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A disjunction without alternative

At least one of the two numbers e + 7 and ew is transcendental

Reductio ad absurdum: Suppose S =e+ 7 and P = er are algebraic.
Then e, 7 are solutions of the polynomial with algebraic coefficients

X?—SX+P=0

Hence e and 7 are algebraic. Contradiction.

@ Proof does not say which of e+ 7 and/or em is transcendental
(The problem of the transcendence of e+ 7 and en is still open.)

@ Non constructivity comes from the use of reductio ad absurdum
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An existence without a witness

There are two irrational numbers a and b such that a® is rational. l

Either ﬁﬁ €Q or ﬁﬁ ¢ Q, by excluded middle. We reason by cases:
o Ifv2% €, take a=b=+2¢ Q.
° If\/ﬁﬁgéQ, takea:\/iﬁgéQand b:ﬁgéQ, since:

& = (ﬁﬁ)ﬂ = (V2)V>YD = (V2 = 2 € Q

Proof does not say which of (\@7 ﬂ) or (ﬂﬁ, \@) is solution

@ Non constructivity comes from the use of excluded middle

But there are constructive proofs, e.g.: (a, b) = (\@, 2 log, 3)
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The first non constructive proof

@ Historically, excluded middle and reductio ad absurdum are known
since antiquity (Aristotle). But they were never used in an essential
way until the end of the 19th century. Example:

There exist transcendental numbers \

Constructive proof, by Liouville 1844

The number a= Z % = 0.110001000000- - - is transcendental.
n=1

Non constructive proof, by Cantor 1874

Since Z[X] is denumerable, the set A\ of algebraic numbers is denumerable.
But IR ~ P3(IN) is not. Hence R\ A\ is not empty and even uncountable.
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Brouwer’s intuitionism

Luitzen Egbertus Jan Brouwer (1881-1966)
1908: The untrustworthiness of the principles of logic

@ Rejection of non constructive principles such as:

e The law of excluded-middle (A V —A)
e Reductio ad absurdum (deduce A from the absurdity of —A)

o The Axiom of Choice, actually: only its strongest forms (Zorn)

@ Principles of intuitionism:

o Philosophy of the creative subject

o Each mathematical object is a construction of the mind.
Proofs themselves are constructions (methods, rules...)

o Rejection of Hilbert’s formalism (no formal rules!)

Brouwer also made fundamental contributions to classical topology (fixed point
theorem, invariance of the domain)... only to be accepted in the academia
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Intuitionistic Logic (LJ)

Although Brouwer was deeply opposed to formalism,
the rules of Intuitionistic Logic (LJ) were formalized
by his student Arend Heyting (1898-1990)

1930: The formal rules of intuitionistic logic

1956: Intuitionism. An introduction

Intuitively:

@ Constructions AA B and VxA(x) keep their usual meaning, but
constructions AV B and Jx A(x) get a stronger meaning:

o A proof of AV B should implicitly decide which of A or B holds
o A proof of 3x A(x) should implicitly construct x

@ Implication A = B has now a procedural meaning (cf later)
and negation —A (defined as A= 1) is no more involutive

Technically: LJ C LK (LK = classical logic)
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Intuitionistic logic: what we keep / what we lose

@ We keep the implications...

A = —--A (Double negation)
(A=B) = (-B=-A) (Contraposition)
(FAvB) = (A= B) (Material implication)

A & A (Triple negation)

but converse implications are lost (but the last)

@ De Morgan laws:

-(AvB) & -AA-B -(AANB) <« -AvV-B
-(3x A(x)) < Vx -A(x) —(Vx A(x)) < Ix -A(x)

@ Beware! Do not confound the two rules:

A L introduction rule of —yy— Reductio ad
m negation, accepted, and FA absurdum,
cf proof of /2 ¢ Q rejected
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Intuitionistic mathematics: what we keep / what we lose

In Algebra:
o We keep all basic algebra, and most of abstract algebra
@ The theory of orders is almost entirely kept

@ The same for combinatorics

In Topology:

@ General topology needs to be entirely reformulated:
topology without points, formal spaces

In Analysis:
@ R still exists, but it is no more unique! (Depends on the construction)
@ Functions on compact sets do not reach their maximum

@ We can reformulate Borel/Lebesgue measure & integral,
using the suitable construction of IR [Coquand’02]
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A note on decidability

@ Intuitionistic mathematicians have nothing against statements of the
form AV —A. They just need to be proved... constructively

o LJ F (Vx,y€IN)(x=yVx#y) (equality is decidable on IN, Z, @)
o LJ I/ (Vx,yER)(x=yVx#Yy) (equality is undecidable on IR, C)

@ More generally, the formula (Vx € S) (A(X) v -A(X))
is intended to mean: "Predicate/relation A is decidable on S”

@ This intuitionistic notion of ‘decidability’ can be formally related to
the mathematical (C.S.) notion of decidability using realizability

e Variant: Trichotomy
o LJ F (Vx,yelN)(x<yVx=yVx>y)
o LJ I/ (Vx,yeR)(x<yVx=yVx>y), but
o LI F (Vx,yeR)(x#Ay=>x<yVx>y)
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The jungle of intuitionistic theories

@ At the lowest levels of mathematics, intuitionism is well-defined:
o LJ: Intuitionistic (predicate) logic
e HA: Heyting Arithmetic (= intuitionistic arithmetic)
o + some well-known extensions of HA (e.g. Markov principle)

@ But as we go higher, definition is less clear. Two trends:

@ Predicative theories: (“Swedish school”)
o Bishop's constructive analysis
o Martin-Lo6f type theories (MLTT)
o Aczel's constructive set theory (CZF)

o Impredicative theories: (“French school”)

o Girard's system F

o Coquand-Huet's calculus of constructions

e The Coq proof assistant

o Intuitionistic Zermelo Fraenkel (IZFg, IZF¢)  [Myhill-Friedman 1973]
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Brouwer's contribution to classical mathematics

Brouwer also made fundamental contributions to classical topology,
especially in the theory of topological manifolds:

Theorem (Fixed point Theorem)

Any continuous function f : D" — D" has a fixed point (D" = unit ball of R")

Theorem (Invariance of the domain)

Let U C IR" be an open set, and f : U — R" continuous and injective.
Then f(U) is open, and the function f is open.

Corollary (Topological invariance of dimension)

Let U C IR" and V C IR™ be nonempty open sets.
If U and V are homeomorphic, then n = m.

... but these results use classical reasoning in an essential way,
and were never regarded as valid by Brouwer
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What does it mean to be constructive for a theory? (1/2)

@ There is no fixed criterion for a theory 7 to be constructive, but a
mix of syntactical, semantical and philosophical criteria
@ But it should fulfill at least the following 4 criteria:

(1) 7 should be recursive. Which means that the sets of axioms,
derivations and theorems of 7 are all recursively enumerable

Note: This is already the case for standard classical theories: PA, ZF, ZFC, etc.
(2) 7 should be consistent: . J t L
(3) 7 should satisfy the disjunction property:
If FAVB, then A or B

(where A, B are closed formulas)

(4)  should satisfy the numeric existence property:

If 7 F (3xeIN)A(x), then J F A(n) for some n € IN J
(where A(x) only depends on x)
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What does it mean to be constructive for a theory? (2/2)

@ In most cases, we also require that:
(5) 7 should satisfy the existence property (or witness property):

If 7 F 3xA(x), then J F A(t) for some closed term t )

(where A(x) only depends on x)

Note: Needs to be adapted when the language of 7 has no closed term
(for instance: set theory)

Theorem (Non constructivity of classical theories)

If a classical theory is recursive, consistent and contains Q, then it fulfills
none of the disjunction and numeric existence properties

Note: Q = Robinson Arithmetic (C PA), that is: the (finite) fragment of PA where the
induction scheme is replaced by the (much weaker) axiom Vx (x =0V 3y (x = s(y)))

Proof. From the hypotheses, Godel's 1st incompleteness theorem applies, so we can
pick a closed formula G such that 7 I/ G and 7 ¥ =G. We conclude noticing that:

TEGV-G and TE@ExeN)((x=1AG)V(x=0A=G))
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Why using LJ does not ensure constructivity (1/2)

e Constructivity is a semantical (and philosophical) criterion, that
cannot be simply ensured by the use of intuitionistic logic (LJ)

@ Indeed, some awkward axiomatizations in LJ may imply the excluded
middle, and thus lead to non constructive theories. Some examples:

o In intuitionistic arithmetic (HA):
o The axiom of well-ordering

(VSCIN)[3x(x € S) = (IxeS)(VyeS)x <y]

implies the excluded middle; it is not constructive. In HA, induction
(which is constructive) does not imply well-ordering
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Why using LJ does not ensure constructivity (2/3)

@ In constructive analysis: [Bishop 1967]

o The axiom of trichotomy
(Vx,yeR)(x <yVx=yVx>y)
is not constructive. It has to be replaced by the axiom
(Vx5 yeER)(x#y=x<yVx>y)

which is classically equivalent

o The axiom of completeness

Each inhabited subset of IR that has an upper
bound in IR has a least upper bound in IR

implies excluded middle. It has to be restricted to the inhabited
subsets S C IR that are order located above, i.e., such that:

For all a < b, either (Vx€ S)(x < b) or (Ix€ S)(x > a)
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Why using LJ does not ensure constructivity (3/3)

@ In Intuitionistic Set Theory:

e The classical formulation of the Axiom of Regularity (or Foundation)
Vx (x # @ = 3y ex)(y Nx #0))
implies excluded middle. It has to be replaced by the axiom scheme
Vx ((Vy €x) Aly) = A(x)) = VxA(x)
known as set induction, that is classically equivalent

o The set-theoretic Axiom of Choice (Zorn, Zermelo, etc.) implies
excluded middle [Diaconescu 1975]

@ In all cases, the constructivity of a given intuitionistic theory .7 is
justified by realizability techniques... (for criteria (2)—(5))

o ... either directly (realizability model)

e ... either indirectly (type system + normalization)
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The language of Arithmetic

First-order terms and formulas

FO-terms e,er = x | f(e,...,ek) (f of arity k)

e | T | L | A=B
B | AVB | VYxA | 3xA

Formulas A B = =
| A/\

@ We assume given one k-ary function symbol f for each
primitive recursive function of arity k: 0, s, 4+, —, X, T, etc.

@ Only one (binary) predicate symbol: = (equality)
e Macros: A= A=1 AeB = (A=B)A(B=A)

@ Syntactic worship: Free & bound variables. Work up to a-conversion.
Set of free variables: FV/(e), FV(A). Substitution: e[x := ], A[x := eg].
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Choice of a deduction system

@ There are many equivalent ways to present the deduction rules of
intuitionistic (or classical) predicate logic:

@ |In the style of Hilbert (only formulas, no sequents)
@ In the style of Gentzen (left & right rules)
© In the style of Natural Deduction (with or without sequents)

Since these systems define the very same class of provable formulas!
(for a given logic, LJ or LK), choice is just a matter of convenience

@ Systems only based on formulas (Hilbert's, N.D. without sequents)
are easier to define, but much more difficult to manipulate

@ In what follows, we shall systematically use sequents

1n sequent-based systems, formulas are identified with sequents of the form F A,
that is: with sequents with 0 hypothesis (lhs) and 1 thesis (rhs)
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Sequents
Definition (Sequent) [Gentzen 1934]
A sequent is a pair of finite lists of formulas written
Al,...,A"FBl,...,Bm (n,mZO)
@ Aj,...,A, are the hypotheses (which form the antecedent)
@ Bi,..., B, are the theses (which form the consequent)
@ I is the entailment symbol (that reads: ‘entails’)

Note: Some authors use finite multisets (of formulas) rather than finite lists, since
the order is irrelevant, both in the antecedent and in the consequent

@ Sequents are usually written T A (T, A finite lists of formulas)
@ Intuitive meaning: AT = VA
@ Empty sequent “F " represents contradiction

@ Syntactic worship: Notations FV/(I'), ['[x := e] extended to finite lists I'
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Rules of inference & systems of deduction

Formulas and sequents can be used as judgments. Each system of deduction is
based on a set of judgments ¢ (= a set of expressions asserting something)

@ Given a set of judgments #:

Definition (Rule of inference)
A rule of inference is a pair formed by a finite set of judgments
{4,...,dn} € Z and a judgment J € _#Z, usually written
A oeeo J
J

@ Ji,...,d, are the premises of the rule

@ J is the conclusion of the rule

Definition (System of deduction)

A system of deduction is a set of inference rules
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Derivable judgments (1/2)

Definition (Derivation)
Let .7 be a system of deduction based on some set of judgments ¢ .
@ Derivations (of judgments) in . are inductively defined as follows:

If di,...,d, are derivations of Ji,...,J, in .7, respectively, and if
({4,---,dn},J) is a rule of ., then

- dh - dy
d = qJ A is a derivation of J in .’
J

@ A judgment J is derivable in . when there is a derivation of J in .%¥

@ By definition, the set of derivable judgments of . is the smallest set
of judgments that is closed under the rules in .

@ One also uses proof/provable for derivation/derivable
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Derivable judgments (2/2)

@ Two systems of deduction (based on the same set of judgments) are
equivalent when the induce the same set of derivable judgments

Definition (Admissible rule)
Arule R= ({4,...,Jn},J) is admissible in a system of deduction .
when: Ji,..., J, derivable in . implies J derivable in ..
Admissible rules are usually written
o oeee AL
J

e Clearly: R admissible in . iff . U{R} equivalent to .

@ Remark: In practice, deduction systems are defined as finite sets of
schemes of rules (that is: families of rules), that are still called rules.
The notion of admissible rule immediately extends to schemes
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A remark on implication

In logic, we have (at least) three symbols to represent implication:

@ The implication symbol =, used in formulas. Represents a potential
point for deduction, but not an actual deduction step

@ The entailment symbol F, used in sequents. Same thing as =, but
in a sequent, that represents a formula under decomposition:

Al,...,A F Bi,...,Bnm
~ AN NA =B V---VB,
(So that I is a distinguished implication, closer to a point of deduction)

@ The inference rule , used in rules & derivations.
This symbol represents an actual deduction step:

P - Py From Pi,...,P,
C deduce C
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On the meaning of sequents

@ Sequents are not intended to enrich the expressiveness of a logical
system; they are only intended to represent a state in a proof, or a
formula under decomposition:

A ~ Al=VA
(With the conventions A @ :=T and \/ @ := 1)

e Formally: In most (if not all?) systems in the literature, we have:

= A derivable iff  F (AT = \VA) derivable J

This equivalence holds, at least:
o In Gentzen's sequent calculus (LK)
o In intuitionistic sequent calculus (LJ)
o In intuitionistic/classical natural deduction (NJ/NK)
e In Linear Logic (LL), replacing A, vV, T, L, = by ®, %, 1, 1, —

@ Exercise: Check it for both systems NJ/NK presented hereafter

2The author knows no exception to this rule
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Intuitionistic Natural Deduction (NJ)

@ Intuitionistic Natural Deduction (NJ) is a deduction system based on
asymmetric sequents of the form:

A, AFA o TEA J

These sequents are also called intuitionistic sequents
@ Recall that: TH A has the same meaningas ATl = A

@ System NJ has three kinds of (schemes of) rules:

o Introduction rules, defining how to prove each connective/quantifier
o Elimination rules, defining how to use each connective/quantifier

o The Axiom rule, which is a conservation rule

@ The Trimarti of logic:

Introduction rules = Brahma
Elimination rules = Shiva
Axiom rule = Vishnu
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Deduction rules of NJ

@ Rules for the intuitionistic propositional calculus:

(Axiom)

rAFB
FA= B

r=A r-B
r-FAANB

r=A r-B

Fr=A

r-AvEB r-AvB

r=T

(no introduction rule)

Aer
r-FA=B r=A
M-8
r’FAAB rTFAAB
Mr=A M-8

r-AvVB T,AFC T,BFC

(1/2)

r=c¢C

(no elimination rule)

rel
r-A
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Deduction rules of NJ (2/2)

@ Introduction & elimination rules for quantifiers:

r=A FFVxA

(v) Frvxa 0 M AKX = e
I Alx:= €] M-3dxA NAEB
3 . x¢FV(T,B)
M=3dxA r=B

@ Introduction & elimination rules for equality:

_ - lFe=e e Alx := e]
(=) IO M Alx = e J
@ To get Classical Natural Deduction (NK), just replace

A (ex falso quod libet) by W (reductio ad absurdum)
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Basic properties of NJ/NK

o Admissible rules (both in NJ/NK):

FEA IF'Cr’ (Monotonicity) LES
= . onotonici
- g Mx :=e] F A[x := €]

(Substitutivity) J

where ' C I’ means: for all A, AT implies Ac [’

e From Monotonicity, we deduce (both in NJ/NK):

r-A _ r-A _ rB,BFA _
(Permutation) (Weak g) (Contraction)
ol A NBEA NBEA
o We write [ by A for: ‘T = A is derivable in NJ' (the same for NK)

Proposition (Inclusion NJ C NK)
If Tkny A, then Thyk A
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The axioms of first-order arithmetic

The axioms of first-order arithmetic are the following closed formulas:

@ Defining equations of all primitive recursive function symbols:

Vx (x +0=x) Vx (x x 0 =0)

Wiy (x+s(y) =s(x+y)  Vxy (x X s(y) = x X y +x)
Vx (pred(0) = 0) Vx(x —0=0) etc
Wx (pred(s(x)) =x)  ¥xVy (x — 5(y)) = pred(x — y) '

@ Peano axioms:
(P3)  VxVy(s(x) =s(y) = x=y)
(P4) Vx—(s(x)=0)
(P5) VZ[A(Z,0) AVx (A(Z, x) = A(Z,s(x))) = Vx A(Z, x)]

for all formulas A(Z, x) whose free variables occur among Z, x

This set of axioms is written Ax(HA) or Ax(PA)
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Heyting Arithmetic (HA)

Definition (Heyting Arithmetic)

Heyting Arithmetic (HA) is the theory based on first-order intuitionistic
logic (NJ) and whose set of axioms is Ax(HA). Formally:

HAFA = ThEkn A for some T C Ax(HA)

@ Replacing NJ by NK, we get Peano Arithmetic (same axioms)

@ When building proofs, it is convenient to integrate the axioms of HA
in the system of deduction, by replacing the Axiom rule

m Aerl by m A €T UAx(HA)

The extended deduction system is then written HA

@ Question: Is HA constructive?
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Basic properties

@ Given a function symbol f and a closed FO-terms e, we write:

o N (: IN* = IN) the primitive recursive function associated to f
o e" (€ IN) the denotation of e in IN (standard model)

@ Since the system of axioms of HA provides the defining equations of
all primitive recursive functions, we have:

Proposition (Computational completeness)

If INEe =e, then HAEF e =e

Note: Converse implication amounts to the property of consistency

Corollary (Completeness for ¥9-formulas)

If IN|=3X(er(X) = ex(x)), then HAF Ix(e1(X) = (X))

Note: Converse implication is the property of 1-consistency

e Godel's 1st incompleteness theorem says that PA is not M9-complete
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Proving that HA is constructive

We now aim at proving that HA is constructive, in the sense that:

e HA fulfills the disjunction property:
If HA-AV B, then HAFA or HAEFB
(where A, B are closed formulas)
o HA fulfills the witness property:
If HAF 3xA(x), then HAF A(n) for some née IN

(where A(x) only depends on x)

HA is clearly recursive, and consistent from the existence of the standard model

There are essentially two ways to prove this:
(1) As a consequence of a cut elimination theorem
(2) By constructing a realizability model

However, cut elimination is usually deduced from strong normalization,
that is most often proved by techniques of realizability
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What is the difference betwen typing and realizability?

Point of view of the hacker:
Many situations where an ill-typed program is correct w.r.t. execution:

let my_useless_function n =
if n * n + 1 = 0 then 42 else true

This expression has type bool but is here used with type int

However my useless_function always returns a bool
when applied to an int...

Distinct notions of correctness:

© Correctness w.r.t. typing
@ Correctness w.r.t. execution ~» Realizability
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System T: common parts

(1) | m()

| s(t) | zec(to,ts,u)

= X
| (ti,t2) | m
| o

Reduction rules

(Ax.thu > t[x:=u]
m((t,02)) = t
m((t, ) = B
rec(to, t1,0) - 1o
rec(to, t1, ( )) - tiu (I‘eC(to, t1, U))
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System T: typing (1/2)
O Nx:AkFt:B r’Ft:A—> B TFu:A
FrEx:A EFXx.t:A— B -tu:B
r-t:A r'-t%:B [Ft:Ax B [Ft: Ax B
M- (t,) : AxB M=m(t): A I m(t): B
- t: nat
I o0: nat It S(t) : nat

F=t: A 't :nat—A— A FrCwu: A
I+ rec(to, ti,u) : A

Typing deals with open terms ~~ typing contexts

Simple justification: typing derivation

Type checking & inference are decidable (syntax directed)

@ But reduction is never mentioned...
. which guaranty do we have w.r.t. computation?
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System T: typing (2/2)

3 results ensure the correctness of the system w.r.t. computation:

(1) Subject reduction

If THt:A and t>1t/, then Tt :A

(2) Closed normal forms of type nat

If F t:nat, where tisin normal form, then t =S"(0) (for some n)

(3) Normalization

If TEt¢:A then tis (strongly) normalizing

(1)4+(2)+(3) = Everyclosed term t:nat reduces to a natural

Remarks: Proofs of (1) and (2) are purely combinatorial. Proof of (3) is in
general not combinatorial, and usually relies on realizability techniques
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System T: realizability

Binary relation tI-A (t = closed term)

Definition of the realizability relation

t I nat ifft  ¢t>*8"(0) forsomenelN

ti-FAx B iff t>=* (t1,t) forsome tHlIFA y KIFB

ti-FA— B iff ul-A implies tul-B (for all u)

Closed terms ~» no context
Purely computational definition: syntax = black box

No correctness to prove; hard-wired in the definition!

(Set of realizers of A is closed under anti-reduction)

No elementary justification (as a derivation)
~> requires an external justification: proof

Relation t I A is undecidable, not even recursively enumerable
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System T: from typing to realizability

Theorem (Adequacy)

If x:A1,...,x,: Ay B t: B, thenforall ug,...,u:
u Ay, o u A, imply  t]xq =X = up] I B

Proof: straightforward induction on the derivation.
The cases of A and (-, _) rely on the property of closure under anti-reduction.

Particular case (empty context): F t:A implies tlFA J

@ Typing + adequacy ~~
every closed term t: nat reduces to a natural
(Without using (1) + (2) + (3). Actually, (3) is proved by realizability.)

o Beware! tI-A doesnotimply t:A
There are much more realizers than well-typed terms
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Example of an ill-typed realizer

@ In system T, we easily implement a term is_prime : nat — nat

such that
S(0) i nis ori
is_prime (8"(0)) >* (0) ifnis ?rlme
0 otherwise

@ From this, we let:

Y = (Aw. M. f(wwf))Aw. . f(wwf))
if(u, ty,t0) = rec(ty, A\ A_.t1, u)
next_prime := Y (Af.Ax.if(is_prime(x), x, f (8(x))))
@ Clearly: next_prime |- nat — nat

I/ next_prime : nat — nat

(Since next_prime contains non-normalizing subterm Y')
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Intermezzo: syntax vs semantics

All of this is reminiscent from a well-known phenomenon in logic:

o If .# is a Tarski model of a theory 7:
Tk = M= P (but )

o If .4 is a realizability model of a type system :
Fat: A = tlFn A (but )

Semantics always captures more judgments than syntax...
... but decidability/recursivity is irremediably lost

In logic:

Realizability = model theory based on the operational semantics
of the underlying “proofs” (intuitionistic or classical)




Typing and realizability: a metaphore
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Background

1908. Brouwer: The untrustworthiness of the principles of logic

(Principles of intuitionism)

1936. Church: An unsolvable problem of elementary number theory
(Application of the A-calculus to the Entscheidungsproblem)

1936. Turing: On computable numbers, with an application to the
Entscheidungsproblem

(Alternative solution to the Entscheidungsproblem, using Turing machines)

1936. Kleene: \-definability and recursiveness
(Definition of partial recursive functions)

1945. Kleene: On the interpretation of intuitionistic number theory

(Introduction of realizability, as a semantics for HA)

A survey on (intuitionistic) realizability:
Jaap van Oosten: Realizability: A Historical Essay.
Mathematical Structures in Computer Science 12(3): 239-263. 2002
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The Brouwer-Heyting-Kolmogorov (BHK) semantics

@ Philosophical input: the meaning of a proposition A is the
set [A] of “evidences” that A holds:

[ANB] = [A] x[B] (Cartesian product)
[AvB] = [A]+]B] (disjoint union)
[L] = o (empty set of evidences)
[A=B] = [A] —[B] (‘computable’ functions)
[VxAx)] = H [A(x)] (dependent product)

xeD
[[HX A(X)ﬂ = Z [[A(X)]] (dependent sum)

xeD

(where D is the semantic domain of quantifications)

@ The BHK philosophical interpretation of propositions can be given a
mathematical contents: the theory of realizability
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PCAs Concl.
Kleene realizability

1945. Kleene: On the interpretation of intuitionistic number theory
o Realizability in Heyting Arithmetic (HA)
@ Definition of the realizability relation

e n

o A

nlkA
Godel code of a partial recursive function
closed formula of HA

@ Theorem: Every provable formula of HA is realized

(But some unprovable formulas are realized too...)

@ Application to the disjunction & existence properties

Remarks:

@ Codes for partial recursive functions can be replaced by the elements
of any partial combinatory algebra

(see later)
o Here, we shall take the closed terms of (untyped) system T
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The language of realizers

Terms of system T (= A-calculus + primitive pairs & integers)

(t, ) | m(t) | mao(t)
0 | s(t) | rec(to,ts,u)

Syntactic worship: Free & bound variables. Renaming. Work up to a-conversion.
Set of free variables: FV/(t). Capture-avoiding substitution: t[x := u]

o Notation: A :=8"0 (ne€lN)

Reduction rules

(Ax.t)u = t[x:=u]

7T1(<t1,t2>) - h I‘eC(t()7 t1, O) = 1o
m((t1, ) > b rec(ty, t1 S(u)) > t u (rec(to, t1,u))

o Grand reduction written t =" u (reflexive, transitive, context-closed)
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Definition of the relation t |- A

@ Recall: For each closed FO-term e, we write eV its denotation in IN

Definition of the realizability relation t I- A (t, A closed)
tiEL = 1|
tiET = t>"0
thFer=e0 = eN=e A t>*0
tFAAB = 3t 3k (t =" (ti, ) A tlFA A & IFB)
tFAVB = Ju((t=*0,u) A ul-A) Vv (t=*(1,u) A ulFB))
tFA=B = Vu(ultA = tulkB)
tIFVxA(x) = Vn(tal- A(n))
tlF3xA(x) = 3Fn3u (t>"(A,u) A ulkA(n))

Lemma (Closure under anti-reduction)

If t>=*t and t'IFA, then tIFA
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We now want to prove the

Theorem (Soundness)

If HAFR A, then tl-A for some closed \-term t

Outline of the proof:
e Step 1: Translating FO-terms into A-terms

e Step 2: Translating derivations of LJ into A-terms

Step 3: Adequacy lemma

Step 4: Realizing the axioms of HA

Final step: Putting it all together
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Step 1: Translating FO-terms into A-terms

Proposition (Compiling primitive recursive functions in system T)

Each (prim. rec.) function symbol f is computed by a closed A-term f*:

If f'N(nl,...,nk):m, then f* A ---fx =" m

Proof. Standard exercise of compilation. Examples:

0* := 0 (+)* = Ax,y.rec(x, \,z.S8z, y)
s* =8 (x)* = Ax,y.rec(0, A, z.(+)* z x, y)
pred* := Ax.rec(0, Az,_.z, x) (=)* = Ax,y.rec(x, A, z.pred* z, y)
v
@ Each FO-term e with free variables xi, ..., xx is translated into a closed
A-term e* with the same free variables, letting:
x* = x and (fler,...,e0))" == fef e

Fact: If e is closed, then e* =* 7, where n= ¢V J
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Step 2: Translating derivations into A-terms (1/3)

o Every derivation d:(Aj,...,A,F B) is translated into a

A-term d* with free variables x1, ..., Xk, za,, - .., Za,, Where:
® xi,...,Xk are the free variables of A;,..., A, B
® Za,,...,2za, are proof variables associated to hypotheses Ay, ..., A,

@ The construction of d* follows the Curry-Howard correspondence:

*

* * :
<A1,...,An|—A,-) = zZp <F)—T) =0 re 1 := any_term
r-A
- * . . *
Ed L dy L dh
LAEB | = Az.d [FA=B [FA | = did

FFASB -6
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Step 2: Translating derivations into A-terms (2/3)

Cd L db
rcA TFB = (df,dy)
TFAAB
S d S d
rFAAB| = m(d") r-FAAB| = m(d")
- A B
S d ) S d )
r-A = (0,d") res = (1,d%)
T-AvB T-AvB
S d S D
FTFAVB T,AFC [,BFC| = match(d*, Aza.df, Azg.d5)
r-cC

writing match(u, t1, t2) = rec(t1 (m2(u)), A -. t2 (m2(v)), m1(u))
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Step 2: Translating derivations into A-terms (3/3)

S d T d
TEA | = Mxd I HVxA = dre”
MEVxA ME Alx = €]
d dy d>
F-Ax:=el | = (e d") Fr-3xA TLARB| = let (x,z) =df ind}
CTH3xA r-s
(F}—e:e) =0 TFe=e TFAx=e]| = &
M- Alx = e
writing let (x,z) =tinu Ay . (Ax,z.u) mi(y) m(y)) t
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Step 3: Adequacy lemma

Recall that in the definition of d*, we assumed that each first-order variable x
is also a A-variable. (Remaining A-variables z are used as proof variables.)

Definition (Valuation)

A valuation is a function p : FOVar — IN. A valuation p may be applied:
@ to a formula A; notation: A[p] (result is a closed formula)

@ to a A\-term t; notation: t[p] (result is a possibly open A-term)
v

Lemma (Adequacy)
Let d:(A1,...,A,F B) be a derivation in NJ. Then:

e for all valuations p,

o for all realizers t; IF A1[p], ..., ty IF Aslp],

we have: d*[pllzr :==t1,...,zp :=t,] I B[p]

A

Proof: By induction on d, using that {t : t |- B} is closed under anti-evaluation J
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Step 4: Realizing the axioms of HA

Lemma (Realizing true M3-formulas)

Let e1(X), e2(X) be FO-terms depending on free variables X.
If IN | VX(e(X) = e(xX)), then AX.0 IF VX(ei(X) = &(X))

@ Since all defining equations of function symbols are MY:

All defining equations of function symbols are realized

Lemma (Realizing Peano axioms)

Axyz.z IF VxVy(s(x)=s(y)=x=y)
any_term | Vx(s(x) # 0)
Ay .rec | VY[A(Y,0) = Vx (A(YV, x) = A(Y, s(x))) = Vx A(¥, x)]

writing rec := Az, z1, x . rec(zg, z1, X)
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Final step: Putting it all together

Theorem (Soundness)

If HAFR A, then tl-A for some closed \-term t

Proof. Assume HA |- A, so that there are axioms Ay, ..., A, and a derivation
d:(A1,...,AnE A) in LJ. Take realizers t1, ..., ts of Aq,..., A, By adequacy,
we have d*[z; := t1,..., 25 := ta] IF A.

Corollary (Consistency)

HA is consistent: HA/ L

Proof. If HA L, then the formula L is realized, which is impossible by definition J

@ Remark. Since HA C PA and PA is consistent (from the existence of the
standard model), we already knew that HA is consistent
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¥ %-soundness and completeness

Proposition (£9-soundness/completeness)

For every closed ¥9-formula, the following are equivalent:

(1) HA F 3X(e1(X) = ex(X)) (formula is provable)
(2) t IF IX(e1(X) = ex(X)) for some ¢t (formula is realized)
(3) N = EI)?(el(Y = e2(>?)) (formula is true)

Proof. (1) = (2) by soundness
(2) = (3) by definition of t IF 3X (e1(X) = e2(X))
(3) = (1) by X9-completeness

Corollary (Existence property for X9-formulas)

If HAF 3X(e(X) = e(X)), then HAF e(n) = ex(fi) for some 7€ N

Proof. Use (1) = (3), and conclude by computational completeness J
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The halting problem

@ Let h be the binary function symbol associated to the primitive
recursive function AN : IN> — IN defined by

h"\'( k) 1 if Turing machine n stops after k evaluation steps
n =
7 0 otherwise

e Write H(x) := 3y (h(x,y)=1) (halting predicate)

Proposition

The formula  Vx (H(x) V =H(x)) is not realized

Proof. Let t I Vx (H(x)V —~H(x)), and put u := Ax.fst (t x). We check that:

o Forall n €N, either ui>*0 or wi>*1
o If un=*0, then H(n) is realized, so that Turing machine n halts
o If uA>=*1, then H(n) is not realized so that Turing machine n loops

Therefore, the program u solves the halting problem, which is impossible
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EM is not derivable in HA

@ By soundness we get: HA I/ Vx(H(x)V —H(x)). Hence:
Theorem (Unprovability of EM)

The law of excluded middle (EM) is not provable in HA

@ Remark: We actually showed that the open instance H(x)V —H(x)
of EM is not provable in HA. On the other hand we can prove (classically)
that each closed instance of EM is realizable:

Proposition (Realizing closed instances of EM)

For each closed formula A, the formula AV —A s realized

Proof. Using meta-theoretic EM (in the model), we distinguish two cases:
o Either A is realized by some term t. Then (0,t) - AV —A
o Either A is not realized. Then t I —A (t any), hence (1,t) IF AV —A

@ But this proof is not accepted by intuitionists (uses meta-theoretic EM)
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Unprovable, but realizable (1/3)

@ We have already seen that the Halting Problem
(HP) Vx (H(x) V =H(x)) J

is not realized. Therefore:

Proposition
any_term |- =HP, but: HA t/ =HP (since: PA I/ =HP)

Proof. Since HP is not realized, its negation is realized by any term. On the other
hand we have PA I/ =HP (since PA F HP), so that HA I/ =HP J

o Morality:
o PA takes position for the excluded middle
e HA actually takes no position (for or against) the excluded middle.
In practice, it is 100% compatible with classical logic

o Kleene realizability takes position against excluded middle. Many
realized formulas (such as =HP) are classically false
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Unprovable, but realizable (2/3)

@ Recall that all true M9-formulas are realized:

If IN = VX(er(X) = (X)), then IX.0 IF VX (e1(X) = ex(X)) J

e But Godel undecidable formula G is a true M%-formula. Therefore:

Proposition

Az.0 IF G, but: HAV G (since: PA/ G)

Remarks:

o Like —HP, the formula G is realized but not provable

o Unlike =HP, the formula G is classically true



Intro.  Intuitionism Heyting Arithmetic Typing vs realiz.  Kleene realizability PCAs Concl.
0000 0000000000000 OOOOOOO000O0O000000O0 0000000000 0O00000000000000000e000000 00000000000 O

Unprovable, but realizable (3/3)

e Markov Principle (MP) is the following scheme of axioms:

Vx (A(x) V 2A(x)) = -—3Ix A(x) = Ix A(x) )

@ Obviously: PAF MP

Proposition (MP is realized)

tup IF Vx (A(x) V 2A(x)) = =—=3Ix A(x) = Ix A(x)

where  typ = Az_.Y (Arx.if £st (zx) = 0 then (x, snd (z x)) else r (S x))
Y = A.(Ax.f(xx))(Ax.f(xx))

@ Using modified realizability, one can show: HA ¥ MP [Kreisel]

@ We have the strict inclusions:
HA ¢ HA+MP C PA
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To sum up
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Towards the disjunction and existence properties

Proposition (Semantic disjunction & existence properties)
Q@ If HAFAV B, then Aisrealized or B is realized
@ If HAF 3xA(x), then A(n) is realized for some n € IN

Proof. From main Theorem & definition of realizability:

Q IfHAF AV B, then t |- AV B for some t, so that:
either t =* (0, u) for some ul- A, ort >=* (1,u) for some ul- B

@ If HA F 3x A(x), then t I 3x A(x) for some t, so that:
t >* (@, u) for some n € IN and v I+ A(n)

@ These weak forms of the disjunction & existence properties are now
widely accepted as criteria of constructivity

@ To prove the strong forms of the disjunction and existence properties
(criteria (3) and (4) = (5)), we need to introduce glued realizability



Intro.  Intuitionism Heyting Arithmetic Typing vs realiz.  Kleene realizability PCAs Concl.
0000 0000000000000 OOOOOOO00O0O0O0O00000O0 OOOOOO00000 0O00000000000000000000e000 OO0O0O0000000 O

Glued realizability (1/3)

@ Let P be a set of closed formulas such that:

o P contains all theorems of HA
o P is closed under modus ponens: (A= B)eP, Ac P = BeP

Definition of the relation t IFp A (t, A closed)
tikp L = 1

thkp T =t>="0

thrpee=e = eN=el A t=*0

tlkp AANB = 3t 3 (t -7 (ti,2) A tilbp A A 2 lFp B)

tlhkp AVB = Ju((t>=* O0,u) A ulkp A) V (t=* (T,u) A ulFp B))
tlkp A=>B = Vu(ulkp A = tulkpB) A (A= B)eP

tlkp VxA(x) = Vn (tialkp A(n)) A (VxA(x)) € P
tIFp Ix A(x) In 3u (t =" (A,u) A ulbp A(n))

@ Plain realizability = case where P contains all closed formulas
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Glued realizability (2/3)

Theorem [Kleene'45]
QIf tIkp A then AecP (P-realizability is “bounded” by P)
Q@ If HAF A, then tlp A for some A-term t (Adequacy)

Proof.

@ By a straightforward induction on A

@ Same proof as for plain realizability. Extracted program t is the same as before
(definitions of f — *, e — e*, d — d* unchanged). Only change appears in
the statement & proof of Adequacy (step 3), that uses I-p rather than I-.

@ To sum up: For each set of closed formulas P that contains all
theorems of HA and that is closed under modus ponens:

provable in HA C P-realized C P J
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Glued realizability (3/3)

o Particular case: P = HA: (= set of theorems of HA)

Proposition
HAF A iff tlFpa A for some closed \-term t

@ From this we deduce:

Corollary (Disjunction/existence properties)

Q@ If HAFAVB, then HAFA or HAFB
@ If HAF 3xA(x), then HAF A(n) for some ne IN

Proof. Same proof as before, using the fact that HAF A iff A is HA-realized J

@ Conclusion: We proved that HA is constructive, champagne!
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Program extraction

Proposition (Provably total functions are recursive)

If HA F Vx 3y A(X,y) (i-e. the relation A(X,y) is provably total in HA),
then there exists a total recursive function ¢ : INK — IN such that:

HA = A(A, ¢(A)) for all = (ny,...,nx) € IN¥

Proof. Let d be a derivation of A in HA, and d* the corresponding closed A-term
(constructed in Steps 1, 2, 4). We take ¢ = AX.m(d* X) J

@ Note: The relation A(X,y) may not be functional. In this case, the
extracted program ¢ = AX.mi(d* X) associated to the derivation d
chooses one output ¢(/) for each input i € IN

@ Optimizing extracted program ¢: Using modified realizability [Kreisel],
we can ignore all sub-proofs corresponding to Harrop formulas:

Harrop formulas H = ea=e | T | L
| HiAHy | A=>H | VxH
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Kleene's original presentation (1/2)

@ Kleene did not consider closed A\-terms as realizers, but natural
numbers, used as Godel codes for partial recursive functions

Definition of realizability parameterized by:

o A recursive injection {-,-) : IN X IN — IN (pairing)

o An enumeration (¢n)nen of all partial recursive functions of arity 1

Kleene application: n-p = ¢n(p) (partial operation)

o Realizability relation: nl-A (n € N, A closed formula)

If HAF A, then nl-A forsomenec N

@ As before, we can also realize many unprovable formulas, such as the
negation of the Halting Problem (—HP), Gddel undecidable formula G
and Markov Principle (MP), as well as Church’s Thesis (CT) (cf later)
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Kleene's original presentation (2/2)
Definition of the realizability relation n |- A (n €N, A closed)
nl- L = 1
nlET = n=0
nFee=e = e'=e' A n=0
nl-AAB = dm 3np (n={(m,m) AN mIFA A ml-B)
nlFAvVB = 3m((n=(0,m) A ml-A) V (n=(1,m) A ml- B))
nFkA=B = Vp(pltA = n-plkB)
nlEVxA(x) = Vp(n-pl-A(p))
nlkF3xA(x) = 3Fp3Im (n={(p,m) A ml- A(p))

@ Proof of Main Theorem is essentially the same as before. But:

o We need to work with Hilbert's system for LJ (rather than with NJ)
o Godel codes induce a lot of code obfuscation...

@ As before, we can define glued realizability, prove the disjunction &
existence properties, extract program from proofs, etc.
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Church'’s Thesis (CT)

@ Let A’ be the ternary function symbol associated to the primitive recursive
function /"™ : IN?> — IN defined by

s(r) if Turing machine n applied to p stops after

h"N(n, p, k) = k evaluation steps and returns r
0 otherwise
and put: x-y=z = 3k(h(x,y, k) =s(z))

@ Church’s Thesis (CT) internalizes in the language of HA the fact that
every provably total function is recursive:

(CT) Vx3y A(x,y) = InV¥xJy(n-x =y ANA(x,y)) )

@ Clearly: PAF -CT (take A(x,y) = (H(x) Ay =1)V (=H(x) Ay =0))

Proposition
CT s realized by some n € IN (although HA/CT)
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Towards partial combinatory algebras

Idea: To define a language of realizers, we need a set A whose elements
behave as partial functions on A, and that is ‘closed under A-abstraction’

Definition (Partial applicative structure — PAS)

A partial applicative structure (PAS) is a set A equipped with a partial
function (-) : Ax A— A, called application

Notation: abc = (a-b)-c, etc. (application is left-associative)

@ Intuition: Each element a of a partial applicative structure A
represents a partial function on A: (b~ ab) : A— A

@ A PAS is combinatorialy complete when it contains enough elements
to represent all closed \-terms (Formal definition given later)

Definition (Partial combinatory algebra — PCA)

A partial combinatory algebra (PCA) is a combinatorially complete PAS
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Combinatorial completeness (1/3)

Let A be a partial applicative structure

Definition (.A-expressions)

Combinatory terms over A (or A-expressions) are defined by:

A-expressions tbu = x | a | tu (ac A)

Syntactic worship: Free variables FV/(t), substitution t[x := u]

@ Remark: Set of A-expr. = free magma generated by A W Var

o We define a (partial) interpretation function t+ t* from the set
of closed A-expressions to A, using the inductive definition:

g = g () = ot ]
@ Notations: t | when  t* is defined
t1 when  t* is undefined

t~uy when eithert,u?t or t,ul and t* = u?
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Combinatorial completeness (2/3)

Definition (Combinatorial completeness)

A partial applicative structure A is combinatorially complete when

for each A-expression t(xi, ..., X,) with free variables among xi, ..., x,
(n > 1), there exists a € A such that for all a,...,a, € A:

Qa3 a1l

Q aa;---a,2t(ay,...,an)
Notation: a = (Xl, ey Xp > t‘(Xl7 R ,Xn))A (not unique, in general)/

Theorem (Combinatorial completeness)

A partial applicative structure A is combinatorially complete iff
there are two elements K, S € A s.t. for all a, b, c € A:

Q@ Kab] and Kab=a
@ Sab] and Sabc = ac(bc)
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Combinatorial completeness (3/3)

o Condition is necessary: by combinatorial completeness, take
K = (x,y»x)* and S = (x,y,z+ xz(yz))*

@ To prove that condition is sufficient, use combinators K, S € A to
define A-abstraction on the set of A-expressions:

Definition of Ax. t:

Ax.x = SKK M.y = Ky if y £ x
Ax.a = Ka Ax.tu = S(Ax.t)(Ax.u)

By construction we have FV/(Ax.t) = FV(t)\ {x}, and for each
A-expression t(x) that depends (at most) on x:

Ax.t(x) | and (MAx.t(x))a = t(a) forallac A

o Condition is sufficient: if K,S € A exist, put

(X1 ooy X > (Xt X)) = (XXt X))
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Examples of partial combinatory algebras

Definition (Partial combinatory algebra — PCA)

A partial combinatory algebra (PCA) is a combinatorially complete PAS

@ Examples of total combinatory algebras:

o The set of closed \-terms quotiented by 3-conversion

o The free magma generated by constants K, S and quotiented by the
relations Kab=a, Sabc=ac(bc) (Combinatory Logic)

@ Examples of (really) partial combinatory algebras:

o The set of closed A-terms in normal form, equipped with the partial
application defined by: t-u = NF(tu)

o Kleene's 1st model: IN equipped with n-p = én(p)
o Kleene's 2d model: based on INM + product topology

o The graph model: based on B(w) + product topology
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Using partial combinatory algebras

@ Using combinatory completeness, we can encode all constructs of
system T in any partial combinatory algebra A, for example:

o pair = (Axyz.zxy)*
o m = (Az.z(Axy.x))*
(Az.z(Mxy.y))A
0 0 == (Mxf.x)* (= K)

e M

o S = (Anxf.fn)* [Parigot]
o Y == (Af.(Ax.f(xx))(Ax.f(xx)))* [Church]
o rec = (Axox1.Y(Arn.nxo(Az.x1z(r z))))A

@ Using these constructions, we can define the relation or realizability
alk A, where a € A and Ais a closed formula (exercise)

@ Main Theorem holds in all PCA A (exercise), and depending on the
choice of A, we can realize more or less formulas
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Where do the combinators K, S come from?

@ Through the CH correspondence, the types of combinators
K=Mxy.x and S = Axyz.xz(yz) correspond to the axioms of
Hilbert deduction for minimal propositional logic:

K = My.x . A=B=A
S = Myz.xz(yz) : A=B=C)=A=B)=A=C
Hilbert deduction for LJ
o Rules:
FA=B FA FA=B <FV(A) FA=B <FV(B)
B FA=VxB FdxA= B
o Axioms:
A=B=A A=B=C)=(A=B)=A=C
A= B=AAB ANB= A AANB =B T 1=A
A= AVB B=AVB A=C)=(B=C)=AVvB=C
Vx A = Alx 1= €] Alx:=e] = IxA
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Extensions and variants

o Extensions of Kleene realizability:

o To second- & higher-order Heyting arithmetic [Troelstra]
e To intuitionistic & constructive set theories:
o IZFg, 1ZF¢ [Myhill-Friedman 1973, McCarty 1984]
o CZF [Aczel 1977]
e Variants:
o Modified realizability [Kreisel]
o Techniques of reducibility candidates [Tait, Girard, Parigot]

o Categorical realizability:

e Strong connections with topoi [Scott, Hyland, Johnstone, Pitts]

o Realizability for classical logic:

o Kleene realizability via a negative translation
o Classical realizability in PA2, in ZF [Krivine 1994, 2001-]
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