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The categorical tradition of realizability

e Categorical logic [Lawvere, Tierney '70]
o Hyperdoctrines = models of 1st order theories
(Slogan: 3/V are left/right adjoints!)

o Modern definition of the notion of topos
(generalizes Grothendieck’s definition)

o Categorical realizability [Hyland, Johnstone, Pitts '80]
e Major input from forcing and Boolean-valued models [Scott]
e The effective topos [Hyland]
o Notion of tripos and tripos-to-topos construction [Pitts]
o Generalization to partial combinatory algebras (PCAs)

... but incompatible with classical logic

e Categorical classical realizability
o Classical realizability from a categorical perspective [Streicher '13]
o Ordered combinatory algebras and realizability [Ferrer et al. '17]
o Implicative algebras [Miquel "20]



Introduction
0e00

Set-based triposes
000000000000

The categorical problem

Anatomy of a Set-based tripos
0000000000000

Topos
(Set-like category)

Tripos
(categorical model of HOL)

Implicative algebra

/

f

N

cHA
(cBA)

PCA = OCA

AKS

(

3

Extracting the implicative algebra
0000000000000 0000

Models of
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cHA = complete Heyting algebra
cBA = complete Boolean algebra
PCA = partial combinatory algebra
OCA = ordered combinatory algebra
AKS = abstract Krivine structure
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Unifying all kinds of models

o Implicative algebras: a simple algebraic structure that
encompasses:

o Complete Heyting Algebras

Complete Boolean Algebras

(for Heyting-valued models, Kripke forcing)
° (
o Partial Combinatory Algebras  (for Intuitionistic realizability)
° (
° (

for Boolean-valued models, Cohen forcing)

for Intuitionistic realizability)

Ordered Combinatory Algebras

Abstract Krivine Structures for Classical realizability)

@ Implicative algebras can be used to construct implicative triposes,
thus encompassing all the currently known (Set-based) triposes

@ But do implicative triposes encompass all (Set-based) triposes?

@ Yes! The aim of this talk is to prove the

Theorem (Completeness)

Every (Set-based) tripos is isomorphic to an implicative tripos
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Some notations

@ In what follows, we write:

o Set the category of sets equipped with all maps
o Pos the category of posets equipped with monotonic functions

o HA the category of Heyting algebras equipped with the morphisms
of Heyting algebras (i.e. that commute with L, T, A, V, =)

@ In the category Set, we write:
o 1 the terminal object (i.e. a fixed singleton)
e 1x : X — 1 the unique map from a given set X to 1

o X XY the Cartesian product of two sets X and Y, with the
associated projections 7xy : X XY — X and 7T3(,y X XY Y

o Givenmaps f: Z—Xandg:Z =Y, wewrite (f,g): Z = X xY
the unique map such that 7x,y o (f,g) =f and wxyo(f,g)=g



Introduction Set-based triposes Anatomy of a Set-based tripos Extracting the implicative algebra
0000 00@000000000 0000000000000 0000000000000 0000

Set-based triposes

Definition 1.1 (Set-based tripos)

A (Set-based) tripos is a contravariant functor P : Set®® — HA such that:

© For each map f: X — Y (in Set), the associated map Pf : PY — PX
(in HA) has left & right adjoints 3f,Vf : PX — PY (in Pos)

@ Beck-Chevalley condition: Each pullback square in Set (on the lhs)
induces the following two commutative diagrams in Pos (on the rhs):

X JHf L X, PX L PX, Px " px,
le igl = szT Tpgl szT Tpgl
X2 HY PX2 HPY PX2 HPY

92 dg2 Vg2

© The functor P : Set® — HA has a generic predicate trs; € PX (for some
set X)), i.e. such that for all sets X, the following map is surjective:
o - PX
o — Po(trs)
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On the definitions of the notion of tripos

@ The above definition is the initial definition of triposes, such as
introduced in  Hyland, Johnstone, Pitts: Tripos theory (1980)

e Pitts' PhD  The Theory of Triposes (1981) generalizes the notion
of tripos in essentially two directions:

@ The category Set is replaced by an arbitrary Cartesian category C
(intuitively: a category of ‘contexts’), and the generic predicate is
replaced by a more general membership predicate!

@ The Beck-Chevalley condition is only required for certain pullback
squares (the projection squares), and may not hold for all

@ However, all forcing/realizability /implicative triposes are triposes in
the sense of the initial definition (i.e. Set-based triposes); therefore
we shall only consider these

1Due to the fact that the Cartesian category C is not necessarily closed. But
when C is a ccc, the existence of the generic predicate is sufficient
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Isomorphism of (Set-based) triposes

Definition 1.2 (Isomorphism of triposes)

Two triposes P, P’ : Set®® — HA are isomorphic when there is a
natural isomorphism ¢ : P = P’ i.e. a family of isos px : PX — P'X
(X € Set) such that the following diagram commutes

PX 25 P'X
PfT TP’f for all maps fl
PY s P'Y Y
3%

@ The notion of iso can be taken indifferently in HA or in Pos, since
amap px : PX — P’'X is an iso in HA iff it is an iso in Pos

@ There is no need to take care about generic predicates!

Reason: A natural iso will automatically map any generic predicate
of P to a generic predicate of P’ (generic predicates are not unique)
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Some properties of triposes (1/2)

Lemma 1.3 (Functoriality of V,3)

The correspondences f +— 3f and f +— Vf are functorial:

E“dX = ide El(gof) = E|gOE|f
Vidy = idpx Y(go f) = VgoVf

for all maps f: X - Y and g: Y — Z (in Set)

Lemma 1.4 (Commutation with finite joins/meets)

Left adjoints 3f : PX — PY commute with all finite joins whereas
right adjoints Vf : PX — PY commute with all finite meets:

3f(lx) = Ly 3fevy) = 3f(p)v3fK)
Vi(Tx) = Ty Vi(pAp') = Vi) AVf(D')

for all maps f: X — Y (in Set) and for all predicates p,p € PX

Remark: The same property holds more generally for infinitary joins/meets (when
they exist), but we shall never use this generalization
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Some properties of triposes (2/2)

Lemma 1.5 (Adjoints of inverses)
Given a map f: X — Y (in Set):

@ If f has an inverse, then 3f,Vf are the inverse of P f:
f =Vf = @) = P!

@ If f has a right inverse, then 3f and Vf are left inverses of P f:
dfoPf = VfoPf = idpy

@ If f has a left inverse, then 3f and Vf are right inverses of P f:
Pfodf = PfoVf = idpx

Recall that in Set,amap f: X —» Y
@ has an inverse iff it is bijective
@ has a right inverse iff it is surjective (AC)

@ has a left inverse iff it is injective and (X = @ = Y = &)
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Implicative algebras

Definition 1.6 (Implicative algebra)

@ An implicative structure is a complete lattice (<7, <) equipped with
a binary operation (=) : &2 — &/ such that:

(1) Ifa’ < aand b<b, then (a—b) < (a —b)

(2) Foralla€ o and BC o/, we have: a— \b = A (a—b)
beB beB

@ A separator of (&7, <,—) is a subset S C &/ such that:
(1) fae Sand a=d thenda' €S

(2) Aopew(@a—=b—c) (=K7) € S and
Aa,b,ced((a%béc)ﬁ(a*)b)*)a*)c) (: Sd) E S

(3) If (a—b)eSandacsS, thenbe S

@ An implicative algebra is an implicative structure (&, <, —)
together with a separator S C &/
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Construction of the implicative tripos

Let («7, <, —,S) be an implicative algebra

@ For each set X, we write PX :=.&/%/S[X] the poset reflection of the
preordered set (/™ Fgx]), where
absix b iff Alaz —b,) € S (for all a,b € @ X)
rzeX
(By construction, PX is a Heyting algebra)

@ Foreachmap f: X — Y, we write Pf:PY — PX the unique map
that factors the map ¥ = (a = ao f): &Y — &% through the
quotients PY := /¥ /S[Y] and PX := &% /S[X].

(By construction, Pf : PY — PX is a morphism of Heyting algebras)

Theorem 1.7 (Implicative tripos)

The functor P : Set®® — HA is a (Set-based) tripos

Remark: A generic predicate of P is given by ¥ := &/ and trs := [id] /s
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The completeness theorem

Each tripos P : Set®® — HA constructed from an implicative algebra
(«,<,—,S5) as shown above is called an implicative tripos

The aim of this talk is to show that:

Main Theorem (Completeness)

Each Set-based tripos is (isomorphic to) an implicative tripos

@ This theorem explains a fortiori why we succeeded to turn all the
well-known triposes (induced by HA/AKS/PCA/OCA/etc.) into
implicative triposes

@ From the point of view of foundations, the above theorem expresses
that the whole structure of a tripos (a structured proper class) can
be described by a single implicative algebra (a structured set)

= Reduction of complexity
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Architecture of the proof (1/2)

The proof is organized in two parts:

Part 1: Anatomy of a tripos (“reducing the complexity”)?

o Given

e an arbitrary tripos P : Set®® - HA
e a generic predicate trs € PX (over some set of propositions 3)

we show that the whole structure of the functor P can be derived
from suitable (and non canonical) “connectives” and “quantifiers”

V), (A), (=) : 2253 V) (A) : B(E) =32

via a suitable (and canonical) “filter” & C X
@ So that, morally: “everything happens in X"

@ However, the set 3 equipped with these operations has no good
algebraic properties (it only looks like a complete Heyting algebra)

2This part is essentially taken from [Hyland, Johnstone, Pitts, 1980]
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Architecture of the proof (2/2)

Part 2: Extracting the implicative algebra (“regularizing X")
@ We first observe that the whole structure of the functor P can be
derived from the only (non canonical) operations
(=) 2252 (A :PBE)=>T  via PCT
(the other connectives/quantifier being irrelevant)
@ Using domain-theoretic techniques, we turn ¥ into an implicative

algebra o7 = (o7, %, —,5), that becomes a new set of propositions,
with its own generic predicate tr,, € Po/

@ However, when passing from ¥ to <7, the non canonical operations
on X are turned into the canonical operations
(=) @ &= o, (N) : B(H) - o via SCdo
(The “algebraic regularization” is achieved by the very construction of &)

@ Hence the functor P can be derived from (&7, —, A, S), which
precisely means that P is the implicative tripos induced by <7
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The generic predicate (1/3)

From now on, we work with a fixed tripos P : Set®® — HA

o We take a generic predicate trs; € PX (for some set 3). This means
that for each set X, the ‘decoding map’
[Ix : ¥ - PX
o — Po(trs) is surjective

e Intuitively, ¥ is the set of (codes of) propositions, whereas % is the
set of propositional functions over X

@ The condition of surjectivity expresses that each predicate p € PX
is represented by at least one propositional function o € ¥ such
that o] x = p, which we call a code for the predicate p

@ Remark: Since codes for predicates are not unique, all the
constructions involving such codes will be non canonical
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The generic predicate (2/3)

In a tripos P : Set®® — HA, the generic predicate is never unique!

Lemma 2.1 (Non-uniqueness of generic predicates)

Given a generic predicate trs € PY and a surjection h : ¥’ — 3, the
predicate trs, := Ph(trs) € PY is another generic predicate of P

Proof: Uses the fact that h : ¥’ — X has a right inverse, by (AC). The same result
holds without (AC) by replacing ‘surjective’ by ‘having a right inverse’

More generally:

Lemma 2.2 (Conversion between generic predicates)

If trs € PX and trs, € PY/ are two generic predicates of the tripos P,
then there exist two conversion maps h:Y — Y and A/ : X — Y/
such that trsy = Ph(trs) and trs = Ph/(trs/)

In what follows, we work with a fixed generic predicate trs, € PX
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The generic predicate (3/3)

Recall that for each set X, the ‘decoding function’ []x : X — PX is
defined by [o]x = Po(trs) forall 0 € ¥

Proposition 2.3 (Naturality of [-]x)

The decoding map [J]x : ¥%X — PX is natural in X:
X [[Ix
3¢ ——PX X
ofT TPf commutes for all fi
»Y — > PY Y
[y

Notations. Given o = (0),cx € %, we write  [0,]sex = [0]x € PX
In particular, given an individual code £ € ¥, we write

@ (&).c1 € X! the 1-element family formed by &
@ [£].c1 € P1 the associated predicate
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Defining connectives in X (1/2)

o Writing m, 7’ : ¥ x ¥ — X the two projections from ¥ x X to X, we
choose codes (A), (V), (<3) € ¥¥** such that

[Alsxs = [7lsxs A7 ]exs (e P(Zx X))
Visxs = [rlsxs V[ ]sxs (e P(Z x X))
[lsxs = [rlsxs = [7']oxs (e P(X x X))

Proposition 2.4

For all sets X and for all codes o, 7 € ©%, we have

[[Um A Ta:]]zGX = HU]]X A [[T]]X (6 PX)
[[Ux % Tx]]$€X = HJ]]X \ [[T]]X (E PX)
[[O'x—.>7'gg]]xeX = [[U]]X_>[[T]]X (E PX)

Intuitively, the (non-canonical) operations (A), (V),(-3) : ¥* = X allow to
compute A, V and — in each Heyting algebra PX (for X € Set)
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Defining connectives in X (2/2)

o Similarly, we choose codes L, T € ¥ such that
[[J.—]]fel =1 and [[—i—]],el =T (e P1)

Again, we easily check that:

Proposition 2.5

For each set X, we have:

[L)eex = Lx and [Tleex = Tx (e PX)

Beware! Although the “connectives” (A),(V), (=) : ¥2 = % reflect
the corresponding operations on each Heyting algebra PX (for
X € Set), they enjoy none of the expected algebraic properties:
EAE#E EAE#AEANE (EAL)AE #£EAE AL
EVEAE  EvE£EVE  (EVE)VE £EV(EVE

In particular, ¥ (with these operations) is not a Heyting algebral!
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Defining quantifiers in X (1/3)

@ Consider the membership relation
= {(§,5) €eExP(X) : Les}
together with its projections e; : E — ¥ and es : E — PB(X)
@ We now choose codes (\/),(A) € S®®) such that
VI = Fea(fer]n) (e P(B(X)))
[Alses) = Vea(lerlr) (e P(B

Proposition 2.6

Given a code 0 = (0,)zex € XX and amap f: X — Y, we have:

[Vioe iz € F W)} oy = 3f([o]x) (€ PY)
[Aow:2 € f W) ,ey = V(olx) (€ PY)

Intuitively, the (non-canonical) operations (\/), (A) : B(T) — T allow to
compute left and right adjoints along all maps f: X — Y
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Defining quantifiers in X (2/3)

Proof of Proposition 2.6.

Define the map h: Y — PB(Z) by h(y) :={oz:x € f~1(y)} forallycY.
From this definition and from the definitions of V /\ we get
Vios:a€ f ey = NVohly = Ph(Vlne) = Ph(Eea(lei]s)
Aoz :z € f W Hyey = [Aohly = Phr([Alpx) = Ph(Vea([er]r))

Let us now consider the set G C X X Y defined by G := {(0z, f(z)) : * € X} as well
as the two functions g : G — Y and ¢’ : G — E given by

g&y) ==y and  ¢'(&y) = (& nh(y)) (for all (§,y) € G)

We observe that the following diagram is a pullback in Set:

'

E—>PBE)

Hence Phodes =3goPg’ and PhoVey =VgoPg (Beck-Chevalley). (...)




Introduction Set-based triposes Anatomy of a Set-based tripos Extracting the implicative algebra
0000 000000000000 0000000080000 0000000000000 0000

Defining quantifiers in X (3/3)

Proof of Proposition 2.6 (continued)

From the equalities Phodes = 3dgoPg’ and PhoVes; =VgoPg', we get:

[[\:Hcm € fT W ey = (Pho3ex)([ea]s) = (FgoPg')([erlr)
Aoz :ze f7 W}, ey = PhoVez)([erle) = (YgoPg')([er]r)

Now we consider the map ¢ : X — G defined by ¢(z) := (02, f(z)) forall z € X.

Since q is surjective, it has a right inverse by (AC), hence g and Vq are left inverses
of Pq (by Lemma 1.5 (2)), that is: 3goPg =VqgoPq = idpg. Therefore:

[Vioe:z € f71 W)}y = QgoPg)([erlr)

= (3go3goPqoPg’)([ei]r)
(3(geoq) oP(g' 0 q))([er] &)

= 3f(P(g' o q)([er]R))

= 3f([er 09 oqlx)

= 3f([e]x)

(since gog= f and e1 0 g’ 0 ¢ = o). And similarly for V. O
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To sum up...

We introduced codes (A), (V), (<) : £2 =% and V,A : B(X) =¥
such that for all sets X and for all predicates p,q € PX:

o If 0,7 € ¥ are codes for p,q € PX, respectively, then:

(e %) is a code for pAqg (€ PX)
(e %) is a code for pVqg (e PX)
is a code for p—q (€PX)

(Uw /\Tm)xEX
(Um \'/Tx)a:EX
(02 = To)aex (€ B%)
o Ifo € XX isacode for pe PX and f: X — Y any map, then:
(V{crm cx € f_l(y)}) . (e &¥) isacodefor 3f(p) (€ PY)
ye

(/\{U’z ‘x € fﬁl(y)})er (€ &¥) isacodefor Vf(p) (€ PY)

Beware! As for the “connectives” A, V and =, the “quantifiers” \/ and /\
enjoy no good algebraic properties:

ANey#e MEAE € # ANAEELEY #MEE €Y et
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Defining the “filter” ® C ¥

It now remains to characterize the ordering on each PX. For that we let

O = {{e€X:[e1=T1} (where T1 = max(P1))

Proposition 2.7 (Characterizing the order in PX)

For all X € Set and 0,7 € >X we have

[olx <lrlx iff Afoz=>m:zeX}ed

@ This result implies that for each set X, the Heyting algebra PX is
(isomorphic to) the poset reflection of the preordered set (X%, Fx),
writing -y the preorder (on ©X) defined by

obx T iff  A{ox>Tm:zeX}ed
(for all o, 7 € £X)

@ Conclusion: The tripos P is completely characterized by the set X
together with the operations =, A and the “filter” ® C ¥
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Other properties (1/2)

Proposition 2.8 (Merging quantifications)

[[\/{\/5 18 € S}]]seqs(m(z)) = [[V (US)]]SE‘T)’(‘I?(E))
[A{As:s€ S}]]sesn(qs(z)) = [[/\(US)]]se‘n(‘B(E))

Proof. Apply the Beck-Chevalley condition to the suitable pullback!

Proposition 2.9 (Distributivity —/V)

[[/.\{9—35 : fes}ﬂ(g,s)ezwn(z) = [[9;)/\8](9,8)62%,]3(2)

Corollary 2.10 (Distributivity —/V)
Given a set X and two families o € X and t € P(X)¥, we have

[[/\{UI — f : f € tﬂ”}]]xex = [[01 = /\tm]] reX

N
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Other properties (2/2)

Consider the inclusion relation
Fim{(s,5) € B(Z) x B(E) © s C o'}
together with its two projections f1, fo : FF — B(X)

Proposition 2.11

[[Vofl]]F < Hvofz]]F and [[/\Of1]]F > [[/\sz]]F

Corollary 2.12
Given a set X and families a,b € P(X)X such that a, C b, forall z € X:

[[Voa]]x < [[Vob]]x and [[/\oa]]x > [[/\ob]]x
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How to regularize the set X of propositional codes?

@ We have seen that the structure of the tripos P : Set®® — HA is
fully characterized from

o the “implication” (=) : £ - %
o the “universal quantifier” (A) : P(X) = X
o the “filter” & C X

via the equivalence
[olx < [7]x iff /\{Ux—.>T$:$€X}€<D

@ However, due to the non canonical definition of the operations —
and A (as codes for certain predicates), the structure (%, =, A, ®)
has no good algebraic properties

@ Question: How to make these operations more regular?

@ Via a suitable quotient? (I tried but did not find...)

© By encapsulating codes into a larger well-behaved structure?
= embedding X into an implicative structure (&7, <, —)
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The set of atoms

o We first define a set o of atoms from the grammar:

Atoms B o= €| sea (562156‘3(2)”

Each atom is a finite list/stack of the form s; — -+ — s, — £,
where s1,...,8, €P(X)and £ € X

@ The set & is equipped with the preorder o < o that is inductively
defined from the two rules
s C s a<d
£<¢ s—a < §—ad

@ The set .o, of atoms is also equipped with a conversion function
o : Fy — %, defined by

wo(€) =€ and  @o(s—a) = (As) = pola)

(By construction, the function ¢¢ : &% — X is surjective)
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The complete lattice (&7, X)

From the set o7 of atoms equipped with the preorder o < o/, we let:

o o = &BT(JZ{()) (set of upwards closed subsets of <, w.r.t. g)
eaxb:=a>Db forall a,be o (reverse inclusion)
Fact: (&7,<) is a complete lattice J

In this complete lattice, we have: A=, loy =%, Tuy=9

Intuitions:
@ Eachatom a = (s1+ - -+ s, —£) represents the code
vola) = (/\sl) R (/\sn) =&
@ Each (upwards-closed) set of atoms a € &7 represents the code

oa) = A{eoa) : aca)
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Relationship with graph models (1/2)

Remark. The above construction is reminiscent from the construction
of graph models of the A-calculus [Engeler '81]

@ In the context of graph models, the set &% would be defined from
the grammar
awfedy u= ¢ | {a,...an} B (£ en)
that is, as the least solution of the set-theoretic equation
Ay = X+ Piin(2) x A

o However, the set o/ := P4(ef) induced by this 2% would be a
(Doo-like) model of the A-calculus, but not an implicative structure

@ Reason: The application (a,b+~ ab) : &2 — o/ that naturally comes with
this definition of % has no right adjoint, due to the finiteness of the l.h.s. in
the construct {a1,...,an} > B. So that there is no implication in </
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Relationship with graph models (2/2)

@ To fix this problem, it would be natural to relax the condition of
finiteness, by considering instead the equation

o = T+ Ploh) x o
Alas, this equation has no solution! (for obvious cardinality reasons)
e Trick: Replace arbitrary subsets a C o (in the l.h.s. of a — )

by arbitrary subsets of 3, using the fact that subsets of 7 can be
converted (element-wise) into subsets of 2, via g : o) — X

@ So that in the end, we obtain the set-theoretic equation
gy = T+ P(X) x A,
whose least solution is generated from the grammar

awfedy = € | s—a (EeX, scP(R)
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Defining the implication in (&7, <)
@ Recall that (&7,<) = (P4(A), 2), where:
o,Beadh u= ¢ s a (e sePB®)
sCs' a<ad
£<é s—a < &= ad
@ The conversion function ¢y : @ — X naturally
extends to a function @y : & — P(X) (element-wise)
e Given a,b € & (= Pr()), we let
a—=b:= {s—B: s€@a)s, Beb} (GM)J

writing  @o(a)S = {s € B(X) : go(a) C s}

Proposition 3.1
The triple (7, <, —) is an implicative structure
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Viewing <f as a new set of propositions
Let us now define:
e g =X by pla) = /\ pola) (for all a € )
oY X o by P(&) = {f} (for all ¢ € X)
o try € Po/ by troy Po(trs)

Lemma 3.2

Q »(¥(9) = A&} forallcex
@ Therefore:  trs = Pi(trey)

Proposition 3.3

| A

For each set X, the function

()x : X = PX

a — Pa(try) s surjective

Which means that tr,, € P/ is a generic predicate of the tripos P
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From now on, we have:
@ Two sets of (codes of) propositions: ¥ and &/
@ Two generic predicates trs € PY. and try € P&/
@ For each set X, two (surjective) decoding functions

[1x : &% = PX (Dx
o — Po(trs)

Proposition 3.4

For each set X, the following two diagrams commute:

> S PX > S PX
et @7* PX

—>PX —
€ x € x

Extracting the implicative algebra
00000000@00000000

X - PX
a — Pa(try)
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To sum up...

o We started from X, equipped with non canonical operations
(<) : 2252 and  (A) : BPE) =T
acting as codes for implication and universal quantification, in the
sense of the initial generic predicate trs € P,

e From X, < and A, we defined an implicative structure (&7, <, —)
whose implication encapsulates both operations = and A:

a—b = {s— B : s€@a)s, Beb} (ed)J

(Recall that g : & — 3 is defined from —» and A)

@ We now want to show that the canonical operations
(=) : Z* =& and () : P(F) = A
still act as codes for implication and universal quantification, but
now in the sense of the new generic predicate tr,, € P/
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Universal quantification in .o/ (1/2)

@ Recall that we chose (A\) € ¥ such that [[/'\]]q3<2> = Vez([e1] &),
where e1: E— X and ex: E — PB(X) are the projections associated
with the membership relation E = {({,s) € Z x P(X) : £ € s}

@ Let us now consider the membership relation
E = {(a,A) e F xP() : a€ A}
together with its projections ¢} : B/ — &/ and €}, : E/ — P()

Proposition 3.5
We have: <<AA>>A@3(%) = Veh({el)e)

| \

Corollary 3.6
Given a code a = (az)zex € &~ and amap f: X — Y, we have:

(Mas:z e fH W)y = Yf({adx) (e PY)

v
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Universal quantification in &/
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(2/2)

Proof of Proposition 3.5.

<<)KA>>A@3(@¢) =

<<UA>>AE‘J3(@¢)

= [[‘f(UA)]]Aem(m)

= [A2o(UA)] scq(ary

= [AUBS0(A] 4eq(ar)

= P(‘B@o)([[/\US]]sEsp(m(z)))

= P®0) ([A{As s € S} sepmey)
= [[/:\{/\%(@ 10 € A} yemar)

= [A{e(a):ac A}]]Aem(szf)
[A{e(ei®) : p € €5 (DM seq(ary
Veh ([poeiler)

= Veh((er)er)

(since A =U))
(Prop. 3.4)
(Def. of )
(Def. of o)
(Naturality of [-])
(Prop. 2.8)
(Naturality of [_])
(Def. of ¢)

(Def. of €], e2)
(Prop. 2.6)
(Prop. 3.4)
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Implication in &7 (1/2)

@ Recall that we chose (-3) € ©=*¥ such that [3]s2 = [7]sg2 — [7']s2,
where 7,7': %2 = % are the two projections from X2 to &

Proposition 3.6

We have: <<CL — b>>(a,b)ed2 = <<7T>>g¢2 — <<7T/>>£¢2,
writing 7, 7’ : /% — o/ the two projections from <72 to &/

Proof of Prop. 3.6 relies on the following technical lemma:

cet

[[/'\{(/'\s/)qg s sl esS, ee t}]] e [[/\{(/\s)%é : }]] —

Corollary 3.8

Let X be a set. For all codes a,b € &7, we have

{az = ba)eex = (ahx — (bhx (€ PX)
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Implication in &7 (2/2)

Proof of Proposition 3.6.

{a@ = ) (a,0)car?
= [ela = b)](a,pycw? (Prop. 3.4)
= [e({s'—8 : s€ Po(a)S, B € b})]](a,b)egﬂ (Def. of a — b)
= [A{As) =€ : s €50(@)S, €€ G0} (4 pyeur? (Def. of )
= P(@o x ¢0)([[/\{(/\s') 5e s esS te t}]](syt)gm(z)g) (Nat. of [])
= P(@o x (,50)([[/\{(/\3) =& : £€ t}]] (s,t)em(2)2> (Lemma 3.7)
= P(@o X $o) ([[(/\5) - (/\t)]](s,t)em(EP) (Prop. 2.9)
= [(A¢o@) = (AZo®)] (q.4ycr> (Nat. of [])
= [e(a) = o®)](a,b)car? (Def. of )
= [e(@](ap)carz = [0 (a,p)car2 (Prop. 2.4)
= [pon] g2 = [pon'] 2 (Def. of m,7")
= (mhaz = (') 2 (Prop. 3.4)
O
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Defining the separator S C o/

By analogy with the definition of the “filter” & C 3, we let
S ={aed:{a)c1=T1} (where T1 = max(P1))

@ By construction, we have
S = {a ed : [pla)].er = Tl}
= {aed : pla) € ®} = ¢ (D)

Proposition 3.9 (S is a separator)

The subset S C & is a separator of (&, <, —)

Proposition 3.10 (Characterizing the ordering in PX)

For all sets X and for all codes a,b € 27X, we have:

(a)x < (O)x  iff L (az—bs) € S

zeX
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Constructing the isomorphism

Let us now write P’ : Set°®® — HA the implicative tripos induced by the
implicative algebra (&, <, —, 5)

Proposition (Conclusion of the Main Theorem)

The implicative tripos P’ is isomorphic to the initial tripos P

Proof.

Let us consider the family of maps px := {_)x : X — PX (which is natural
in X). From Prop. 3.10, we observe that for all a,b € X, we have

atgix)b iff A (az—bs) € S iff  px(a) < px(b).
xzeX

Hence px : /X — PX induces a natural embedding of posets px : P’X — PX
through the quotient P’X := &/X /S[X]. Moreover, the embedding jx is surjective
(since px = () x is), therefore it is an isomorphism. O

V.
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The case of classical triposes

@ Recall that:

Theorem (Classical implicative triposes)

Each tripos induced by a classical implicative algebra (&, <, —,5) is
isomorphic to a tripos induced by an abstract Krivine structure

@ We also easily see that an implicative tripos is classical (as a tripos)
iff the underlying implicative algebra is. Therefore:

Every (Set-based) tripos is isomorphic to a Krivine tripos

@ In conclusion:

o Classical triposes
o Classical implicative triposes
e Kirivine/Streicher triposes

are one and the same thing
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