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What is classical realizability?

A complete reformulation of the principles of Kleene realizability to
take into account classical reasoning [Krivine 1994, 2009, . . . ]

Based on Griffin’s discovery about the connection between classical
reasoning and control operators (call/cc) [Griffin 1990]

call/cc : ((A⇒ B)⇒ A)⇒ A (Peirce’s law)

Interprets the Axiom of Dependent Choices (DC) [K. 2003]

Initially designed for PA2, but extends to:

Higher-order arithmetic (PAω)

Zermelo-Fraenkel set theory (ZF) [K. 2001, 2012]

The calculus of inductive constructions (CIC) [M. 2007]
(with classical logic in Prop)

Deep connections with Cohen forcing [K. 2011]

 can be used to define new models of PA2/ZF [K. 2012]
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The design of classical realizability

Traditionally, classical proofs are turned into intuitionistic proofs
(via some translation/interpretation from LK into LJ) before being
interpreted as purely functional programs

LK

LJ
logical

translation
Kleene

realizability

purely
func.

Rather than restricting to LJ a priori, interpret classical proofs
directly, using functional programs with control operators

LK

Krivine
realizability

functional
with control
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Programming with continuations (1/2)

Control operators give to the programs the ability to capture their
evaluation context (the “continuation”), so that they can backtrack
when something goes wrong.

 Allow programs to use the method of trial and error.

Technically: Extend the pure λ-calculus with a new binder Ck . t
that captures the current continuation in the bound variable k:

k : A⇒ B ` t : A
` Ck . t : A

The variable k : A⇒ B captures the current A-continuation, that is:
the evaluation context asking for a value of type A.

When applied to an object of type A (the “new answer”), the
A-continuation k : A⇒ B restores the evaluation context that was
saved in k, with the new answer of type A. The current context is
aborted, hence B can be any type (typically: B ≡ ⊥).
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Programming with continuations (2/2)

In practice, the binder Ck . t is implemented from the control
operator cc (“call/cc”), letting Ck . t ≡ cc (λk . t).

We have: cc : ((A⇒ B)⇒ A)⇒ A (Peirce’s law)

cc : (¬A⇒ A)⇒ A (particular case: B ≡ ⊥)

Question: A ∨ ¬A ?

Answer: EM ≡ cc (λ

¬(A∨¬A)..
k . right(λ

A..
x . k (left x))) : A ∨ ¬A

︸ ︷︷ ︸
A∨¬A

where left : ∀X ∀Y (X ⇒ X ∨ Y )
right : ∀X ∀Y (Y ⇒ X ∨ Y )

Note that EM does not even need to know the formula A!

It is actually polymorphic in A: EM : ∀X (X ∨ ¬X )
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The role of paraproofs (metaphore)

Georges de la Tour. Le tricheur à l’as de carreau (∼ 1636)
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The language of (minimal) second-order logic

Second-order logic deals with two kinds of objects:

1st-order objects = individuals (i.e. basic objects of the theory)

2nd-order objects = k-ary relations over individuals

First-order terms and formulas

First-order terms

Formulas

e, e′ ::= x | f (e1, . . . , ek)

A,B ::= X (e1, . . . , ek) | A⇒ B
| ∀x A | ∀X A

Two kinds of variables

1st-order vars: x , y , z , . . .
2nd-order vars: X , Y , Z , . . . of all arities k ≥ 0

Two kinds of substitution:

1st-order subst.: e[x := e0], A[x := e0] (defined as usual)

2nd-order subst.: A[X := P0], P[X := P0] (postponed)
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First-order terms

Defined from a first-order signature Σ (as usual):

First-order terms e, e′ ::= x | f (e1, . . . , ek)

f ranges over k-ary function symbols in Σ

In what follows we assume that:

1 Each k-ary function symbol f is interpreted in N by a function

f N : Nk → N

2 The signature Σ contains at least a function symbol for every
primitive recursive function (0, s, pred, +, −, ×, /, mod, . . . ),
each of them being interpreted the standard way

Denotation (in N) of a closed first-order term e written eN
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Formulas

Formulas of minimal second-order logic

Formulas A,B ::= X (e1, . . . , ek) | A⇒ B
| ∀x A | ∀X A

only based on implication and 1st/2nd-order universal quantification

Other connectives/quantifiers defined via second-order encodings:

⊥ ≡ ∀Z Z
¬A ≡ A⇒ ⊥

A ∧ B ≡ ∀Z ((A⇒ B ⇒ Z)⇒ Z)
A ∨ B ≡ ∀Z ((A⇒ Z)⇒ (B ⇒ Z)⇒ Z)

∃x A(x) ≡ ∀Z (∀x (A(x)⇒ Z)⇒ Z)
∃X A(X ) ≡ ∀Z (∀X (A(X )⇒ Z)⇒ Z)

e1 = e2 ≡ ∀Z (Z(e1)⇒ Z(e2))

(absurdity)
(negation)

(conjunction)
(disjunction)

(1st-order ∃)
(2nd-order ∃)

(Leibniz equality)
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Predicates

Concrete relations are represented using predicates (syntactic sugar)

Predicates P,Q ::= x̂1 · · · x̂kA0 (of arity k ≥ 0)

Predicate = 2nd-order formula abstracted w.r.t. some 1st-order variables

Definition (Predicate application and 2nd-order substitution)

1 P(e1, . . . , ek) is the formula defined by

P(e1, . . . , ek) ≡ A0[x1 := e1, . . . , xk := ek ]

where P ≡ x̂1 · · · x̂kA0, and where e1, . . . , ek are k first-order terms

2 2nd-order substitution A[X := P] (where X and P are of the same arity k)

consists to replace in the formula A every atomic subformula of the form

X (e1, . . . , ek) by the formula P(e1, . . . , ek)

Note: Every k-ary 2nd-order variable X can be seen as a predicate:

X ≡ x̂1 · · · x̂kX (x1, . . . , xk)
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Unary predicates as sets

Unary predicates represent sets of individuals

Syntactic sugar: {x : A} ≡ x̂A, e ∈ P ≡ P(e)

Example: The set N of Dedekind numerals

N ≡ {x : ∀Z (0 ∈ Z ⇒ ∀y (y ∈ Z ⇒ s(y) ∈ Z )⇒ x ∈ Z}

Relativized quantifications:

(∀x ∈P)A(x) ≡ ∀x (x ∈ P ⇒ A(x))

(∃x ∈P)A(x) ≡ ∀Z (∀x (x ∈ P ⇒ A(x)⇒ Z)⇒ Z)
⇔ ∃x (x ∈ P ∧ A(x))

Inclusion and extensional equality:

P ⊆ Q ≡ ∀x (x ∈ P ⇒ x ∈ Q)
P = Q ≡ ∀x (x ∈ P ⇔ x ∈ Q)

Set constructors: P ∪ Q ≡ {x : x ∈ P ∨ x ∈ Q} (etc.)
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Natural deduction for classical 2nd-order logic (NK2)

Rules of system NK2

Γ ` A
A∈Γ

Γ ` ((A⇒ B)⇒ A)⇒ A

Γ,A ` B

Γ ` A⇒ B
Γ ` A⇒ B Γ ` A

Γ ` B

Γ ` A
Γ ` ∀x A

x /∈FV (Γ)
Γ ` ∀x A

Γ ` A[x := e]

Γ ` A
Γ ` ∀X A

X /∈FV (Γ)
Γ ` ∀X A

Γ ` A[X := P]

From these rules, one can derive the introduction & elimination rules
for ⊥, ∧, ∨, ∃1, ∃2, = using their 2nd-order definition

Classical logic obtained via Peirce’s law: ((A⇒ B)⇒ A)⇒ A

Elimination rule for 2nd-order ∀ implies all comprehension axioms:

∀~z ∀~Z ∃X ∀~x [X (~x) ⇔ A(~x , ~z , ~Z )]
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A type system for classical 2nd-order logic (λNK2)

Represent the computational contents of classical proofs using
Curry-style proof terms, with call/cc for classical logic:

t, u ::= x | λx . t | tu | cc

Typing judgement: x1 : A1, . . . , xn : An︸ ︷︷ ︸
typing context Γ

` t : B

Typing rules

Γ ` x : A
(x :A)∈Γ

Γ ` cc : ((A⇒ B)⇒ A)⇒ A

Γ, x : A ` t : B

Γ ` λx . t : A⇒ B
Γ ` t : A⇒ B Γ ` u : A

Γ ` tu : B

Γ ` t : A
Γ ` t : ∀x A

x /∈FV (Γ)
Γ ` t : ∀x A

Γ ` t : A[x := e]

Γ ` t : A
Γ ` t : ∀X A

X /∈FV (Γ)
Γ ` t : ∀X A

Γ ` t : A[X := P]

Note: ∀ interpreted uniformly ⇒ type checking & inference are undecidable
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From the derivation to the proof term

Deduction system NK2 and type system λNK2 are equivalent:

Theorem

A1, . . . ,An `NK2 A iff x1 : A1, . . . , xn : An `λNK2 t : A for some t

[∀x (B(x)⇒ C(x))]
g

B(x)⇒ C(x)

[∀x (A(x)⇒ B(x))]
f

A(x)⇒ B(x) [A(x)]
u

B(x)
@

C(x)
@

A(x)⇒ C(x)
λu

∀x (A(x)⇒ C(x))

∀x (B(x)⇒ C(x)) ⇒ ∀x (A(x)⇒ C(x))
λg

∀x (A(x)⇒ B(x)) ⇒ ∀x (B(x)⇒ C(x)) ⇒ ∀x (A(x)⇒ C(x))
λf

λf . λg . λu . g (f u)



Introduction 2nd-order logic & arithmetic The λc -calculus Classical realizability Adequacy Witness extraction

Typing examples

Intuitionistic principles:

pair ≡ λxyz . z x y : ∀X ∀Y (X ⇒ Y ⇒ X ∧ Y )
fst ≡ λz . z (λxy . x) : ∀X ∀Y (X ∧ Y ⇒ X )

snd ≡ λz . z (λxy . y) : ∀X ∀Y (X ∧ Y ⇒ Y )

refl ≡ λz . z : ∀x (x = x)
trans ≡ λxyz . y (x z) : ∀x ∀y ∀z (x = y ⇒ y = z ⇒ x = z)

Excluded middle, double negation elimination:

left ≡ λxuv . u x : ∀X ∀Y (X ⇒ X ∨ Y )
right ≡ λyuv . v y : ∀X ∀Y (Y ⇒ X ∨ Y )

EM ≡ cc (λk . right (λx . k (left x)) : ∀X (X ∨ ¬X )

DNE ≡ λz . cc (λk . z k) : ∀X (¬¬X ⇒ X )

De Morgan laws:

λzy . z (λx . yx) : ∃x A(x) ⇒ ¬∀x ¬A(x)
λzy . cc (λk . z (λx . k (y x))) : ¬∀x ¬A(x) ⇒ ∃x A(x)
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Extensional equality

Recall that in (intuitionistic or classical) second-order logic:

Equality between individuals (i.e. 1st-order objects) is defined by

e = e′ :≡ ∀Z (Z (e)⇒ Z (e′)) (Leibniz equality)

Equality between predicates (i.e. 2st-order objects) is defined by:

P = Q :≡ ∀~x (P(~x)⇔ Q(~x)) (Extensional equality)

Proposition (Extensionality in 2nd-order logic)

For each 2nd-order formula A(X , ~z , ~Z ) depending on X , ~z , ~Z , we have:

NJ2 ` ∀~z ∀~Z ∀X ∀Y
[
X = Y ⇒ (A(X , ~z , ~Z )⇔ A(Y , ~z , ~Z ))

]
Proof: By induction on the size of the formula A(X , ~z, ~Z) – Exercise!

Remark: The proposition holds because X (e1, . . . , ek) (predicate application)

is the only construction of the language that involves 2nd-order variables X ...

... but it does not hold anymore in higher-order formalisms: NK3, . . . , NKω
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Classical second-order arithmetic (PA2)

Classical 2nd-order arithmetic (PA2) is the (classical) 2nd-order theory
whose axioms are:

Defining equations of all primitive recursive functions:

∀x (x + 0 = x)
∀x ∀y (x + s(y) = s(x + y))

∀x (x × 0 = 0)
∀x ∀y (x × s(y) = x × y + x)

∀x (pred(0) = 0)
∀x (pred(s(x)) = x)

∀x (x − 0 = 0)
∀x ∀y (x − s(y)) = pred(x − y) etc.

Peano axioms:

(P3) ∀x ∀y (s(x) = s(y)⇒ x = y)

(P4) ∀x ¬(s(x) = 0)

(P5) ∀Z [0 ∈ Z ⇒ ∀y (y ∈ Z ⇒ s(y) ∈ Z)⇒ ∀x (x ∈ Z)]

Remark: Thanks to 2nd-order ∀, induction is now a single axiom:

Ind ≡ ∀Z [0 ∈ Z ⇒ ∀y (y ∈ Z ⇒ s(y) ∈ Z)⇒ ∀x (x ∈ Z)]

⇔ ∀x (x ∈ N) (“every individual is a natural number”)



Introduction 2nd-order logic & arithmetic The λc -calculus Classical realizability Adequacy Witness extraction

The problem of induction (1/2)

Problem: Induction axiom Ind (⇔ ∀x (x ∈ N)) is not realizable!
(Due to uniform interpretation of ∀)

Nevertheless, we observe that:

Proposition

The following formulas are derivable in HA2− (:= HA2− Ind)

NJ2 ` 0 ∈ N
NJ2 ` (∀x ∈N)(s(x) ∈ N)

NJ2 + def. of + ` (∀x , y ∈N)(x + y ∈ N)

NJ2 + def. of × ` (∀x , y ∈N)(x × y ∈ N) (etc.)

NJ2 ` ∀Z [0 ∈ Z ⇒
(∀y ∈N) (y ∈ Z ⇒ s(y) ∈ Z)⇒

(∀x ∈N) (x ∈ Z)]

writing N :≡ {x : ∀Z [0 ∈ Z ⇒ ∀y (y ∈ Z ⇒ s(y) ∈ Z)⇒ x ∈ Z ]}

Exercise: Write the corresponding proof-terms (in system λNK2)
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The problem of induction (2/2)

Problem: Induction axiom Ind (⇔ ∀x (x ∈ N)) is not realizable!
(Due to uniform interpretation of ∀)

Solution: Restrict to PA2− := PA2− Ind
and relativize all 1st-order quantifications to N:

Definition of the operation of relativization A 7→ AN

(X (e1, . . . , ek))N :≡ X (e1, . . . , ek) (∀x A)N :≡ (∀x ∈N)AN

(A⇒ B)N :≡ AN ⇒ BN (∀X A)N :≡ ∀X AN

Theorem

If PA2 ` A, then PA2− ` AN

Proof: Exercise.

Conclusion: In what follows, we shall work in PA2− := PA2− Ind,
relativizing 1st-order quantifications to N whenever needed
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Two semantics for classical 2nd-order logic (1/3)

There are two semantics for (classical) 2nd-order logic:

Full semantics vs. Henkin semantics

Moreover, full semantics is a particular case of Henkin semantics

Full semantics: A full model M of LK2 is given by:

A nonempty set |M | (domain of 1st-order objects)

A function f M : |M |k → |M | for each k-ary function symbol f

A relation f M ⊆ |M |k for each k-ary predicate symbol p

As usual, the interpretation of a 1st-order term (or a 2nd-order formula) is
parameterized by a valuation (in M ), that is: a function ρ mapping

each 1st-order variable x to an element ρ(x) ∈ |M |, and

each k-ary 2nd-order variable X to a relation ρ(X ) ∈ P(|M |k)

The denotation of a 1st-order term e in a valuation ρ (notation: e[ρ]M )
is defined as usual (i.e. Tarski semantics of 1st-order terms)
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Two semantics for classical 2nd-order logic (2/3)

Full semantics (continued):

Definition of the satisfaction predicate M |= A[ρ]

M |= ⊥[ρ] never holds

M |= p(e1, . . . , ek)[ρ] iff (e1[ρ]M , . . . , ek [ρ]M ) ∈ pM

M |= X (e1, . . . , ek)[ρ] iff (e1[ρ]M , . . . , ek [ρ]M ) ∈ ρ(X )

M |= (A⇒ B)(ρ) iff M |= A[ρ] implies M |= B[ρ]

M |= (∀x A)[ρ] iff M |= A[ρ, x ← a] for all a ∈ |M |
M |= (∀X A)[ρ] iff M |= A[ρ,X ← R] for all R ∈ P(|M |k)

Note that in the model, 2nd-order objects are all the possible relations R ∈ P(|M |k ).
So that when |M | is infinite, the model (1st- and 2nd-order objects) is uncountable.

A full model of a 2nd-order (classical) theory T (for example: PA2)
is a full model of LK2 that satisfies all the axioms of T

Example: The (full) standard model of PA2:

|M | := N, sM := (n 7→ n + 1), (+)M := (n,m 7→ n + m) (etc.)
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Two semantics for classical 2nd-order logic (3/3)

Henkin semantics: A pre-Henkin model M of LK2 is given by:

The same ingredients (|M |, f k . . ., pk . . .) as before, plus:

A set of relations Relk(M ) ⊆ P(|M |k) (domain of 2nd-order objects)

Definition of the satisfaction predicate M |= A[ρ]

M |= (∀X A)[ρ] iff M |= A[ρ,X ← R] for all R ∈ Relk(|M |)
(Other clauses of the definition remain unchanged)

Note that in the model, 2nd-order objects are only the relations R ∈ Relk (M ). So that
even when |M | is infinite, the model (1st- and 2nd-order objects) may be countable.

A Henkin model of LK2 is a pre-Henkin model M that satisfies all
comprehension axioms:

M |= ∀~z ∀~Z ∃X ∀~x [X (~x) ⇔ A(~x , ~z , ~Z )]

(where A(x1, . . . , xk , ~z, ~Z) is any formula with free vars. ~z, ~Z , x1, . . . , xk )

As before, a Henkin model of a 2nd-order theory T (for example: PA2)
is a Henkin model of LK2 that satisfies all the axioms of T
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Full semantics vs Henkin semantics

Clearly: Full semantics = Henkin semantics where

Relk(M ) = P(|M |k) (for all k ≥ 0)

Note: Relk (M ) = P(|M |k ) ⇒ M satisfies all (k-ary) comprehension axioms

When designing a notion of model, we are in general interested in
the properties of soundness, completenes and compactness.

Regarding full and Henkin models, the situation is the following:

Soundness Completeness Compactness

Full semantics Yes No No
Henkin semantics Yes Yes Yes

Intuition: The notion of full model is too restrictive, hence we lose the
properties of completeness and compactness.

The fact that Henkin models preserve completeness/compactness is due
to the possibility of presenting 2nd-order logic as a 1st-order theory
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Second-order logic as a first-order theory (1/2)

2nd-order logic over a 1st-order language L (NK2L) can be presented as
a multi-sorted 1st-order theory TLK2,L that is defined as follows:

The language of TLK2,L has infinitely many sorts:

a sort ι of individuals, and
a sort ok of k-ary relations, for each k ≥ 0

The function symbols of TLK2,L are all the (k-ary) function symbols
of the language L, now seen as function symbols of arity ιk → ι

So that the terms of sort ι in TLK2,L are exactly the 1st-order terms of L.
On the other hand, the only terms of sort ok are the variables X : ok .

A predicate symbol @k of arity ok × ιk → Prop
(application of a k-ary predicate symbol to k individuals)

The axioms of TLK2,L are all the comprehension axioms:

(∀~z : ι)(∀~Z : o∗)(∃X : ok)(∀~x : ι)[@(X , ~x) ⇔ A(~x , ~z , ~Z)]
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Second-order logic as a first-order theory (2/2)

There is an almost(∗) one to one correspondence between the 2nd-order
formulas of L and the 1st-order formulas of TLK2,L:

Formulas of L
(2nd-order)

Formulas of TLK2,L
(1st-order)

X (e1, . . . , ek) ≈ @k(X , e1, . . . , ek)

∀x A(x) ≈ (∀x : ι)A(x)

∀X A(X ) ≈ (∀X : ok)A(X )

(∗) Up to the fact that =, >, ⊥, ∧, ∨ and ∃ are defined in 2nd-order logic

Theorem

1 For each closed 2nd-order formula: LK2L ` A︸ ︷︷ ︸
2nd-order

iff TLK2,L ` A1st︸ ︷︷ ︸
1st-order

2 The Henkin models of 2nd-order logic (in L) are exactly the Tarski models
of the 1st-order theory TLK2,L (up to insignificant changes of representation)

⇒ Henkin models enjoy soundness, completeness & compactness
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Jean-Louis Krivine (1939–)
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Terms, stacks and processes

The syntax of the λc -calculus is parameterized by

A countable set K = {cc, . . .} of instructions,
containing at least the instruction cc (call/cc)

A countable set Π0 of stack constants (or stack bottoms)

Terms, stacks and processes

Terms

Stacks

Processes

t, u ::= x | λx . t | tu | κ | kπ

π, π′ ::= α | t · π

p, q ::= t ? π

(κ ∈ K)

(α ∈ Π0, t closed)

(t closed)

A λ-calculus with two kinds of constants:

Instructions κ ∈ K, including cc
Continuation constants kπ, one for every stack π (generated by cc)

Notation: Λ, Π, Λ ? Π (sets of closed terms / stacks / processes)
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Proof-like terms

Proof-like term ≡ Term containing no continuation constant

Proof-like terms t, u ::= x | λx . t | tu | κ (κ ∈ K)

Idea: All realizers coming from actual proofs are of this form,
continuation constants kπ are treated as paraproofs

Notation: PL ≡ set of closed proof-like terms

Natural numbers are encoded as proof-like terms, letting:

Krivine numerals n :≡ sn 0 ∈ PL (n ∈ N)

writing 0 ≡ λxy . x and s ≡ λnxy . y (n x y)

Note: Krivine numerals 6≡ Church numerals, but β-equivalent
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The Krivine Abstract Machine (KAM) (1/2)

We assume that the set Λ ? Π comes with a preorder p � p′ of
evaluation satisfying the following rules:

Krivine Abstract Machine (KAM)

Push
Grab
Save
Restore

tu ? π � t ? u · π
λx . t ? u · π � t[x := u] ? π

cc ? u · π � u ? kπ · π
kπ ? u · π′ � u ? π
· · · · · ·

(+ reflexivity & transitivity)

Evaluation is not defined but axiomatized. The preorder p � p′ is
just another parameter of the calculus, like the sets K and Π0

Extensible machinery: we can add extra instructions and rules
(We shall see examples later)
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The Krivine Abstract Machine (KAM) (2/2)

Rules Push and Grab implement weak head β-reduction:

Push

Grab

tu ? π � t ? u · π
λx . t ? u · π � t[x := u] ? π

Example: (λxy . t) u v ? π � λxy . t ? u · v · π
� t[x := u][y := v ] ? π

Rules Save and Restore implement backtracking:

Save

Restore

cc ? u · π � u ? kπ · π
kπ ? u · π′ � u ? π

The instruction cc is most often used in the pattern

cc (λk . t) ? π � cc ? (λk . t) · π
� (λk . t) ? kπ · π
� t[k := kπ] ? π
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Representing functions

Definition (function representation)

A partial function f : Nk ⇀ N is represented by a λc -term f̂ ∈ Λ if

f̂ ? n̄1 · · · n̄k · u · π � u ? f (n1, . . . , nk) · π

for all (n1, . . . , nk) ∈ dom(f ) and for all u ∈ Λ, π ∈ Π

Call by value encoding:

Consumes k values and returns 1 value on the stack
Control is given to the extra argument u (continuation, return block)

Examples: ŝ := λxk . k (s̄ x)
+̂ := λxyk . y k (λk ′z . ŝ z k) x
×̂ := λxyk . y k (λk ′z . +̂ z x k) 0̄

Theorem (Representation of recursive functions)

All partial recursive functions are represented in the λc -calculus
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Example of extra instructions (1/2)

Numbering terms: the instruction quote:

quote ? t · u · π � u ? dte · π
where t 7→ dte is a fixed bijection from Λ to N

Useful to realize the axiom of dependent choices (DC) [K. 2003]

Numbering stacks: the instruction quote′:

quote′ ? u · π � u ? dπe · π
where π 7→ dπe is a fixed bijection from Π to N

Can be implemented using quote
Useful to realize the axiom of dependent choices (DC) [K. 2003]

Testing syntactic equality: the instruction eq:

eq ? t1 · t2 · u · v · π �
{
u ? π if t1 ≡ t2

v ? π if t1 6≡ t2

Can be implemented using quote or quote′
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Example of extra instructions (2/2)

Non-deterministic choice operator: the instruction fork:

fork ? u · v · π �
{
u ? π
v ? π

Useful for pedagogy – bad for realizability (collapses to forcing)

The instruction stop:

stop ? π 6�
Stops execution. Final result returned on the stack π

The instruction print:

print ? n · u · π � u ? π (formal specification)

and prints integer n on standard output (informal specification)

Useful to display intermediate results without stopping the machine

The instruction hace mate:

hace mate ? u · π � u ? π + hace el mate
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On the determinism of evaluation

A relation of evaluation � (between processes) is deterministic when
it is the reflexive-transitive closure of a relation �1 of one step
evaluation that is strictly deterministic, in the sense that:

p �1 p′ and p �1 p′′ implies p′ ≡ p′′ (for all p, p′, p′′)

The relation of evaluation induced by the four basic rules (Grab,
Push, Save and Restore) is clearly deterministic

On the other hand β-reduction (in the λ-calculus) is not:

(I I)(I I)

{
→1
β I (I I)

→1
β (I I) I

Instructions quote, quote′, eq, stop, print and hace mate preserve
the determinism of evaluation, while fork completely breaks it

Beware of non-determinism! As soon as the calculus contains
a term with the same evaluation rules as fork, the corresponding
realizability model is equivalent to a forcing model (collapse)
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Krivine the White
(Courtesy of Vincent Padovani)
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Classical realizability: principles

Intuitions:

term = “proof” / stack = “counter-proof”
process = “contradiction” (Slogan: Never trust a classical realizer!)

Each classical realizability model is parameterized by a pole ⊥⊥
= set of processes (“contradictions”) closed under anti-evaluation

Each formula A is interpreted as two sets:

A set of stacks ‖A‖ (falsity value)
A set of terms |A| (truth value)

Falsity value ‖A‖ is defined by induction on A (negative interp.)

Truth value |A| is defined by orthogonality:

|A| := ‖A‖⊥⊥ := {t ∈ Λ : ∀π ∈ ‖A‖ t ? π ∈ ⊥⊥}
More generally, given S ⊂ Π, we let S⊥⊥ := {t ∈ Λ : ∀π ∈ S t ? π ∈ ⊥⊥} (⊆ Λ)
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Architecture of the realizability model

The realizability model M⊥⊥ is defined from:

The full standard model M of PA2: the ground model
(but we could take any model M of PA2 as well)

An instance (K,Π0,�) of the λc -calculus: the calculus of realizers

A saturated set of processes ⊥⊥ ⊆ Λ ? Π: the pole of the model
(saturated = closed under anti-evaluation)

Architecture:

First-order terms/variables are interpreted as natural numbers n ∈ N
Formulas are interpreted as falsity values S ∈ P(Π)

k-ary second-order variables (and k-ary predicates) are interpreted as
falsity functions F : Nk → P(Π).

Formulas with parameters A,B ::= · · · | Ḟ (e1, . . . , ek)

Add a k-ary predicate constant Ḟ for every falsity function F : Nk → P(Π)
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Interpreting closed formulas with parameters

Let A be a closed formula (with parameters)

Falsity value ‖A‖ defined by induction on A:

‖Ḟ (e1, . . . , ek)‖ := F (eN1 , . . . , e
N
k )

‖A⇒ B‖ := |A| · ‖B‖ = {t · π : t ∈ |A|, π ∈ ‖B‖}

‖∀x A‖ :=
⋃
n∈N

‖A[x := n]‖

‖∀X A‖ :=
⋃

F : Nk→P(Π)

‖A[X := Ḟ ]‖

Truth value |A| defined by orthogonality:

|A| := ‖A‖⊥⊥ = {t ∈ Λ : ∀π ∈ ‖A‖ t ? π ∈ ⊥⊥}

Recall: For each S ⊆ Π we write S⊥⊥ := {t ∈ Λ : ∀π ∈ S t ? π ∈ ⊥⊥} (⊆ Λ)
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The realizability relation

Falsity value ‖A‖ and truth value |A| depend on the pole ⊥⊥
 write them (sometimes) ‖A‖⊥⊥ and |A|⊥⊥ to recall the dependency

Realizability relations

t  A :≡ t ∈ |A|⊥⊥
t � A :≡ ∀⊥⊥ t ∈ |A|⊥⊥

(Realizability w.r.t. ⊥⊥)

(Universal realizability)
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From computation to realizability (1/4)

Fundamental idea: The computational behavior of a term determines
the formulas it realizes:

Example 1: A closed term t is identity-like if:

t ? u · π � u ? π for all u ∈ Λ, π ∈ Π

Proposition

If t is identity-like, then t � ∀X (X ⇒ X )

Proof: Exercise!

Remark: The converse implication also holds – Exercise!

Examples of identity-like terms:

λx . x , (λx . x) (λx . x), etc.

λx . cc (λk . x), λx . cc (λk . k x), λx . cc (λk . k x ω), etc.

λx . quote x (λn . unquote n (λz . z))

print 42, hace mate
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From computation to realizability (2/4)

Proof of: t identity-like iff t � ∀X (X ⇒ X )

(⇒) Assume that t is identity-like, i.e.: t ? u · π � u ? π for all t, u ∈ Λ, π ∈ Π.
Given a pole ⊥⊥, we want to prove that t ∈ |∀X (X ⇒ X )| (w.r.t. the pole ⊥⊥).
For that, it suffices to prove that t ? π ∈ ⊥⊥ for all π ∈ ‖∀X (X ⇒ X )‖.

Take an arbitrary π ∈ ‖∀X (X ⇒ X )‖. Since ‖∀X (X ⇒ X )‖ =
⋃
S⊆Π

‖Ṡ ⇒ Ṡ‖,

we have π ∈ ‖Ṡ ⇒ Ṡ‖ for some S ⊆ Π. And since ‖Ṡ ⇒ Ṡ‖ = |Ṡ| · ‖Ṡ‖, we also
have π ≡ u · π′ for some u ∈ S⊥⊥ (= |Ṡ |) and π′ ∈ S (= ‖Ṡ‖).

Now observe that t ? π ≡ t ? u · π′ � u ? π′ ∈ ⊥⊥ (since t is identity-like, and
since u ∈ S⊥⊥ and π′ ∈ S), so that by anti-evaluation, we get t ? π ∈ ⊥⊥ as desired.

(⇐) Assume that t � ∀X (X ⇒ X ). Given u ∈ Λ and π ∈ Π, we want to show
that t ? u · π � u ? π. For that, consider the pole ⊥⊥ := {p ∈ Λ ? Π : p � u ? π}
(closed under anti-evaluation) and the falsity value S := {π} (with only one stack).
Now observe that u ? π ∈ ⊥⊥, hence u ∈ S⊥⊥. Therefore we get

u · π ∈ S⊥⊥ · S = ‖Ṡ ⇒ Ṡ‖ ⊆ ‖∀X (X ⇒ X )‖,

from which we deduce that t ? u · π ∈ ⊥⊥ (since t ∈ |∀X (X ⇒ X )|).
From the definition of the pole ⊥⊥, we conclude that t ? u · π � u ? π.
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From computation to realizability (3/4)

Example 2: Control operators:

cc ? t · π � t ? kπ · π
kπ ? t · π′ � t ? π

“Typing” kπ: kπ ? t · π′ � t ? π

Lemma

If π ∈ ‖A‖, then kπ  A⇒ B (B any)

Proof: Exercise

“Typing” cc: cc ? t · π � t ? kπ · π

Proposition (Realizing Peirce’s law)

cc � ((A⇒ B)⇒ A)⇒ A

Proof: Exercise
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From computation to realizability (4/4)

Proof of: π ∈ ‖A‖ implies kπ ∈ |A⇒ B| (w.rt. a fixed pole ⊥⊥)

Assume that π ∈ ‖A‖. We want to prove that kπ ∈ |A⇒ B|.
For that, it suffices to prove that kπ ? π′ ∈ ⊥⊥ for all π′ ∈ ‖A⇒ B‖.
Take an arbitrary π′ ∈ ‖A⇒ B‖. Since ‖A⇒ B‖ = |A| · ‖B‖, we have
π′ ≡ u · π′′ for some u ∈ |A| and π′′ ∈ ‖B‖.
Now observe that kπ ? π′ ≡ kπ ? u · π′′ � u ? π ∈ ⊥⊥ (since u ∈ |A|
and π ∈ ‖A‖), so that by anti-evaluation, we get kπ ? π′ ∈ ⊥⊥ as desired.

Proof of: cc � ((A⇒ B)⇒ A)⇒ A

Given a fixed pole ⊥⊥, we want to prove that cc ∈ |((A⇒ B)⇒ A)⇒ A|.
For that, it suffices to prove that cc ? π ∈ ⊥⊥ for all π ∈ ‖((A⇒ B)⇒ A)⇒ A‖.
Take an arbitrary π ∈ ‖((A⇒ B)⇒ A)⇒ A‖. Since ‖((A⇒ B)⇒ A)⇒ A‖ =
|(A⇒ B)⇒ A| · ‖A‖, we have π ≡ t · π′ for some t ∈ |(A⇒ B)⇒ A| and π′ ∈ ‖A‖.
Now observe that cc ? π ≡ cc ? t · π′ � t ? kπ′ · π′. Therefore it remains to prove
that t ? kπ′ · π′ ∈ ⊥⊥ (using the closure by anti-evaluation). For that, we observe
that kπ′ ∈ |A⇒ B| (using the previous proposition) and π′ ∈ ‖A‖, hence

kπ′ · π ∈ |A⇒ B| · ‖A‖ = ‖(A⇒ B)⇒ A‖
But since t ∈ |(A⇒ B)⇒ A|, we conclude that t ? kπ′ · π′ ∈ ⊥⊥ as desired.



Introduction 2nd-order logic & arithmetic The λc -calculus Classical realizability Adequacy Witness extraction

Anatomy of the model (1/3)

Denotation of universal quantification:

Falsity value: ‖∀x A‖ =
⋃
n∈N

‖A[x := n]‖ (by definition)

Truth value: |∀x A| =
⋂
n∈N

|A[x := n]| (by orthogonality)

(and similarly for 2nd-order universal quantification)

Denotation of implication:

Falsity value: ‖A⇒ B‖ = |A| · ‖B‖ (by definition)

Truth value: |A⇒ B| ⊆ |A| → |B| (by orthogonality)

writing |A| → |B| = {t ∈ Λ : ∀u ∈ |A| tu ∈ |B|} (Kleene arrow)

Note: In general, we have |A| → |B| 6⊆ |A⇒ B|. Nevertheless:

t ∈ |A| → |B| implies λx . t x ∈ |A⇒ B| (Exercise)
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Anatomy of the model (2/3)

Degenerate case: ⊥⊥ = ∅
Classical realizability mimics the Tarski interpretation:

Degenerated interpretation

In the case where ⊥⊥ = 0, for every closed formula A:

|A| =

{
Λ if M |= A

∅ if M 6|= A

Non degenerate cases: ⊥⊥ 6= ∅
Every truth value |A| is inhabited:

Existence of paraproofs

If ⊥⊥ 6= ∅, then there is a term z⊥⊥ ∈ Λ (a “paraproof”)

such that: z⊥⊥  A for all closed formulas A

Proof. Since ⊥⊥ 6= ∅, pick a process t0 ? π0 ∈ ⊥⊥ and write z⊥⊥ :≡ kπ0 t0.
For all stacks π, we have: z⊥⊥ ? π ≡ kπ0 t0 ? π � kπ0 ? t0 · π � t0 ? π0 ∈ ⊥⊥.
This immediately implies that z⊥⊥  A for all closed formulas A.
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Anatomy of the model (3/3)

The big dilemma:
When ⊥⊥ = ∅: classical realizability is useless (?)

(since it mimics Tarski semantics)

When ⊥⊥ 6= ∅: classical realizability is inconsistent (?)
(since z⊥⊥  A for all closed formulas A)

Solution: Only consider proof-like terms (∈ PL) as “valid” realizers
Recall: Proof-like term (∈ PL) = term without continuation constants (kπ)

Definition (Realized formulas)

In a given realizability model, a closed formula A with parameters is
realized (notation:  A) when A is realized by at least a proof-like term:

 A (“A is realized”) :≡ t  A for some t ∈ PL

⇔ |A| ∩ PL 6= ∅
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Adequacy (1/2)

Aim: Prove the theorem of adequacy:

t : A (in the sense of λNK2) implies t  A (in the sense of realizability)

... and since t is proof-like (from λNK2), we deduce that A is realized (in each pole ⊥⊥)

Closing typing judgments z1 : A1, . . . , zn : An ` t : A

We close logical objects (1st-order terms, formulas, predicates) using
semantic objects (natural numbers, falsity values, falsity functions)

We close proof-terms using realizers

Definition (Valuation)

1 A valuation is a function ρ such that

ρ(x) ∈ N for each 1st-order variable x
ρ(X ) : Nk → P(Π) for each 2nd-order variable X of arity k

2 The closure of A with ρ is written A[ρ] (formula with parameters)
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Adequacy (2/2)

Definition (Adequate judgment, adequate rule)

Given a fixed pole ⊥⊥:

1 A judgment z1 : A1, . . . , zn : An ` t : A is adequate if for every
valuation ρ and for all u1  A1[ρ], . . . , un  An[ρ] we have:

t[z1 := u1, . . . , zn := un]  A[ρ]

2 A typing rule is adequate if it preserves the property of adequacy
(from the premises to the conclusion of the rule)

Theorem

1 All typing rules of λNK2 are adequate

2 All derivable judgments of λNK2 are adequate

Proof: Exercise!

Corollary: If ` t : A (A closed formula), then t � A (with t ∈ PL)
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Extending adequacy to subtyping

Definition (Adequate subtyping judgment)

Judgment A ≤ B adequate :≡ ‖B[ρ]‖ ⊆ ‖A[ρ]‖ (for all valuations ρ)

Remark: Implies that |A[ρ]| ⊆ |B[ρ]| (for all ρ), but strictly stronger

Some adequate typing/subtyping rules:

A ≤ A

A ≤ B B ≤ C

A ≤ C

Γ ` t : A A ≤ B

Γ ` t : B

∀x A ≤ A[x := e] ∀X A ≤ A[X := P]

A ≤ B

A ≤ ∀x B
x /∈FV (A)

A ≤ B

A ≤ ∀X B
X /∈FV (A)

A′ ≤ A B ≤ B′

A⇒ B ≤ A′ ⇒ B′

∀x (A⇒ B) ≤ A⇒ ∀x B
x /∈FV (A)

∀X (A⇒ B) ≤ A⇒ ∀X B
X /∈FV (A)

Example: ∀X ∀Y (((X ⇒ Y )⇒ X )⇒ X )︸ ︷︷ ︸
Peirce’s law

≤ ∀X (¬¬X ⇒ X )︸ ︷︷ ︸
DNE

(derivable from the above rules)
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Realizing equalities

Recall: Equality between individuals is defined by

e1 = e2 :≡ ∀Z (Z (e1)⇒ Z (e2)) (Leibniz equality)

Denotation of Leibniz equality

Given two closed first-order terms e1, e2 (and a pole ⊥⊥)

‖e1 = e2‖ =

{
‖1‖ = {t · π : (t ? π) ∈ ⊥⊥} if eN1 = eN2

‖> ⇒ ⊥‖ = Λ · Π if eN1 6= eN2

writing 1 :≡ ∀Z (Z ⇒ Z) and > :≡ ∅̇

Proof: Exercise!

Intuitions:

A realizer of a true equality (in the model) behaves as the identity
function λz . z

A realizer of a false equality (in the model) behaves as a point of
backtrack (breakpoint)
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Realizing axioms

Corollary 1 (Realizing true equations)

If N |= ∀~x (e1(~x) = e2(~x)) (truth in the ground model)

then I ≡ λz . z � ∀~x (e1(~x) = e2(~x)) (universal realizability)

Corollary 2

All defining equations of primitive recursive function symbols
(+, −, ×, /, mod, ↑, etc.) are universally realized by I ≡ λz . z

Corollary 3 (Realizing Peano axioms 3 and 4)

I � ∀x ∀y (s(x) = s(y)⇒ x = y)
λz . z I � ∀x ¬(s(x) = 0)

Theorem: If PA2− ` A, then θ � A for some θ ∈ PL
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Realizing true Horn formulas

Definition (Horn formulas)

1 A (positive/negative) literal is a formula L of the form

L ≡ e1 = e2 or L ≡ e1 6= e2

2 A (positive/negative) Horn formula is a closed formula H of the form

H ≡ ∀~x [L1 ⇒ · · · ⇒ Lp ⇒ Lp+1] (p ≥ 0)

where L1, . . . , Lp are positive; Lp+1 positive or negative

Theorem (Realizing true Horn formulas) [M. 2014]

If M |= H, then:
I ≡ λz . z � H

λz1 · · · zp+1 . z1 (· · · (zp+1 I) · · · ) � H
(if H positive)

(if H negative)

All axioms of PA2− := PA2− Ind are Horn formulas

Quantifications not relativized to N  H holds for all individuals
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Provability, universal realizability and truth

From what precedes:

1 A provable ⇒ A universally realized (by a proof-like term)

2 A universally realized ⇒ A true (in the full standard model)

 Provability ( Universal realizability ( Truth

Beware!

Intuitionistic proofs of A ⊆ Classical proofs of A

∩ ∩

Intuitionistic realizers of A
*
+

Classical realizers of A

Counter-example: λz . z Kleene ∀x ∀y (s(x) = s(y)⇒ x = y)

λz . refl Kleene ∀x ∀y (s(x) = s(y)⇒ x = y)

λz . z Krivine ∀x ∀y (s(x) = s(y)⇒ x = y)

but: λz . refl 6Krivine ∀x ∀y (s(x) = s(y)⇒ x = y)

(where refl ≡ 0 (Kleene) or refl ≡ I (Krivine) uniformly realizes true equalities)
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Program extraction

Extracting a program from a proof in PA2

If PA2 ` A, then there is θ ∈ PL such that θ � AN

(AN obtained from A by relativizing all 1st-order quantifications to N)

In practice:

Only apply the adequacy theorem to the computationally relevant
parts of the proof

For the computationally irrelevant parts (i.e. Horn formulas), use
‘default realizers’  realizer optimization

Example 1: λ , . I � (∀x , y ∈N) (x + y = y + x)

Example 2: Fermat’s last theorem1

(∀x , y , z , n∈N) (x ≥ 1⇒ y ≥ 1⇒ n ≥ 3⇒ xn + yn 6= zn)

1. realized by: λ , , , , u1, u2, u3, v . u1 (u2 (u3 (v I)))
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Some problems of classical realizability

1 The specification problem

Given a formula A, characterize its universal realizers
from their computational behavior

Specifying Peirce’s law [Guillermo-M. 2014]

2 Witness extraction from classical realizers (cf next slides)

3 Realizability algebras + Cohen forcing

Realizability algebras: a program to well-order R [K. 2011]
Forcing as a program transformation [M. 2011]

4 Models induced by classical realizability

What are the interesting formulas that are realized in M⊥⊥
that are not already true in the ground model M ?

Realizability algebras II: new models of ZF + DC [K. 2012]
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The problem of witness extraction

Problem: Extract a witness from a universal realizer (or a proof)

t0 � (∃x ∈N)A(x)

i.e. some n ∈ N such that A(n) is true

This is not always possible!

t0 � (∃x ∈N) ((x = 1 ∧ C ) ∨ (x = 0 ∧ ¬C ))

(C = Continuum hypothesis, Goldbach’s conjecture, etc.)

Two possible compromises:

Intuitionistic logic: Restrict the shape of the realizer t0

(by only keeping intuitionistic reasoning principles)

Classical logic: Restrict the shape of the formula A(x)

(typically: ∆0
0-formulas)
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Storage operators (1/3)

The call-by-value implication:

Formulas A,B ::= · · · | {e} ⇒ A

with the semantics: ‖{e} ⇒ A‖ := {n̄ · π : n = eN, π ∈ ‖A‖}

[ Recall: ‖e ∈ N⇒ A‖ := {u · π : u ∈ |e ∈ N|, π ∈ ‖A‖} ]

From the definition: e ∈ N⇒ A ≤ {e} ⇒ A

so that: I � ∀x ∀Z [(x ∈ N⇒ Z)⇒ ({x} ⇒ Z)] (direct implication)

Definition (Storage operator) [Krivine]

A storage operator is a closed proof-like term M such that:

M � ∀x ∀Z [({x} ⇒ Z)⇒ (x ∈ N⇒ Z)] (converse implication)

Theorem (Existence)

Storage operators exist, e.g.: M :≡ λfn . n f (λhx . h (s̄ x)) 0̄

Proof: Postponed.
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Storage operators (2/3)

Intuitively, a storage operator

M � ∀x ∀Z [({x} ⇒ Z )⇒ (x ∈ N⇒ Z )]

is a proof-like term that is intended to be applied to

a function f that only accepts values (i.e. intuitionistic integers)

a classical integer t  n ∈ N (that may contain continuations kπ)

and that evaluates (or ‘smoothes’) the classical integer t into a
value of the form n̄ before passing this value to f

By subtyping, we also have:

M � ∀Z [∀x ({x} ⇒ Z (x)) ⇒ (∀x ∈N)Z (x)]

This means that if a property Z (x) holds for all intuitionistic
integers, then it holds for all classical integers too

Conclusion: e ∈ N⇒ A and {e} ⇒ A are equivalent
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Storage operators (3/3)

Proof of existence of storage operators: Take M :≡ λfn . n f (λhx . h (s̄ x)) 0̄.

Given a pole ⊥⊥, we want to prove that M  ∀x ∀Z [({x} ⇒ Z)⇒ (x ∈ N⇒ Z)].
This amounts to prove that M  ({n} ⇒ Ṡ)⇒ n ∈ N⇒ Ṡ for all n ∈ N and S ⊆ Π.
For that, pick a stack in ‖({n} ⇒ Ṡ)⇒ n ∈ N⇒ Ṡ‖, that is of the form t · u · π,
where t ∈ |{n} ⇒ Ṡ|, u ∈ |n ∈ N| and π ∈ S. We want to prove that M ? t · u ·π ∈ ⊥⊥.
Since M ? t · u · π � u t (λhx . h (s̄ x)) 0̄ ? π � u ? t · (λhx . h (s̄ x)) · 0̄ · π, it suffices
to prove that u ? t · (λhx . h (s̄ x)) · 0̄ · π ∈ ⊥⊥ (by anti-evaluation).

Let us now consider the falsity function F : N→ P(Π) defined by:

F (p) :=

‖{n − p} ⇒ Ṡ‖ :=
{
n − p

}
· S if p < n

‖>‖ := ∅ if p ≥ n
(for all n ∈ N)

We easily check that λhx . h (s̄ x) ∈ |Ḟ (p)⇒ Ḟ (p + 1)| for all p ∈ N, (Exercise)
and therefore: λhx . h (s̄ x) ∈ |∀x(Ḟ (x)⇒ Ḟ (s(x)))|.

Now observing that: u ∈ |n ∈ N| ⊆ |Ḟ (0)⇒ ∀x (Ḟ (x)⇒ Ḟ (s(x)))⇒ Ḟ (n)|

whereas: t ∈ |{n} ⇒ Ṡ | = |Ḟ (0)|
λhx . h (s̄ x) ∈ |∀x(Ḟ (x)⇒ Ḟ (s(x)))|

and 0̄ · π ∈ ‖{0̄} ⇒ Ṡ‖ = ‖Ḟ (n)‖

we deduce that u ? t · (λhx . h (s̄ x)) · 0̄ · π ∈ ⊥⊥ as desired.
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Computing with storage operators

Given a k-ary function symbol f , we let:

Total(f ) := (∀x1 ∈N) · · · (∀xk ∈N)(f (x1, . . . , xk) ∈ N)

Comput(f ) := ∀x1 · · · ∀xk ∀Z [{x1} ⇒ · · · ⇒ {xk} ⇒
({f (x1, . . . , xk)} ⇒ Z)⇒ Z ]

Theorem (Specification of the formula Comput(f ))

For all t ∈ Λ, the following assertions are equivalent:

1 t � Comput(f )

2 t computes f : for all (n1, . . . , nk) ∈ Nk , u ∈ Λ, π ∈ Π:

t ? n1 · · · nk · u · π � u ? f (n1, . . . , nk) · π

Proof: Same technique as for: “t identity-like iff t � ∀X (X ⇒ X )” (Exercise!)

Using a storage operator M, we can build proof-like terms:

ξk � Total(f ) ⇒ Comput(f )

ξ′k � Comput(f ) ⇒ Total(f )
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The naive extraction method

A classical realizer t0 � (∃x ∈N)A(x) always evaluates to a
pair witness/justification:

Naive extraction

If t0 � (∃x ∈N)A(x), then there are n ∈ N and u ∈ Λ such that:

t0 ?M(λxy . stop x y) · π � stop ? n · u · π

(where u  A(n) w.r.t. the particular pole needed to prove the property)

Proof. Take ⊥⊥π := {p ∈ Λ ?Π : p � stop ? n̄ · u · π for some n ∈ N and u ∈ Λ}
and prove that M(λxy . stop x y) · π ∈ ‖(∃x ∈N)A(x)‖ (w.r.t. ⊥⊥π).

But n ∈ N might be a false witness because the justification
u  A(n) is cheating! (u might contain hidden continuations)

In the case where t0 comes from an intuitionistic proof,
extracted witness n ∈ N is always correct

(This can be proved using Kleene realizability adapted to PA2−)
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Extraction in the Σ0
1-case

Extraction in the Σ0
1-case (+ display intermediate results)

If t0 � (∃x ∈N)(f (x) = 0), then

t0 ?M(λxy . print x y (stop x)) · π � stop ? n · π

for some n ∈ N such that f (n) = 0

Proof. Take ⊥⊥π := {p ∈ Λ ? Π : p � stop ? n̄ · π for some n ∈ N s.t. f (x) = 0}
and prove that M(λxy . print x y (stop x)) · π ∈ ‖(∃x ∈N)(f (x) = 0)‖.

Storage operator M used to evaluate 1st component (x)

2nd component (y) used as a breakpoint
(Relies on the particular structure of equality realizers)

Holds independently from the instruction set

Supports any representation of numerals
(One has to implement the storage operator M accordingly)
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Example: the minimum principle

Given a unary function symbol f , write:

Total(f ) := (∀x ∈N)(f (x) ∈ N)

x ≤ y := x − y = 0

(totality predicate)

(truncated subtraction)

Theorem (Minimum principle – MinP)

PA2− ` Total(f ) ⇒ (∃x ∈N) (∀y ∈N) (f (x) ≤ f (y))︸ ︷︷ ︸
undecidable

Proof. Reductio ad absurdum + course by value induction

The minimum principle is not intuitionistically provable (oracle)

We cannot apply the Σ0
1-extraction technique to the above proof

(applied to a totality proof of f ), since the conclusion is Σ0
2

The body (∀y ∈N) (f (x) ≤ f (y)) of ∃-quantification is undecidable
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Using the minimum principle to prove a Σ0
1-formula

Idea: The value x given by the minimum principle can be used to
prove a Σ0

1-formula, so that we can perform program extraction:

Corollary

PA2− ` Total(f ) ⇒ (∃x ∈N) (f (x) ≤ f (2x + 1))︸ ︷︷ ︸
decidable

More generally: PA2− ` Total(f ) ∧ Total(g) ⇒ (∃x ∈N) (f (x) ≤ f (g(x)))

Proof. Take the point x given by the minimum principle

Applying Σ0
1-extraction to the above non-constructive proof,

we get a correct witness after finitely many evaluation steps

How is this witness computed?
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The algorithm underlying Σ0
1-extraction

Minimum Principle (oracle)
(∃x ∈N) (∀y ∈N) ( f (x) ≤ f (y))

Σ0
1-Corollary

(∃x ∈N) ( f (x) ≤ f (2x + 1))

witness x + justification
of (∀y ∈N) ( f (x) ≤ f (y))

witness x (same as above)
+ justif. of f (x) ≤ f (2x + 1)

• Extract witness x + justification
• Evaluate witness x (using storage op.)

Return witness x

Correct: continue

Incorrect: backtrackEvaluate
justification

Σ0
1-extractor

(half conditional)

t0 :

t1 :

t2 :
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Transcript of the extraction process

Take f (x) = |x − 1000| (real minimum at x = 1000)

and apply Σ0
1-extraction to the proof of (∃x ∈N) (f (x) ≤ f (2x + 1))

Step 1 Oracle says: take x = 0 since (∀y ∈N) (f (0) ≤ f (y)) (false)
Corollary says: take x = 0 since f (0) ≤ f (1) (false)
Σ0

1-extractor evaluates incorrect justification and backtracks

Step 2 Oracle says: take x = 1 since (∀y ∈N) (f (1) ≤ f (y)) (false)
Corollary says: take x = 1 since f (1) ≤ f (3) (false)
Σ0

1-extractor evaluates incorrect justification and backtracks

Step 3 Oracle says: take x = 3 since (∀y ∈N) (f (3) ≤ f (y)) (false)
Corollary says: take x = 3 since f (3) ≤ f (7) (false)
Σ0

1-extractor evaluates incorrect justification and backtracks

Step 4 Oracle says: take x = 7 since (∀y ∈N) (f (7) ≤ f (y)) (false)
. . . . . . . .

Step 11 Oracle says: take x = 1023 since (∀y ∈N) (f (1023) ≤ f (y)) (false)
Corollary says: take x = 1023 since f (1023) ≤ f (2047) (true)
Σ0

1-extractor evaluates correct justification and returns x = 1023

Note that answer x = 1023 is correct... but not the point where f reaches its minimum
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Extraction in the Σ0
n/Π0

n-case (1/2)

Definition (Conditional refutation) [M. 2010]

rA ∈ Λ is a conditional refutation of the predicate A(x) if

For all n ∈ N such that M 6|= A(n): rA n � ¬A(n)

Such a conditional refutation can be constructed for every predicate
A(x) of 1st-order arithmetic

This result is a consequence of the following

Theorem (Realizing true arithmetic formulas) [Krivine, Miquey]

For every formula A(x1, . . . , xk) of 1st-order arithmetic, there exists a
closed proof-like term tA such that:

If M |= A(n1, . . . , nk), then tA n̄1 · · · n̄k � A(n1, . . . , nk)

(for all n1, . . . , nk ∈ N)
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Extraction in the Σ0
n/Π0

n-case (2/2)

The Kamikaze extraction method [M. 2010]

Let

1 t0 � (∃x ∈N)A(x)

2 rA a conditional refutation of the predicate A(x)

Then the process

t0 ?M (λxy . print x (rA x y)) · π

displays a correct witness after finitely many evaluation steps

Proof. Take ⊥⊥ := {p ∈ Λ ? Π : p � stop ? n̄ · · · for some n ∈ N s.t. M |= A(n)}
and prove that M (λxy . print x (rA x y)) · π ∈ ‖(∃x ∈N)(f (x) = 0)‖.

Remark: No correctness invariant is ensured as soon as the (first)
correct witness has been displayed!

After, anything may happen: displaying incorrect witnesses, infinite loop,
crash, etc. (Kamikaze behavior)
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Interlude: on numeration systems

Numeration systems used in the History:

Tally sticks (35000 BC)

Babylonian (3100 BC)

Egyptian (3000 BC)

Roman (1000 BC) XLII

Hindu-Arabic (300 AD) 42

Numeration systems used in Logic:

Peano: ssssssssssssssssssssssssssssssssssssssssss0

Church: λxf . f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (
f (f (f (f (f (f (f (f (f (f (f (f x)))))))))))))))))))))))))))))))))))))))))

Krivine: (λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))((λnxf .f (nxf ))(
(λxf .x)))))))))))))))))))))))))))))))))))))))))))
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Primitive numerals (1/2)

To get rid of Krivine numerals n̄ = sn0 (cf paleolithic numeration)

we extend the machine with the following instructions: [M. 2010]

For each number n ∈ N, an instruction n̂ ∈ K (primitive numeral)

with no evaluation rule (i.e. inert constant: pure data)

Intuition: n̂ ? π � segmentation fault

An instruction null ∈ K with the rules

null ? n̂ · u · v · π �
{
u ? π if n = 0
v ? π otherwise

Instructions f̌ ∈ K with the rules

f̌ ? n̂1 · · · n̂k · u · π � u ? m̂ · π where m = f (n1, . . . , nk)

for all the usual arithmetic operations f
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Primitive numerals (2/2)

Call-by-value implication, yet another definition:

Formulas A,B ::= · · · | [e]⇒ A

with the semantics: ‖[e]⇒ A‖ = {n̂ · π : n = eN, π ∈ ‖A‖}

Redefining the set of natural numbers:

N′ := {x : ∀Z (([x ]⇒ Z)⇒ Z)}

box := λxk . k x � ∀x ([x]⇒ x ∈ N′)
box n̂ � n ∈ N′
λn . n λx . š x box � (∀x ∈N′)(s(x) ∈ N′)
λnm . n λx .m λy . (+̌) x y box � (∀x , y ∈N′)(x + y ∈ N′)

rec cbv := λz0zs .Y λrx . null x z0 ((−̌) x 1̂λy . zs y (r y))
� ∀Z [Z(0) ⇒ ∀y ([y ]⇒ Z(y)⇒ Z(s(y))) ⇒ ∀x ([x]⇒ Z(x))]

rec := λz0zsn . n λx . rec cbv z0 (λyz . zs (box y) z) x
� ∀Z [Z(0)⇒ (∀y ∈N′)(Z(y)⇒ Z(s(y))) ⇒ (∀x ∈N′)Z(x)]

Conclusion: � ∀x (x ∈ N′ ⇔ x ∈ N)
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Krivine’s realizability vs the LRS-translation (1/2)

Krivine’s realizability can be seen as the composition of the
Lafont-Reus-Streicher (LRS) translation with Kleene realizability:

CPS ◦ Krivine = Kleene ◦ LRS [Oliva-Streicher 2008]

The dictionary

Classical realizability (Krivine) Lafont-Reus-Streicher translation

Pole ⊥⊥ Return formula R

Falsity value ‖A‖ Negative translation A⊥

‖A⇒ B‖ := |A| · ‖B‖ (A⇒ B)⊥ := ALRS ∧ B⊥

Truth value |A| := ‖A‖⊥⊥ ALRS := A⊥ ⇒ R

Through the CPS-translation, Krivine’s extraction method in the
Σ0

1-case is exactly Friedman’s trick (transposed to LRS) [M. 2010]
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Krivine’s realizability vs the LRS-translation (2/2)

Beware of reductionism!

The decomposition holds only for pure classical reasoning
(extra instructions are not taken into account)

Classical realizers are easier to understand than their
CPS-translations (and more efficient)

Classical realizability is more than Kleene’s realizability composed
with the Lafont-Reus-Streicher translation

An image:

2H2 + O2 −→ 2H2O

but can we deduce the properties of water from the ones of H2 and O2?
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