

The implicative tripos

Alexandre Miquel

UNIVERSIDAD
DE LA REPUBLICA
URUGUAY



May 6th, 13th, 2022

Different notions of models

- **Tarski models:** $[\phi] \in \{0; 1\}$
 - Interprets **classical provability** (correctness/completeness)
- **Intuitionistic realizability:** $[\phi] \in \mathfrak{P}(\Lambda)$ [Kleene'45]
 - Interprets **intuitionistic proofs**
 - Independence results in intuitionistic theories
 - Definitely incompatible with classical logic
- **Cohen forcing:** $[\phi] \in \mathfrak{P}(C)$ [Cohen'63]
 - Independence results, in classical theories
(Negation of continuum hypothesis, Solovay's axiom, etc.)
- **Boolean-valued models:** $[\phi] \in \mathcal{B}$ [Scott, Solovay, Vopěnka]
- **Classical realizability:** $[\phi] \in \mathfrak{P}(\Lambda_c)$ [Krivine'94, '01, '03, '09–]
 - Interprets **classical proofs**
 - Generalizes Tarski models... and forcing!

The categorical tradition of realizability

- Categorical logic

[Lawvere, Tierney '70]

- Hyperdoctrines = models of 1st order theories
(Slogan: \exists/\forall are left/right adjoints!)
- Modern definition of the notion of **topos**
(generalizes Grothendieck's definition)

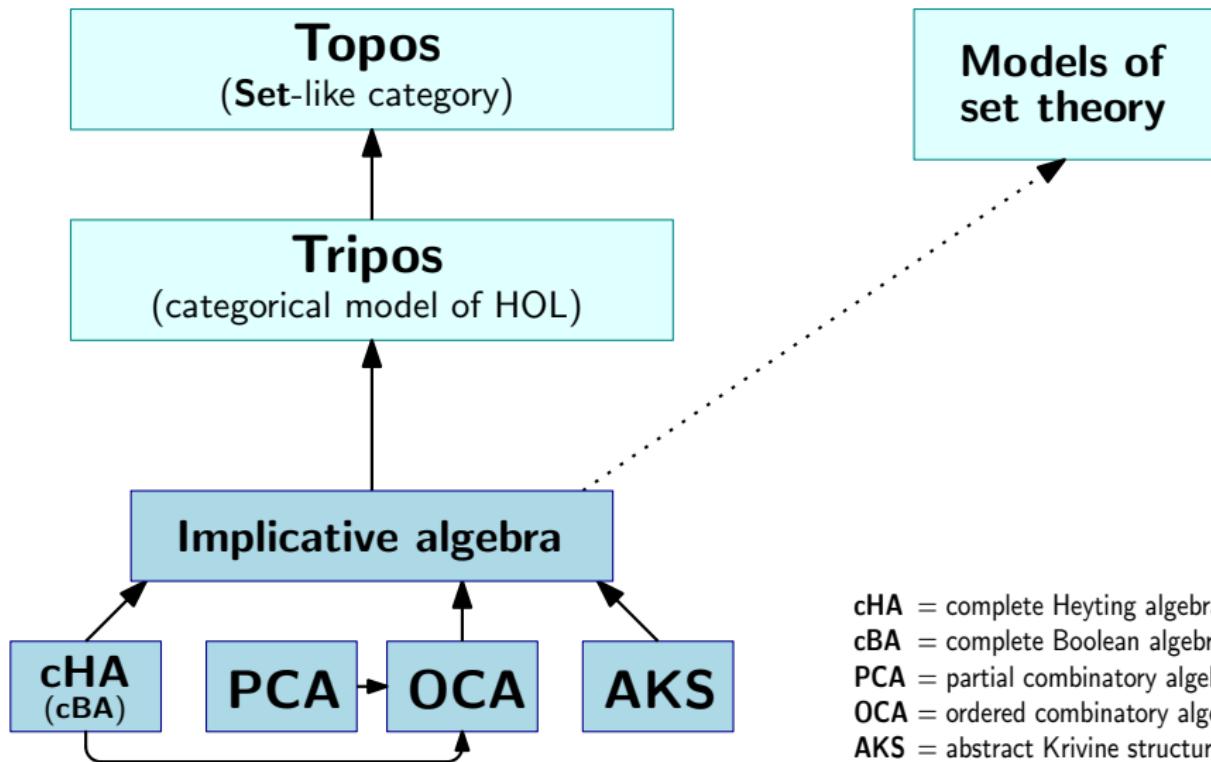
- **Categorical realizability**

[Hyland, Johnstone, Pitts '80]

- Major input from forcing and Boolean-valued models [Scott]
- Effective topos [Hyland]
- Notion of tripos and tripos-to-topos construction
- Generalization to partial combinatory algebras (PCAs) [Pitts]
 - ... but incompatible with classical logic

- What about classical realizability?

The categorical problem



Plan

- 1 Introduction
- 2 The notion of tripos
- 3 Examples of triposes
- 4 The implicative tripos
- 5 Properties of the implicative tripos
- 6 Conclusion

Plan

- 1 Introduction
- 2 The notion of tripos
- 3 Examples of triposes
- 4 The implicative tripos
- 5 Properties of the implicative tripos
- 6 Conclusion

Heyting algebras

Definition (Heyting algebra)

A **Heyting algebra** is a poset (H, \leq) such that:

① H has extremal elements

$$\perp := \min(H) \quad \top := \max(H)$$

2 Any two elements $x, y \in H$ have a **meet** and a **join**.

$$x \wedge y := \inf\{x, y\} \quad x \vee y := \sup\{x, y\}$$

③ Any two elements $x, y \in H$ have a **relative pseudo-complement**

$$x \rightarrow y := \max\{z \in H : (z \wedge x) \leq y\}$$

which is characterized by the adjunction

$$z \leq (x \rightarrow y) \Leftrightarrow (z \wedge x) \leq y \quad (\text{for all } z \in H)$$

In other words, a Heyting algebra is a [bounded lattice](#) with an operation of relative pseudo-complement (a.k.a. [Heyting's implication](#))

Some remarks

- In a Heyting algebra (H, \leq) , the ordering $x \leq y$ is characterized from each of the three operations \wedge , \vee and \rightarrow by:

$$\begin{aligned} x \leq y &\Leftrightarrow x \wedge y = x \\ &\Leftrightarrow x \vee y = y \\ &\Leftrightarrow (x \rightarrow y) = \top \end{aligned}$$

- **Soundness:** All the intuitionistic equivalences hold in any Heyting algebra. In particular, the two distributivity laws:

$$\begin{aligned} x \vee (y \wedge z) &= (x \vee y) \wedge (x \vee z) \\ x \wedge (y \vee z) &= (x \wedge y) \vee (x \wedge z) \end{aligned}$$

are valid, so that every HA is also a (bounded) **distributive lattice**

- **Completeness:** The set of propositional formulas, quotiented by intuitionistic equivalence, is itself a Heyting algebra

⇒ Lindenbaum algebra

Negation

- In a Heyting algebra, **negation** is defined by $\neg x := (x \rightarrow \perp)$
This operation is (in general) **not involutive**: $\neg\neg x \neq x$
- However, we still have the following (in)equalities:

$$\begin{array}{lll} x \leq \neg \neg x & \neg x \vee y \leq x \rightarrow y \leq \neg y \rightarrow \neg x \\ \neg x \wedge \neg y = \neg(x \vee y) & \neg x \vee \neg y \leq \neg(x \wedge y) \end{array}$$

But the converse inequalities do not hold in general

Proposition (Boolean algebras)

In a Heyting algebra (H, \leq) , the following are equivalent:

- ① $\neg\neg x = x$ for all $x \in H$ (negation is involutive)
- ② $((x \rightarrow y) \rightarrow x) \rightarrow x = \top$ for all $x, y \in H$ (Peirce's law)
- ③ (H, \leq) is a Boolean algebra

- In a Boolean algebra, all the former inequalities become equalities

Morphisms of Heyting algebras

Definition (Morphism of Heyting algebras)

A **morphism of Heyting algebras** is a function $F : H \rightarrow H'$ such that

$$F(x \wedge y) = F(x) \wedge F(y)$$

$$F(\top) = \top$$

$$F(x \vee y) = F(x) \vee F(y)$$

$$F(\perp) = \perp$$

$$F(x \rightarrow y) = F(x) \rightarrow F(y)$$

for all $x, y \in H$

- In other words, a morphism of Heyting algebras is a **morphism of bounded lattices** that also **preserves Heyting's implication**
- Such a function is necessarily monotonic: $x \leq y \Rightarrow F(x) \leq F(y)$

The category of Heyting algebras

- The **category of Heyting algebras** (notation: **HA**) is the category whose objects are the Heyting algebras and whose arrows are the morphisms of Heyting algebras
- **HA** is a (non-full) sub-category of **Pos** (the category of posets)
- Note that:
 - ① An arrow is an **isomorphism** in **HA** iff it is an isomorphism in **Pos**
 - ② Any **injective morphism** of HAs is also an **embedding** in **Pos**:

$$x \leq y \Leftrightarrow F(x) \leq F(y)$$
 - ③ Any bijective morphism of HAs is also an isomorphism
- The **category of Boolean algebras** (notation: **BA**) is the full sub-category of **HA** whose objects are the Boolean algebras
 (Notion of morphism is the very same in **BA** and **HA**)

Galois connections

- A **Galois connection** between two posets A and B is a pair of functions $F : A \rightarrow B$ and $G : B \rightarrow A$ such that:

$$F(x) \leq_B y \quad \Leftrightarrow \quad x \leq_A G(y) \quad \quad \quad (\text{for all } x \in A, y \in B)$$

- In this situation (notation: $F \dashv G$), we observe that:

① $F : A \rightarrow B$ and $G : B \rightarrow A$ are necessarily **monotonic**

② $F : A \rightarrow B$ is uniquely determined by $G : B \rightarrow A$:

$$F(x) = \min\{y \in B : x \leq_A G(y)\} \quad (\text{for all } x \in A)$$

F is called the **left adjoint** of G , and written $F = G_L$

③ $G : B \rightarrow A$ is uniquely determined by $F : A \rightarrow B$:

$$G(y) = \max\{x \in A : F(x) \leq_B y\} \quad \text{(for all } y \in B\text{)}$$

G is called the **right adjoint** of F , and written $G = F_R$.

Adjunction in HA

- In what follows, we shall work mainly with arrows $F \in \mathbf{HA}(H, H')$ having both adjoints, written $F_L, F_R : H' \rightarrow H$.
- When they exist, F_L and F_R are **unique and monotonic**, but in general, they are **not morphisms of HAs** (only arrows in **Pos**)

Proposition (Functionality)

① If $F \in \mathbf{HA}(H, H')$ and $G \in \mathbf{HA}(H', H'')$ have left adjoints, then:

$$(G \circ F)_L = F_L \circ G_L \quad (\in \mathbf{Pos}(H'', H))$$

② If $F \in \mathbf{HA}(H, H')$ and $G \in \mathbf{HA}(H', H'')$ have right adjoints, then:

$$(G \circ F)_R = F_R \circ G_R \quad (\in \mathbf{Pos}(H'', H))$$

③ If $F \in \mathbf{HA}(H, H')$ is an isomorphism, then:

$$F_L = F_B = F^{-1} \quad (\in \mathbf{Pos}(H', H))$$

In particular: $\text{id}_L = \text{id}_R = \text{id}$

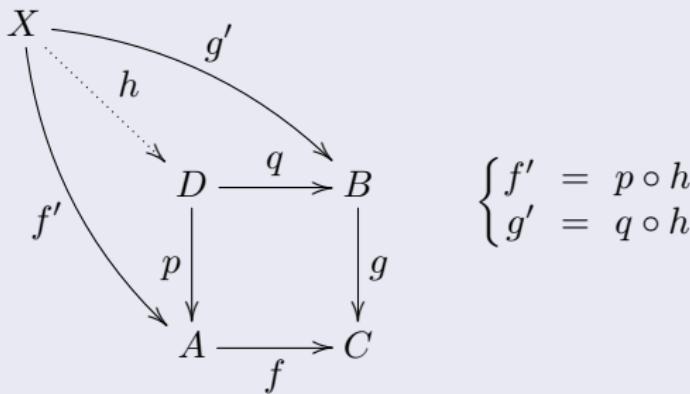
Pullbacks

(1/3)

Definition (Pullback)

In a category \mathcal{C} , a **pullback** of two arrows $A \xrightarrow{f} C \xleftarrow{g} B$ is an object D equipped with arrows $A \xleftarrow{p} D \xrightarrow{q} B$ such that:

- ① $f \circ p = g \circ q$
- ② For each object X with arrows $A \xleftarrow{f'} X \xrightarrow{g'} B$ such that $f \circ f' = g \circ g'$, there is a unique arrow $h : X \rightarrow D$ such that



Pullbacks

(2/3)

- The pullback (D, p, q) of two arrows $A \xrightarrow{f} C \xleftarrow{g} B$, when it exists, is unique up to unique isomorphism

$$\begin{array}{ccc} D & \xrightarrow{q} & B \\ p \downarrow & \lrcorner & \downarrow g \\ A & \xrightarrow{f} & C \end{array}$$

It is written $D = A \times_C B$ (and indicated with a “right angle” sign)

- When $C = 1$ is the **terminal object** of \mathcal{C} , the pullback of A and B amounts to the **binary product**:

$$A \times_1 B = A \times B$$

$$p = \pi_{A,B} : A \times B \rightarrow A$$

$$q = \pi'_{A,B} : A \times B \rightarrow B$$

Pullbacks

(3/3)

- In the category **Set**, the pullback of two arrows $A \xrightarrow{f} C \xleftarrow{g} B$ always exists; it is the **fibered product**:

$$\begin{aligned} A \times_C B &= \{(x, y) \in A \times B \mid f(x) = g(y)\} \\ p &= ((x, y) \mapsto x) : A \times_C B \rightarrow A \\ q &= ((x, y) \mapsto y) : A \times_C B \rightarrow B \end{aligned}$$

- Pullbacks are constructed similarly in the categories **Pos** (posets), **HA** (Heyting algebras), **Top** (topological spaces), **Mon** (monoids), **Grp** (groups), **Ring** (rings) and **R -Mod** (R -modules)

- **A useful pullback:** The square

$$\begin{array}{ccc} A \times C & \xrightarrow{\pi_{A,C}} & A \\ f \times \text{id}_C \downarrow & \lrcorner & \downarrow f \\ B \times C & \xrightarrow{\pi_{B,C}} & B \end{array}$$

is always a pullback (provided $A \times C$ and $B \times C$ exist)

Set-based triposes

Definition (Set-based tripos)

A (**Set-based**) **tripos** is a contravariant functor $\mathbf{P} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ such that:

- (1) For each map $f : I \rightarrow J$ (in **Set**), the corresponding map $\mathbf{P}f : \mathbf{P}J \rightarrow \mathbf{P}I$ (in **HA**) has **left & right adjoints** $\exists f, \forall f : \mathbf{P}I \rightarrow \mathbf{P}J$ (in **Pos**)
- (2) **Beck-Chevalley condition:** Each pullback square in **Set** (on the l.h.s.) induces the following two commutative squares in **Pos** (on the r.h.s.):

$$\begin{array}{ccc}
 \begin{array}{ccc}
 I & \xrightarrow{f_1} & I_1 \\
 \downarrow f_2 & \lrcorner & \downarrow g_1 \\
 I_2 & \xrightarrow{g_2} & J
 \end{array} & \Rightarrow &
 \begin{array}{ccc}
 \mathbf{P}I & \xrightarrow{\exists f_1} & \mathbf{P}I_1 \\
 \mathbf{P}f_2 \uparrow & & \mathbf{P}g_1 \uparrow \\
 \mathbf{P}I_2 & \xrightarrow{\exists g_2} & \mathbf{P}J
 \end{array} &
 \begin{array}{ccc}
 \mathbf{P}I & \xrightarrow{\forall f_1} & \mathbf{P}I_1 \\
 \mathbf{P}f_2 \uparrow & & \mathbf{P}g_1 \uparrow \\
 \mathbf{P}I_2 & \xrightarrow{\forall g_2} & \mathbf{P}J
 \end{array}
 \end{array}$$

- (3) The functor $\mathbf{P} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ has a **generic predicate** $\text{tr}_{\Sigma} \in \mathbf{P}\Sigma$ (for some set Σ), i.e. such that for all sets I , the following map is surjective:

$$\begin{aligned}
 \Sigma^I &\rightarrow \mathbf{P}I \\
 \sigma &\mapsto \mathbf{P}\sigma(\text{tr}_{\Sigma})
 \end{aligned}$$

On the definitions of the notion of tripos

- The above definition is the initial definition of triposes, such as introduced in [Hyland, Johnstone, Pitts: *Tripos theory* \(1980\)](#)
- Pitts' PhD [*The Theory of Triposes* \(1981\)](#) generalizes the notion of tripos in essentially two directions:
 - ① The category **Set** is replaced by an arbitrary Cartesian category \mathcal{C} (intuitively: a category of 'contexts'), and the **generic predicate** is replaced by a more general **membership predicate**¹
 - ② The Beck-Chevalley condition is only required for certain pullback squares (the projection squares), and may not hold for all
- However, all **forcing/realizability/implicative triposes** are triposes in the sense of the initial definition (i.e. **Set**-based triposes); therefore we shall only consider these

¹Due to the fact that the Cartesian category \mathcal{C} is not necessarily closed. But when \mathcal{C} is a ccc, the existence of the generic predicate is sufficient

Triposes: some intuitions

(1/7)

Intuitively, a (Set-based) tripos is a **model of intuitionistic HOL**, where higher-order **types are modeled by sets**. In this framework:

- The (contravariant) functor $\mathbf{P} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ associates to each set I a particular Heyting algebra $\mathbf{P}I$ of **predicates** over I
 - Each predicate $p \in \mathbf{P}I$ can be viewed as an abstract formula $p(x)$ depending on a variable $x : I$. Intuitively:

$p \leq q$ means: $(\forall x : I) (p(x) \Rightarrow q(x))$

$p = q$ means: $(\forall x : I) (p(x) \Leftrightarrow q(x))$

(So that in this description, the ordering \leq represents **inclusion** whereas equality represent **extensional equality** of predicates)

- $\mathbf{P}I$ is a **Heyting algebra**, which means that predicates $p, q \in \mathbf{P}I$ can be assembled using the constructions

$\perp, \top, p \wedge q, p \vee q, p \rightarrow q$

The axioms of Heyting algebras express that all the deduction rules of intuitionistic propositional calculus are valid

Triposes: some intuitions

(2/7)

- The correspondence $I \mapsto \mathbf{P}I$ is **functorial**: each map $f : I \rightarrow J$ (in **Set**) induces a **substitution map** $\mathbf{P}f : \mathbf{P}J \rightarrow \mathbf{P}I$ (in **HA**):
 - Given $p \in \mathbf{P}J$, the predicate $\mathbf{P}f(p) \in \mathbf{P}I$ represents the **pre-image** of p by f : $\mathbf{P}f(p) \equiv "p \circ f"$ or $"f^{-1}(p)"$
 - Or, if we see p as a formula $p(y)$ (in the context $y : J$) then $\mathbf{P}f(p)$ is the formula $p(y)[y := f(x)]$ (in the context $x : I$)
- The fact that $\mathbf{P}f : \mathbf{P}J \rightarrow \mathbf{P}I$ is a **morphism of HAs** expresses that substitution commutes with all connectives:

$$(p(y) \wedge q(y))[y := f(x)] \equiv p(f(x)) \wedge q(f(x))$$

$$(p(y) \vee q(y))[y := f(x)] \equiv p(f(x)) \vee q(f(x))$$

$$(p(y) \rightarrow q(y))[y := f(x)] \equiv p(f(x)) \rightarrow q(f(x))$$
- Identities $\mathbf{P} \text{id}_X = \text{id}_{\mathbf{P}(X)}$ and $\mathbf{P}(g \circ f) = \mathbf{P}f \circ \mathbf{P}g$ express that the operation of substitution (or pre-image) is **contravariant**

Triposes: some intuitions

(3/7)

- Axiom (1) expresses that for each map $f : I \rightarrow J$ (in **Set**), the map $\mathbf{P}f : \mathbf{P}J \rightarrow \mathbf{P}I$ (in **HA**) has **left/right adjoints** $\exists f, \forall f : \mathbf{P}I \rightarrow \mathbf{P}J$ (in **Pos**), representing **\exists/\forall -quantifications** along $f : I \rightarrow J$:

- Given $p \in \mathbf{P}I$:

$$\begin{aligned} \exists f(p) \quad \text{means:} \quad & (\exists x : I)(f(x) = y \wedge p(x)) && \text{(in context } y : J\text{)} \\ \forall f(p) \quad \text{means:} \quad & (\forall x : I)(f(x) = y \Rightarrow p(x)) \end{aligned}$$

- Given $p \in \mathbf{P}I$ and $q \in \mathbf{P}J$, the adjunctions

$$\begin{aligned} \exists f(p) \leq q & \quad \text{iff} \quad & p \leq \mathbf{P}f(q) \\ q \leq \forall f(p) & \quad \text{iff} \quad & \mathbf{P}f(q) \leq p \end{aligned}$$

represent the logical equivalences

$$\begin{aligned} (\forall y : J)[(\exists x : I)(f(x) = y \wedge p(x)) \Rightarrow q(y)] & \Leftrightarrow (\forall x : I)[p(x) \Rightarrow q(f(x))] \\ (\forall y : J)[q(y) \Rightarrow (\forall x : I)(f(x) = y \Rightarrow p(x))] & \Leftrightarrow (\forall x : I)[q(f(x)) \Rightarrow p(x)] \end{aligned}$$

- **Beware!** Adjoints $\exists f, \forall f : \mathbf{P}I \rightarrow \mathbf{P}J$ are only monotonic; they are not morphisms of HAs in general. **(Intuition:** \forall/\exists do not commute with \Rightarrow)

Triposes: some intuitions

(4/7)

- In the particular case where $f := \pi_{I,K} : I \times K \rightarrow I$ is the **first projection**, the left/right adjoints $\exists\pi_{I,K}, \forall\pi_{I,K} : \mathbf{P}(I \times K) \rightarrow \mathbf{P}I$ represent **pure quantifications** over the variable $z : K$

- Given $p \in \mathbf{P}(I \times K)$:

$$\begin{array}{lll} \exists\pi_{I,K}(p) & \text{means:} & (\exists z : K) p(x, z) \\ \forall\pi_{I,K}(p) & \text{means:} & (\forall z : K) p(x, z) \end{array} \quad (\text{in context } x : I)$$

- Given $p \in \mathbf{P}(I \times K)$ and $q \in \mathbf{P}(I)$, the adjunctions

$$\begin{array}{lll} \exists\pi_{I,K}(p) \leq q & \Leftrightarrow & p \leq \mathbf{P}\pi_{I,K}(q) \\ q \leq \forall\pi_{I,K}(p) & \Leftrightarrow & \mathbf{P}\pi_{I,K}(q) \leq p \end{array}$$

represent the logical equivalences:

$$\begin{array}{lll} (\forall x : I)[(\exists z : K) p(x, z) \Rightarrow q(x)] & \Leftrightarrow & (\forall x : I, z : K)[p(x, z) \Rightarrow q(x)] \\ (\forall x : I)[q(x) \Rightarrow (\forall z : K) p(x, z)] & \Leftrightarrow & (\forall x : I, z : K)[q(x) \Rightarrow p(x, z)] \end{array}$$

Tripores: some intuitions

(5/7)

- Axiom (2) (**Beck-Chevalley condition**) expresses that each pullback in **Set** (l.h.s.) induces two commutative squares in **Pos** (r.h.s.):

$$\begin{array}{ccc}
 \begin{array}{ccc}
 I & \xrightarrow{f_1} & I_1 \\
 \lrcorner \quad \downarrow & & \downarrow g_1 \\
 f_2 \downarrow & & \downarrow \\
 I_2 & \xrightarrow{g_2} & J
 \end{array} & \Rightarrow &
 \begin{array}{ccc}
 PI & \xrightarrow{\exists f_1} & PI_1 \\
 \uparrow \mathbf{P}f_2 & & \uparrow \mathbf{P}g_1 \\
 PI_2 & \xrightarrow{\exists g_2} & PJ
 \end{array} &
 \begin{array}{ccc}
 PI & \xrightarrow{\forall f_1} & PI_1 \\
 \uparrow \mathbf{P}f_2 & & \uparrow \mathbf{P}g_1 \\
 PI_2 & \xrightarrow{\forall g_2} & PJ
 \end{array}
 \end{array}$$

$$\mathbf{P}g_1 \circ \exists g_2 = \exists f_1 \circ \mathbf{P}f_2 \quad \mathbf{P}g_1 \circ \forall g_2 = \forall f_1 \circ \mathbf{P}f_2$$

- Both commutation properties (r.h.s.) are actually equivalent up to the symmetry w.r.t. the diagonal (by exchanging indices 1 and 2 in the initial pullback square):

$$\mathbf{P}g_1 \circ \exists g_2 = \exists f_1 \circ \mathbf{P}f_2 \quad \text{iff} \quad \mathbf{P}g_2 \circ \forall g_1 = \forall f_2 \circ \mathbf{P}f_1$$

So that in order to prove the Beck-Chevalley condition, we only need to check that all \exists -diagrams commute, or that all \forall -diagrams commute

Tripores: some intuitions

(6/7)

- When considering the pullback

$$\begin{array}{ccc} I \times K & \xrightarrow{\pi_{I,K}} & I \\ f \times \text{id}_K \downarrow & & \downarrow f \\ J \times K & \xrightarrow{\pi_{J,K}} & J \end{array}$$

the corresponding **Beck-Chevalley condition (2)**

$$\begin{array}{ccc} \mathbf{P}(I \times K) & \xrightarrow{\exists \pi_{I,K}} & \mathbf{P}I \\ \mathbf{P}(f \times \text{id}_K) \uparrow & & \uparrow \mathbf{P}f \\ \mathbf{P}(J \times K) & \xrightarrow{\exists \pi_{J,K}} & \mathbf{P}J \end{array}$$

$$\begin{array}{ccc} \mathbf{P}(I \times K) & \xrightarrow{\forall \pi_{I,K}} & \mathbf{P}I \\ \mathbf{P}(f \times \text{id}_K) \uparrow & & \uparrow \mathbf{P}f \\ \mathbf{P}(J \times K) & \xrightarrow{\forall \pi_{J,K}} & \mathbf{P}J \end{array}$$

$$\mathbf{P}f \circ \exists \pi_{J,K} = \exists \pi_{I,K} \circ \mathbf{P}(f \times \text{id}_K)$$

$$\mathbf{P}f \circ \forall \pi_{J,K} = \forall \pi_{I,K} \circ \mathbf{P}(f \times \text{id}_K)$$

expresses the behavior of **substitution w.r.t. pure quantifications**:

$$\begin{array}{ccc} ((\exists z : K) p(y, z)) [y := f(x)] & \equiv & (\exists z : K) (p(y, z) [y := f(x), z := z]) \\ ((\forall z : K) p(y, z)) [y := f(x)] & \equiv & (\forall z : K) (p(y, z) [y := f(x), z := z]) \end{array}$$

Triposes: some intuitions

(7/7)

- Axiom (3) assumes the existence of a set Σ of **propositions** equipped with a **generic predicate** $\text{tr} \in \mathbf{P}\Sigma$, that allows us to turn any **functional proposition** into a **predicate** via the map

$$\begin{aligned}\Sigma^I &\rightarrow \mathbf{P}I \\ f &\mapsto \mathbf{P}f(\text{tr})\end{aligned}\quad (I \in \mathbf{Set})$$

We assume that the above map is surjective, so that each predicate $p \in \mathbf{P}I$ is **represented by** (at least) a **functional proposition** $f \in \Sigma^I$

- **Remark:** The generic predicate $\text{tr} \in \mathbf{P}\Sigma$ is never unique. Indeed:
 - (1) Given a generic predicate $\text{tr} \in \mathbf{P}\Sigma$ and a surjection $h : \Sigma' \rightarrow \Sigma$, we can always construct another generic predicate $\text{tr}' \in \mathbf{P}\Sigma'$, letting $\text{tr}' := \mathbf{P}h(\text{tr})$ (using AC)
 - (2) If $\text{tr} \in \mathbf{P}\Sigma$ and $\text{tr}' \in \mathbf{P}\Sigma'$ are two generic predicates of the same tripos \mathbf{P} , then there are always two conversion maps $h : \Sigma' \rightarrow \Sigma$ and $h' : \Sigma \rightarrow \Sigma'$ such that $\text{tr}' = \mathbf{P}h(\text{tr})$ and $\text{tr} = \mathbf{P}h'(\text{tr}')$

Set-based triposes (recall)

Definition (Set-based tripos)

A **(Set-based) tripos** is a contravariant functor $P : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ such that:

- (1) For each map $f : I \rightarrow J$ (in **Set**), the corresponding map $\mathbf{P}f : \mathbf{P}J \rightarrow \mathbf{P}I$ (in **HA**) has **left & right adjoints** $\exists f, \forall f : \mathbf{P}I \rightarrow \mathbf{P}J$ (in **Pos**)
- (2) **Beck-Chevalley condition:** Each pullback square in **Set** (on the l.h.s.) induces the following two commutative squares in **Pos** (on the r.h.s.):

$$\begin{array}{ccc}
 \begin{array}{ccc}
 I & \xrightarrow{f_1} & I_1 \\
 f_2 \downarrow & \lrcorner & \downarrow g_1 \\
 I_2 & \xrightarrow{g_2} & J
 \end{array} & \Rightarrow & \begin{array}{ccc}
 \mathbf{P}I & \xrightarrow{\exists f_1} & \mathbf{P}I_1 \\
 \mathbf{P}f_2 \uparrow & & \uparrow \mathbf{P}g_1 \\
 \mathbf{P}I_2 & \xrightarrow{\exists g_2} & \mathbf{P}J
 \end{array} & \begin{array}{ccc}
 \mathbf{P}I & \xrightarrow{\forall f_1} & \mathbf{P}I_1 \\
 \mathbf{P}f_2 \uparrow & & \uparrow \mathbf{P}g_1 \\
 \mathbf{P}I_2 & \xrightarrow{\forall g_2} & \mathbf{P}J
 \end{array}
 \end{array}$$

(3) The functor $\mathbf{P} : \mathbf{Set}^{\mathbf{op}} \rightarrow \mathbf{HA}$ has a **generic predicate** $\text{tr}_{\Sigma} \in \mathbf{P}\Sigma$ (for some set Σ), i.e. such that for all sets I , the following map is surjective:

$$\begin{array}{rcl} \Sigma^I & \rightarrow & \mathbf{PI} \\ \sigma & \mapsto & \mathbf{P}\sigma(\mathrm{tr}_\Sigma) \end{array}$$

Isomorphism of (Set-based) triposes

Definition (Isomorphism of triposes)

Two triposes $\mathbf{P}, \mathbf{P}' : \mathbf{Set}^{\mathbf{op}} \rightarrow \mathbf{HA}$ are **isomorphic** when there is a **natural isomorphism** $\phi : \mathbf{P} \Rightarrow \mathbf{P}'$, i.e. a family of isos $\phi_I : \mathbf{P}I \rightarrow \mathbf{P}'I$ ($I \in \mathbf{Set}$) such that the following diagram commutes

$$\begin{array}{ccc} \mathbf{P}I & \xrightarrow[\sim]{\phi_I} & \mathbf{P}'I \\ \mathbf{P}f \uparrow & & \uparrow \mathbf{P}'f \\ \mathbf{P}J & \xrightarrow[\sim]{\phi_J} & \mathbf{P}'J \end{array} \quad \text{for all maps } \begin{array}{c} I \\ \downarrow f \\ J \end{array}$$

- The notion of iso can be taken indifferently in **HA** or in **Pos**, since a map $\phi_I : \mathbf{P}I \rightarrow \mathbf{P}'I$ is an iso in **HA** iff it is an iso in **Pos**
- There is no need to take care about **generic predicates**!
Reason: A natural iso will automatically map any generic predicate of **P** to a generic predicate of **P'**

Plan

- 1 Introduction
- 2 The notion of tripos
- 3 Examples of triposes
- 4 The implicative tripos
- 5 Properties of the implicative tripos
- 6 Conclusion

Example 1: The powerset tripos

Theorem (Powerset tripos)

The functor $\mathfrak{P} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ defined by:

$\mathfrak{P}I := \mathfrak{P}(I)$ (powerset) (for each set I)

$$\mathfrak{P}f : \mathfrak{P}J \rightarrow \mathfrak{P}I := (p \mapsto f^{-1}(p)) \quad \text{(for each map } f : I \rightarrow J\text{)}$$

is a (Set-based) tripos

- For each $f : I \rightarrow J$, the adjoints $\exists f, \forall f : \mathfrak{P}I \rightarrow \mathfrak{P}J$ are given by:

$$\begin{aligned}\exists f(p) &:= \{y \in J \mid \exists x \in f^{-1}(y), x \in p\} \\ &= \{y \in J \mid f^{-1}(y) \cap p \text{ inhabited}\} = f(p) \quad (p \in \mathfrak{P}(I))\end{aligned}$$

$$\begin{aligned}\forall f(p) &:= \{y \in J \mid \forall x \in f^{-1}(y), x \in p\} \\ &= \{y \in J \mid f^{-1}(y) \subseteq p\}\end{aligned}$$

- **Generic predicate:** $\Sigma := \mathfrak{P}(\{\bullet\}) \ (\cong_{\text{LK}} \{0, 1\})$
 $\text{tr}_{\Sigma} := \{\{\bullet\}\} \in \mathfrak{P}(\Sigma)$

Example 2: Localic triposes

Theorem (Localic tripos)

Given a **complete Heyting algebra** H (also known as a **locale**), the functor $\mathbf{P} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ defined by:

$$PI \ := \ H^I \qquad \qquad \qquad (\text{for each set } I)$$

$$\mathbf{P}f : \mathbf{P}J \rightarrow \mathbf{P}I \ := \ (p \mapsto p \circ f) \qquad \qquad \text{(for each map } f : I \rightarrow J\text{)}$$

is a (Set-based) tripos, called a **localic tripos**, or a **forcing tripos**

- For each $f : I \rightarrow J$, the **adjoints** $\exists f, \forall f : \mathbf{P}I \rightarrow \mathbf{P}J$ are given by:

$$\exists f(p) := \left(j \in J \mapsto \bigvee_{i \in f^{-1}(j)} p_i \right)$$

$$\forall f(p) := \left(j \in J \mapsto \bigwedge_{i \in f^{-1}(j)} p_i \right) \quad (p \in H^1)$$

- **Generic predicate:** $\Sigma := H$, $\text{tr}_\Sigma := \text{id}_H \in \mathbf{P}\Sigma$ ($= H^H$)
- When $H = \mathfrak{P}(\{\bullet\})$ ($\cong_{\text{LK}} \{0, 1\}$), we get the powerset tripos \mathfrak{P}

Example 3: Intuitionistic realizability triposes

(1/3)

Recall that:

Definition (Partial combinatory algebra)

A **partial combinatory algebra (PCA)** is partial applicative structure (P, \cdot) containing two elements $\mathbf{K}, \mathbf{S} \in P$ such that for all $x, y, z \in P$:

$$\mathbf{K} \cdot x \cdot y \downarrow = x$$

$$\mathbf{S} \cdot x \cdot y \downarrow$$

$$\mathbf{S} \cdot x \cdot y \cdot z \downarrow = (x \cdot z) \cdot (y \cdot z)$$

(whenever the rhs is defined)

Examples:

- $P := \Lambda/\beta\eta$ equipped with application is a (total) CA
- $P := \mathbb{IN}$ equipped with Kleene application is a PCA

Example 3: Intuitionistic realizability triposes

(2/3)

Given a partial combinatory algebra $(P, \cdot, \mathbf{K}, \mathbf{S})$:

- For each set I , we endow $\mathfrak{P}(P)^I$ with the relation \vdash_I defined by:

$$(X_i)_{i \in I} \vdash_I (Y_i)_{i \in I} \quad \text{iff} \quad \bigcap_{i \in I} (X_i \rightarrow Y_i) \text{ is inhabited}$$

(writing $X_i \rightarrow Y_i := \{p \in P \mid \forall q \in X_i, p \cdot q \downarrow \in Y_i\}$ for Kleene's implication)

Proposition

For each set I , the pair $(\mathfrak{P}(P)^I, \vdash_I)$ is a **pre-Heyting algebra**

- In the pre-Heyting algebra $(\mathfrak{P}(P)^I, \vdash_I)$:

$$(X_i)_{i \in I} \wedge (Y_i)_{i \in I} = \left(\{ \langle p, q \rangle \mid p \in X_i, q \in Y_i \} \right)_{i \in I}$$

$$(X_i)_{i \in I} \vee (Y_i)_{i \in I} = \left(\{\langle \bar{0}, p \rangle \mid p \in X_i\} \cup \{\langle \bar{1}, q \rangle \mid q \in Y_i\} \right)_{i \in I}$$

$$(X_i)_{i \in I} \rightarrow (Y_i)_{i \in I} = (X_i \rightarrow Y_i)_{i \in I}$$

where $\langle p, q \rangle := \mathbf{BC}(\mathbf{CI})pq, \dots$

Example 3: Intuitionistic realizability triposes

(3/3)

Theorem (Intuitionistic realizability tripos)

Given a partial combinatory algebra $(P, \cdot, \mathbf{K}, \mathbf{S})$, the functor

$\mathbf{P} : \mathbf{Set}^{\mathbf{op}} \rightarrow \mathbf{HA}$ defined by:

$$PI := \mathbf{Pos}(\mathfrak{P}(P)^I, \vdash_I) \quad (= \text{poset reflection}) \quad \text{(for each set } I\text{)}$$

$$\mathbf{P}f : \mathbf{P}J \rightarrow \mathbf{P}I \ := \ \left[\left[(X_j)_{j \in J} \right] \mapsto \left[(X_{f(i)})_{i \in I} \right] \right] \quad (\text{for each } f : I \rightarrow J)$$

is a (Set-based) tripos, called an **intuitionistic realizability tripos**

- For each $f : I \rightarrow J$, the **adjoints** $\exists f, \forall f : \mathbf{P}I \rightarrow \mathbf{P}J$ are given by:

$$\exists f([(X_i)_{i \in I}]) := \left[\left(\bigcup_{i \in f^{-1}(j)} X_i \right)_{j \in J} \right]$$

$$\forall f([(X_i)_{i \in I}]) := \left[\left(\bigcap_{i \in f^{-1}(j)} X_i \right)_{j \in J} \right]$$

- **Generic predicate:** $\Sigma := \mathfrak{P}(P)$, $\text{tr}_\Sigma := [\text{id}_{\mathfrak{P}(P)}] \in \mathbf{P}\Sigma$
- When $P = \{\bullet\}$ (+ trivial app.), we get the powerset tripos \mathfrak{P} again

From triposes to toposes

Triposes are mainly useful to construct **toposes**² (= Set-like categories), via the **tripos-to-topos construction**:

$$P \mapsto \underbrace{\mathbf{Set}[P]}_{\text{topos induced by } P}$$

So that:

- Triposes induced by HAs yield **localic** (= forcing) **toposes**
- Triposes induced by PCAs yield **intuitionistic realizability toposes**.
Example: The **effective topos** [Hyland '82]
- Triposes induced by AKSs yield **classical realizability toposes** [Streicher '13]
- ... and triposes induced by imp. algebras yield **implicative toposes** (to be studied soon :-)

²Or **topoi**, following the Greek etymology

What is a topos?

Formally, an (elementary) **topos** is a category \mathcal{T} with all finite limits, exponentials and a subobject classifier

Intuitively, a topos is a category \mathcal{T} in which:

- Objects behave as **types**, whereas morphisms behave as **functions**
- Objects (= types) are closed under **products** $A \times B$, **sums** $A + B$, **exponentials** B^A (or $A \rightarrow B$), **comprehension types** $\{x : A \mid \phi(x)\}$ and **quotient types** A/\sim
- Each topos \mathcal{T} has a **subobject classifier** Ω (= **type of propositions**) that induces the **internal logic** of \mathcal{T} (at least intuitionistic)
- Most toposes have a **natural numbers object** \mathbb{N} (including all $\mathbf{Set}[\mathbf{P}]$)

Topos = Set-like category in which one can formalize all elementary mathematics (at least intuitionistically)

Plan

- 1 Introduction
- 2 The notion of tripos
- 3 Examples of triposes
- 4 The implicative tripos
- 5 Properties of the implicative tripos
- 6 Conclusion

Implicative algebras (recall)

Definition (Implicative structures & algebras)

- ① An **implicative structure** is a complete lattice $(\mathcal{A}, \preccurlyeq)$ equipped with a binary operation $(\rightarrow) : \mathcal{A}^2 \rightarrow \mathcal{A}$ such that:
 - (1) If $a' \preccurlyeq a$ and $b \preccurlyeq b'$, then $(a \rightarrow b) \preccurlyeq (a' \rightarrow b')$
 - (2) For all $a \in \mathcal{A}$ and $B \subseteq \mathcal{A}$, we have: $a \rightarrow \bigwedge_{b \in B} b = \bigwedge_{b \in B} (a \rightarrow b)$
- ② A **separator** of $(\mathcal{A}, \preccurlyeq, \rightarrow)$ is a subset $S \subseteq \mathcal{A}$ such that:
 - (1) If $a \in S$ and $a \preccurlyeq a'$, then $a' \in S$
 - (2) $\bigwedge_{a,b \in \mathcal{A}} (a \rightarrow b \rightarrow c) \ (= \mathbf{K}^{\mathcal{A}}) \in S$ and
 $\bigwedge_{a,b,c \in \mathcal{A}} ((a \rightarrow b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c) \ (= \mathbf{S}^{\mathcal{A}}) \in S$
 - (3) If $(a \rightarrow b) \in S$ and $a \in S$, then $b \in S$
- ③ An **implicative algebra** is an implicative structure $(\mathcal{A}, \preccurlyeq, \rightarrow)$ together with a separator $S \subseteq \mathcal{A}$

Product of a family of implicative structures

(1/2)

Given a family of implicative structures $(\mathcal{A}_i)_{i \in I} = (\mathcal{A}_i, \preceq_i, \rightarrow_i)_{i \in I}$

- The product $\mathcal{A} = \prod_{i \in I} \mathcal{A}_i$ of the family $(\mathcal{A}_i)_{i \in I} = (\mathcal{A}_i, \preceq_i, \rightarrow_i)_{i \in I}$ is clearly an implicative structure, where:

$$(a_i)_{i \in I} \preccurlyeq (b_i)_{i \in I} \quad \text{def} \quad \forall i \in I, \ a_i \preccurlyeq_i b_i \quad \text{(product ordering)}$$

$$(a_i)_{i \in I} \rightarrow (b_i)_{i \in I} := (a_i \rightarrow_i b_i)_{i \in I} \quad (\text{componentwise})$$

Proposition (Properties of the product implicative structure $\prod_{i \in I} \mathcal{A}_i$)

In the product $\mathcal{A} = \prod_{i \in I} \mathcal{A}_i$, we have:

④ $ab = (a_i b_i)_{i \in I}$ for all $a, b \in \mathcal{A}$

$$\textcircled{2} \quad (t)^{\mathcal{A}} = \left((t)^{\mathcal{A}_i} \right)_{i \in I} \quad \text{for all closed } \lambda\text{-terms } t$$

$$\textcircled{3} \quad \mathbf{S}^{\mathcal{A}} = \left(\mathbf{S}^{\mathcal{A}_i} \right)_{i \in I} \quad \mathbf{K}^{\mathcal{A}} = \left(\mathbf{K}^{\mathcal{A}_i} \right)_{i \in I} \quad \mathfrak{C}^{\mathcal{A}} = \left(\mathfrak{C}^{\mathcal{A}_i} \right)_{i \in I} \quad \text{etc.}$$

$$a \times b = (a_i \times b_i)_{i \in I}, \quad a + b = (a_i + b_i)_{i \in I} \quad \text{for all } a, b \in \mathcal{A}$$

Product of a family of implicative structures

(2/2)

Given a family of implicative structures $(\mathcal{A}_i)_{i \in I} = (\mathcal{A}_i, \preceq_i, \rightarrow_i)_{i \in I}$

- The product $S = \prod_{i \in I} S_i$ of a family of separators $(S_i \subseteq \mathcal{A}_i)_{i \in I}$ is clearly a separator of the product $\mathcal{A} = \prod_{i \in I} \mathcal{A}_i$
- Moreover: $a \vdash_S b$ iff $\forall i \in I, a_i \vdash_{S_i} b_i$ (for all $a, b \in \mathcal{A}$)

Proposition (Factorization of the quotient)

$$\mathcal{A}/S = \left(\prod_{i \in I} \mathcal{A}_i \right) / \left(\prod_{i \in I} S_i \right) \cong \prod_{i \in I} (\mathcal{A}_i / S_i) \quad (\text{iso. in HA})$$

- **Beware!** We only have the inclusions

$$S^0(\mathcal{A}) \subseteq \prod_{i \in I} S^0(\mathcal{A}_i) \quad (\text{intuitionistic core})$$

$$S_K^0(\mathcal{A}) \subseteq \prod_{i \in I} S_K^0(\mathcal{A}_i) \quad (\text{classical core})$$

Power of an implicative structure

Given an implicative structure $\mathcal{A} = (\mathcal{A}, \preccurlyeq, \rightarrow)$ and a set I , we write

$$\mathcal{A}^I := (\mathcal{A}^I, \preccurlyeq^I, \rightarrow^I) := \prod_{i \in I} \mathcal{A} \quad (\text{power implicative structure})$$

Each separator $S \subseteq \mathcal{A}$ induces two separators in \mathcal{A}^I :

- The **power separator** $S^I := \prod_{i \in I} S \subseteq \mathcal{A}^I$,
for which we have: $\mathcal{A}^I/S^I \cong (\mathcal{A}/S)^I$
- The **uniform power separator** $S[I] \subseteq S^I \subseteq \mathcal{A}^I$ defined by:

$$S[I] := \{(a_i)_{i \in I} \in \mathcal{A}^I \mid (\exists s \in S)(\forall i \in I) s \preccurlyeq a_i\} = \uparrow\delta(S)$$

where $\uparrow\delta(S)$ is the upwards closure (in \mathcal{A}^I) of the image of S through the canonical map $\delta : \mathcal{A} \rightarrow \mathcal{A}^I$ defined by $\delta(a) := (i \mapsto a) \in \mathcal{A}^I$ for all $a \in \mathcal{A}$.

- In general, the inclusion $S[I] \subseteq S^I$ is **strict**!

Properties of the uniform power separator

Let $\mathcal{A} = (\mathcal{A}, \preccurlyeq, \rightarrow)$ be an implicative structure, and I a set.

Each separator $S \subseteq \mathcal{A}$ induces a **uniform power separator** $S[I] \subseteq \mathcal{A}^I$

Proposition (Entailment w.r.t. $S[I]$)

For all families $a = (a_i)_{i \in I}$, $b = (b_i)_{i \in I} \in \mathcal{A}^I$, we have:

$$a \vdash_{S[I]} b \Leftrightarrow (a \rightarrow b) \in S[I] \Leftrightarrow \bigwedge_{i \in I} (a_i \rightarrow b_i) \in S$$

$$a \dashv\vdash_{S[I]} b \Leftrightarrow (a \leftrightarrow b) \in S[I] \Leftrightarrow \bigwedge_{i \in I} (a_i \leftrightarrow b_i) \in S$$

Recall that $a \leftrightarrow b := (a \rightarrow b) \times (b \rightarrow a)$ (in any implicative structure)

We can also notice that:

- $S^0(\mathcal{A}^I) = S^0(\mathcal{A})[I] \subseteq (S^0(\mathcal{A}))^I$ (intuitionistic core of \mathcal{A}^I)

- $S_K^0(\mathcal{A}^I) = S_K^0(\mathcal{A})[I] \subseteq (S_K^0(\mathcal{A}))^I$ (classical core of \mathcal{A}^I)

Tripos associated to an implicative algebra

(1/2)

Let $(\mathcal{A}, S) = (\mathcal{A}, \preccurlyeq, \rightarrow, S)$ be an implicative algebra.

For each set I , we let $\mathbf{P}I := \mathcal{A}^I / S[I]$

- The poset $(\mathbf{PI}, \leq_{S[I]})$ is a **Heyting algebra**, where

$$[a] \rightarrow [b] = [(a_i \rightarrow b_i)_{i \in I}]$$

$$[a] \wedge [b] = [(a_i \times b_i)_{i \in I}] \quad \top = [(\top)_{i \in I}]$$

$$[a] \vee [b] = [(a_i + b_i)_{i \in I}] \quad \perp = [(\perp)_{i \in I}]$$

- The correspondence $I \mapsto \mathbf{P}I$ is **functorial**:

- Each $f : I \rightarrow J$ induces a **substitution map** $Pf : PJ \rightarrow PI$:

$$\mathbf{P}f([(a_j)_{j \in J}]) := [(a_{f(i)})_{i \in I}] \in \mathbf{P}I$$

- The map $\mathbf{P}f : \mathbf{P}J \rightarrow \mathbf{P}I$ is a **morphism of Heyting algebras**
- $\mathbf{P} \text{id}_I = \text{id}_{\mathbf{P}(I)}$ and $\mathbf{P}(g \circ f) = \mathbf{P}f \circ \mathbf{P}g$ (contravariance)

Therefore: $P : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ is a (contravariant) functor

Tripos associated to an implicative algebra

(2/2)

Theorem (Associated tripos)

The functor $\mathbf{P} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ induced by (\mathcal{A}, S) is a **tripos**

- Each substitution map $\mathbf{P}f : \mathbf{P}J \rightarrow \mathbf{P}I$ has both **left and right adjoints** $\exists f, \forall f : \mathbf{P}I \rightarrow \mathbf{P}J$:

$$\exists f([(a_i)_{i \in I}]) := \left[\left(\exists_{i \in f^{-1}(j)} a_i \right)_{j \in J} \right] \in \mathbf{P}J$$

$$\forall f([(a_i)_{i \in I}]) := \left[\left(\forall_{i \in f^{-1}(j)} a_i \right)_{j \in J} \right] \in \mathbf{P}J$$

(+ satisfies the **Beck-Chevalley condition**)

- There is a **propositional object** $\Sigma \in \mathbf{Set}$ together with a **generic predicate** $\text{tr} \in \mathbf{P}\Sigma$:

$$\Sigma := \mathcal{A} \quad \text{tr} := [\text{id}_{\mathcal{A}}] \in \mathbf{P}\Sigma$$

To sum up...

- The above construction encompasses many well-known tripos constructions:
 - Forcing triposes, which correspond to the case where $(\mathcal{A}, \preccurlyeq, \rightarrow)$ is a complete Heyting/Boolean algebra, and $S = \{\top\}$ (i.e. no quotient)
 - Triposes induced by (total) combinatory algebras... (int. realizability)
... and even by partial combinatory algebras, via some completion trick
 - Triposes induced by abstract Krivine structures (class. realizability)
- As for any tripos, each implicative tripos can be turned into a **topos** via the standard tripos-to-topos construction
- **Question:** What do implicative triposes bring new w.r.t.
 - Forcing triposes (intuitionistic or classical)?
 - Intuitionistic realizability triposes?
 - Classical realizability triposes?

Plan

- 1 Introduction
- 2 The notion of tripos
- 3 Examples of triposes
- 4 The implicative tripos
- 5 Properties of the implicative tripos
- 6 Conclusion

The fundamental diagram

(1/3)

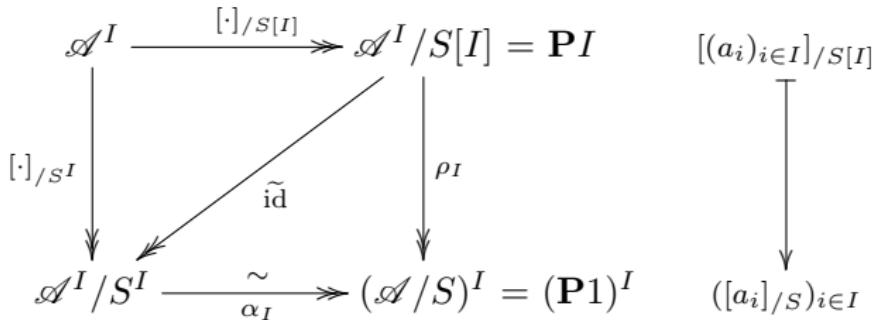
Given an implicative algebra $\mathcal{A} = (\mathcal{A}, \preccurlyeq, \rightarrow, S)$ and a set I , the separator $S \subseteq \mathcal{A}$ induces two separators in \mathcal{A}^I :

- The power separator $S^I \subseteq \mathcal{A}^I$
- The uniform power separator $S[I] \subseteq S^I \subseteq \mathcal{A}^I$ defined by:

$$S[I] := \{(a_i)_{i \in I} \in \mathcal{A}^I : (\exists s \in S)(\forall i \in I) s \preccurlyeq a_i\}$$

We thus get the following (commutative) diagram:

(in Set/HA)



The fundamental diagram

(2/3)

$$\begin{array}{ccc}
 \mathcal{A}^I & \xrightarrow{[\cdot]_{/S^I}} & \mathcal{A}^I / S^I = \mathbf{P}I \\
 \downarrow [\cdot]_{/S^I} & \nearrow \tilde{\text{id}} & \downarrow \rho_I \\
 \mathcal{A}^I / S^I & \xrightarrow[\alpha_I]{\sim} & (\mathcal{A} / S)^I = (\mathbf{P}1)^I
 \end{array}
 \quad
 \begin{array}{ccc}
 & & [((a_i)_{i \in I})_{/S^I}] \\
 & & \downarrow \\
 & & (([a_i]_{/S})_{i \in I})
 \end{array}$$

Proposition

The following are equivalent:

- (1) The map $\rho_I : (\mathcal{A}^I / S[I]) \rightarrow (\mathcal{A} / S)^I$ is injective
- (2) The map $\rho_I : (\mathcal{A}^I / S[I]) \rightarrow (\mathcal{A} / S)^I$ is an isomorphism (of HAs)
- (3) $S[I] = S^I$
- (4) The separator $S \subseteq \mathcal{A}$ is closed under all I -indexed meets.

The fundamental diagram

(3/3)

$$\begin{array}{ccc}
 \mathcal{A}^I & \xrightarrow{[\cdot]_{/S[I]}} & \mathcal{A}^I / S[I] = \mathbf{P}I \\
 \downarrow [\cdot]_{/S^I} & \nearrow \tilde{\text{id}} & \downarrow \rho_I \\
 \mathcal{A}^I / S^I & \xrightarrow[\alpha_I]{\sim} & (\mathcal{A} / S)^I = (\mathbf{P}1)^I
 \end{array}
 \quad
 \begin{array}{ccc}
 & & [(\alpha_i)_{i \in I}]_{/S[I]} \\
 & & \downarrow \\
 & & ([a_i]_{/S})_{i \in I}
 \end{array}$$

Proof.

- Recall that in **HA**, a morphism is an iso if and only if it is bijective. Since ρ is surjective and α_I is an iso, it is clear that:

$$(1) \quad \rho \text{ injective} \Leftrightarrow (2) \quad \rho \text{ iso.} \Leftrightarrow \tilde{\text{id}} \text{ iso.} \Leftrightarrow (3) \quad S[I] = S^I$$
- (3) \Rightarrow (4) Let $(a_i)_{i \in I} \in S^I$. Since $S^I = S[I]$ (by (3)), there is $s \in S$ such that $s \preccurlyeq a_i$ for all $i \in I$. Hence $s \preccurlyeq \bigcup_{i \in I} a_i \in S$.
- (4) \Rightarrow (3) Let $(a_i)_{i \in I} \in S^I$. By (4), we have that $s := \bigcup_{i \in I} a_i \in S$. Since $s \preccurlyeq a_i$ for all $i \in I$, we get $(a_i)_{i \in I} \in S[I]$. Therefore: $S^I = S[I]$.

Forcing triposes (recall)

Proposition and definition (Forcing triposes)

Given a **complete Heyting** (or **Boolean**) algebra H :

- ① The functor $\mathbf{P} := H^{(-)} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ is a tripos
- ② For all $I, J \in \mathbf{Set}$, $f : I \rightarrow J$:
 - $\mathbf{P}I := H^I$ is a complete HA
 - $\mathbf{P}f : \mathbf{P}J \rightarrow \mathbf{P}I$ is a morphism of complete HAs
- ③ $\Sigma := H$ and $\text{tr} := \text{id}_H$ (**generic predicate**)

Such a tripos is called a **forcing tripos**

- Forcing triposes are the ones underlying **Kripke** (or **Cohen**) forcing
- Each forcing tripos (induced by H) can be seen as an implicative tripos, constructed from the implicative algebra

$$(\mathcal{A}, \preccurlyeq, \rightarrow, S) := (H, \leq_H, \rightarrow_H, \{\top_H\})$$

Isomorphism of triposes

Definition (Isomorphism of triposes)

Two triposes $\mathbf{P}, \mathbf{P}' : \mathbf{Set}^{\mathbf{op}} \rightarrow \mathbf{HA}$ are **isomorphic** when there is a natural isomorphism $\beta : \mathbf{P} \Rightarrow \mathbf{P}'$ (in the category \mathbf{HA}):

$$\begin{array}{ccc}
 I & \xrightarrow[\sim]{\mathbf{P}I} & \mathbf{P}'I \\
 f \downarrow & \mathbf{P}f \uparrow & \uparrow \mathbf{P}'(f) \\
 J & \xrightarrow[\sim]{\mathbf{P}J} & \mathbf{P}'J
 \end{array}$$

- We have seen that each Heyting tripos is isomorphic to a particular implicative tripos, taking $(\mathcal{A}, \preccurlyeq, \rightarrow, S) := (H, \leq_H, \rightarrow_H, \{\top\})$
- But more generally, what are the implicative triposes that are isomorphic to a forcing tripos?

Characterizing forcing triposes

(1/4)

Theorem

Let $\mathbf{P} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ be the tripos induced by an implicative algebra $(\mathcal{A}, \preccurlyeq, \rightarrow, S)$. Then the following are equivalent:

- (1) The tripos \mathbf{P} is isomorphic to a forcing tripos
- (2) The separator $S \subseteq \mathcal{A}$ is a principal filter of \mathcal{A}
- (3) The separator $S \subseteq \mathcal{A}$ is finitely generated and $\pitchfork^{\mathcal{A}} \in S$

Remark: These conditions **do not imply** that $(\mathcal{A}, \preccurlyeq, \rightarrow)$ is a Heyting algebra!

Counter-example: Krivine realizability with an instruction \pitchfork (in the separator)

Proof.

- We have already seen that (3) \Leftrightarrow (2), in a previous talk
- So it remains to prove that (1) \Rightarrow (2) and (2) \Rightarrow (1) (…)

Characterizing forcing triposes

(2/4)

Proof (continued).

- (2) \Rightarrow (1) When $S \subseteq \mathcal{A}$ is a principal filter of \mathcal{A} , we have seen that $H := \mathcal{A}/S$ is a complete Heyting algebra. Moreover, since S is closed under arbitrary meets, we have $S[I] = S^I$ for all sets I . Therefore the arrow ρ_I of the fundamental diagram

$$\begin{array}{ccc}
 \mathcal{A}^I & \xrightarrow{[\cdot]/S[I]} & \mathcal{A}^I/S[I] = \mathbf{P}I \\
 \downarrow [\cdot]/S^I & \nearrow \sim_{\tilde{\text{id}}} & \downarrow \sim_{\rho_I} \\
 \mathcal{A}^I/S^I & \xrightarrow[\alpha_I]{\sim} & (\mathcal{A}/S)^I = H^I
 \end{array}$$

is an isomorphism of (complete) Heyting algebras for all sets I . It is also clearly natural in I , hence we can take $\beta_I := \rho_I$. (...)

Characterizing forcing triposes

(3/4)

Proof (continued).

- (1) \Rightarrow (2) Assume that there is a natural isomorphism $\beta_I : \mathbf{PI} \xrightarrow{\sim} H^I$ (in I) for some complete Heyting algebra H . In particular, we have $\beta_1 : \mathbf{P1} \xrightarrow{\sim} H^1 = H$, so that $\mathcal{A}/S = \mathbf{P1} \cong H$ is a complete HA.

Now, fix a set I , and write $c_i := \{0 \mapsto i\} : 1 \rightarrow I$ for each $i \in I$.

Via the two (contravariant) functors $\mathbf{P}, H^{(-)} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$, we easily check that the arrow $c_i : 1 \rightarrow I$ is mapped to:

$$\text{and} \quad \begin{aligned} \mathbf{P}c_i &= \rho_i : \mathcal{A}^I/S[I] \rightarrow \mathcal{A}/S \\ H^{(c_i)} &= \pi_i : H^I \rightarrow H \end{aligned}$$

where:

- ρ_i is the i th component of the surjection $\rho_I : \mathcal{A}^I / S[I] \twoheadrightarrow (\mathcal{A}/S)^I$ of the fundamental diagram, given by: $\rho_i([a]_{/S[I]}) = [a_i]_{/S}$
- π_i is the i th projection from H^I to H (\dots)

Characterizing forcing triposes

(4/4)

Proof (continued).

- (1) \Rightarrow (2) (continued) We get the following commutative diagrams:

$$\begin{array}{ccccc}
1 & \mathcal{A}/S \xrightarrow[\sim]{\beta_1} H & & (\mathcal{A}/S)^I \xrightarrow[\sim]{\beta_1^I} H^I & \\
\downarrow c_i & \uparrow \mathbf{P} c_i = \rho_i & \uparrow \pi_i = H^{(c_i)} & \rho_I = \langle \rho_i \rangle_{i \in I} & \uparrow \text{id} = \langle \pi_i \rangle_{i \in I} \\
I & \mathcal{A}^I/S[I] \xrightarrow[\beta_I]{\sim} H^I & & \mathcal{A}^I/S[I] \xrightarrow[\beta_I]{\sim} H^I &
\end{array}$$

- 1st commutative square (for $i \in I$) comes from the naturality of β
- 2nd commutative square is deduced from the first one by glueing the arrows ρ_i and π_i for all indices $i \in I$

From the 2nd commutative square, it is clear that $\rho_I : \mathcal{A}^I / S[I] \rightarrow (\mathcal{A}/S)^I$ is an isomorphism for all sets I . Therefore, the separator $S \subseteq \mathcal{A}$ is closed under arbitrary meets, which means that it is a principal filter

1

Classical realizability triposes

(1/2)

Definition (Abstract Krivine structure)

An **abstract Krivine structure (AKS)** \mathcal{A} is given by:

- 2 sets Λ (\mathcal{A} -terms), Π (\mathcal{A} -stacks)
- 3 functions $(@) : \Lambda \times \Lambda \rightarrow \Lambda$, $(\cdot) : \Lambda \times \Pi \rightarrow \Pi$, $(k_{_}) : \Pi \rightarrow \Lambda$
- 3 combinators $S, K, \mathbf{c} \in \Lambda$
- A subset $PL \subseteq \Lambda$ (of **proof-like** \mathcal{A} -terms) that contains the combinators S, K, \mathbf{c} and that is closed under application $(@)$.
- A binary relation $\perp \perp \subseteq \Lambda \times \Pi$ (the **pole**) such that:

$t \star u \cdot \pi \in \perp \perp$	implies	$tu \star \pi \in \perp \perp$
$t \star \pi \in \perp \perp$	implies	$K \star t \cdot u \cdot \pi \in \perp \perp$
$tv(uv) \star \pi \in \perp \perp$	implies	$S \star t \cdot u \cdot v \cdot \pi \in \perp \perp$
$t \star k_{\pi} \cdot \pi \in \perp \perp$	implies	$\mathbf{c} \star t \cdot \pi \in \perp \perp$
$t \star \pi \in \perp \perp$	implies	$k_{\pi} \star t \cdot \pi' \in \perp \perp$

Classical realizability triposes

(2/2)

- Each abstract Krivine structure $\mathcal{K} = (\Lambda, \Pi, \dots, \text{PL}, \perp\!\!\!\perp)$ induces a classical implicative algebra $\mathcal{A}_{\mathcal{K}} = (\mathcal{A}_{\mathcal{K}}, \preceq_{\mathcal{K}}, \rightarrow_{\mathcal{K}}, S_{\mathcal{K}})$ defined by:

$$\mathcal{A}_{\mathcal{K}} := \mathfrak{P}(\Pi)$$

$$a \preccurlyeq_{\mathcal{K}} b \quad := \quad a \supseteq b$$

$$a \rightarrow_{\mathcal{K}} b \quad := \quad a^{\perp\perp} \cdot b \quad \quad (\text{Krivine's implication})$$

$$S_{\mathcal{K}} := \{a \in \mathcal{A} \mid a^{\perp\perp} \cap \text{PL} \neq \emptyset\}$$

- **Remark:** \mathcal{A}_K consistent iff $\perp_{\mathcal{A}_K} (= \Pi) \notin S_K$
 iff $\Pi^\perp \cap \text{PL} = \emptyset$
 iff K consistent (as an AKS)

- The classical implicative algebra $\mathcal{A}_K = (\mathcal{A}_K, \preceq_K, \rightarrow_K, S_K)$ in turn induces a **classical implicative tripos** $P_{\mathcal{A}_K} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$, called the **classical realizability tripos** induced by K [Streicher '13]
- Are all classical implicative triposes of this form?

Universality of AKS

(1/3)

Theorem (Universality of AKS)

Each classical implicative tripos $P_{\mathcal{A}} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ is isomorphic to some classical realizability tripos $P_{\mathcal{AK}} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ (for some AKS \mathcal{K})

Classical implicative algebras have thus the same expressiveness as Krivine realizability

The theorem follows from the following lemma:

Lemma (Reduction of implicative algebras)

Let $\mathcal{A} = (\mathcal{A}, \preceq_{\mathcal{A}}, \rightarrow_{\mathcal{A}}, S_{\mathcal{A}})$ and $\mathcal{B} = (\mathcal{B}, \preceq_{\mathcal{B}}, \rightarrow_{\mathcal{B}}, S_{\mathcal{B}})$ be two implicative algebras. If there exists a surjective map $\psi : \mathcal{B} \rightarrow \mathcal{A}$ (a **reduction from \mathcal{B} onto \mathcal{A}**) such that

(1) $\psi(\bigwedge_{i \in I} b_i) = \bigwedge_{i \in I} \psi(b_i)$ (for all $I \in \mathbf{Set}$ and $b \in \mathcal{B}^I$)

(2) $\psi(b \rightarrow_{\mathcal{B}} b') = \psi(b) \rightarrow_{\mathcal{A}} \psi(b')$ (for all $b, b' \in \mathcal{B}$)

(3) $b \in S_{\mathcal{B}}$ iff $\psi(b) \in S_{\mathcal{A}}$ (for all $b \in \mathcal{B}$)

then the corresponding triposes $P_{\mathcal{A}}, P_{\mathcal{B}} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ are isomorphic.

Universality of AKS

(2/3)

Proof of the Lemma

For each set I , write $\psi^I : \mathcal{B}^I \rightarrow \mathcal{A}^I$ the map defined by $\psi^I(b) = \psi \circ b$ for all $b \in \mathcal{B}^I$. Given points $b, b' \in \mathcal{B}^I$, we observe that:

$$\begin{aligned}
 b \vdash_{S_{\mathcal{B}}[I]} b' &\quad \text{iff} \quad \lambda_{i \in I} (b_i \rightarrow_{\mathcal{B}} b'_i) \in S_{\mathcal{B}} \\
 &\quad \text{iff} \quad \psi(\lambda_{i \in I} (b_i \rightarrow_{\mathcal{B}} b'_i)) \in S_{\mathcal{A}} \\
 &\quad \text{iff} \quad \lambda_{i \in I} (\psi(b_i) \rightarrow_{\mathcal{A}} \psi(b'_i)) \in S_{\mathcal{A}} \\
 &\quad \text{iff} \quad \psi^I(b) \vdash_{S_{\mathcal{A}}[I]} \psi^I(b')
 \end{aligned}$$

From this, we deduce that:

- (1) The map $\psi^I : \mathcal{B}^I \rightarrow \mathcal{A}^I$ is compatible with the preorders $\vdash_{S_{\mathcal{B}}[I]}$ (on \mathcal{B}^I) and $\vdash_{S_{\mathcal{A}}[I]}$ (on \mathcal{A}^I), and thus factors into a monotonic map $\tilde{\psi}_I : \mathbf{P}_{\mathcal{B}}I \rightarrow \mathbf{P}_{\mathcal{A}}I$ through the quotients $\mathbf{P}_{\mathcal{B}}I = \mathcal{B}^I / S_{\mathcal{B}}[I]$ and $\mathbf{P}_{\mathcal{A}}I = \mathcal{A}^I / S_{\mathcal{A}}[I]$
- (2) The monotonic map $\tilde{\psi}_I : \mathbf{P}_{\mathcal{B}}I \rightarrow \mathbf{P}_{\mathcal{A}}I$ is an embedding of partial orderings, in the sense that $p \leq p'$ iff $\tilde{\psi}_I(p) \leq \tilde{\psi}_I(p')$ for all $p, p' \in \mathbf{P}_{\mathcal{B}}I$

Moreover, since $\psi : \mathcal{B} \rightarrow \mathcal{A}$ is onto, the maps $\psi^I : \mathcal{B}^I \rightarrow \mathcal{A}^I$ and $\tilde{\psi}_I : \mathbf{P}_{\mathcal{B}}I \rightarrow \mathbf{P}_{\mathcal{A}}I$ are onto as well. Therefore $\tilde{\psi}_I : \mathbf{P}_{\mathcal{B}}I \rightarrow \mathbf{P}_{\mathcal{A}}I$ is an isomorphism in **Pos**, and thus an isomorphism in **HA**. The naturality of $\tilde{\psi}_I : \mathbf{P}_{\mathcal{B}}I \rightarrow \mathbf{P}_{\mathcal{A}}I$ (in I) follows from the naturality of $\psi^I : \mathcal{A}^I \rightarrow \mathcal{B}^I$ (in I), which is obvious by construction \square

Universality of AKS

(3/3)

Proof of the Theorem

Let $\mathcal{A} = (\mathcal{A}, \preccurlyeq, \rightarrow, S)$ be a classical implicative algebra. We consider the AKS $\mathcal{K} = (\Lambda, \Pi, @, \cdot, k_-, K, S, \alpha, PL, \perp\!\!\!\perp)$ defined by

- $\Lambda = \Pi := \mathcal{A}$
- $a @ b := ab, \quad a \cdot b := a \rightarrow b \quad \text{and} \quad k_a := a \rightarrow \perp\!\!\!\perp \quad (\text{for all } a, b \in \mathcal{A})$
- $K := K^{\mathcal{A}}, \quad S := S^{\mathcal{A}} \quad \text{and} \quad cc := cc^{\mathcal{A}}$
- $PL := S \quad \text{and} \quad \perp\!\!\!\perp := (\preccurlyeq_{\mathcal{A}}) = \{(a, b) \in \mathcal{A}^2 : a \preccurlyeq b\}$

Clearly, the above structure \mathcal{K} is an AKS, in which for each set $\beta \subseteq \Pi$ ($= \mathcal{A}$), we have $\beta^{\perp\!\!\!\perp} = \{a \in \mathcal{A} : \forall b \in \beta, a \preccurlyeq b\} = \downarrow\{\lambda\beta\} \subseteq \Lambda$ ($= \mathcal{A}$)

Now, the AKS \mathcal{K} induces the implicative algebra $\mathcal{B} = (\mathcal{B}, \preccurlyeq_{\mathcal{B}}, \rightarrow_{\mathcal{B}}, S_{\mathcal{B}})$ defined by:

- $\mathcal{B} := \mathfrak{P}(\Pi) = \mathfrak{P}(\mathcal{A})$
- $\beta \preccurlyeq_{\mathcal{B}} \beta' \Leftrightarrow \beta \supseteq \beta'$ (for all $\beta, \beta' \in \mathcal{B}$)
- $\beta \rightarrow_{\mathcal{B}} \beta' := \beta^{\perp\!\!\!\perp} \cdot \beta' = \{a \rightarrow a' : a \preccurlyeq \lambda\beta, a' \in \beta'\}$ (for all $\beta, \beta' \in \mathcal{B}$)
- $S_{\mathcal{B}} := \{\beta \in \mathcal{B} : \beta^{\perp\!\!\!\perp} \cap PL \neq \emptyset\} = \{\beta \in \mathfrak{P}(\mathcal{A}) : \lambda\beta \in S_{\mathcal{A}}\}$

We now define $\psi : \mathcal{B} \rightarrow \mathcal{A}$ by $\psi(\beta) = \lambda\beta$ for all $\beta \in \mathcal{B}$ ($= \mathfrak{P}(\mathcal{A})$). We easily check that $\psi : \mathcal{B} \rightarrow \mathcal{A}$ is a reduction from \mathcal{B} onto \mathcal{A} . So that from the previous Lemma, the triposes induced by the implicative algebras \mathcal{A} and \mathcal{B} are isomorphic □

Plan

- 1 Introduction
- 2 The notion of tripos
- 3 Examples of triposes
- 4 The implicative tripos
- 5 Properties of the implicative tripos
- 6 Conclusion

Conclusion

- Each implicative algebra $\mathcal{A} = (\mathcal{A}, \preccurlyeq, \rightarrow, S)$ induces a (Set-based) **tripos** $P_{\mathcal{A}} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{HA}$ (that can later be turned into a **topos**)
- This construction encompasses all the triposes known so far, namely:
 - All localic triposes (induced by complete HAs)
 - All realizability triposes induced by (total) **combinatory algebras**
(The construction extends to the realizability triposes induced by **PCAs**, using some completion trick not shown here)
 - All classical realizability triposes induced by AKSs
- In this structure: **forcing** = **non deterministic realizability**
- Classical implicative structures have the very same expressiveness as **abstract Krivine structures** (with a much lighter machinery)
- **Question:** Are all triposes implicative (up to isomorphism)?