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Different notions of models

o Tarski models: [¢] € {0;1}
o Interprets classical provability (correctness/completeness)
o Intuitionistic realizability: [¢] € PB(A) [Kleene'45]
o Interprets intuitionistic proofs
o Independence results in intuitionistic theories
o Definitely incompatible with classical logic
e Cohen forcing: [¢] € B(C) [Cohen’63]
o Independence results, in classical theories
(Negation of continuum hypothesis, Solovay's axiom, etc.)
o Boolean-valued models: [[Qﬁ]] eB [Scott, Solovay, Vopénkal]
o Classical realizability: [¢] € B(A.) [Krivine'94, '01, 03, '09-]

o Interprets classical proofs
o Generalizes Tarski models... and forcing!
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The categorical tradition of realizability

o Categorical logic [Lawvere, Tierney '70]

e Hyperdoctrines = models of 1st order theories
(Slogan: 3/V are left/right adjoints!)

o Modern definition of the notion of topos
(generalizes Grothendieck'’s definition)

o Categorical realizability [Hyland, Johnstone, Pitts '80]
o Major input from forcing and Boolean-valued models [Scott]
o Effective topos [Hyland]
o Notion of tripos and tripos-to-topos construction [Pitts]

o Generalization to partial combinatory algebras (PCAs)

... but incompatible with classical logic

@ What about classical realizability?
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The categorical problem

Topos Models of
(Set-like category) set theory

v

Tripos
(categorical model of HOL)

Implicative algebra

/ f \ cHA = complete Heyting algebra

HA cBA = complete Boolean algebra
C L PCA = partial combinatory algebra
(cBA) PCA OCA AKS OCA = ordered combinatory algebra
[§ A AKS = abstract Krivine structure
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Heyting algebras

Definition (Heyting algebra)

A Heyting algebra is a poset (H, <) such that:

@ H has extremal elements

1 := min(H) T := max(H)
@ Any two elements z,y € H have a meet and a join:
x Ay = inf{z,y} xVy = sup{z,y}
© Any two elements x,y € H have a relative pseudo-complement
x—y = max{z € H: (zAz) <y}
which is characterized by the adjunction
z<(x—y) <& (zAz)<y (foraIIzEH)l

In other words, a Heyting algebra is a bounded lattice with an operation
of relative pseudo-complement (a.k.a. Heyting's implication)
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Some remarks

@ In a Heyting algebra (H, <), the ordering 2 < y is characterized
from each of the three operations A, V and — by:

r<y & TANy==x

& sVy=y
& (z—-y)=T

@ Soundness: All the intuitionistic equivalences hold in any Heyting
algebra. In particular, the two distributivity laws:

xV(yNz) = (zVy A(xVz)
xAyVz) = (xAy)V(zAz)

are valid, so that every HA is also a (bounded) distributive lattice
o Completeness: The set of propositional formulas, quotiented by

intuitionistic equivalence, is itself a Heyting algebra
= Lindenbaum algebra
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Negation
@ In a Heyting algebra, negation is defined by -z := (z — 1)

This operation is (in general) not involutive: ——z # =z

@ However, we still have the following (in)equalities:
r < oo zVy < z—=y < y—
Aoy = o(zVy) eV oy < o(zAy)

But the converse inequalities do not hold in general

Proposition (Boolean algebras)

In a Heyting algebra (H, <), the following are equivalent:
Q@ 2z =2 forallze H (negation is involutive)
Q (g—=y) —x)—>2x) =T foralz,ye H (Peirce’s law)
Q (H,<X) is a Boolean algebra

@ In a Boolean algebra, all the former inequalities become equalities
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Morphisms of Heyting algebras

Definition (Morphism of Heyting algebras)

A morphism of Heyting algebras is a function F': H — H’ such that
FxAy) = F(x)AF(y) F(T) =T
F(zvy) = F(z)Vv F(y)
Flz—y) = F(z) > F(y)

for all z,y € H

@ In other words, a morphism of Heyting algebras is a morphism of
bounded lattices that also preserves Heyting's implication

@ Such a function is necessarily monotonic: 2z <y = F(x) < F(y)
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The category of Heyting algebras

@ The category of Heyting algebras (notation: HA) is the category
whose objects are the Heyting algebras and whose arrows are the
morphisms of Heyting algebras

o HA is a (non-full) sub-category of Pos (the category of posets)

@ Note that:

@ An arrow is an isomorphism in HA iff it is an isomorphism in Pos

@ Any injective morphism of HAs is also an embedding in Pos:
r<y & F(r)<F(y)

© Any bijective morphism of HAs is also an isomorphism
@ The category of Boolean algebras (notation: BA) is the full

sub-category of HA whose objects are the Boolean algebras
(Notion of morphism is the very same in BA and HA)
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Galois connections

@ A Galois connection between two posets A and B is a pair of
functions F': A — B and G : B — A such that:

F(J:) <By & x<4 G(y) (forallz € A, y € B)

@ In this situation (notation: F' 4 (), we observe that:
Q@ F: A— Band G: B— A are necessarily monotonic
@ F: A— Bis uniquely determined by G : B — A:
F(z) = min{fy € B:2 <4 G(y)} (for all z € A)
F is called the left adjoint of GG, and written F' = G,
© G : B — Ais uniquely determined by F': A — B:
G(y) = max{z € A: F(z) <p y} (for all y € B)

G is called the right adjoint of F', and written G = Fr
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Adjunction in HA

@ In what follows, we shall work mainly with arrows F' € HA(H, H')
having both adjoints, written F, Fr: H — H.

@ When they exist, F, and Fg are unique and monotonic, but in
general, they are not morphisms of HAs (only arrows in Pos)

Proposition (Functoriality)
Q If Fe HA(H,H') and G € HA(H', H") have left adjoints, then:
(GoF), = FroGy (€ Pos(H", H))

Q@ If FeHA(H,H') and G € HA(H', H") have right adjoints, then:
(GOF)R = FroGg (E POS(H",H))

@ If F e HA(H, H') is an isomorphism, then:
Fp, = Fp = F7! (€ Pos(H', H))

In particular: idr, = idr = id
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Pullbacks (1/3)

Definition (Pullback)

In a category %, a pullback of two arrows A i> C I B is
an object D equipped with arrows A =5 D T B such that:

Q fop=gogq , ,

@ For each object X with arrows A<f— X . B such that
fof/ =gog, thereis a unique arrow h : X — D such that:

poh
= qoh

—N
QU
[l
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Pullbacks (2/3)

@ The pullback (D, p, q) of two arrows A —f> C’<g— B, when it
exists, is unique up to unique isomorphism

q

D——B

p g
A C
It is written D = A x¢ B (and indicated with a “right angle” sign)

@ When C' =1 is the terminal object of ¢, the pullback of A and B
amounts to the binary product:

Ax1B = AxB

p = map : AxB—A
q = mhp : AxB—=DB
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Pullbacks (3/3)

@ In the category Set, the pullback of two arrows A —f> C I B

always exists; it is the fibered product:

AxcB = {(z,y) € AxB | f(z)=g(y)}
p = ((my)—z) : AxcB—A
q = ((z,y)—y) : AxcB—B

o Pullbacks are constructed similarly in the categories Pos (posets),
HA (Heyting algebras), Top (topological spaces), Mon (monoids),
Grp (groups), Ring (rings) and R-Mod (R-modules)

T
@ A useful pullback: The square AxC L> A

fxidcl lf

BxC———B
TB,C

is always a pullback (provided A x C' and B x C' exist)
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Set-based triposes

Definition (Set-based tripos)

A (Set-based) tripos is a contravariant functor P : Set®® — HA such that:

(1) For each map f: I — J (in Set), the corresponding map Pf : PJ — PI
(in HA) has left & right adjoints 3f,Vf : PI — PJ (in Pos)

(2) Beck-Chevalley condition: Each pullback square in Set (on the I.h.s.)
induces the following two commutative squares in Pos (on the r.h.s.):

I % L Pl s pp P pr,
le \Lgl = szT Tpgl szT Tpgl
Ig —J PIQ —— PJ PIQ — PJ

92 g2 vg2

(3) The functor P : Set°®® — HA has a generic predicate trs; € PX (for some
set X)), i.e. such that for all sets I, the following map is surjective:
£ — PI
o — Po(try)
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On the definitions of the notion of tripos

@ The above definition is the initial definition of triposes, such as
introduced in  Hyland, Johnstone, Pitts: Tripos theory (1980)

e Pitts' PhD  The Theory of Triposes (1981) generalizes the notion
of tripos in essentially two directions:

@ The category Set is replaced by an arbitrary Cartesian category 4
(intuitively: a category of ‘contexts’), and the generic predicate is
replaced by a more general membership predicate!

@ The Beck-Chevalley condition is only required for certain pullback
squares (the projection squares), and may not hold for all

@ However, all forcing/realizability /implicative triposes are triposes in
the sense of the initial definition (i.e. Set-based triposes); therefore
we shall only consider these

1Due to the fact that the Cartesian category % is not necessarily closed. But
when % is a ccc, the existence of the generic predicate is sufficient

(e}
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Triposes: some intuitions (1/7)

Intuitively, a (Set-based) tripos is a model of intuitionistic HOL, where
higher-order types are modeled by sets. In this framework:

@ The (contravariant) functor P : Set®® — HA associates to each
set I a particular Heyting algebra PI of predicates over I

o Each predicate p € PI can be viewed as an abstract
formula p(x) depending on a variable x : I. Intuitively:
p<q means: (Vz:I)(p(z)= q(x))
p=q means: (Vz:I)(p(z) < q(x))
(So that in this description, the ordering < represents inclusion whereas
equality represent extensional equality of predicates)
o P is a Heyting algebra, which means that predicates p,q € PI can
be assembled using the constructions
LT, pAg pVg p—yq

The axioms of Heyting algebras express that all the deduction rules
of intuitionistic propositional calculus are valid
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Triposes: some intuitions (2/7)

@ The correspondence I — PI is functorial: each map f: 1 — J
(in Set) induces a substitution map Pf : PJ — PI (in HA):

o Given p € PJ, the predicate P f(p) € PI represents the pre-image
of pby f:  Pf(p)="pof or “f(p)"

e Or, if we see p as a formula  p(y) (in the context y : J)
then P f(p) is the formula  p(y)[y := f(z)]  (in the context = : I)

@ The fact that Pf : PJ — PI is a morphism of HAs
expresses that substitution commutes with all connectives:

@) A a)ly == f(@)] p(f () A q(f(=x))
W) Vaw)ly = f(@)] p(f () vV q(f(=x))
() = aW)ly == f(2)] p(f(z)) = q(f(x))

o Identities Pidx = idp(x) and P(go f) =PfoPg express that
the operation of substitution (or pre-image) is contravariant
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Triposes: some intuitions (3/7)

@ Axiom (1) expresses that for each map f: I — J (in Set), the map
Pf:PJ — PI (in HA) has left/right adjoints 3f,Vf : PI = PJ
(in Pos), representing 3/V-quantifications along f : I — J:

o Givenp e PI:
3f(p) means:  (3x: D)(f(x) =y Ap())
Vf(p) means:  (Va:I)(f(z) =y = p(z))
o Given p € PI and ¢ € PJ, the adjunctions
fp) <q iff p<Pflq)
q<Vf(p) iff  Pf(g)<p
represent the logical equivalences

(Vy: NGz : D(f(@) =y Ap(@) = qy)] & z:DpE) = of(2))
Vy: Nlaly) = (Vo:(f(x) =y =p)] < (z:Dg(f(z) = p()]

(in context y : J)

@ Beware! Adjoints 3f,Vf:PI — PJ are only monotonic; they are not
morphisms of HAs in general. (Intuition: V/3 do not commute with =)
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Triposes: some intuitions (4/7)
@ In the particular case where f := 7y @ I x K — I s the first

projection, the left/right adjoints 3m; i, Vrr x : P(I x K) — PI
represent pure quantifications over the variable z : K
o Given p € P(I x K):
Inr,k(p) means:  (3z: K)p(z,z2)

i text x : [
Vrr,k(p) means: (Vz:K)p(z,z2) (in context x : I)

e Given p € P(I x K) and q € P(I), the adjunctions
Itk(p) < ¢ & p < Prrk(q)
q < Vrrx(p) © Prrr(e) < p
represent the logical equivalences:

(Vz:1)[(Fz: K)p(z,2) = q(z)] < (z:1I, z:K)[p(z,z) = q(z)]
(Vz:D)[g(z) = (Vz:K)p(z,z)] < (z:1I, z:K)[g(z) = p(z,2)]
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Triposes: some intuitions (5/7)

@ Axiom (2) (Beck-Chevalley condition) expresses that each pullback
in Set (I.h.s.) induces two commutative squares in Pos (r.h.s.):

I pr L pr, pr . pr,

_
le J/gl = PfZT Tpgl szT Tpm

I — P, ——PJ P, ——PJ
g2 3g2 Vg2

Pgio3dg2 =3f10oPf2 PgioVge =VfioPf2

@ Both commutation properties (r.h.s.) are actually equivalent up to
the symmetry w.r.t. the diagonal (by exchanging indices 1 and 2 in
the initial pullback square):

Pgi0dg, =3f1 0P fo iff PgyoVg =VfooPfy

So that in order to prove the Beck-Chevalley condition, we only need to check
that all 3-diagrams commute, or that all V-diagrams commute
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Triposes: some intuitions (6/7)
IxK % I
@ When considering the pullback fxidxl lf

the corresponding Beck-Chevalley condition (2)

VYV
P(I x K) —*. pT P(Ix K)—"-~PJ
P(fxidK)T TPf P(indK)T Tpf
P(Jx K)——=PJ P(JxK)——PJ
aﬂ"]’K Vﬂ'J,K
Pfodn; g =3k o P(f xidk) PfoVnyx =Vrr g o P(f X idk)

expresses the behavior of substitution w.r.t. pure quantifications:

(F:K)p(y,2)ly:=f)] = (@Fz:K)(ply,2)[y := f(z), 2 :=z])
((Vz2: K) p(y, 2)) [y = f(=)] (Vz: K)(p(y, 2)[y = f(z), z := 2])
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Triposes: some intuitions (7/7)

@ Axiom (3) assumes the existence of a set ¥ of propositions equipped
with a generic predicate tr € PX, that allows us to turn any
functional proposition into a predicate via the map

> 5 PI
f = Pf(tr)

We assume that the above map is surjective, so that each predicate
p € PI is represented by (at least) a functional proposition f € X!

(I € Set)

@ Remark: The generic predicate tr € P is never unique. Indeed:

(1) Given a generic predicate tr € PY and a surjection h: ¥/ — 3,
we can always construct another generic predicate tr' € PY/,
letting tr’ := Ph(tr) (using AC)

(2) If tr e PY and tr € PY’ are two generic predicates of the same
tripos P, then there are always two conversion maps h: %' — %
and h': X — 3 suchthat tr' = Ph(tr) and tr = Ph/(tr)
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Set-based triposes (recall)

Definition (Set-based tripos)

A (Set-based) tripos is a contravariant functor P : Set®® — HA such that:

(1) For each map f: I — J (in Set), the corresponding map Pf : PJ — PI
(in HA) has left & right adjoints 3f,Vf : PI — PJ (in Pos)

(2) Beck-Chevalley condition: Each pullback square in Set (on the I.h.s.)
induces the following two commutative squares in Pos (on the r.h.s.):

I % L Pl s pp ) QEALEN Y
le \Lgl = szT Tpgl szT Tpgl
Ig —J PIQ —— PJ PIQ — PJ

g2 g2 vg2

(3) The functor P : Set°®® — HA has a generic predicate trs; € PX (for some
set X)), i.e. such that for all sets I, the following map is surjective:
£ — PI
o — Po(try)
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Isomorphism of (Set-based) triposes

Definition (Isomorphism of triposes)

Two triposes P, P’ : Set®® — HA are isomorphic when there is a
natural isomorphism ¢ : P = P’, i.e. a family of isos ¢; : PI — P'I
(I € Set) such that the following diagram commutes

Pl P

I
PfT TP’f for all maps fJ/
PJTN>P’J J

J

@ The notion of iso can be taken indifferently in HA or in Pos, since
amap ¢r : PI — P’I is aniso in HA iff it is an iso in Pos

@ There is no need to take care about generic predicates!

Reason: A natural iso will automatically map any generic predicate
of P to a generic predicate of P’
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Example 1: The powerset tripos

Theorem (Powerset tripos)
The functor P : Set°® — HA defined by:

PBI := P() (powerset) (for each set I)
Bf : BJ =PI = (p— fp) (for each map f: I — J)

is a (Set-based) tripos

@ For each f: I — J, the adjoints 3f,Vf : PI — PJ are given by:

3fp) = {yeJ | Jxef(y), vep}
= {yeJ | f'(y)Np inhabited} = f(p)

Vip) = {yeJ | Yoe f ' (y), = €p}
= {yeJ | f'(y) Cp}

(p € ()

@ Generic predicate: Y = P{e}) (=k {0,1})
trs = {{e}} € P(X)
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Example 2: Localic triposes

Theorem (Localic tripos)

Given a complete Heyting algebra H (also known as a locale), the
functor P : Set°® — HA defined by:

PI = H! (for each set I)
Pf :PJ—PI = (p—=pof) (for each map f: I — J)

is a (Set-based) tripos, called a localic tripos, or a forcing tripos

@ For each f: I — J, the adjoints 3f,Vf : PI — PJ are given by:
) = (ies = \/p)

ief=1(j)

(peH")
Vi) = (1€ = Am)
i€f=1(j)
@ Generic predicate: ¥ = H, try = idu € PY (= H")

@ When H = P({e}) (=« {0,1}), we get the powerset tripos
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Example 3: Intuitionistic realizability triposes (1/3)
Recall that:

Definition (Partial combinatory algebra)

A partial combinatory algebra (PCA) is partial applicative structure (P, )
containing two elements K, S € P such that for all z,y, z € P:

K-zy |l=2
S-z-y |
S-z-y-2 = (z-2) (y-2) (whenever the rhs is defined)
Examples:

e P:=A/fBn equipped with application is a (total) CA

@ P :=IN equipped with Kleene application is a PCA
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Example 3: Intuitionistic realizability triposes (2/3)

Given a partial combinatory algebra (P, -, K, S):
@ For each set I, we endow B(P)’ with the relation 7 defined by:

(Xi)ier Fr (Ya)ier iff m(XZ —Y;) is inhabited
iel
(writing X; =Y, := {p€ P |Vq€ X;, p-qleY;} for Kleene's implication)
Proposition

For each set I, the pair (‘B(P)I, I—I) is a pre-Heyting algebra

o In the pre-Heyting algebra (BP(P)’, +;):
(Xi)ier A (Y)ier {(pa) | pe Xi, geVi}),,
(Xi)ier V (Yi)ier = ({{0,p) |pe X} U{(l,q) [g€Yi}),,
(Xi)ier = Yo)ier = (Xi—

where (p, ¢) := BC(CI)pq

)161
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Example 3: Intuitionistic realizability triposes (3/3)

Theorem (Intuitionistic realizability tripos)

Given a partial combinatory algebra (P, -, K,S), the functor
P : Set®® — HA defined by:

PI := Pos(P(P)', 1) (= poset reflection) (for each set I)
Pf : PJ =PI := ([(Xj)jes] = [(Xfau))ier]) (foreach f:1— J)

is a (Set-based) tripos, called an intuitionistic realizability tripos

@ For each f: I — J, the adjoints Af,Vf : PI — PJ are given by:
If((Xi)ier]) = [(Uief*l(j) Xi)jej]
Vi([(Xi)ier]) = [(ﬂief*l(j) Xi)jEJ]

@ Generic predicate: Y = P(P), trs = [idpp)] € PX

@ When P = {e} (+ trivial app.), we get the powerset tripos 3 again
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From triposes to toposes

Triposes are mainly useful to construct toposes? (= Set-like categories),
via the tripos-to-topos construction:

P —  Set[P]
——
topos induced by P

So that:
@ Triposes induced by HAs yield localic (= forcing) toposes

@ Triposes induced by PCAs yield intuitionistic realizability toposes.
Example: The effective topos [Hyland '82]

@ Triposes induced by AKSs yield classical realizability toposes
[Streicher '13]

@ ... and triposes induced by imp. algebras yield implicative toposes
(to be studied soon :-)

20r topoi, following the Greek etymology
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What is a topos?

Formally, an (elementary) topos is a category & with all finite limits,
exponentials and a subobject classifier

Intuitively, a topos is a category .7 in which:
@ Objects behave as types, whereas morphisms behave as functions

@ Objects (= types) are closed under products A x B, sums A + B,
exponentials B4 (or A — B), comprehension types {x : A | ¢(z)}
and quotient types A/~

@ Each topos .7 has a subobject classifier 2 (= type of propositions)
that induces the internal logic of (at least intuitionistic)

@ Most toposes have a natural numbers object IN  (including all Set[P])

Topos = Set-like category in which one can formalize all
elementary mathematics (at least intuitionistically)

J
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Implicative algebras (recall)

Definition (Implicative structures & algebras)

@ An implicative structure is a complete lattice (<7, <) equipped with
a binary operation (=) : &2 — &/ such that:

(1) Ifa’ < aand b<b', then (a—b) < (a =)

(2) Foralla€ o and BC o/, we have: a— \b = A (a—b)
beB beB

@ A separator of (&7, <,—) is a subset S C &/ such that:
(1) fae Sand a=d thend' €S

(2) Aopew(@a—=b—c) (=K7) € S and
Aa,b,ced((a%béc)ﬁ(a*)b)*)a*)c) (: Sd) E S

(3) If (a—b)eSandacsS, thenbe S

@ An implicative algebra is an implicative structure (&, <, —)
together with a separator S C &/

Conclusion
(e}
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Product of a family of implicative structures (1/2)
Given a family of implicative structures (2% );cr = (9, =i, —>i)ier

o The product & = [],.; # of the family (#)icr = (H, i, —i)icr
is clearly an implicative structure, where:

(ai)ier < (bi)ier = Vi€l a; <ib; (product ordering)

(ai)ier = (bi)icr = (a; =4 bi)ier (componentwise)

Proposition (Properties of the product implicative structure [, ; <%)

In the product &7 = [[,.; %, we have:
Q ab = (aibi)ier for all a,b € &7
Q ” = ((t)di)iel for all closed A-terms t
5 o _ (yest; o _ [ at;
e Sd = (Sd )z'eI K™ = (K )ieI w = (CC )ie[ etc.
Q aXb:(aixl)i)ieI, a-l—b:(ai—i—bi)iez for all a,b € &
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Product of a family of implicative structures (2/2)

Given a family of implicative structures (2% );cr = (9, =i, —>i)ier

@ The product S = [],.; S; of a family of separators (S; C A)ier is

clearly a separator of the product & = [[,.; %

@ Moreover: akgb iff Viel, a;Fg, b; (for all a,b € &)

Proposition (Factorization of the quotient)

]S = (Hm)/(ﬂs) = Hyi/S) (iso. in HA)

o Beware! We only have the inclusions
SO(e) C HSO(M) (intuitionistic core)
iel

H SY () (classical core)

iel

S ()

N
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Power of an implicative structure

Given an implicative structure & = (&7, <, —) and a set I, we write
gt = (NS = L o (power implicative structure)
Each separator S C .7 induces two separators in .o7':
@ The power separator S’ = [[,.;8 € &7,
for which we have: A1)t = (o )8)!

@ The uniform power separator S[I] C ST C & defined by:

S = {(a)ier € ZT | 3seS)(Viel)s<a;} = 15(5)

where 16(S) is the upwards closure (in /1) of the image of S through the
canonical map ¢ : &/ — /! defined by §(a) := (i — a) € &I for all a € o7

o In general, the inclusion S[I] C ST s strict!
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Properties of the uniform power separator

Let o = (o, <, —) be an implicative structure, and I a set.
Each separator S C .« induces a uniform power separator S[I] C .o/1

Proposition (Entailment w.r.t. S[I])

For all families a = (a;)icr, b= (bi)ier € <71, we have:

atspbd & (a—=b)eS[I & A(a—b)eS

Conclusion
(e}

i€l
adspb & (aeb) eSS & A(@ob)eS
i€l
Recall that a <+ b := (a — b) X (b — a) (in any implicative structure)
We can also notice that:
e %"y = S| C (SO(%))I (intuitionistic core of &7T)

I

o Sk(a") = Sk(a)] C (Sk(o))

(classical core of &7)
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Tripos associated to an implicative algebra (1/2)

Let («7,S5) = (#,=,—,S) be an implicative algebra
For each set I, we let PI := &/1/S[I]

@ The poset (PI, <g() is a Heyting algebra, where:

[a] = [b] = [(a:i — bs)ier]
[a] A 6] = [(a; X bs)ier] T = [(Miei]
[a] Vo] = [(a; + bs)ier] 1L = [(Lier]

@ The correspondence I +— PI is functorial:
e Each f: I — J induces a substitution map Pf : PJ — P1I:

Pf([(aj)jes]) = [(as@))ict] € PI |

o The map Pf : PJ — PI is a morphism of Heyting algebras
o Pid; =idp(;y and P(gof)=PfoPy (contravariance)

Therefore: P : Set®® — HA s a (contravariant) functor



The implicative tripos ... and its properties Conclusion
000000000000 000 (e}

Examples
000000080

The notion of tripos
00000000

Intro
0000000000000 0O00000000

0000

Tripos associated to an implicative algebra

Theorem (Associated tripos)
The functor P : Set®® — HA induced by (&7, S) is a tripos

@ Each substitution map Pf: PJ — PI has both left and right
f,vf:PI - PJ:

adjoints
3f([(ai)ier]) = [(Elieffl(j)c”)je]} € PJ

Vf([(a:)ier]) := [(ViEf‘l(j)ai)jeJ} € P/

(+ satisfies the Beck-Chevalley condition)

@ There is a propositional object ¥ € Set

together with a generic predicate tr € PX:
Y =4 tr := [idy] € PX )
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@ The above construction encompasses many well-known tripos
constructions:

e Forcing triposes, which correspond to the case where (&7, <, —) is a
complete Heyting/Boolean algebra, and S = {T}  (i.e. no quotient)

o Triposes induced by (total) combinatory algebras...  (int. realizability)
. and even by partial combinatory algebras, via some completion trick

o Triposes induced by abstract Krivine structures (class. realizability)

@ As for any tripos, each implicative tripos can be turned into a topos
via the standard tripos-to-topos construction

@ Question: What do implicative triposes bring new w.r.t.
e Forcing triposes (intuitionistic or classical)?
o Intuitionistic realizability triposes?

o Classical realizability triposes?
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The fundamental diagram (1/3)

Given an implicative algebra & = (&, <, —,5) and a set I,
the separator S C .27 induces two separators in .o7':

@ The power separator ST C o7/
@ The uniform power separator S[I] € ST C /! defined by:
S = {(ai)icr € @' : (3s€S)(Viel)s < a;}

We thus get the following (commutative) diagram: (in Set/HA)
[
o’ e 2T/S[I] = PI [(ai)ier]/sin
[1)st ” pr
id

A8 ——= (o /8) = (P1)' (lails)ies
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The fundamental diagram (2/3)

[']/S[I]

s F'/S[I] =PI [(ai)ier] /s
[']/sI . PI
id
a1/8t (/8" = (P1)! ([a:]/s)ier

Proposition

The following are equivalent:

(1) The map py: (1/S[I]) — (//S)! s injective
(2) The map pr: (1/S[I]) = (//S)! s an isomorphism (of HAs)
(3) Sl] =
(4)

4) The separator S C &7 is closed under all I-indexed meets.
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The fundamental diagram (3/3)

(/s

o a1/S[I] =PI [(ai)ier]/sin

H/SI PI

id

' /8! ; (7 /S)" = (P1)! ([ails)ier

I

Proof.

@ Recall that in HA, a morphism is an iso if and only if it is bijective. Since p is
surjective and ag is an iso, it is clear that:

(1) pinjective <« (2) piso. < idiso. < (3) S[] =S
@ (3) = (4) Let (a;)ier € ST. Since ST = S[I] (by (3)), there is s € S such
that s < a; for all ¢ € I. Hence s < Aigai cs.

@ (4) = (3) Let (a;)ier € ST. By (4), we have that s := ANier @i € S. Since
s < a; forall i € I, we get (a;);er € S[I]. Therefore: ST = S[I]. O

v
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Forcing triposes (recall)

Proposition and definition (Forcing triposes)

Given a complete Heyting (or Boolean) algebra H:
@ The functor P := HO) : Set® — HA is a tripos

@ Forall I,J eSet, f:I—J:

o PI := H! isa complete HA
o Pf : PJ— PI isa morphism of complete HAs

Q@ X (= H and tr := idg (generic predicate)

Such a tripos is called a forcing tripos

e Forcing triposes are the ones underlying Kripke (or Cohen) forcing

e Each forcing tripos (induced by H) can be seen as an implicative
tripos, constructed from the implicative algebra

(f%7<7_>75) = (H3§H7_>H7{TH})
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Definition (Isomorphism of triposes)

Two triposes P, P’ : Set®® — HA are isomorphic when there is a
natural isomorphism 3 : P = P’ (in the category HA):

I PI ——P'I
fl PfT Tpl(f)
J PJ—=P'J
B

@ We have seen that each Heyting tripos is isomorphic to a particular
implicative tripos, taking («7,<,—,S) = (H,<g,—u,{T})

@ But more generally, what are the implicative triposes that are
isomorphic to a forcing tripos?
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Characterizing forcing triposes (1/4)

Theorem

Let P : Set®® — HA be the tripos induced by an implicative algebra
(#,<,—,S). Then the following are equivalent:

(1) The tripos P is isomorphic to a forcing tripos
(2
(3

The separator S C & is a principal filter of .o/

)
)

The separator S C .7 is finitely generated and h? €

Remark: These conditions do not imply that (7, <, —) is a Heyting algebra!
Counter-example: Krivine realizability with an instruction M (in the separator)

@ We have already seen that (3) < (2), in a previous talk
@ So it remains to prove that (1) = (2) and (2) = (1) (...)
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Characterizing forcing triposes

Proof (continued).

Conclusion
(e}

(2/4)

@ (2) = (1) When S C & is a principal filter of </, we have seen that
H := &//S is a complete Heyting algebra. Moreover, since S is closed under
arbitrary meets, we have S[I] = ST for all sets I. Therefore the arrow p; of
the fundamental diagram

[
P W 1/S[n) = PI
H/SI - _ ~ || o1
id
/S ——— (/S)! = H'

is an isomorphism of (complete) Heyting algebras for all sets I. It is also clearly
natural in I, hence we can take 81 := py. (..r)
y
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Characterizing forcing triposes (3/4)

Proof (continued).

@ (1) = (2) Assume that there is a natural isomorphism B; : PI = HT (in I) for
some complete Heyting algebra H. In particular, we have 31 : P1 = H'=H,
so that &/ /S = P12 H is a complete HA.

Now, fix a set I, and write ¢; :=={0+ i} :1— I foreachie€ I.

Via the two (contravariant) functors P, HO) : Set®® — HA, we easily check
that the arrow ¢; : 1 — I is mapped to:

Pc; = p; : F1/S[I] — /S
and HE) = m, « Hl - H
where:
o p; is the ith component of the surjection p; : @7’ /S[I] — (2 /S)"
of the fundamental diagram, given by: p;([a]/sin)) = [a:]/s
o m; is the ith projection from H' to H ()

v
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Characterizing forcing triposes (4/4)

Proof (continued).

@ (1) = (2) (continued) We get the following commutative diagrams:

I

5
1 P IRy (/8)] 2 s HI
i Pci—PiT Tm—H(Ci) PI_<Pi>ieIT NTid—(m%‘er
I /1/S[1) = HI o/1/S1) — H'
I I

@ 1st commutative square (for ¢ € I) comes from the naturality of 3
@ 2nd commutative square is deduced from the first one by glueing the
arrows p; and m; for all indices i € I
From the 2nd commutative square, it is clear that p; : &/ /S[I] — (&//S)! is
an isomorphism for all sets I. Therefore, the separator S C .o/ is closed under
arbitrary meets, which means that it is a principal filter O

o
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Classical realizability triposes (1/2)

Definition (Abstract Krivine structure)

An abstract Krivine structure (AKS) & is given by:
@ 2sets A (o/-terms), II (/-stacks)
@ 3 functions (@Q):AxA—A, ():AxI—-II (k):II—A
@ 3 combinators S, K,ac € A

@ A subset PL C A (of proof-like </-terms) that contains the combinators
S, K, cc and that is closed under application (@).

@ A binary relation 1L C A X IT (the pole) such that:

txu-m € 1 implies tu x e 1
txm e 1 implies Kxt-u-m e 1
to(uv) x e 1 implies Sxt-u-v-m € 1
txk, - m e 1 implies acrxt-T e 1
txm e 1 implies ky xt-7' e 1
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Classical realizability triposes (2/2)

@ Each abstract Krivine structure K = (A,II,...,PL, 1) induces a
classical implicative algebra @/ = (i, <k, —x, Sk ) defined by:

e = P(II)

a<xb = aDbd

a—b = alt-b (Krivine's implication)
Sx = {aed|alNPL#a}

@ Remark: g consistent iff L. (=1II) ¢ Sk
iff TI"NPL=o
iff JC consistent (as an AKS)

@ The classical implicative algebra /¢ = (%, <k, —k,Sxc) in turn
induces a classical implicative tripos Pg, : Set®® — HA, called
the classical realizability tripos induced by [Streicher '13]

@ Are all classical implicative triposes of this form?
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Universality of AKS (1/3)

Theorem (Universality of AKS)

Each classical implicative tripos P, : Set®® — HA s isomorphic to
some classical realizability tripos P, : Set®® — HA  (for some AKS K)

Classical implicative algebras have thus the same expressiveness as Krivine realizability

The theorem follows from the following lemma:

Lemma (Reduction of implicative algebras)

Let of = (o, <oty oz, Ser) and B = (B, <2, —z,S2) be two implicative
algebras. If there exists a surjective map ¢ : & — o/
(a reduction from 2 onto <) such that

(1) ¢(Ai€1 bi) = Aie] ¥(b;) (for all T € Set and b € BT)
(2) P(b =z b) =1p(b) =u P() (for all b, b’ € %)
(3) be Sz iff (b)) € S (for all b € )

then the corresponding triposes Py, P% : Set°®® — HA are isomorphic
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Universality of AKS (2/3)

Proof of the Lemma

For each set I, write ¢ : 1 — /1 the map defined by ¥ (b) = ob for all b € A!.
Given points b, b’ € 2!, we observe that:

b }_S_OB[I] b iff Aiel(b’i —z bfb) € Sz
iff  (Njer(bi =2 b)) € Sur
iff  Nier(@(0i) = Y1) € Ser
iff l(b) ks, ()

From this, we deduce that:

(1) The map ¢! : BT — /T is compatible with the preorders FS%[I (on #') and
Fs,, ) (on /1), and thus factors into a monotonic map b1 Pgl — Pyl
through the quotients Pl = BT /Sz[I] and Py I = /1 /S (1]

(2) The monotonic map '¢11 Pyl — Pylis an embeddmg of partial orderings, in
the sense that p < p’ iff wl( ) < wl( ') for all p,p’ € Pgl

Moreover, since ¢ : & — &/ is onto, the maps ol BT — 1 and ¢; : Pl — Py I
are onto as well. Therefore ¢y : Pzl — P,/ I is an isomorphism in Pos, and thus an

isomorphism in HA. The naturality of 1;] : Pyl — Py I (in I) follows from the
naturality of 4! : @1 — 2T (in I), which is obvious by construction O
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Universality of AKS (3/3)

Proof of the Theorem

Let o = (&, <,—,S) be a classical implicative algebra. We consider the AKS
K=(\I1,@Q, - ,k_,K,S,a,PL, 1) defined by

O A=1II:=g

@ a@b:=ab, a-b:=a—b and ki:=a— L (for all a,b € &)
e K=K, S:=S9 and cc:=cc?

@ PL:=S and 1 :=(Xu)={(a,b) € #?:a<b}

Clearly, the above structure K is an AKS, in which for each set g C II (= &),
we have L = {aea : WbeB, axb}t = |[{AB} C A (=)

Now, the AKS K induces the implicative algebra B = (%, <%, %, Sa) defined by:
° % = P(II) = P()
@ Bz B & BDA (for all B,B" € B)
@ Bz p = pL B ={a—>d :ax A\B, d €B} (for all 8,8’ € B)
@ Sp = {BeB:BLNPL£G} = {BEP(H): \BE Sey}

We now define ¢ :  — o7 by ¥(8) = \S for all B € B (= P()). We easily check

that ¢ :  — & is a reduction from % onto /. So that from the previous Lemma,
the triposes induced by the implicative algebras &/ and % are isomorphic O

v
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Conclusion

e Each implicative algebra & = (&7, <, —,S) induces a (Set-based)
tripos P : Set®® — HA (that can later be turned into a topos)

@ This construction encompasses all the tripos known so far, namely:

e All localic triposes (induced by complete HAs)

o All realizability triposes induced by (total) combinatory algebras

(The construction extends to the realizability triposes induced by PCAs,
using some completion trick not shown here)

o All classical realizability triposes induced by AKSs
@ In this structure: forcing = non deterministic realizability

@ Classical implicative structures have the very same expressiveness as
abstract Krivine structures (with a much lighter machinery)

@ Question: Are all triposes implicative (up to isomorphism)?
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