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Different notions of models

Tarski models: JφK ∈ {0; 1}
Interprets classical provability (correctness/completeness)

Intuitionistic realizability: JφK ∈ P(Λ) [Kleene’45]

Interprets intuitionistic proofs
Independence results in intuitionistic theories
Definitely incompatible with classical logic

Cohen forcing: JφK ∈ P(C) [Cohen’63]

Independence results, in classical theories
(Negation of continuum hypothesis, Solovay’s axiom, etc.)


Boolean-valued models: JφK ∈ B [Scott, Solovay, Vopěnka]

Classical realizability: JφK ∈ P(Λc) [Krivine’94, ’01, ’03, ’09–]

Interprets classical proofs
Generalizes Tarski models... and forcing!
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The categorical tradition of realizability

Categorical logic [Lawvere, Tierney ’70]

Hyperdoctrines = models of 1st order theories
(Slogan: ∃/∀ are left/right adjoints!)

Modern definition of the notion of topos
(generalizes Grothendieck’s definition)

Categorical realizability [Hyland, Johnstone, Pitts ’80]

Major input from forcing and Boolean-valued models [Scott]

Effective topos [Hyland]

Notion of tripos and tripos-to-topos construction [Pitts]

Generalization to partial combinatory algebras (PCAs)

... but incompatible with classical logic

What about classical realizability?
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The categorical problem

Topos
(Set-like category)

Tripos
(categorical model of HOL)

Models of
set theory

cHA
(cBA) PCA AKS

cHA = complete Heyting algebra
cBA = complete Boolean algebra
PCA = partial combinatory algebra
OCA = ordered combinatory algebra
AKS = abstract Krivine structure

OCA

Implicative algebra
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Heyting algebras

Definition (Heyting algebra)

A Heyting algebra is a poset (H,≤) such that:

1 H has extremal elements

⊥ := min(H) > := max(H)

2 Any two elements x, y ∈ H have a meet and a join:

x ∧ y := inf{x, y} x ∨ y := sup{x, y}
3 Any two elements x, y ∈ H have a relative pseudo-complement

x→ y := max{z ∈ H : (z ∧ x) ≤ y}
which is characterized by the adjunction

z ≤ (x→ y) ⇔ (z ∧ x) ≤ y (for all z ∈ H)

In other words, a Heyting algebra is a bounded lattice with an operation
of relative pseudo-complement (a.k.a. Heyting’s implication)
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Some remarks

In a Heyting algebra (H,≤), the ordering x ≤ y is characterized
from each of the three operations ∧, ∨ and → by:

x ≤ y ⇔ x ∧ y = x
⇔ x ∨ y = y
⇔ (x→ y) = >

Soundness: All the intuitionistic equivalences hold in any Heyting
algebra. In particular, the two distributivity laws:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

are valid, so that every HA is also a (bounded) distributive lattice

Completeness: The set of propositional formulas, quotiented by
intuitionistic equivalence, is itself a Heyting algebra

⇒ Lindenbaum algebra
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Negation

In a Heyting algebra, negation is defined by ¬x := (x→ ⊥)
This operation is (in general) not involutive: ¬¬x 6= x

However, we still have the following (in)equalities:

x ≤ ¬¬x ¬x ∨ y ≤ x→ y ≤ ¬y → ¬x
¬x ∧ ¬y = ¬(x ∨ y) ¬x ∨ ¬y ≤ ¬(x ∧ y)

But the converse inequalities do not hold in general

Proposition (Boolean algebras)

In a Heyting algebra (H,≤), the following are equivalent:

1 ¬¬x = x for all x ∈ H (negation is involutive)

2 (((x→ y)→ x)→ x) = > for all x, y ∈ H (Peirce’s law)

3 (H,≤) is a Boolean algebra

In a Boolean algebra, all the former inequalities become equalities
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Morphisms of Heyting algebras

Definition (Morphism of Heyting algebras)

A morphism of Heyting algebras is a function F : H → H ′ such that

F (x ∧ y) = F (x) ∧ F (y) F (>) = >
F (x ∨ y) = F (x) ∨ F (y) F (⊥) = ⊥
F (x→ y) = F (x)→ F (y)

for all x, y ∈ H

In other words, a morphism of Heyting algebras is a morphism of
bounded lattices that also preserves Heyting’s implication

Such a function is necessarily monotonic: x ≤ y ⇒ F (x) ≤ F (y)
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The category of Heyting algebras

The category of Heyting algebras (notation: HA) is the category
whose objects are the Heyting algebras and whose arrows are the
morphisms of Heyting algebras

HA is a (non-full) sub-category of Pos (the category of posets)

Note that:

1 An arrow is an isomorphism in HA iff it is an isomorphism in Pos

2 Any injective morphism of HAs is also an embedding in Pos:

x ≤ y ⇔ F (x) ≤ F (y)

3 Any bijective morphism of HAs is also an isomorphism

The category of Boolean algebras (notation: BA) is the full
sub-category of HA whose objects are the Boolean algebras
(Notion of morphism is the very same in BA and HA)
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Galois connections

A Galois connection between two posets A and B is a pair of
functions F : A→ B and G : B → A such that:

F (x) ≤B y ⇔ x ≤A G(y) (for all x ∈ A, y ∈ B)

In this situation (notation: F a G), we observe that:

1 F : A→ B and G : B → A are necessarily monotonic

2 F : A→ B is uniquely determined by G : B → A:

F (x) = min{y ∈ B : x ≤A G(y)} (for all x ∈ A)

F is called the left adjoint of G, and written F = GL

3 G : B → A is uniquely determined by F : A→ B:

G(y) = max{x ∈ A : F (x) ≤B y} (for all y ∈ B)

G is called the right adjoint of F , and written G = FR
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Adjunction in HA

In what follows, we shall work mainly with arrows F ∈ HA(H,H ′)
having both adjoints, written FL, FR : H ′ → H.

When they exist, FL and FR are unique and monotonic, but in
general, they are not morphisms of HAs (only arrows in Pos)

Proposition (Functoriality)

1 If F ∈ HA(H,H ′) and G ∈ HA(H ′, H ′′) have left adjoints, then:

(G ◦ F )L = FL ◦GL (∈ Pos(H ′′, H))

2 If F ∈ HA(H,H ′) and G ∈ HA(H ′, H ′′) have right adjoints, then:

(G ◦ F )R = FR ◦GR (∈ Pos(H ′′, H))

3 If F ∈ HA(H,H ′) is an isomorphism, then:

FL = FR = F−1 (∈ Pos(H ′, H))

In particular: idL = idR = id
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Pullbacks (1/3)

Definition (Pullback)

In a category C , a pullback of two arrows A
f // C B

goo is

an object D equipped with arrows A Dp
oo

q
// B such that:

1 f ◦ p = g ◦ q
2 For each object X with arrows A X

f ′oo g′ // B such that
f ◦ f ′ = g ◦ g′, there is a unique arrow h : X → D such that:

X

h

  

g′

  

f ′

  

D
q //

p

��

B

g

��
A

f
// C

{
f ′ = p ◦ h
g′ = q ◦ h
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Pullbacks (2/3)

The pullback (D, p, q) of two arrows A
f // C B

goo , when it
exists, is unique up to unique isomorphism

D
q //

p

��

B

g

��
A

f
// C

It is written D = A×C B (and indicated with a “right angle” sign)

When C = 1 is the terminal object of C , the pullback of A and B
amounts to the binary product:

A×1 B = A×B
p = πA,B : A×B → A
q = π′A,B : A×B → B



Intro The notion of tripos Examples The implicative tripos ... and its properties Conclusion

Pullbacks (3/3)

In the category Set, the pullback of two arrows A
f // C B

goo

always exists; it is the fibered product:

A×C B = {(x, y) ∈ A×B | f(x) = g(y)}
p = ((x, y) 7→ x) : A×C B → A
q = ((x, y) 7→ y) : A×C B → B

Pullbacks are constructed similarly in the categories Pos (posets),
HA (Heyting algebras), Top (topological spaces), Mon (monoids),
Grp (groups), Ring (rings) and R-Mod (R-modules)

A useful pullback: The square A× C
πA,C //

f × idC
��

A

f
��

B × C
πB,C

// B

is always a pullback (provided A× C and B × C exist)
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Set-based triposes

Definition (Set-based tripos)

A (Set-based) tripos is a contravariant functor P : Setop → HA such that:

(1) For each map f : I → J (in Set), the corresponding map Pf : PJ → PI
(in HA) has left & right adjoints ∃f,∀f : PI → PJ (in Pos)

(2) Beck-Chevalley condition: Each pullback square in Set (on the l.h.s.)
induces the following two commutative squares in Pos (on the r.h.s.):

I
f1 //

f2

��

I1

g1

��
I2 g2

// J

⇒

PI
∃f1 // PI1

PI2

Pf2

OO

∃g2
// PJ

Pg1

OO PI
∀f1 // PI1

PI2

Pf2

OO

∀g2
// PJ

Pg1

OO

(3) The functor P : Setop → HA has a generic predicate trΣ ∈ PΣ (for some
set Σ), i.e. such that for all sets I, the following map is surjective:

ΣI → PI
σ 7→ Pσ(trΣ)
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On the definitions of the notion of tripos

The above definition is the initial definition of triposes, such as
introduced in Hyland, Johnstone, Pitts: Tripos theory (1980)

Pitts’ PhD The Theory of Triposes (1981) generalizes the notion
of tripos in essentially two directions:

1 The category Set is replaced by an arbitrary Cartesian category C
(intuitively: a category of ‘contexts’), and the generic predicate is
replaced by a more general membership predicate1

2 The Beck-Chevalley condition is only required for certain pullback
squares (the projection squares), and may not hold for all

However, all forcing/realizability/implicative triposes are triposes in
the sense of the initial definition (i.e. Set-based triposes); therefore
we shall only consider these

1Due to the fact that the Cartesian category C is not necessarily closed. But
when C is a ccc, the existence of the generic predicate is sufficient
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Triposes: some intuitions (1/7)

Intuitively, a (Set-based) tripos is a model of intuitionistic HOL, where
higher-order types are modeled by sets. In this framework:

The (contravariant) functor P : Setop → HA associates to each
set I a particular Heyting algebra PI of predicates over I

Each predicate p ∈ PI can be viewed as an abstract
formula p(x) depending on a variable x : I. Intuitively:

p ≤ q means: (∀x : I) (p(x)⇒ q(x))

p = q means: (∀x : I) (p(x)⇔ q(x))

(So that in this description, the ordering ≤ represents inclusion whereas
equality represent extensional equality of predicates)

PI is a Heyting algebra, which means that predicates p, q ∈ PI can
be assembled using the constructions

⊥, >, p ∧ q, p ∨ q, p→ q

The axioms of Heyting algebras express that all the deduction rules
of intuitionistic propositional calculus are valid
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Triposes: some intuitions (2/7)

The correspondence I 7→ PI is functorial: each map f : I → J
(in Set) induces a substitution map Pf : PJ → PI (in HA):

Given p ∈ PJ , the predicate Pf(p) ∈ PI represents the pre-image
of p by f : Pf(p) ≡ “p ◦ f” or “f−1(p)”

Or, if we see p as a formula p(y) (in the context y : J)

then Pf(p) is the formula p(y)[y := f(x)] (in the context x : I)

The fact that Pf : PJ → PI is a morphism of HAs
expresses that substitution commutes with all connectives:

(p(y) ∧ q(y))[y := f(x)] ≡ p(f(x)) ∧ q(f(x))

(p(y) ∨ q(y))[y := f(x)] ≡ p(f(x)) ∨ q(f(x))

(p(y)→ q(y))[y := f(x)] ≡ p(f(x))→ q(f(x))

Identities P idX = idP(X) and P(g ◦ f) = Pf ◦Pg express that
the operation of substitution (or pre-image) is contravariant
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Triposes: some intuitions (3/7)

Axiom (1) expresses that for each map f : I → J (in Set), the map
Pf : PJ → PI (in HA) has left/right adjoints ∃f, ∀f : PI → PJ
(in Pos), representing ∃/∀-quantifications along f : I → J :

Given p ∈ PI:

∃f(p) means: (∃x : I)(f(x) = y ∧ p(x))

∀f(p) means: (∀x : I)(f(x) = y ⇒ p(x))
(in context y : J)

Given p ∈ PI and q ∈ PJ , the adjunctions

∃f(p) ≤ q iff p ≤ Pf(q)

q ≤ ∀f(p) iff Pf(q) ≤ p

represent the logical equivalences

(∀y : J)[(∃x : I)(f(x) = y ∧ p(x)) ⇒ q(y)] ⇔ (∀x : I)[p(x) ⇒ q(f(x))]

(∀y : J)[q(y) ⇒ (∀x : I)(f(x) = y ⇒ p(x))] ⇔ (∀x : I)[q(f(x)) ⇒ p(x)]

Beware! Adjoints ∃f,∀f : PI → PJ are only monotonic; they are not
morphisms of HAs in general. (Intuition: ∀/∃ do not commute with ⇒)
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Triposes: some intuitions (4/7)

In the particular case where f := πI,K : I ×K → I is the first
projection, the left/right adjoints ∃πI,K ,∀πI,K : P(I ×K)→ PI
represent pure quantifications over the variable z : K

Given p ∈ P(I ×K):

∃πI,K(p) means: (∃z :K) p(x, z)

∀πI,K(p) means: (∀z :K) p(x, z)
(in context x : I)

Given p ∈ P(I ×K) and q ∈ P(I), the adjunctions

∃πI,K(p) ≤ q ⇔ p ≤ PπI,K(q)

q ≤ ∀πI,K(p) ⇔ PπI,K(q) ≤ p

represent the logical equivalences:

(∀x : I)[(∃z :K) p(x, z) ⇒ q(x)] ⇔ (∀x : I, z :K)[p(x, z) ⇒ q(x)]

(∀x : I)[q(x) ⇒ (∀z :K) p(x, z)] ⇔ (∀x : I, z :K)[q(x) ⇒ p(x, z)]
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Triposes: some intuitions (5/7)

Axiom (2) (Beck-Chevalley condition) expresses that each pullback
in Set (l.h.s.) induces two commutative squares in Pos (r.h.s.):

I
f1 //

f2

��

I1

g1

��
I2 g2

// J

⇒

PI
∃f1 // PI1

PI2

Pf2

OO

∃g2
// PJ

Pg1

OO PI
∀f1 // PI1

PI2

Pf2

OO

∀g2
// PJ

Pg1

OO

Pg1 ◦ ∃g2 = ∃f1 ◦Pf2 Pg1 ◦ ∀g2 = ∀f1 ◦Pf2

Both commutation properties (r.h.s.) are actually equivalent up to
the symmetry w.r.t. the diagonal (by exchanging indices 1 and 2 in
the initial pullback square):

Pg1 ◦ ∃g2 = ∃f1 ◦Pf2 iff Pg2 ◦ ∀g1 = ∀f2 ◦Pf1

So that in order to prove the Beck-Chevalley condition, we only need to check
that all ∃-diagrams commute, or that all ∀-diagrams commute
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Triposes: some intuitions (6/7)

When considering the pullback

I ×K
πI,K //

f×idK

��

I

f

��
J ×K

πJ,K

// J

the corresponding Beck-Chevalley condition (2)

P(I ×K)
∃πI,K // PI

P(J ×K)

P(f×idK)

OO

∃πJ,K

// PJ

Pf

OO P(I ×K)
∀πI,K // PI

P(J ×K)

P(f×idK)

OO

∀πJ,K

// PJ

Pf

OO

Pf ◦ ∃πJ,K = ∃πI,K ◦P(f × idK) Pf ◦ ∀πJ,K = ∀πI,K ◦P(f × idK)

expresses the behavior of substitution w.r.t. pure quantifications:(
(∃z :K) p(y, z)

)
[y := f(x)] ≡ (∃z :K)

(
p(y, z)[y := f(x), z := z]

)(
(∀z :K) p(y, z)

)
[y := f(x)] ≡ (∀z :K)

(
p(y, z)[y := f(x), z := z]

)
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Triposes: some intuitions (7/7)

Axiom (3) assumes the existence of a set Σ of propositions equipped
with a generic predicate tr ∈ PΣ, that allows us to turn any
functional proposition into a predicate via the map

ΣI → PI
f 7→ Pf(tr)

(I ∈ Set)

We assume that the above map is surjective, so that each predicate
p ∈ PI is represented by (at least) a functional proposition f ∈ ΣI

Remark: The generic predicate tr ∈ PΣ is never unique. Indeed:

(1) Given a generic predicate tr ∈ PΣ and a surjection h : Σ′ → Σ,
we can always construct another generic predicate tr′ ∈ PΣ′,
letting tr′ := Ph(tr) (using AC)

(2) If tr ∈ PΣ and tr′ ∈ PΣ′ are two generic predicates of the same
tripos P, then there are always two conversion maps h : Σ′ → Σ
and h′ : Σ→ Σ′ such that tr′ = Ph(tr) and tr = Ph′(tr)
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Set-based triposes (recall)

Definition (Set-based tripos)

A (Set-based) tripos is a contravariant functor P : Setop → HA such that:

(1) For each map f : I → J (in Set), the corresponding map Pf : PJ → PI
(in HA) has left & right adjoints ∃f,∀f : PI → PJ (in Pos)

(2) Beck-Chevalley condition: Each pullback square in Set (on the l.h.s.)
induces the following two commutative squares in Pos (on the r.h.s.):

I
f1 //

f2

��

I1

g1

��
I2 g2

// J

⇒

PI
∃f1 // PI1

PI2

Pf2

OO

∃g2
// PJ

Pg1

OO PI
∀f1 // PI1

PI2

Pf2

OO

∀g2
// PJ

Pg1

OO

(3) The functor P : Setop → HA has a generic predicate trΣ ∈ PΣ (for some
set Σ), i.e. such that for all sets I, the following map is surjective:

ΣI → PI
σ 7→ Pσ(trΣ)
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Isomorphism of (Set-based) triposes

Definition (Isomorphism of triposes)

Two triposes P,P′ : Setop → HA are isomorphic when there is a
natural isomorphism φ : P⇒ P′, i.e. a family of isos φI : PI → P′I
(I ∈ Set) such that the following diagram commutes

PI
φI

∼
// P′I

PJ

Pf

OO

φJ

∼ // P′J

P′f

OO

for all maps

I

f

��
J

The notion of iso can be taken indifferently in HA or in Pos, since
a map φI : PI → P′I is an iso in HA iff it is an iso in Pos

There is no need to take care about generic predicates!

Reason: A natural iso will automatically map any generic predicate
of P to a generic predicate of P′
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Example 1: The powerset tripos

Theorem (Powerset tripos)

The functor P : Setop → HA defined by:

PI := P(I) (powerset)

Pf : PJ → PI := (p 7→ f−1(p))

(for each set I)

(for each map f : I → J)

is a (Set-based) tripos

For each f : I → J , the adjoints ∃f, ∀f : PI → PJ are given by:

∃f(p) := {y ∈ J | ∃x ∈ f−1(y), x ∈ p}
= {y ∈ J | f−1(y) ∩ p inhabited} = f(p)

∀f(p) := {y ∈ J | ∀x ∈ f−1(y), x ∈ p}
= {y ∈ J | f−1(y) ⊆ p}

(p ∈ P(I))

Generic predicate: Σ := P({•}) (∼=LK {0, 1})
trΣ := {{•}} ∈ P(Σ)
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Example 2: Localic triposes

Theorem (Localic tripos)

Given a complete Heyting algebra H (also known as a locale), the
functor P : Setop → HA defined by:

PI := HI

Pf : PJ → PI := (p 7→ p ◦ f)

(for each set I)

(for each map f : I → J)

is a (Set-based) tripos, called a localic tripos, or a forcing tripos

For each f : I → J , the adjoints ∃f,∀f : PI → PJ are given by:

∃f(p) :=
(
j ∈ J 7→

∨
i∈f−1(j)

pi
)

∀f(p) :=
(
j ∈ J 7→

∧
i∈f−1(j)

pi
) (p ∈ HI)

Generic predicate: Σ := H, trΣ := idH ∈ PΣ (= HH)

When H = P({•}) (∼=LK {0, 1}), we get the powerset tripos P
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Example 3: Intuitionistic realizability triposes (1/3)

Recall that:

Definition (Partial combinatory algebra)

A partial combinatory algebra (PCA) is partial applicative structure (P, ·)
containing two elements K,S ∈ P such that for all x, y, z ∈ P :

K · x · y ↓= x

S · x · y ↓
S · x · y · z ↓= (x · z) · (y · z) (whenever the rhs is defined)

Examples:

P := Λ/βη equipped with application is a (total) CA

P := N equipped with Kleene application is a PCA
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Example 3: Intuitionistic realizability triposes (2/3)

Given a partial combinatory algebra (P, · ,K,S):

For each set I, we endow P(P )I with the relation `I defined by:

(Xi)i∈I `I (Yi)i∈I iff
⋂
i∈I

(Xi → Yi) is inhabited

(writing Xi → Yi := {p ∈ P | ∀q ∈ Xi, p · q ↓∈ Yi} for Kleene’s implication)

Proposition

For each set I, the pair
(
P(P )I , `I

)
is a pre-Heyting algebra

In the pre-Heyting algebra
(
P(P )I , `I

)
:

(Xi)i∈I ∧ (Yi)i∈I =
(
{〈p, q〉 | p ∈ Xi, q ∈ Yi}

)
i∈I

(Xi)i∈I ∨ (Yi)i∈I =
(
{〈0̄, p〉 | p ∈ Xi} ∪ {〈1̄, q〉 | q ∈ Yi}

)
i∈I

(Xi)i∈I → (Yi)i∈I =
(
Xi → Yi

)
i∈I

where 〈p, q〉 := BC(CI)pq, ...
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Example 3: Intuitionistic realizability triposes (3/3)

Theorem (Intuitionistic realizability tripos)

Given a partial combinatory algebra (P, · ,K,S), the functor
P : Setop → HA defined by:

PI := Pos
(
P(P )I ,`I

)
(= poset reflection)

Pf : PJ → PI := ([(Xj)j∈J ] 7→ [(Xf(i))i∈I ])

(for each set I)

(for each f : I → J)

is a (Set-based) tripos, called an intuitionistic realizability tripos

For each f : I → J , the adjoints ∃f,∀f : PI → PJ are given by:

∃f
(
[(Xi)i∈I ]

)
:=

[(⋃
i∈f−1(j) Xi

)
j∈J

]
∀f
(
[(Xi)i∈I ]

)
:=

[(⋂
i∈f−1(j) Xi

)
j∈J

]
Generic predicate: Σ := P(P ), trΣ := [idP(P )] ∈ PΣ

When P = {•} (+ trivial app.), we get the powerset tripos P again
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From triposes to toposes

Triposes are mainly useful to construct toposes2 (= Set-like categories),
via the tripos-to-topos construction:

P 7→ Set[P]︸ ︷︷ ︸
topos induced by P

So that:

Triposes induced by HAs yield localic (= forcing) toposes

Triposes induced by PCAs yield intuitionistic realizability toposes.
Example: The effective topos [Hyland ’82]

Triposes induced by AKSs yield classical realizability toposes
[Streicher ’13]

... and triposes induced by imp. algebras yield implicative toposes
(to be studied soon :-)

2Or topoi, following the Greek etymology
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What is a topos?

Formally, an (elementary) topos is a category T with all finite limits,
exponentials and a subobject classifier

Intuitively, a topos is a category T in which:

Objects behave as types, whereas morphisms behave as functions

Objects (= types) are closed under products A×B, sums A+B,
exponentials BA (or A→ B), comprehension types {x : A | φ(x)}
and quotient types A/∼

Each topos T has a subobject classifier Ω (= type of propositions)

that induces the internal logic of T (at least intuitionistic)

Most toposes have a natural numbers object N (including all Set[P])

Topos = Set-like category in which one can formalize all
elementary mathematics (at least intuitionistically)
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Implicative algebras (recall)

Definition (Implicative structures & algebras)

1 An implicative structure is a complete lattice (A ,4) equipped with
a binary operation (→) : A 2 → A such that:

(1) If a′ 4 a and b 4 b′, then (a→ b) 4 (a′ → b′)

(2) For all a ∈ A and B ⊆ A , we have: a→
k

b∈B

b =
k

b∈B

(a→ b)

2 A separator of (A ,4,→) is a subset S ⊆ A such that:

(1) If a ∈ S and a 4 a′, then a′ ∈ S

(2)
c
a,b∈A (a→ b→ c) (= KA ) ∈ S and

c
a,b,c∈A ((a→ b→ c)→ (a→ b)→ a→ c) (= SA ) ∈ S

(3) If (a→ b) ∈ S and a ∈ S, then b ∈ S

3 An implicative algebra is an implicative structure (A ,4,→)
together with a separator S ⊆ A
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Product of a family of implicative structures (1/2)

Given a family of implicative structures (Ai)i∈I = (Ai,4i,→i)i∈I

The product A =
∏
i∈I Ai of the family (Ai)i∈I = (Ai,4i,→i)i∈I

is clearly an implicative structure, where:

(ai)i∈I 4 (bi)i∈I :≡ ∀i ∈ I, ai 4i bi
(ai)i∈I → (bi)i∈I := (ai →i bi)i∈I

(product ordering)

(componentwise)

Proposition (Properties of the product implicative structure
∏
i∈I Ai)

In the product A =
∏
i∈I Ai, we have:

1 ab = (aibi)i∈I for all a, b ∈ A

2 (t)A =
(
(t)Ai

)
i∈I for all closed λ-terms t

3 SA =
(
SAi

)
i∈I KA =

(
KAi

)
i∈I ccA =

(
ccAi

)
i∈I etc.

4 a× b = (ai × bi)i∈I , a+ b = (ai + bi)i∈I for all a, b ∈ A
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Product of a family of implicative structures (2/2)

Given a family of implicative structures (Ai)i∈I = (Ai,4i,→i)i∈I

The product S =
∏
i∈I Si of a family of separators (Si ⊆ Ai)i∈I is

clearly a separator of the product A =
∏
i∈I Ai

Moreover: a `S b iff ∀i ∈ I, ai `Si
bi (for all a, b ∈ A )

Proposition (Factorization of the quotient)

A /S =
(∏
i∈I

Ai

) / (∏
i∈I

Si

)
∼=
∏
i∈I

(Ai/Si) (iso. in HA)

Beware! We only have the inclusions

S0(A ) ⊆
∏
i∈I

S0(Ai) (intuitionistic core)

S0
K(A ) ⊆

∏
i∈I

S0
K(Ai) (classical core)



Intro The notion of tripos Examples The implicative tripos ... and its properties Conclusion

Power of an implicative structure

Given an implicative structure A = (A ,4,→) and a set I, we write

A I := (A I ,4I ,→I) :=
∏
i∈I A (power implicative structure)

Each separator S ⊆ A induces two separators in A I :

The power separator SI :=
∏
i∈I S ⊆ A I ,

for which we have: A I/SI ∼= (A /S)I

The uniform power separator S[I] ⊆ SI ⊆ A I defined by:

S[I] :=
{

(ai)i∈I ∈ A I | (∃s∈S)(∀i∈ I) s 4 ai
}

= ↑δ(S)

where ↑δ(S) is the upwards closure (in A I) of the image of S through the
canonical map δ : A → A I defined by δ(a) := (i 7→ a) ∈ A I for all a ∈ A

In general, the inclusion S[I] ⊆ SI is strict!
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Properties of the uniform power separator

Let A = (A ,4,→) be an implicative structure, and I a set.

Each separator S ⊆ A induces a uniform power separator S[I] ⊆ A I

Proposition (Entailment w.r.t. S[I])

For all families a = (ai)i∈I , b = (bi)i∈I ∈ A I , we have:

a `S[I] b ⇔ (a→ b) ∈ S[I] ⇔
k

i∈I
(ai → bi) ∈ S

a a`S[I] b ⇔ (a↔ b) ∈ S[I] ⇔
k

i∈I
(ai ↔ bi) ∈ S

Recall that a↔ b := (a→ b)× (b→ a) (in any implicative structure)

We can also notice that:

S0(A I) = S0(A )[I] ⊆
(
S0(A )

)I
(intuitionistic core of A I)

S0
K(A I) = S0

K(A )[I] ⊆
(
S0
K(A )

)I
(classical core of A I)



Intro The notion of tripos Examples The implicative tripos ... and its properties Conclusion

Tripos associated to an implicative algebra (1/2)

Let (A , S) = (A ,4,→, S) be an implicative algebra

For each set I, we let PI := A I/S[I]

The poset (PI, ≤S[I]) is a Heyting algebra, where:

[a]→ [b] = [(ai → bi)i∈I ]

[a] ∧ [b] = [(ai × bi)i∈I ] > = [(>)i∈I ]

[a] ∨ [b] = [(ai + bi)i∈I ] ⊥ = [(⊥)i∈I ]

The correspondence I 7→ PI is functorial:

Each f : I → J induces a substitution map Pf : PJ → PI:

Pf([(aj)j∈J ]) := [(af(i))i∈I ] ∈ PI

The map Pf : PJ → PI is a morphism of Heyting algebras

P idI = idP(I) and P(g ◦ f) = Pf ◦Pg (contravariance)

Therefore: P : Setop → HA is a (contravariant) functor
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Tripos associated to an implicative algebra (2/2)

Theorem (Associated tripos)

The functor P : Setop → HA induced by (A , S) is a tripos

Each substitution map Pf : PJ → PI has both left and right
adjoints ∃f, ∀f : PI → PJ :

∃f
(
[(ai)i∈I ]

)
:=

[(
∃i∈f−1(j) ai

)
j∈J

]
∈ PJ

∀f
(
[(ai)i∈I ]

)
:=

[(
∀i∈f−1(j) ai

)
j∈J

]
∈ PJ

(+ satisfies the Beck-Chevalley condition)

There is a propositional object Σ ∈ Set
together with a generic predicate tr ∈ PΣ:

Σ := A tr := [idA ] ∈ PΣ
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To sum up...

The above construction encompasses many well-known tripos
constructions:

Forcing triposes, which correspond to the case where (A ,4,→) is a
complete Heyting/Boolean algebra, and S = {>} (i.e. no quotient)

Triposes induced by (total) combinatory algebras... (int. realizability)

... and even by partial combinatory algebras, via some completion trick

Triposes induced by abstract Krivine structures (class. realizability)

As for any tripos, each implicative tripos can be turned into a topos
via the standard tripos-to-topos construction

Question: What do implicative triposes bring new w.r.t.

Forcing triposes (intuitionistic or classical)?

Intuitionistic realizability triposes?

Classical realizability triposes?
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The fundamental diagram (1/3)

Given an implicative algebra A = (A ,4,→, S) and a set I,
the separator S ⊆ A induces two separators in A I :

The power separator SI ⊆ A I

The uniform power separator S[I] ⊆ SI ⊆ A I defined by:

S[I] :=
{

(ai)i∈I ∈ A I : (∃s∈S)(∀i∈ I) s 4 ai
}

We thus get the following (commutative) diagram: (in Set/HA)

A I
[·]/S[I] // //

[·]/SI

����

A I/S[I] = PI

ĩd

{{{{

ρI

����

[(ai)i∈I ]/S[I]_

��
A I/SI

αI

∼ // // (A /S)I = (P1)I ([ai]/S)i∈I
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The fundamental diagram (2/3)

A I
[·]/S[I] // //

[·]/SI

����

A I/S[I] = PI

ĩd

{{{{

ρI

����

[(ai)i∈I ]/S[I]_

��
A I/SI

αI

∼ // // (A /S)I = (P1)I ([ai]/S)i∈I

Proposition

The following are equivalent:

(1) The map ρI : (A I/S[I])→ (A /S)I is injective

(2) The map ρI : (A I/S[I])→ (A /S)I is an isomorphism (of HAs)

(3) S[I] = SI

(4) The separator S ⊆ A is closed under all I-indexed meets.
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The fundamental diagram (3/3)

A I
[·]/S[I] // //

[·]/SI

����

A I/S[I] = PI

ĩd

{{{{

ρI

����

[(ai)i∈I ]/S[I]_

��
A I/SI

αI

∼ // // (A /S)I = (P1)I ([ai]/S)i∈I

Proof.

Recall that in HA, a morphism is an iso if and only if it is bijective. Since ρ is
surjective and αI is an iso, it is clear that:

(1) ρ injective ⇔ (2) ρ iso. ⇔ ĩd iso. ⇔ (3) S[I] = SI

(3)⇒ (4) Let (ai)i∈I ∈ SI . Since SI = S[I] (by (3)), there is s ∈ S such
that s 4 ai for all i ∈ I. Hence s 4

c
i∈I ai ∈ S.

(4)⇒ (3) Let (ai)i∈I ∈ SI . By (4), we have that s :=
c
i∈I ai ∈ S. Since

s 4 ai for all i ∈ I, we get (ai)i∈I ∈ S[I]. Therefore: SI = S[I].
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Forcing triposes (recall)

Proposition and definition (Forcing triposes)

Given a complete Heyting (or Boolean) algebra H:

1 The functor P := H(–) : Setop → HA is a tripos

2 For all I, J ∈ Set, f : I → J :

PI := HI is a complete HA

Pf : PJ → PI is a morphism of complete HAs

3 Σ := H and tr := idH (generic predicate)

Such a tripos is called a forcing tripos

Forcing triposes are the ones underlying Kripke (or Cohen) forcing

Each forcing tripos (induced by H) can be seen as an implicative
tripos, constructed from the implicative algebra

(A ,4,→, S) := (H,≤H ,→H , {>H})
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Isomorphism of triposes

Definition (Isomorphism of triposes)

Two triposes P,P′ : Setop → HA are isomorphic when there is a
natural isomorphism β : P⇒ P′ (in the category HA):

I

f

��

PI
βI

∼
// P′I

J PJ

Pf

OO

βJ

∼ // P′J

P′(f)

OO

We have seen that each Heyting tripos is isomorphic to a particular
implicative tripos, taking (A ,4,→, S) := (H,≤H ,→H , {>})

But more generally, what are the implicative triposes that are
isomorphic to a forcing tripos?
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Characterizing forcing triposes (1/4)

Theorem

Let P : Setop → HA be the tripos induced by an implicative algebra
(A ,4,→, S). Then the following are equivalent:

(1) The tripos P is isomorphic to a forcing tripos

(2) The separator S ⊆ A is a principal filter of A

(3) The separator S ⊆ A is finitely generated and tA ∈ S

Remark: These conditions do not imply that (A ,4,→) is a Heyting algebra!
Counter-example: Krivine realizability with an instruction t (in the separator)

Proof.

We have already seen that (3) ⇔ (2), in a previous talk

So it remains to prove that (1) ⇒ (2) and (2) ⇒ (1) (...)
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Characterizing forcing triposes (2/4)

Proof (continued).

(2) ⇒ (1) When S ⊆ A is a principal filter of A , we have seen that
H := A /S is a complete Heyting algebra. Moreover, since S is closed under
arbitrary meets, we have S[I] = SI for all sets I. Therefore the arrow ρI of
the fundamental diagram

A I
[·]/S[I] // //

[·]
/SI

����

A I/S[I] = PI

ĩd

∼

{{{{

ρI∼

����
A I/SI

αI

∼ // // (A /S)I = HI

is an isomorphism of (complete) Heyting algebras for all sets I. It is also clearly
natural in I, hence we can take βI := ρI . (...)
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Characterizing forcing triposes (3/4)

Proof (continued).

(1) ⇒ (2) Assume that there is a natural isomorphism βI : PI →̃HI (in I) for
some complete Heyting algebra H. In particular, we have β1 : P1 →̃H1 = H,
so that A /S = P1 ∼= H is a complete HA.

Now, fix a set I, and write ci := {0 7→ i} : 1→ I for each i ∈ I.

Via the two (contravariant) functors P, H(–) : Setop → HA, we easily check
that the arrow ci : 1→ I is mapped to:

and

Pci = ρi : A I/S[I]→ A /S

H(ci) = πi : HI → H

where:

ρi is the ith component of the surjection ρI : A I/S[I]� (A /S)I

of the fundamental diagram, given by: ρi([a]/S[I]) = [ai]/S

πi is the ith projection from HI to H (...)
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Characterizing forcing triposes (4/4)

Proof (continued).

(1) ⇒ (2) (continued) We get the following commutative diagrams:

1

ci

��

A /S
β1

∼
// H

I A I/S[I]

Pci=ρi

OO

βI

∼ // HI

πi=H
(ci)

OO (A /S)I
βI
1

∼
// HI

A I/S[I]

ρI=〈ρi〉i∈I

OO

βI

∼ // HI

id=〈πi〉i∈I∼

OO

1st commutative square (for i ∈ I) comes from the naturality of β

2nd commutative square is deduced from the first one by glueing the
arrows ρi and πi for all indices i ∈ I

From the 2nd commutative square, it is clear that ρI : A I/S[I]→ (A /S)I is
an isomorphism for all sets I. Therefore, the separator S ⊆ A is closed under
arbitrary meets, which means that it is a principal filter
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Classical realizability triposes (1/2)

Definition (Abstract Krivine structure)

An abstract Krivine structure (AKS) A is given by:

2 sets Λ (A -terms), Π (A -stacks)

3 functions (@) : Λ×Λ→ Λ, (·) : Λ×Π→ Π, (k ) : Π→ Λ

3 combinators S,K, cc ∈ Λ

A subset PL ⊆ Λ (of proof-like A -terms) that contains the combinators
S,K, cc and that is closed under application (@).

A binary relation ‚ ⊆ Λ×Π (the pole) such that:

t ? u · π ∈ ‚ implies tu ? π ∈ ‚
t ? π ∈ ‚ implies K ? t · u · π ∈ ‚

tv(uv) ? π ∈ ‚ implies S ? t · u · v · π ∈ ‚
t ? kπ · π ∈ ‚ implies cc ? t · π ∈ ‚
t ? π ∈ ‚ implies kπ ? t · π′ ∈ ‚
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Classical realizability triposes (2/2)

Each abstract Krivine structure K = (Λ,Π, . . . ,PL,‚) induces a
classical implicative algebra AK = (AK,4K,→K, SK) defined by:

AK := P(Π)

a 4K b :≡ a ⊇ b
a→K b := a‚ · b (Krivine’s implication)

SK := {a ∈ A | a‚ ∩ PL 6= ∅}

Remark: AK consistent iff ⊥AK (= Π) /∈ SK
iff Π⊥ ∩ PL = ∅
iff K consistent (as an AKS)

The classical implicative algebra AK = (AK,4K,→K, SK) in turn
induces a classical implicative tripos PAK : Setop → HA, called
the classical realizability tripos induced by K [Streicher ’13]

Are all classical implicative triposes of this form?
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Universality of AKS (1/3)

Theorem (Universality of AKS)

Each classical implicative tripos PA : Setop → HA is isomorphic to
some classical realizability tripos PAK : Setop → HA (for some AKS K)

Classical implicative algebras have thus the same expressiveness as Krivine realizability

The theorem follows from the following lemma:

Lemma (Reduction of implicative algebras)

Let A = (A ,4A ,→A , SA ) and B = (B,4B,→B, SB) be two implicative
algebras. If there exists a surjective map ψ : B → A
(a reduction from B onto A ) such that

(1) ψ
(c

i∈I bi
)

=
c
i∈I ψ(bi) (for all I ∈ Set and b ∈ BI)

(2) ψ(b→B b′) = ψ(b)→A ψ(b′) (for all b, b′ ∈ B)

(3) b ∈ SB iff ψ(b) ∈ SA (for all b ∈ B)

then the corresponding triposes PA ,PB : Setop → HA are isomorphic
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Universality of AKS (2/3)

Proof of the Lemma

For each set I, write ψI : BI → A I the map defined by ψI(b) = ψ ◦ b for all b ∈ BI .
Given points b, b′ ∈ BI , we observe that:

b `SB[I] b
′ iff

c
i∈I(bi →B b′i) ∈ SB

iff ψ
(c

i∈I(bi →B b′i)
)
∈ SA

iff
c
i∈I(ψ(bi)→A ψ(b′i)) ∈ SA

iff ψI(b) `SA [I] ψ
I(b′)

From this, we deduce that:

(1) The map ψI : BI → A I is compatible with the preorders `SB[I] (on BI) and

`SA [I] (on A I), and thus factors into a monotonic map ψ̃I : PBI → PA I

through the quotients PBI = BI/SB[I] and PA I = A I/SA [I]

(2) The monotonic map ψ̃I : PBI → PA I is an embedding of partial orderings, in
the sense that p ≤ p′ iff ψ̃I(p) ≤ ψ̃I(p′) for all p, p′ ∈ PBI

Moreover, since ψ : B → A is onto, the maps ψI : BI → A I and ψ̃I : PBI → PA I
are onto as well. Therefore ψ̃I : PBI → PA I is an isomorphism in Pos, and thus an
isomorphism in HA. The naturality of ψ̃I : PBI → PA I (in I) follows from the
naturality of ψI : A I → BI (in I), which is obvious by construction
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Universality of AKS (3/3)

Proof of the Theorem

Let A = (A ,4,→, S) be a classical implicative algebra. We consider the AKS
K = (Λ,Π,@, · , k , K, S, cc,PL,‚) defined by

Λ = Π := A

a@b := ab, a · b := a→ b and ka := a→ ⊥ (for all a, b ∈ A )

K := KA , S := SA and cc := ccA

PL := S and ‚ := (4A ) = {(a, b) ∈ A 2 : a 4 b}
Clearly, the above structure K is an AKS, in which for each set β ⊆ Π (= A ),
we have β‚ = {a ∈ A : ∀b ∈ β, a 4 b} =

y{cβ} ⊆ Λ (= A )

Now, the AKS K induces the implicative algebra B = (B,4B,→B, SB) defined by:

B := P(Π) = P(A )

β 4B β′ :⇔ β ⊇ β′ (for all β, β′ ∈ B)

β →B β′ := β‚ · β′ =
{
a→ a′ : a 4

c
β, a′ ∈ β′

}
(for all β, β′ ∈ B)

SB := {β ∈ B : β‚ ∩ PL 6= ∅} =
{
β ∈ P(A ) :

c
β ∈ SA

}
We now define ψ : B → A by ψ(β) =

c
β for all β ∈ B (= P(A )). We easily check

that ψ : B → A is a reduction from B onto A . So that from the previous Lemma,
the triposes induced by the implicative algebras A and B are isomorphic
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Conclusion

Each implicative algebra A = (A ,4,→, S) induces a (Set-based)
tripos PA : Setop → HA (that can later be turned into a topos)

This construction encompasses all the tripos known so far, namely:

All localic triposes (induced by complete HAs)

All realizability triposes induced by (total) combinatory algebras

(The construction extends to the realizability triposes induced by PCAs,
using some completion trick not shown here)

All classical realizability triposes induced by AKSs

In this structure: forcing = non deterministic realizability

Classical implicative structures have the very same expressiveness as
abstract Krivine structures (with a much lighter machinery)

Question: Are all triposes implicative (up to isomorphism)?
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