \mapsto \alpha \quad (\xi \in \Sigma, s \in \mathfrak{P}(\Sigma))$$

Each atom is a finite list/stack of the form $s_1 \mapsto \dots \mapsto s_n \mapsto \dot{\xi}$, where $s_1, \dots, s_n \in \mathfrak{P}(\Sigma)$ and $\xi \in \Sigma$

- The set \mathcal{A}_0 is equipped with the preorder $\alpha \leq \alpha'$ that is inductively defined from the two rules

$$\frac{}{\dot{\xi} \leq \dot{\xi}} \quad \frac{s \subseteq s' \quad \alpha \leq \alpha'}{s \mapsto \alpha \leq s' \mapsto \alpha'}$$

- The set \mathcal{A}_0 of atoms is also equipped with a **conversion function** $\varphi_0 : \mathcal{A}_0 \rightarrow \Sigma$, defined by

$$\varphi_0(\dot{\xi}) := \xi \quad \text{and} \quad \varphi_0(s \mapsto \alpha) := (\dot{\bigwedge} s) \dot{\rightarrow} \varphi_0(\alpha)$$

(By construction, the function $\varphi_0 : \mathcal{A}_0 \rightarrow \Sigma$ is surjective)

The complete lattice $(\mathcal{A}, \preccurlyeq)$

From the set \mathcal{A}_0 of **atoms** equipped with the preorder $\alpha \leq \alpha'$, we let:

- $\mathcal{A} := \mathfrak{P}_\uparrow(\mathcal{A}_0)$ (set of **upwards closed subsets** of \mathcal{A}_0 , w.r.t. \leq)
- $a \preccurlyeq b := a \supseteq b$ for all $a, b \in \mathcal{A}$ (**reverse inclusion**)

Fact: $(\mathcal{A}, \preccurlyeq)$ is a **complete lattice**

In this complete lattice, we have: $\lambda = \bigcup$, $\perp_{\mathcal{A}} = \mathcal{A}_0$, $\top_{\mathcal{A}} = \emptyset$

Intuitions:

- Each atom $\alpha = (s_1 \mapsto \dots \mapsto s_n \mapsto \dot{\xi})$ represents the code

$$\varphi_0(\alpha) := (\dot{\bigwedge} s_1) \dot{\rightarrow} \dots \dot{\rightarrow} (\dot{\bigwedge} s_n) \dot{\rightarrow} \dot{\xi}$$

- Each (upwards-closed) set of atoms $a \in \mathcal{A}$ represents the code

$$\varphi(a) := \dot{\bigwedge} \{\varphi_0(\alpha) : \alpha \in a\}$$

Relationship with graph models

(1/2)

Remark. The above construction is reminiscent from the construction of **graph models** of the λ -calculus [Engeler '81].

- In the context of graph models, the set \mathcal{A}_0 would be defined from the grammar

$$\alpha, \beta \in \mathcal{A}_0 \quad ::= \quad \dot{\xi} \quad | \quad \{\alpha_1, \dots, \alpha_n\} \mapsto \beta \quad (\xi \in \Sigma)$$

that is, as the least solution of the set-theoretic equation

$$\mathcal{A}_0 = \Sigma + \mathfrak{P}_{\text{fin}}(\mathcal{A}_0) \times \mathcal{A}_0$$

- However, the set $\mathcal{A} := \mathfrak{P}_{\uparrow}(\mathcal{A}_0)$ induced by this \mathcal{A}_0 would be a (D_{∞} -like) model of the λ -calculus, but **not an implicative structure**
- **Reason:** The application $(a, b \mapsto ab) : \mathcal{A}^2 \rightarrow \mathcal{A}$ that naturally comes with this definition of \mathcal{A}_0 has **no right adjoint**, due to the finiteness of the l.h.s. in the construct $\{a_1, \dots, a_n\} \mapsto \beta$. So that there is **no implication** in \mathcal{A}

Relationship with graph models

(2/2)

- To fix this problem, it would be natural to relax the condition of finiteness, by considering instead the equation

$$\mathcal{A}_0 = \Sigma + \mathfrak{P}(\mathcal{A}_0) \times \mathcal{A}_0$$

Alas, this equation has no solution! (for obvious cardinality reasons)

- **Trick:** Replace arbitrary subsets $a \subseteq \mathcal{A}_0$ (in the l.h.s. of $a \mapsto \beta$) by arbitrary subsets of Σ , using the fact that subsets of \mathcal{A}_0 can be converted (element-wise) into subsets of Σ , via $\varphi_0 : \mathcal{A}_0 \rightarrow \Sigma$
- So that in the end, we obtain the set-theoretic equation

$$\mathcal{A}_0 = \Sigma + \mathfrak{P}(\Sigma) \times \mathcal{A}_0,$$

whose least solution is generated from the grammar

$$\alpha, \beta \in \mathcal{A}_0 ::= \dot{\xi} \mid s \mapsto \alpha \quad (\xi \in \Sigma, s \in \mathfrak{P}(\Sigma))$$

Defining the implication in $(\mathcal{A}, \preccurlyeq)$

- Recall that $(\mathcal{A}, \preccurlyeq) = (\mathfrak{P}_{\uparrow}(\mathcal{A}_0), \supseteq)$, where:

$$\alpha, \beta \in \mathcal{A}_0 \quad ::= \quad \dot{\xi} \quad | \quad s \mapsto \alpha \quad (\xi \in \Sigma, s \in \mathfrak{P}(\Sigma))$$
$$\dot{\xi} \leq \dot{\xi}' \quad \frac{s \subseteq s' \quad \alpha \leq \alpha'}{s \mapsto \alpha \leq s' \mapsto \alpha'}$$

- The conversion function $\varphi_0 : \mathcal{A}_0 \rightarrow \Sigma$ naturally extends to a function $\tilde{\varphi}_0 : \mathcal{A} \rightarrow \mathfrak{P}(\Sigma)$ (element-wise)
- Given $a, b \in \mathcal{A}$ ($= \mathfrak{P}_{\uparrow}(\mathcal{A}_0)$), we let

$$a \rightarrow b := \{s \mapsto \beta : s \in \tilde{\varphi}_0(a)^\subseteq, \beta \in b\} \quad (\in \mathcal{A})$$

writing $\tilde{\varphi}_0(a)^\subseteq := \{s \in \mathfrak{P}(\Sigma) : \tilde{\varphi}_0(a) \subseteq s\}$

Proposition 3.1

The triple $(\mathcal{A}, \preccurlyeq, \rightarrow)$ is an implicative structure

Viewing \mathcal{A} as a new set of propositions

Let us now define:

- $\varphi : \mathcal{A} \rightarrow \Sigma$ by $\varphi(a) := \dot{\bigwedge} \tilde{\varphi}_0(a)$ (for all $a \in \mathcal{A}$)
- $\psi : \Sigma \rightarrow \mathcal{A}$ by $\psi(\xi) := \{\dot{\xi}\}$ (for all $\xi \in \Sigma$)
- $tr_{\mathcal{A}} \in \mathbf{P}\mathcal{A}$ by $tr_{\mathcal{A}} := \mathbf{P}\varphi(tr_{\Sigma})$

Lemma 3.2

- ① $\varphi(\psi(\xi)) = \dot{\bigwedge} \{\xi\}$ for all $\xi \in \Sigma$
- ② Therefore: $tr_{\Sigma} = \mathbf{P}\psi(tr_{\mathcal{A}})$

Proposition 3.3

For each set X , the function

$$\begin{aligned}\langle\langle - \rangle\rangle_X : \mathcal{A}^X &\rightarrow \mathbf{P}X \\ a &\mapsto \mathbf{P}a(tr_{\mathcal{A}}) \quad \text{is surjective}\end{aligned}$$

Which means that $tr_{\mathcal{A}} \in \mathbf{P}\mathcal{A}$ is a **generic predicate** of the tripos \mathbf{P}

Relating both generic predicates

From now on, we have:

- Two sets of (codes of) propositions: Σ and \mathcal{A}
- Two generic predicates $tr_{\Sigma} \in \mathbf{P}\Sigma$ and $tr_{\mathcal{A}} \in \mathbf{P}\mathcal{A}$
- For each set X , two (surjective) decoding functions

$$\llbracket _ \rrbracket_X : \Sigma^X \rightarrow \mathbf{P}X \quad \langle\!\langle _ \rangle\!\rangle_X : \mathcal{A}^X \rightarrow \mathbf{P}X$$
$$\sigma \mapsto \mathbf{P}\sigma(tr_{\Sigma}) \quad a \mapsto \mathbf{P}a(tr_{\mathcal{A}})$$

Proposition 3.4

For each set X , the following two diagrams commute:

$$\begin{array}{ccc} \Sigma^X & \xrightarrow{\llbracket _ \rrbracket_X} & \mathbf{P}X \\ \varphi^X \uparrow & \parallel & \\ \mathcal{A}^X & \xrightarrow{\langle\!\langle _ \rangle\!\rangle_X} & \mathbf{P}X \end{array} \quad \begin{array}{ccc} \Sigma^X & \xrightarrow{\llbracket _ \rrbracket_X} & \mathbf{P}X \\ \psi^X \downarrow & \parallel & \\ \mathcal{A}^X & \xrightarrow{\langle\!\langle _ \rangle\!\rangle_X} & \mathbf{P}X \end{array}$$

To sum up...

- We started from Σ , equipped with **non canonical operations**

$$(\dot{\rightarrow}) : \Sigma^2 \rightarrow \Sigma \quad \text{and} \quad (\dot{\wedge}) : \mathfrak{P}(\Sigma) \rightarrow \Sigma$$

acting as codes for implication and universal quantification, in the sense of the initial generic predicate $tr_{\Sigma} \in \mathbf{P}\Sigma$.

- From Σ , $\dot{\rightarrow}$ and $\dot{\wedge}$, we defined an implicative structure $(\mathcal{A}, \preccurlyeq, \rightarrow)$ whose implication encapsulates both operations $\dot{\rightarrow}$ and $\dot{\wedge}$:

$$a \rightarrow b := \{s \mapsto \beta : s \in \tilde{\varphi}_0(a) \subseteq, \beta \in b\} \quad (\in \mathcal{A})$$

(Recall that $\varphi_0 : \mathcal{A} \rightarrow \Sigma$ is defined from $\dot{\rightarrow}$ and $\dot{\wedge}$)

- We now want to show that the **canonical operations**

$$(\rightarrow) : \mathcal{A}^2 \rightarrow \mathcal{A} \quad \text{and} \quad (\lambda) : \mathfrak{P}(\mathcal{A}) \rightarrow \mathcal{A}$$

still act as codes for implication and universal quantification, but now in the sense of the new generic predicate $tr_{\mathcal{A}} \in \mathbf{P}\mathcal{A}$

Universal quantification in \mathcal{A}

(1/2)

- Recall that we chose $(\dot{\lambda}) \in \Sigma^{\mathfrak{P}(\Sigma)}$ such that $[\dot{\lambda}]_{\mathfrak{P}(\Sigma)} = \forall e_2([\![e_1]\!]_E)$, where $e_1 : E \rightarrow \Sigma$ and $e_2 : E \rightarrow \mathfrak{P}(\Sigma)$ are the projections associated with the membership relation $E := \{(\xi, s) \in \Sigma \times \mathfrak{P}(\Sigma) : \xi \in s\}$
- Let us now consider the membership relation

$$E' := \{(a, A) \in \mathcal{A} \times \mathfrak{P}(\mathcal{A}) : a \in A\}$$

together with its projections $e'_1 : E' \rightarrow \mathcal{A}$ and $e'_2 : E' \rightarrow \mathfrak{P}(\mathcal{A})$

Proposition 3.5

We have: $\langle\langle \lambda A \rangle\rangle_{A \in \mathfrak{P}(\mathcal{A})} = \forall e'_2(\langle\langle e'_1 \rangle\rangle_{E'})$

Corollary 3.6

Given a code $a = (a_x)_{x \in X} \in \mathcal{A}^X$ and a map $f : X \rightarrow Y$, we have:

$$\langle\langle \lambda \{a_x : x \in f^{-1}(y)\} \rangle\rangle_{y \in Y} = \forall f(\langle\langle a \rangle\rangle_X) \quad (\in \mathbf{P}Y)$$

Universal quantification in \mathcal{A}

(2/2)

Proof of Proposition 3.5.

$$\begin{aligned}\langle\!\langle \lambda A \rangle\!\rangle_{A \in \mathfrak{P}(\mathcal{A})} &= \langle\!\langle \bigcup A \rangle\!\rangle_{A \in \mathfrak{P}(\mathcal{A})} && (\text{since } \lambda = \bigcup) \\ &= \llbracket \varphi(\bigcup A) \rrbracket_{A \in \mathfrak{P}(\mathcal{A})} && (\text{Prop. 3.4}) \\ &= \llbracket \dot{\wedge} \tilde{\varphi}_0(\bigcup A) \rrbracket_{A \in \mathfrak{P}(\mathcal{A})} && (\text{Def. of } \varphi) \\ &= \llbracket \dot{\wedge} \bigcup \mathfrak{P} \tilde{\varphi}_0(A) \rrbracket_{A \in \mathfrak{P}(\mathcal{A})} && (\text{Def. of } \tilde{\varphi}_0) \\ &= \mathbf{P}(\mathfrak{P} \tilde{\varphi}_0)(\llbracket \dot{\wedge} \bigcup S \rrbracket_{S \in \mathfrak{P}(\mathfrak{P}(\Sigma))}) && (\text{Naturality of } \llbracket \rrbracket) \\ &= \mathbf{P}(\mathfrak{P} \tilde{\varphi}_0)(\llbracket \dot{\wedge} \{ \dot{\wedge} s : s \in S \} \rrbracket_{S \in \mathfrak{P}(\mathfrak{P}(\Sigma))}) && (\text{Prop. 2.8}) \\ &= \llbracket \dot{\wedge} \{ \dot{\wedge} \tilde{\varphi}_0(a) : a \in A \} \rrbracket_{A \in \mathfrak{P}(\mathcal{A})} && (\text{Naturality of } \llbracket \rrbracket) \\ &= \llbracket \dot{\wedge} \{ \varphi(a) : a \in A \} \rrbracket_{A \in \mathfrak{P}(\mathcal{A})} && (\text{Def. of } \varphi) \\ &= \llbracket \dot{\wedge} \{ \varphi(e'_1(p)) : p \in e'^{-1}_2(A) \} \rrbracket_{A \in \mathfrak{P}(\mathcal{A})} && (\text{Def. of } e'_1, e_2) \\ &= \forall e'_2(\llbracket \varphi \circ e'_1 \rrbracket_{E'}) && (\text{Prop. 2.6}) \\ &= \forall e'_2(\langle\!\langle e'_1 \rangle\!\rangle_{E'}) && (\text{Prop. 3.4})\end{aligned}$$

Implication in \mathcal{A}

(1/2)

- Recall that we chose $(\dot{\rightarrow}) \in \Sigma^{\Sigma \times \Sigma}$ such that $\llbracket \dot{\rightarrow} \rrbracket_{\Sigma^2} = \llbracket \pi \rrbracket_{\Sigma^2} \rightarrow \llbracket \pi' \rrbracket_{\Sigma^2}$, where $\pi, \pi' : \Sigma^2 \rightarrow \Sigma$ are the two projections from Σ^2 to Σ

Proposition 3.6

We have: $\langle\langle a \rightarrow b \rangle\rangle_{(a,b) \in \mathcal{A}^2} = \langle\langle \pi \rangle\rangle_{\mathcal{A}^2} \rightarrow \langle\langle \pi' \rangle\rangle_{\mathcal{A}^2}$,
writing $\pi, \pi' : \mathcal{A}^2 \rightarrow \mathcal{A}$ the two projections from \mathcal{A}^2 to \mathcal{A}

Proof of Prop. 3.6 relies on the following technical lemma:

Lemma 3.7

$$\llbracket \dot{\bigwedge} \{ (\dot{\bigwedge} s') \dot{\rightarrow} \xi : s' \in s^{\subseteq}, \xi \in t \} \rrbracket_{(s,t) \in \mathfrak{P}(\Sigma)^2} = \llbracket \dot{\bigwedge} \{ (\dot{\bigwedge} s) \dot{\rightarrow} \xi : \xi \in t \} \rrbracket_{(s,t) \in \mathfrak{P}(\Sigma)^2}$$

Corollary 3.8

Let X be a set. For all codes $a, b \in \mathcal{A}^X$, we have

$$\langle\langle a_x \rightarrow b_x \rangle\rangle_{x \in X} = \langle\langle a \rangle\rangle_X \rightarrow \langle\langle b \rangle\rangle_X \quad (\in \mathbf{P}X)$$

Implication in \mathcal{A}

(2/2)

Proof of Proposition 3.6.

$$\begin{aligned} & \langle\langle a \rightarrow b \rangle\rangle_{(a,b) \in \mathcal{A}^2} \\ = & \llbracket \varphi(a \rightarrow b) \rrbracket_{(a,b) \in \mathcal{A}^2} & (\text{Prop. 3.4}) \\ = & \llbracket \varphi(\{s' \mapsto \beta : s' \in \tilde{\varphi}_0(a)^\subseteq, \beta \in b\}) \rrbracket_{(a,b) \in \mathcal{A}^2} & (\text{Def. of } a \rightarrow b) \\ = & \llbracket \dot{\wedge} \{(\dot{\wedge} s') \dot{\rightarrow} \xi : s' \in \tilde{\varphi}_0(a)^\subseteq, \xi \in \tilde{\varphi}_0(b)\} \rrbracket_{(a,b) \in \mathcal{A}^2} & (\text{Def. of } \varphi) \\ = & \mathbf{P}(\tilde{\varphi}_0 \times \tilde{\varphi}_0) \left(\llbracket \dot{\wedge} \{(\dot{\wedge} s') \dot{\rightarrow} \xi : s' \in s^\subseteq, \xi \in t\} \rrbracket_{(s,t) \in \mathfrak{P}(\Sigma)^2} \right) & (\text{Nat. of } \llbracket _ \rrbracket) \\ = & \mathbf{P}(\tilde{\varphi}_0 \times \tilde{\varphi}_0) \left(\llbracket \dot{\wedge} \{(\dot{\wedge} s) \dot{\rightarrow} \xi : \xi \in t\} \rrbracket_{(s,t) \in \mathfrak{P}(\Sigma)^2} \right) & (\text{Lemma 3.7}) \\ = & \mathbf{P}(\tilde{\varphi}_0 \times \tilde{\varphi}_0) \left(\llbracket (\dot{\wedge} s) \dot{\rightarrow} (\dot{\wedge} t) \rrbracket_{(s,t) \in \mathfrak{P}(\Sigma)^2} \right) & (\text{Prop. 2.9}) \\ = & \llbracket (\dot{\wedge} \tilde{\varphi}_0(a)) \dot{\rightarrow} (\dot{\wedge} \tilde{\varphi}_0(b)) \rrbracket_{(a,b) \in \mathcal{A}^2} & (\text{Nat. of } \llbracket _ \rrbracket) \\ = & \llbracket \varphi(a) \dot{\rightarrow} \varphi(b) \rrbracket_{(a,b) \in \mathcal{A}^2} & (\text{Def. of } \varphi) \\ = & \llbracket \varphi(a) \rrbracket_{(a,b) \in \mathcal{A}^2} \rightarrow \llbracket \varphi(b) \rrbracket_{(a,b) \in \mathcal{A}^2} & (\text{Prop. 2.4}) \\ = & \llbracket \varphi \circ \pi \rrbracket_{\mathcal{A}^2} \rightarrow \llbracket \varphi \circ \pi' \rrbracket_{\mathcal{A}^2} & (\text{Def. of } \pi, \pi') \\ = & \langle\langle \pi \rangle\rangle_{\mathcal{A}^2} \rightarrow \langle\langle \pi' \rangle\rangle_{\mathcal{A}^2} & (\text{Prop. 3.4}) \end{aligned}$$

Defining the separator $S \subseteq \mathcal{A}$

By analogy with the definition of the “filter” $\Phi \subseteq \Sigma$, we let

$$S := \{a \in \mathcal{A} : \langle\!\langle a \rangle\!\rangle_{\in 1} = \top_1\} \quad (\text{where } \top_1 = \max(\mathbf{P}1))$$

- By construction, we have

$$\begin{aligned} S &= \{a \in \mathcal{A} : \llbracket \varphi(a) \rrbracket_{\in 1} = \top_1\} \\ &= \{a \in \mathcal{A} : \varphi(a) \in \Phi\} = \varphi^{-1}(\Phi) \end{aligned}$$

Proposition 3.9 (S is a separator)

The subset $S \subseteq \mathcal{A}$ is a separator of $(\mathcal{A}, \preccurlyeq, \rightarrow)$

Proposition 3.10 (Characterizing the ordering in $\mathbf{P}X$)

For all sets X and for all codes $a, b \in \mathcal{A}^X$, we have:

$$\langle\!\langle a \rangle\!\rangle_X \leq \langle\!\langle b \rangle\!\rangle_X \quad \text{iff} \quad \bigwedge_{x \in X} (a_x \rightarrow b_x) \in S$$

Constructing the isomorphism

Let us now write $\mathbf{P}' : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ the implicative tripos induced by the implicative algebra $(\mathcal{A}, \preccurlyeq, \rightarrow, S)$

Proposition (Conclusion of the Main Theorem)

The implicative tripos \mathbf{P}' is isomorphic to the initial tripos \mathbf{P}

Proof.

Let us consider the family of maps $\rho_X := \langle\langle - \rangle\rangle_X : \mathcal{A}^X \rightarrow \mathbf{P}X$ (which is natural in X). From Prop. 3.10, we observe that for all $a, b \in \mathcal{A}^X$, we have

$$a \vdash_{S[X]} b \quad \text{iff} \quad \bigwedge_{x \in X} (a_x \rightarrow b_x) \in S \quad \text{iff} \quad \rho_X(a) \leq \rho_X(b).$$

Hence $\rho_X : \mathcal{A}^X \rightarrow \mathbf{P}X$ induces a natural embedding of posets $\hat{\rho}_X : \mathbf{P}'X \rightarrow \mathbf{P}X$ through the quotient $\mathbf{P}'X := \mathcal{A}^X / S[X]$. Moreover, the embedding $\hat{\rho}_X$ is surjective (since $\rho_X = \langle\langle - \rangle\rangle_X$ is), therefore it is an isomorphism. □

The case of classical triposes

- Recall that:

Theorem (Classical implicative triposes)

Each tripos induced by a **classical implicative algebra** $(\mathcal{A}, \preccurlyeq, \rightarrow, S)$ is isomorphic to a tripos induced by an **abstract Krivine structure**

- We also easily see that an implicative tripos is classical (as a tripos) iff the underlying implicative algebra is. Therefore:

Theorem

Every (**Set-based**) tripos is isomorphic to a Krivine tripos

- In conclusion:
 - Classical triposes
 - Classical implicative triposes
 - Krivine/Streicher triposes

are one and the same thing