Introduction 2nd-order logic & arithmetic The X\ c-calculus Classical realizability Adequacy Witness extraction
000000 00000000000000000000 0000000000 0000000000000 000000000 0O0000000000000000000

An introduction to Krivine realizability

Alexandre Miquel

44 Avr1novd

17z <
INGENIERIA 2%

UNIVERSIDAD
DE LA REPUBLICA
URUGUAY

November 3th, 10th, 17th & 24th, 2021



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
900000 0000000000000 000000O0 0000000000 0000000000000 000000000 OO0000000000000000000

What is classical realizability?

@ A complete reformulation of the principles of Kleene realizability to
take into account classical reasoning [Krivine 1994, 2009, ...]

o Based on Griffin's discovery about the connection between classical
reasoning and control operators (call/cc) [Griffin 1990]

call/cc : (A=B)=A)=A (Peirce’s law)

o Interprets the Axiom of Dependent Choices (DC) [K. 2003]

o Initially designed for PA2, but extends to:
o Higher-order arithmetic (PAw)
o Zermelo-Fraenkel set theory (ZF) [K. 2001, 2012]

o The calculus of inductive constructions (CIC) [M. 2007]
(with classical logic in Prop)

@ Deep connections with Cohen forcing [K. 2011]
~» can be used to define new models of PA2/ZF [K. 2012]



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
00000 0000000000000 000000O0 0000000000 0000000000000 000000000 OO0000000000000000000

The design of classical realizability

e Traditionally, classical proofs are turned into intuitionistic proofs
(via some translation/interpretation from LK into LJ) before being
interpreted as purely functional programs

— T T— :
logical . @ 7 Kleene

translation .. .- realizability “. -

@ Rather than restricting to LJ a priori, interpret classical proofs
directly, using functional programs with control operators

functional
with control

Krivine
realizability



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
00e000 0000000000000 000000O0 0000000000 0000000000000 000000000 OO0000000000000000000

Programming with continuations (1/2)

@ Control operators give to the programs the ability to capture their
evaluation context (the “continuation”), so that they can backtrack
when something goes wrong.

~»  Allow programs to use the method of trial and error.

o Technically: Extend the pure A-calculus with a new binder Ck.t
that captures the current continuation in the bound variable k:

k:A=B FHt: A
F Ck.t : A

o The variable k : A = B captures the current A-continuation, that is:
the evaluation context asking for a value of type A.

o When applied to an object of type A (the “new answer”), the
A-continuation k : A = B restores the evaluation context that was
saved in k, with the new answer of type A. The current context is
aborted, hence B can be any type (typically: B = 1).



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000e00 0000000000000 000000O0 0000000000 0000000000000 000000000 OO0000000000000000000

Programming with continuations (2/2)

@ In practice, the binder Ck.t is implemented from the control
operator « (“call/cc”), letting Ck.t = a(Ak.t).

We have: c: (A=B)=A)=A (Peirce’s law)
@ (—|A = A) = A (particular case: B= 1)
o Question: AV -A 7
—(AV-A) A
o Answer: EM = «(\k.right(Ax.k(leftx))) : AV-A
where left : YXVY(X=XVY)
right : YXVY (Y= XVY)

@ Note that EM does not even need to know the formula Al
It is actually polymorphic in A: EM : VX (XV-X)



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
0000e0 0000000000000 000000O0 0000000000 0000000000000 000000000 OO0000000000000000000

The role of paraproofs (metaphore)

£

Georges de la Tour. Le tricheur 3 I'as de carreau (~ 1636)



Plan

@ Introduction

© Second-order logic (NK2) and arithmetic (PA2)
© The A\ -calculus

@ The classical realizability interpretation

© Adequacy

@ Witness extraction



@ Introduction

© Second-order logic (NK2) and arithmetic (PA2)
© The A\ .-calculus

@ The classical realizability interpretation

© Adequacy

@ Witness extraction



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 0@000000000000000000 0000000000 0000000000000 000000000 00000000000000000000

The language of (minimal) second-order logic

@ Second-order logic deals with two kinds of objects:
o lst-order objects = individuals (i.e. basic objects of the theory)
o 2nd-order objects = k-ary relations over individuals

First-order terms and formulas

First-order terms e, e = x | f(en,..., &)
Formulas AB = X(e,...,ex) | A=B
| VxA | VXA

@ Two kinds of variables

o lst-order vars: x, y, z, ...
o 2nd-order vars: X, Y, Z, ... of all arities k >0

@ Two kinds of substitution:
o Ist-order subst.: e[x:=e], Alx:= e] (defined as usual)
e 2nd-order subst.: A[X := P], P[X := P (postponed)



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 00@00000000000000000 0000000000 0000000000000 000000000 00000000000000000000

First-order terms

@ Defined from a first-order signature X (as usual):

First-order terms e,/ = x | fle,...,e) J

o f ranges over k-ary function symbols in

@ In what follows we assume that:

@ Each k-ary function symbol f is interpreted in IN by a function
M N =N
@ The signature X contains at least a function symbol for every

primitive recursive function (0, s, pred, +, —, X, /, mod, ...),
each of them being interpreted the standard way

o Denotation (in IN) of a closed first-order term e written e



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 000@0000000000000000 0000000000 0000000000000 000000000 00000000000000000000

Formulas

@ Formulas of minimal second-order logic

Formulas AB = X(e,....,ex) | A=B
| VxA | VXA }

only based on implication and 1st/2nd-order universal quantification

@ Other connectives/quantifiers defined via second-order encodings:

1L = vzz (absurdity)

A = A= 1 (negation)

AANB = VZ (A=B=2)= 2) (conjunction)

AVB = VZ(A=2Z2)=(B=2)=2) (disjunction)

IxA(x) = VZ(Vx(AKx)=Z)= 2) (1st-order 3)

IXAX) = VZUVX(AX)= 2Z2)= 2) (2nd-order 3)
e=e = VZ(Z(a)=Z(e)) (Leibniz equality)l




Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 0000@000000000000000 0000000000 0000000000000 000000000 00000000000000000000

Predicates

@ Concrete relations are represented using predicates  (syntactic sugar)

Predicates P,Q == X - XA (of arity k > O)J

Predicate = 2nd-order formula abstracted w.r.t. some 1st-order variables

Definition (Predicate application and 2nd-order substitution)

© P(er,...,ek) is the formula defined by
P(el, ceey ek) = Ao[X1 = €1y ..., Xk = ek]

where P = X; - - - Xk Ao, and where ey, ..., ek are k first-order terms

@ 2nd-order substitution A[X := P]  (where X and P are of the same arity k)
consists to replace in the formula A every atomic subformula of the form

X(e,...,ek) by the formula P(ei, ..., e)

@ Note: Every k-ary 2nd-order variable X can be seen as a predicate:

X = )?1"-)?/(X(X1,...,Xk)



Introduction 2nd-order logic & arithmetic The Xc-calculus

Classical realizability Adequacy Witness extraction
000000

00000@00000000000000 0000000000 0000000000000 000000000 00000000000000000000

Unary predicates as sets
@ Unary predicates represent sets of individuals
Syntactic sugar: {x: A} = %A ee P = P(e)

Example: The set IN of Dedekind numerals

N={x:VZ0eZ=Vy(yeZ=5s(y)eZ)=xcZ}

@ Relativized quantifications:

(VxeP)A(x) = Vx(xeP= A(x))

(3xeP)A(x) = VZ(Vx(xeP=A(x)=2Z)=Z)
< 3x(x € PAA(x))

@ Inclusion and extensional equality:

PCQ = ¥x(xeP=xeQ)
P=Q = Vx(xeP&exeQ)
@ Set constructors: PUQ = {x : xePVxeQ} (etc.)



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 00000000000000000000 0000000000 0000000000000 000000000 00000000000000000000

Natural deduction for classical 2nd-order logic (NK2)
Rules of system NK2
r-a s TF(A=B)=A) = A
AFEB rFA=B TFA
-A= B -8
A o [ VxA
M-vxA M= Alx = €]
A nn [ VXA
T VXA M AX = Pl

v

@ From these rules, one can derive the introduction & elimination rules
for L, A, v, 31, 32, = using their 2nd-order definition

o Classical logic obtained via Peirce’s law: ((A= B) = A)= A

o Elimination rule for 2nd-order V implies all comprehension axioms:

VZVZ IX VX [X(X) & A(X, Z,2Z)] )




Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 0000000@000000000000 0000000000 0000000000000 000000000 00000000000000000000

A type system for classical 2nd-order logic (ANK2)

@ Represent the computational contents of classical proofs using
Curry-style proof terms, with call/cc for classical logic:

t,bu = x | M.t | tu | «

e Typing judgement: X1 AL, ., xp i Ap F B

typing context I

Typing rules

—_— :A)el

FE e A S Fe: . (AsB) S A) = A

Mx:AFt:B r-t: A= 1B rM-uv:A

Fr-Xx.t:A=B F-tu:B
rEt:A < FV(T) [-t:VxA
FEt:VxA FEt: Alx:=¢€]
FrEet: A XgFV(T) FrEt: VXA
Fr-t:vXA Fet: AlX :=P]

Note: V interpreted uniformly = type checking & inference are undecidable



Introduction 2nd-order logic & arithmetic The X\ c-calculus Classical realizability Adequacy Witness extraction
000000 0000000080 0000000000 0000000000 0000000000000 000000000 0000000000000 0000000

From the derivation to the proof term

@ Deduction system NK2 and type system ANK2 are equivalent:

Al,...,Anl—NKzA iff X1:A1,...,XnZAn|—)\NK2t:A for some t

[Vx (A() = BOO)

[Vx (B(x) = C())] A(x) = B(x) Mm%
B(x) = C(x) B(x) o
C(x) v
A(x) = C(x)
Vx (A(x) = C(x)) g

(
Vx (B(x) = C(x)) = Vx(A(x) = C(x))
(x) = C(x)) = Vx(A(x) = C(X))



Introduction 2nd-order logic & arithmetic The Xc-calculus
000000 000000000®0000000000 0000000000

Typing examples

@ Intuitionistic principles:

pair = JAxyz.zxy
fst = Xz.z(Axy.x)
snd = Az.z(Axy.y)
refl = X\z.z
trans = JAxyz.y(xz)

Classical realizability Adequacy Witness extraction

0000000000000 000000000 0O00O00000000000000000

VXVY (X =Y =XAY)
VXYY (XA Y = X)

YXVY (XAY = Y)

Vx (x = x)
VxVyVz(x=y=>y=z=x=2)

@ Excluded middle, double negation elimination:

left = Xxuv.ux VXVY (X = XVY)
right = JMywv.vy YXVY (Y = XVY)

EM = a«(\k.right O\x.k(leftx)) : VX (XV-=X)
DNE = Mz.c(Mk.zk) : ¥X(—=X = X)

@ De Morgan laws:

Azy.z(Ax.yx) : IxA(x) = Vx-A(x)
Azy.c(Ak.z(Ax. k(yx))) : —Vx—-A(x) = IxA(x)



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 0000000000800 0000000 0000000000 0000000000000 000000000 00000000000000000000

Extensional equality

Recall that in (intuitionistic or classical) second-order logic:
o Equality between individuals (i.e. 1st-order objects) is defined by

e=¢e = VZ(Z(e)= Z(¢)) (Leibniz equality)

@ Equality between predicates (i.e. 2st-order objects) is defined by:
P=Q = VX(P(X)e QX)) (Extensional equality)

Proposition (Extensionality in 2nd-order logic)

For each 2nd-order formula A(X, Z, f) depending on X, Z, Z, we have:
NJ2 - VZVZ VX VY [X =Y = (AX,Z,Z) = A(Y, Z,2))]

Proof: By induction on the size of the formula A(X, Z, Z) —  Exercise!

Remark: The proposition holds because X(ei,...,ex) (predicate application)
is the only construction of the language that involves 2nd-order variables X...

... but it does not hold anymore in higher-order formalisms: NK3, ..., NKw



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 000000000008 00000000 0000000000 0000000000000 000000000 0000000000000 0000000

Classical second-order arithmetic (PA2)

Classical 2nd-order arithmetic (PA2) is the (classical) 2nd-order theory
whose axioms are:

o Defining equations of all primitive recursive functions:

Vx (x +0 = x) Vx (x x 0 =0)

VxVy (x +s(y) = s(x +y)) VxVy (x x s(y) = x X y +x)

Vx (pred(0) = 0) Vx (x —0=0)

Vx (pred(s(x)) = x) VxVy (x — s(y)) = pred(x — y) etc.

@ Peano axioms:
(P3)  VxVy(s(x) =s(y)=x=y)
(P4) Vx =(s(x) = 0)
(P5) VZ[0e Z=Vy(y e Z=5s(y) € Z)=Vx(x € 2Z)]

Remark: Thanks to 2nd-order V, induction is now a single axiom:

Ind = VZ[0eZ=Vy(yeZ=s(y)eZ)=Vx(xeZ)]

& Ux(x € N) (“every individual is a natural number”)



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 00000000000080000000 0000000000 0000000000000 000000000 00000000000000000000

The problem of induction (1/2)

@ Problem: Induction axiom Ind (& Vx(x € IN)) is not realizable!
(Due to uniform interpretation of V)

@ Nevertheless, we observe that:

The following formulas are derivable in HA2™ (:= HA2 — Ind)
NJ2 - 0€IN

NJ2 - (VxeIN)(s(x) € IN)

NJ2 + def. of + F (Vx,y €IN)(x+ y € IN)

NJ2 + def. of x F (Vx,y €IN)(x x y € IN) (etc.)
NJ2 - VZ[0e Z=

(VyelN)(yeZ=s(y)e 2)=
(YxeIN) (x € Z2)]

writing IN := {x : VZ[0e Z=Vy(yeZ=5s(y)eZ)=x€eZ]}

Exercise: Write the corresponding proof-terms (in system ANK2)



Introduction

2nd-order logic & arithmetic
000000

The Xc-calculus Classical realizability Adequacy Witness extraction
0000000000000 @000000 0000000000 0000000000000 000000000 00000000000000000000

The problem of induction (2/2)

@ Problem: Induction axiom Ind (& Vx(x € IN)) is not realizable!
(Due to uniform interpretation of V)

@ Solution: Restrict to PA2™ := PA2 —Ind

and relativize all 1st-order quantifications to IN:

Definition of the operation of relativization A — AN

(X(et,--,a))" = X(e,-..,ex) (Wx AN = (vxeIn)AV
(A= BN = AN = BN (VX AN = vx AN

If PA2F A, then PA2™ |- AN

Proof: Exercise.

@ Conclusion: In what follows, we shall work in  PA2™ := PA2 — Ind,

relativizing 1st-order quantifications to IN whenever needed



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 0000000000000 0@00000 0000000000 0000000000000 000000000 00000000000000000000

Two semantics for classical 2nd-order logic (1/3)

There are two semantics for (classical) 2nd-order logic:
Full semantics vs. Henkin semantics

Moreover, full semantics is a particular case of Henkin semantics

Full semantics: A full model .# of LK2 is given by:
@ A nonempty set || (domain of 1st-order objects)
o A function % :|.#|* — |.#| for each k-ary function symbol f
o A relation f# C |.#|¥ for each k-ary predicate symbol p
As usual, the interpretation of a 1lst-order term (or a 2nd-order formula) is
parameterized by a valuation (in .#Z), that is: a function p mapping
@ each Ist-order variable x to an element p(x) € |.#|, and
@ each k-ary 2nd-order variable X to a relation p(X) € B(|.#|")

The denotation of a 1st-order term e in a valuation p (notation: e[p]*%)
is defined as usual (i.e. Tarski semantics of 1st-order terms)



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 00000000000000080000 0000000000 0000000000000 000000000 00000000000000000000

Two semantics for classical 2nd-order logic (2/3)

Full semantics (continued):

Definition of the satisfaction predicate .Z = Alp]

A = Lp] never holds
M Eple,... e)lo]  iff (el el ) € p”
M= X (e el W (@l edd ) € p(X)

A = (A= B)(p) iff A = Alp] implies . # = Blp]
A = (Yx A)lp] iff A Alp,x < 3] for all a € |A#|
A = (VX A)p] ifft A Alp,X < R] for all R € P(|.#|%)

v

Note that in the model, 2nd-order objects are all the possible relations R € P(|.#|*).
So that when |.Z| is infinite, the model (1st- and 2nd-order objects) is uncountable.

@ A full model of a 2nd-order (classical) theory .7 (for example: PA2)
is a full model of LK2 that satisfies all the axioms of .7

@ Example: The (full) standard model of PA2:
|#) =N, s%:=(n=n+1), (+)% = (n,m—n+m) (etc)



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 0000000000000000@000 0000000000 0000000000000 000000000 00000000000000000000

Two semantics for classical 2nd-order logic (3/3)

Henkin semantics: A pre-Henkin model .# of LK2 is given by:
o The same ingredients (|.#|, f*..., pk...) as before, plus:
@ A set of relations Relk(///) - ‘B(|/ﬂ|k) (domain of 2nd-order objects)

Definition of the satisfaction predicate .# = A[p]

M= (VXA iff A EAp, X« Rl forall R e Rel,(].#])

(Other clauses of the definition remain unchanged)

Note that in the model, 2nd-order objects are only the relations R € Rel,(.#). So that
even when |.Z| is infinite, the model (1st- and 2nd-order objects) may be countable.

@ A Henkin model of LK2 is a pre-Henkin model .#Z that satisfies all
comprehension axioms:

M VZIVZIXVR [X(X) & AKX Z, 2)]

(where A(x1,...,xx,Z, Z) is any formula with free vars. Z, Z, X1y ooy Xk)

@ As before, a Henkin model of a 2nd-order theory .7 (for example: PA2)
is a Henkin model of LK2 that satisfies all the axioms of .7



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 00000000000000000800 0000000000 0000000000000 000000000 00000000000000000000

Full semantics vs Henkin semantics

@ Clearly: Full semantics = Henkin semantics where

Rel () = B(|.#|%) (for all k > 0)

Note: Rely(#) = P(|#|¥) = . satisfies all (k-ary) comprehension axioms

@ When designing a notion of model, we are in general interested in
the properties of soundness, completenes and compactness.

Regarding full and Henkin models, the situation is the following:

Soundness | Completeness | Compactness
Full semantics Yes No No
Henkin semantics Yes Yes Yes

Intuition: The notion of full model is too restrictive, hence we lose the
properties of completeness and compactness.

@ The fact that Henkin models preserve completeness/compactness is due
to the possibility of presenting 2nd-order logic as a 1st-order theory



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 00000000000000000080 0000000000 0000000000000 000000000 00000000000000000000

Second-order logic as a first-order theory (1/2)

2nd-order logic over a 1st-order language £ (NK2,) can be presented as
a multi-sorted 1st-order theory ko, that is defined as follows:

@ The language of J ko, has infinitely many sorts:
e a sort ¢ of individuals, and
e a sort o of k-ary relations, for each k >0

@ The function symbols of Z ko, are all the (k-ary) function symbols
of the language £, now seen as function symbols of arity X — ¢

So that the terms of sort ¢ in J ko, . are exactly the 1st-order terms of L.
On the other hand, the only terms of sort o are the variables X : o.

o A predicate symbol @ of arity o, x t¥ — Prop
(application of a k-ary predicate symbol to k individuals)

@ The axioms of Jkz . are all the comprehension axioms:
(VZ:1)(VZ : 0.)(3X : 0)(VX : )[O(X, %) & A(X, Z, 2)]



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 0000000000000000000® 0000000000 0000000000000 000000000 00000000000000000000

Second-order logic as a first-order theory (2/2)

There is an almost(*) one to one correspondence between the 2nd-order
formulas of £ and the 1st-order formulas of Jko .:

Formulas of £ Formulas of Jixz .
(2nd-order) (1st-order)
X(el,...,ek) ~ @k(X,el,...,ek)

VxA(x) =~ (Vx:0)A(x)
VXAX) = (VX :ok)AX)

(%) Up to the fact that =, T, L, A, V and 3 are defined in 2nd-order logic

@ For each closed 2nd-order formula: LK2,F A iff Ak bk Alst
— ——

2nd-order 1st-order

@ The Henkin models of 2nd-order logic (in £) are exactly the Tarski models
of the 1st-order theory Jiko,z (up to insignificant changes of representation)

=> Henkin models enjoy soundness, completeness & compactness



@ Introduction

© Second-order logic (NK2) and arithmetic (PA2)
© The A\ -calculus
@ The classical realizability interpretation

© Adequacy

@ Witness extraction



Introduction 2nd-order logic & arithmetic The X\ c-calculus Classical realizability Adequacy Witness extraction
000000 0000000000000 0000000 0e00000000 0000000000000 000000000 OO0O000000000000000000

Jean-Louis Krivine (1939-)



Introduction 2nd-order logic & arithmetic The X\ c-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0OO0®0000000 OO000000000000 000000000 0000000000000 0000000

Terms, stacks and processes

@ The syntax of the A.-calculus is parameterized by

o A countable set K = {a, ...} of instructions,
containing at least the instruction & (call/cc)

o A countable set Mg of stack constants (or stack bottoms)

Terms, stacks and processes

Terms tbu = x | M.t | tu | K | kg (k € K)
Stacks mr  i= a | t-m (a € Mo, t closed)
Processes p,q 1= tx7 (t closed)

@ A MA-calculus with two kinds of constants:

e Instructions k € K, including &
o Continuation constants k,, one for every stack 7 (generated by )

o Notation: A, T, AxIl (sets of closed terms / stacks / processes)



Introduction 2nd-order logic & arithmetic The X\ c-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0O0O0e000000 OO000000000000 000000000 0000000000000 0000000

Proof-like terms

@ Proof-like term = Term containing no continuation constant

Proof-like terms t,bu = x | M.t | tu | kK (r€K) |

o ldea: All realizers coming from actual proofs are of this form,
continuation constants k. are treated as paraproofs

o Notation: PL = set of closed proof-like terms

@ Natural numbers are encoded as proof-like terms, letting:

Krivine numerals A = 350 € PL (n € N)

writing 0= Axy.x and 5= Anxy.y(nxy)

o Note: Krivine numerals # Church numerals, but S-equivalent



Introduction 2nd-order logic & arithmetic The X\ c-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 000000000 OO000000000000 000000000 0000000000000 0000000

The Krivine Abstract Machine (KAM) (1/2)

@ We assume that the set A x 1 comes with a preorder p = p’ of
evaluation satisfying the following rules:

Krivine Abstract Machine (KAM)

Push tu * — t x u-m
Grab AX.t % u-m = tx:=u] x 7
Save « *x U-T > u * kp-m
Restore ke * u-m = u * T

(+ reflexivity & transitivity)

@ Evaluation is not defined but axiomatized. The preorder p = p’ is
just another parameter of the calculus, like the sets KC and Iy

@ Extensible machinery: we can add extra instructions and rules
(We shall see examples later)



Introduction 2nd-order logic & arithmetic The X\ c-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000080000 OO000000000000 000000000 0000000000000 0000000

The Krivine Abstract Machine (KAM) (2/2)

@ Rules Push and Grab implement weak head (-reduction:

Push tu % T - txu-m
Grab Ax.txu-m = tx:=ulxmw
o Example: (Axy.t)uvxm > Axy.txu-v-mw

= tlx:=ully:=v]xm

@ Rules Save and Restore implement backtracking:

Save CTHxu-mT = Uxkg-w }

Restore ke xu-m = uxm

e The instruction « is most often used in the pattern

c(Ak.t)xm = a@x(Ak.t) 7
= (Ak.t)xky-m
=tk :=kg]*7



The X\ c-calculus Classical realizability Adequacy Witness extraction

Introduction 2nd-order logic & arithmetic
Q0000000000000 000000 000000e000 OO000000000000 000000000 0000000000000 0000000

000000

Representing functions

Definition (function representation)
A partial function f : IN¥ — IN is represented by a Ac-term feNif

fxnyg M- -u-m > u*f(nl,...,nk)~7r

for all (ny,...,ng) € dom(f) and for all u € A, w € T

o Call by value encoding:
o Consumes k values and returns 1 value on the stack
o Control is given to the extra argument u  (continuation, return block)

= Axk.k(5x)
= Mxyk.yk(A'z.5zk)x

= Myk.yk(AK'z. 5 zxk)0

o Examples:

X)) wy

of recursive functions)

Theorem (Representation
All partial recursive functions are represented in the \.-calculus




Introduction 2nd-order logic & arithmetic The X\ c-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000800 OO000000000000 000000000 0000000000000 0000000

Example of extra instructions (1/2)

@ Numbering terms: the instruction quote:

quotext-u-m > ux|[t]-mw
where t— [t] is a fixed bijection from A to IN
o Useful to realize the axiom of dependent choices (DC) [K. 2003]

@ Numbering stacks: the instruction quote’:

quote’ xu-m > wux[m|-m J

where 7+ [7] is a fixed bijection from I to IN

o Can be implemented using quote
o Useful to realize the axiom of dependent choices (DC) [K. 2003]

@ Testing syntactic equality: the instruction eq:

uxm ift1 =t
eqxty-bh-u-v-m >

vixm ifty £t

o Can be implemented using quote or quote’



Introduction 2nd-order logic & arithmetic The Ac-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000080 OO000000000000 000000000 0000000000000 0000000

Example of extra instructions (2/2)

@ Non-deterministic choice operator: the instruction fork:

forkxu-v-m > {U*W J
VKT
o Useful for pedagogy — bad for realizability (collapses to forcing)
@ The instruction stop:
stopxm ¥ J

o Stops execution. Final result returned on the stack m

@ The instruction print:

printxn-u-m > u*xm (formal specification)
and prints integer n on standard output (informal specification)

o Useful to display intermediate results without stopping the machine

@ The instruction hace_mate:

hace_matexu-m > wu*xm + hace el mate )




Introduction 2nd-order logic & arithmetic The X\ c-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 000000000® OO000000000000 000000000 0000000000000 0000000

On the determinism of evaluation

o A relation of evaluation = (between processes) is deterministic when
it is the reflexive-transitive closure of a relation >! of one step
evaluation that is strictly deterministic, in the sense that:

p='p and p>!p” implies p' =p” (for all p, p’, p")

@ The relation of evaluation induced by the four basic rules (Grab,
Push, Save and Restore) is clearly deterministic

On the other hand S-reduction (in the A-calculus) is not:

Lo
oo {510
B8

o Instructions quote, quote’, eq, stop, print and hace_mate preserve
the determinism of evaluation, while fork completely breaks it

e Beware of non-determinism! As soon as the calculus contains
a term with the same evaluation rules as fork, the corresponding
realizability model is equivalent to a forcing model (collapse)



@ Introduction

© Second-order logic (NK2) and arithmetic (PA2)
© The A\ .-calculus
@ The classical realizability interpretation

© Adequacy

@ Witness extraction



Introduction 2nd-order logic & arithmetic The Ac-calculus Classical realizability Adequacy Witness extraction
000000 00000000000000000000 0000000000 000000000000 000000000 0O0000000000000000000

Krivine the White

(Courtesy of Vincent Padovani)



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 0080000000000 000000000 0000000000000 0000000

Classical realizability: principles

@ Intuitions:

e term = “proof” / stack = “counter-proof”
e process = “contradiction” (Slogan: Never trust a classical realizer!)

@ Each classical realizability model is parameterized by a pole L
= set of processes (‘“contradictions”) closed under anti-evaluation

Each formula A is interpreted as two sets:

o A set of stacks ||A|| (falsity value)
o A set of terms |A| (truth value)

Falsity value ||A]| is defined by induction on A (negative interp.)

Truth value |A] is defined by orthogonality:
Al = JAILY = {teA :Vrc|A| txmel}
More generally, given S C T, we let ST :={t€ A : V1 €S txme L} (CA)



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 O00e000000000 000000000 0000000000000 0000000

Architecture of the realizability model

@ The realizability model .# is defined from:

o The full standard model .# of PA2: the ground model
(but we could take any model .# of PA2 as well)

o An instance (K, Mo, >) of the Ac-calculus: the calculus of realizers

o A saturated set of processes 1L C AxTI1: the pole of the model
(saturated = closed under anti-evaluation)

@ Architecture:
o First-order terms/variables are interpreted as natural numbers n € IN

o Formulas are interpreted as falsity values S € B(IM)

o k-ary second-order variables (and k-ary predicates) are interpreted as
falsity functions F : IN* — 3(IT).

Formulas with parameters AB == - | F(e,...,e) J

Add a k-ary predicate constant F for every falsity function F : INK — 3(1)



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 000000000000 000000000 0000000000000 0000000

Interpreting closed formulas with parameters

Let A be a closed formula (with parameters)

o Falsity value ||A|| defined by induction on A:

||F(e1,...,ek)|| = F(e{N,...,e,'(N)
[A=B|| = |A-IB = {t-m: telAl, m€]Bl}
Ivx Al = [ IAlx == n]|
neN
IvX Al = (J IAX = F]|
F o INK—s3(I)

@ Truth value |A| defined by orthogonality:
Al = AL = {teA : Vne|A| txmel} J

Recall: For each S C M we write St :={tcA : Vr €S txmre L} (CA)




Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 O0000e0000000 000000000 0000000000000 0000000

The realizability relation

Falsity value ||A|| and truth value |A| depend on the pole 1L
~» write them (sometimes) ||A|| L and |A| L to recall the dependency

Realizability relations

tiEA
tIFA = VUL te|AwL (Universal realizability)

te AL (Realizability w.r.t. 1)




Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 0000008000000 000000000 0000000000000 0000000

From computation to realizability (1/4)

Fundamental idea: The computational behavior of a term determines
the formulas it realizes:

Example 1: A closed term t is identity-like if:

txu-m = UxT forall ue A, m el

Proposition
If t is identity-like, then ¢t lIF VX (X = X)

Proof: Exercise!
Remark: The converse implication also holds — Exercise!

o Examples of identity-like terms:

o Ax.x, (Ax.x)(Ax.x), etc
o M.a@(Ak.x), Ix.c(Mk.kx), Ix.c(Ak.kxw), etc.
e Ax.quotex (An.unquoten(Az.z))

o print 42, hace_mate



Introduction
000000

2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
Q0000000000000 000000 0000000000 0000000800000 000000000 0000000000000 0000000

From computation to realizability (2/4)

Proof of: t identity-like iff tlF-VX (X = X)

(=) Assume that t is identity-like, i.e.: txu-m = uxm forall t,u€ A, well.
Given a pole L, we want to prove that t € [VX (X = X)| (w.r.t. the pole ).
For that, it suffices to prove that txm € AL for all « € ||[VX (X = X)]||.

Take an arbitrary € [[VX (X = X)]||. Since [VX(X = X)||= [ [IS =S|I,

scn
we have 7 € ||S = §|| for some S C M. And since IS = S|] =|S|-|IS]|, we also
have m=u-7’ for some ue St (=|S]) and 7' €S (= |S|)).
Now observe that txm = txu-n’ > uxn’ € I (since t is identity-like, and

since u € S and 7’ € S), so that by anti-evaluation, we get t+m € 1L as desired.

(«=) Assume that tllF VX (X = X). Given u € A and 7 € I, we want to show
that txwu-m > wu*m. For that, consider the pole I :={p€AxM : p>u*m}
(closed under anti-evaluation) and the falsity value S := {m} (with only one stack).
Now observe that uxm € I, hence u € SL. Therefore we get

u-m € SL.S = |S=35] C IVX(X= X)

from which we deduce that txu-m € I (since t € [VX (X = X)|).
From the definition of the pole I, we conclude that txu -7 > ux. O




Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 0000000080000 000000000 0000000000000 0000000

From computation to realizability (3/4)

Example 2: Control operators:

cxt-m = txky-mw
ke xt-m = txm

o “Typing” ku: kext-m = txmw

If 7el||A], then kyIFA= B (B any)

Proof: Exercise

o “Typing" «: c*xt-m = txkp-w

Proposition (Realizing Peirce's law)

c llF (A=B)=A)=A

Proof: Exercise




Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction

000000 Q0000000000000 000000 0000000000 0000000008000 000000000 0000000000000 0000000

From computation to realizability

Proof of: 7 € ||A|| implies kr € |[A=- B| (w.rt. a fixed pole 1)

Assume that 7 € ||A||. We want to prove that k. € |A = B|.

For that, it suffices to prove that kr x7/ € 1L for all 7’ € ||A= B||.
Take an arbitrary 7’ € ||[A = B||. Since ||A= B| = |A|-||B||, we have
7' =u-7' for some u € |A| and 7"’ € ||B||.

Now observe that kr x7’ = krxu-7"" > uxm € 1 (since u € |A|
and 7 € ||A||), so that by anti-evaluation, we get kr x 7’ € 1L as desired.

(4/4)

Proof of: - (A= B) = A) = A

Given a fixed pole L, we want to prove that « € |((A= B) = A) = A|.

For that, it suffices to prove that w7 € AL forall w € [|[((A= B) = A) = A|.

Take an arbitrary 7 € [|((A= B) = A) = A||. Since [|[((A= B)=A)=A| =

[(A= B) = A| - ||A|l, we have m =t -7’ for some t € |(A= B) = A| and 7’/ € ||

Now observe that cxnm = aw*xt -7’ = txky -7

that txk, -7’ € 1L (using the closure by anti-evaluation). For that, we observe

that k,/ € |A = B| (using the previous proposition) and 7’ € ||Al|, hence
kes-m € |[A= B|- Al = (A= B) = A

But since t € |(A= B) = A|, we conclude that t*k,/ -7/ € I as desired.

Therefore it remains to prove

All.

O




Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 0000000000800 000000000 0000000000000 0000000

Anatomy of the model (1/3)

o Denotation of universal quantification:

Falsity value: Ivx Al = |J IIAlx = nl| (by definition)
neIN

Truth value: Vx Al = ﬂ |A[x := n]| (by orthogonality)
nelN

(and similarly for 2nd-order universal quantification)

e Denotation of implication:

Falsity value: |A= B| = |Al-|B| (by definition)
Truth value: |[A= B| C |Al —|B]| (by orthogonality)
writing |A| — |[B| = {te A : Yu€elA| tuec |B|} (Kleene arrow)

@ Note: In general, we have |A| — |B] Z |A= B|. Nevertheless:
t€|Al — |B| implies Mx.tx € |A= B (Exercise)



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 0000000000080 000000000 0000000000000 0000000

Anatomy of the model (2/3)

Degenerate case: I =9
@ Classical realizability mimics the Tarski interpretation:

Degenerated interpretation

In the case where Il = 0, for every closed formula A:
N ifZE=EA

A
Al o if A EA

Non degenerate cases: I # &
e Every truth value |A| is inhabited:

Existence of paraproofs

If 1L # @, then there is a term 4 € A (a “paraproof”)
such that: »X, IF A for all closed formulas A

For all stacks 7, we have: "y 7 = kpoto*xm = knggxtg-m > toxmo € L.

Proof. Since Il # @, pick a process toxmo € AL and write " = kg to.
This immediately implies that " |- A for all closed formulas A. DJ




Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 O000000000000® 000000000 0000000000000 0000000

Anatomy of the model (3/3)

The big dilemma:
When 1L = @: classical realizability is useless (?)
(since it mimics Tarski semantics)

When L # @: classical realizability is inconsistent (?)
(since "y IF A for all closed formulas A)

Solution: Only consider proof-like terms (€ PL) as “valid” realizers

Recall: Proof-like term (€ PL) = term without continuation constants (k)

Definition (Realized formulas)

In a given realizability model, a closed formula A with parameters is
realized (notation: |- A) when A is realized by at least a proof-like term:

IFA (“Ais realized") = tl- A for some t € PL
& |A|NPL # @




@ Introduction

© Second-order logic (NK2) and arithmetic (PA2)
© The A\ .-calculus
@ The classical realizability interpretation

© Adequacy

@ Witness extraction



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 OO000000000000 00000000 0000000000000 0000000

Adequacy (1/2)

Aim: Prove the theorem of adequacy:

t: A (in the sense of ANK2) implies tI- A (in the sense of realizability) J

. and since t is proof-like (from ANK2), we deduce that A is realized (in each pole 1)
@ Closing typing judgments z1: AL, ZntApEE A

o We close logical objects (1st-order terms, formulas, predicates) using
semantic objects (natural numbers, falsity values, falsity functions)

o We close proof-terms using realizers

Definition (Valuation)

@ A valuation is a function p such that

o p(x)eN for each 1st-order variable x
o p(X) : INK — (M) for each 2nd-order variable X of arity k

@ The closure of A with p is written A[p] (formula with parameters)




Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction

000000 Q0000000000000 000000 0000000000 OO000000000000 008000000 0000000000000 0000000

Adequacy (2/2)

Definition (Adequate judgment, adequate rule)

Given a fixed pole I :

Q@ Ajudgment 2z :Aj,...,z,: A, Ft: A s adequate if for every
valuation p and for all uy IF A1[p], ..., un IF As[p] we have:

tzy = w1, ...y 20 = up] IF Alp]

@ A typing rule is adequate if it preserves the property of adequacy
(from the premises to the conclusion of the rule)

v
Theorem

@ All typing rules of ANK2 are adequate
@ All derivable judgments of ANK2 are adequate

Proof: Exercise!

Corollary: If Ft: A (Aclosed formula), then ¢t A (with t € PL)J




Introduction Witness extraction

000000

Extending adequacy to subtyping

2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy

Definition (Adequate subtyping judgment)

Judgment A < B adequate

IBlolll < lIAL|

Implies that |A[p]| C |B[p]| (for all p), but strictly stronger

(for all valuations p)

Remark:

@ Some adequate typing/subtyping rules:

Q0000000000000 000000 0000000000 OO000000000000 000800000 0000000000000 0000000

A<LB

B<LC

r=t:A

A<B

A<A A<C

Fr=t: B

VxA < Alx = €]

VXA < AX =P

A< B A<B A <A B< B
— x¢ FV(A) ———— X¢FV(A)
A < VxB A < VXB A=B < A =B
x¢FV(A) X¢FV(A)

Vx(A=B) < A= VxB

VX(A=B) < A=VXB

o Example:

Peirce's law

VXYY (X = V)= X) = X) < VX (X = X)
S —

DNE

(derivable from the above rules)




Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 0000000000000 000080000 0000000000000 0000000

Realizing equalities

@ Recall: Equality between individuals is defined by
e =e = VZ(Z(a) = Z(e)) (Leibniz equality)

Denotation of Leibniz equality

Given two closed first-order terms e;, e

(and a pole 1)
Il = {t-7 : (tx7w)e L} if el'=¢el
la=el = e N
IT=1] = A-M if e #e

2}

writing 1 := VZ(Z=2Z) and T

Proof: Exercise!

@ Intuitions:
o A realizer of a true equality (in the model) behaves as the identity
function \z.z
o A realizer of a false equality (in the model) behaves as a point of
backtrack (breakpoint)



Introduction
000000

2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
Q0000000000000 000000 0000000000 OO000000000000 000008000 0000000000000 0000000

Realizing axioms

Corollary 1 (Realizing true equations)
If IN | VX(e(X) = ex(X)) (truth in the ground model)

then I = Xz.z IF VX (e(X) = e(X)) (universal realizability)

V.

Corollary 2

All defining equations of primitive recursive function symbols
(+, —, %, /, mod, 1, etc.) are universally realized by | = A\z.z

N

Corollary 3 (Realizing Peano axioms 3 and 4)

I IF VxVy(s(x) =s(y) = x=y)
Az.zIl lIF Vx—(s(x) =0)

N

Theorem: If PA2 A, then 6l A for some 6 € PL

D




Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 OO000000000000 000000800 0000000000000 0000000

Realizing true Horn formulas

Definition (Horn formulas)

@ A (positive/negative) literal is a formula L of the form
L= ¢ =6 or L =e#e
@ A (positive/negative) Horn formula is a closed formula H of the form
H = VX[Li= = L,= L] (p>0)

where Ly, ..., L, are positive; L, positive or negative

\

Theorem (Realizing true Horn formulas) [M. 2014]
If # E H, then:

|l = X\z.z I H (if H positive)
Azy - Zpt+1-21 ( ¢ o (Zp+1 |) soc ) = H (if H negative)

o

o All axioms of PA2™ := PA2 —Ind are Horn formulas

@ Quantifications not relativized to IN ~» H holds for all individuals



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 OO000000000000 000000080 0000000000000 0000000

Provability, universal realizability and truth

@ From what precedes:
© A provable = A universally realized (by a proof-like term)

© A universally realized = A true (in the full standard model)

~» Provability € Universal realizability C Truth

o Beware!
Intuitionistic proofs of A C Classical proofs of A
N N

Intuitionistic realizers of A % Classical realizers of A

@ Counter-example: Az.z IFrieene  Vx Yy (s(x) = s( )
Az .refl  lFkieene VX Vy (s(x) =s(y) = x=y)

Az.z  IFkiivine VX Yy (s(x) = s( )

but: Az.refl Wyivine VX Vy (s(x) =s(y) = x=y)

(where refl = 0 (Kleene) or refl =1 (Krivine) uniformly realizes true equalities)



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 0000000000000 00000000 0000000000000 0000000

Program extraction

Extracting a program from a proof in PA2

If PA2F A, then thereis 6 € PL such that 6 - AN
(AIN obtained from A by relativizing all 1st-order quantifications to IN)

@ In practice:

o Only apply the adequacy theorem to the computationally relevant
parts of the proof

o For the computationally irrelevant parts (i.e. Horn formulas), use
‘default realizers’ ~- realizer optimization

e Example 1: Ao IE (Yx,yeN) (x+y =y +x)

o Example 2: Fermat's last theorem!?

(Vx,y,z,neN)(x>1=y>1=>n>3=x"4+y"#2")

1. realized by: A, _, _, _, u1,u,u3,v.u (u2 (u3(vl)))



@ Introduction

© Second-order logic (NK2) and arithmetic (PA2)
© The A\ .-calculus
@ The classical realizability interpretation

© Adequacy

@ Witness extraction



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 0000000000000 000000000 Oe000000000000000000

Some problems of classical realizability

© The specification problem

Given a formula A, characterize its universal realizers
from their computational behavior

Specifying Peirce’s law  [Guillermo-M. 2014]
@ Witness extraction from classical realizers (cf next slides)

© Realizability algebras + Cohen forcing
Realizability algebras: a program to well-order R [K. 2011]
Forcing as a program transformation [M. 2011]
@ Models induced by classical realizability

What are the interesting formulas that are realized in .#
that are not already true in the ground model .7

Realizability algebras II: new models of ZF + DC [K. 2012]



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 0000000000000 000000000 0080000000000 0000000

The problem of witness extraction

@ Problem: Extract a witness from a universal realizer (or a proof)
to IF (Ix€IN) A(x)

i.e. some n € IN such that A(n) is true

@ This is not always possible!
to IF (3xelN)((x=1AC)V(x=0A-C))

(C = Continuum hypothesis, Goldbach’s conjecture, etc.)

@ Two possible compromises:

o Intuitionistic logic: Restrict the shape of the realizer ty

(by only keeping intuitionistic reasoning principles)

o Classical logic: Restrict the shape of the formula A(x)
(typically: AJ-formulas)



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 0000000000000 000000000 0008000000000 0000000

Storage operators (1/3)

@ The call-by-value implication:

Formulas AB = - | {eJ=A
with the semantics: [{e} = Al = {A -7 : n=¢N, = c|A|}
[Recall: |lecIN=A| = {uv-m : velecIN|, 7 € |A]}]
@ From the definition: eeN=A < {e}=A
so that: I lIF VxVZ[(x € N= Z) = ({x} = Z)] (direct implication)

Definition (Storage operator) [Krivine]

A storage operator is a closed proof-like term M such that:
M IF VxVZ[{x} = Z) = (x € N = Z)] (converse implication)

Theorem (Existence)

Storage operators exist, e.g.:. M = Afn.nf (Ahx.h(5x))0

Proof: Postponed.



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction

000000 00000000000 000000000 0000000000 0000000000000 000000000 0000e000000000000000
Storage operators (2/3)
@ Intuitively, a storage operator
M IF VxVZ[({x} = Z) = (x e N = Z)] J
is a proof-like term that is intended to be applied to
e a function f that only accepts values (i-e. intuitionistic integers)
o a classical integer tl-neglIN (that may contain continuations k)

and that evaluates (or ‘'smoothes’) the classical integer t into a
value of the form 7 before passing this value to f

@ By subtyping, we also have:

M - VZ [¥x ({x} = Z(x)) = (Yx€N)Z(x)] J

This means that if a property Z(x) holds for all intuitionistic
integers, then it holds for all classical integers too

@ Conclusion: ecIN=A and {e}= A areequivalent



Introduction
000000

2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
Q0000000000000 000000 0000000000 0000000000000 000000000 0000080000000 0000000

Storage operators (3/3)

Proof of existence of storage operators: Take M := Afn.nf (Ahx.h(5x))0.

Given a pole I, we want to prove that M |- VxVZ[({x} = Z) = (x € N = Z)].
This amounts to prove that M I- ({n} = S)=ncIN=2S forallneINand S CH.
For that, pick a stack in [|({n} = S) = ne€ IN=§||, that is of the form t-u-,
where t € |[{n} = $|, u€ [n € IN| and 7 € S. We want to prove that Mxt-u-7 € 1.
Since Mxt-u-7 = ut(Ahx.h(5x))0xm = uxt-(Ahx.h(5x)) -0 m, it suffices
to prove that uxt-(Ahx.h(5x))-0-7 € I (by anti-evaluation).

Let us now consider the falsity function F : IN — 3(I1) defined by:

We easily check that Ahx.h(5x) € |F(p) = F(p+1)| forall pe N, (Exercise)
and therefore:  Ahx.h(5x) € |[Vx(F(x)= F(s(x)))].

Now observing that: u € |[n€IN| C \F(O) = VX(F(X) = F(S(X))) = F(n)|
whereas: t € |{n} = $| = ‘F(0)|

and

we deduce that uxt-(Ahx.h(5x))-0-7 € A as desired. O

[{n—p}=3S| :== {n—p}-S ifp<n
F = for all IN
®) =Yy = o tpon  Corallnel)

Ahx.h(5x) € [Vx(F(x) = F(s(x)))|
0-m € [{0} = S|l = [IF(n)l




Introduction
000000

2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
Q0000000000000 000000 0000000000 0000000000000 000000000 0000008000000 0000000

Computing with storage operators

@ Given a k-ary function symbol f, we let:

Total(f) = (Vxt€IN)- - (Vxk € IN)(f(x1,...,x) € IN)

Comput(f) = Vxi---VxVZ[{x}= - = {x} =
{f(xa, - x0)} = Z2) = Z]

Theorem (Specification of the formula Comput(f))
For all t € A, the following assertions are equivalent:
Q ¢t I Comput(f)
@ t computes f: forall (m,...,nx) € IN, ue A, 7 el

txAy - Ag-u-m = uxf(n,...,ne)-7

4

Proof: Same technique as for:  “t identity-like iff tIIF VX (X = X)” (Exercise!)

@ Using a storage operator M, we can build proof-like terms:

& lIF - Total(f) = Comput(f)
& IE - Comput(f) = Total(f) J




Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 OO000000000000 000000000 0000000800000 0000000

The naive extraction method

o A classical realizer tp I (Ix€IN) A(x) always evaluates to a
pair witness/justification:

Naive extraction
If t IF (3x€IN)A(x), then there are n € IN and u € A such that:

tox M(Axy .stopxy)-m > stop*xA-u-m

(where u Ik A(n) w.r.t. the particular pole needed to prove the property)

Proof. Take . := {p€AxM : p>stopxi-u-7n for some n€ IN and u € A}
and prove that M(Axy.stopxy)-m € [[(3x€N)A(x)| (w.rt. 1Lz). O

y

@ But n € IN might be a false witness because the justification
ul- A(n) is cheating! (u might contain hidden continuations)

@ In the case where ty comes from an intuitionistic proof,
extracted witness n € IN is always correct
(This can be proved using Kleene realizability adapted to PA27)



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 OO000000000000 000000000 0000000080000 0000000

Extraction in the ¥9-case

Extraction in the ¥9-case (+ display intermediate results)
If t IF (3xeIN)(f(x) =0), then

to * M(Axy . printx y (stopx)) -m > stop*x7-7

for some n € IN such that f(n) =0

Proof. Take 1, := {p€AxM : p>stopxi-xm for some ne€ N s.t. f(x) =0}
and prove that M(Axy .printxy (stopx)) -7 € [(3x€IN)(f(x) = 0)]. O

V.

Storage operator M used to evaluate 1st component (x)

2nd component (y) used as a breakpoint

(Relies on the particular structure of equality realizers)

@ Holds independently from the instruction set

Supports any representation of numerals

(One has to implement the storage operator M accordingly)



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 0000000000000 000000000 0000000008000 0000000

Example: the minimum principle

@ Given a unary function symbol f, write:

Total(f) = (VxeIN)(f(x) € IN) (totality predicate)

x<y = x—y=0 (truncated subtraction)

Theorem (Minimum principle — MinP)
PA2™ F Total(f) = (IxelN) (VyeIN) (f(x) < f(y))

undecidable

Proof. Reductio ad absurdum + course by value induction J

@ The minimum principle is not intuitionistically provable (oracle)

@ We cannot apply the X 9-extraction technique to the above proof
(applied to a totality proof of f), since the conclusion is ¥9

The body (Vy €IN) (f(x) < f(y)) of 3-quantification is undecidable



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 OO000000000000 000000000 0000000000800 0000000

Using the minimum principle to prove a ¥ {-formula

o Idea: The value x given by the minimum principle can be used to
prove a ¥9-formula, so that we can perform program extraction:

PA2™ + Total(f) = (3xeIN) (f(x) < f(2x+ 1))

decidable
More generally: PA2~ F Total(f) A Total(g) = (Ix€IN) (f(x) < f(g(x)))

Proof. Take the point x given by the minimum principle )

e Applying ¥%-extraction to the above non-constructive proof,
we get a correct witness after finitely many evaluation steps

@ How is this witness computed?



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 0000000000000 000000000 0000000000080 0000000

The algorithm underlying ¥%-extraction

to : Minimum Principle (oracle)
(AxeIN) (VyeIN) (f(x) < f(»)

witness x + justification

of (YyeIN) (f(x) < f(»)

x{-Corollary
@xelN) (f(x) < f2x+ 1))

witness x (same as above)
+ justif. of f(x) < f2x+1)

t11

x9-extractor

o Extract witness x + justification
o Evaluate witness x (using storage op.)

Evaluate
justification

tg:

Incorrect: backtrack
(half conditional) >

Correct: continue

Return witness x




Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 OO000000000000 000000000 0000000000008 0000000

Transcript of the extraction process

Take f(x) = |x — 1000] (real minimum at x = 1000)
and apply X3-extraction to the proof of (Ix € IN) (f(x) < f(2x + 1))

Step 1 Oracle says: take x =0 since (Vy € IN) (f(0) < f(y)) (false)
Corollary says: take x =0 since f(0) < f(1) (false)
Z?-extractor evaluates incorrect justification and backtracks

Step 2 Oracle says: take x =1 since (Yy €IN) (f(1) < f(y)) (false)
Corollary says: take x =1 since (1) < f(3) (false)
Z?—extractor evaluates incorrect justification and backtracks

Step 3  Oracle says: take x =3 since (Vy € IN) (f(3) < f(y)) (false)
Corollary says:  take x =3 since f(3) < f(7) (false)

Z?—extractor evaluates incorrect justification and backtracks

Step 4 Oracle says: take x =7 since (Yy € IN) ((7) < f(y)) (false)

Step 11 Oracle says: take x = 1023 since (Vy € IN)(£(1023) < f(y)) (false)
Corollary says:  take x = 1023 since f(1023) < f(2047) (true)
Z?—extractor evaluates correct justification and returns x = 1023

Note that answer x = 1023 is correct... but not the point where f reaches its minimum



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 0000000000000 000000000 0000000000000 e000000

Extraction in the ¥%/M%case (1/2)

Definition (Conditional refutation) [M. 2010]

ra € A s a conditional refutation of the predicate A(x) if

For all n € IN such that .# [~ A(n): ran IIE —A(n)

@ Such a conditional refutation can be constructed for every predicate
A(x) of 1st-order arithmetic

This result is a consequence of the following

Theorem (Realizing true arithmetic formulas) [Krivine, Miquey]

For every formula A(xi, ..., xx) of 1st-order arithmetic, there exists a
closed proof-like term t4 such that:

If A= A(m,...,nk), then tany---ax IF A(ng, ..., nk)

(for all ny, ..., nx € IN)




Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 OO000000000000 000000000 0000000000000 0e00000

Extraction in the ¥%/M%case (2/2)

The Kamikaze extraction method [M. 2010]
Let

0 t I (3xeIN)A(x)

@ ra a conditional refutation of the predicate A(x)

Then the process

to x M (Axy . printx (raxy)) - =

displays a correct witness after finitely many evaluation steps

Proof. Take 1 :={p€AxM : p>stopxa--- forsomenec N s.t. .# = A(n)}
and prove that M (Axy.printx(raxy))-m € [(3x€IN)(f(x) =0)]. DJ

e Remark: No correctness invariant is ensured as soon as the (first)
correct witness has been displayed!

After, anything may happen: displaying incorrect witnesses, infinite loop,
crash, etc. (Kamikaze behavior)



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 0000000000000 000000000 0000000000000 00e0000

Interlude: on numeration systems

@ Numeration systems used in the History:

Tally sticks (35000 BC) fH HH H tHH tHH HH H i I
Babylonian 3100 BC)  <<LLTT

Egyptian (3000 BC)  NNNNII
Roman (1000 BC) XLII
Hindu-Arabic (300 AD) 42

@ Numeration systems used in Logic:

Peano: 55555555555555555555555555555555555555555S0

Church: Axf . F(F(F(F(F(F(FCF(FCF(FCFCE(FCF(FCFCF(FCF(FCFCRCFCF(FCFCR(F(F(
FECFCECEEEEEEEE D))

Krivine: (XAnxf . f(nxf))((Anxf . f(nxf)
(Xnxf . £(nxf))((Anxf . f(nxf)
(Anxf . f(nxf))((Anxf . f (nxf)
(Anxf . £(nxf))((Anxf . f(nxf)
(Anxf . £(nxf))((Anxf . f(nxf)
(Anxf . f(nxf))((Anxf.f(nxf)
(Anxf . f(nxf))((Anxf . f(nxf)
Q)M

V(X £ (nxF))((Anxf . F(nxf))(AnxF . £(nxF))((Anxf . £ (nxF))(
(At £ (nxf))((Anxf . £(nxf))((AnxF . £(nxF)) ((Anxf . £ (nxF))(
Y(Anxf . £(nxf))((Anxf . £(nxf))((AnxF . £(nxf)) ((Anxf . £ (nxF))(
Y(Anxf £ (nxf))((Anxf . F(nxf))((AnxF . £(nxF)) ((Anxf . £ (nxF))(
Y(Anxf £ (nxf))((Anxf . F(nxf))((AnxF . £(nxF)) ((Anxf . £ (nxF))(
Y(Anxf £ (nxf))((Anxf . £(nxf))(AnxF . £(nxf)) ((Anxf . (nxF))(
;)()(Anxff(nxf))(( N((Anxf . £(nxf))( N

(
(
(
(
(
( Anxf . f(nxf (Xnxf . f(nxf
) DINNN)))

)
)
)
)
)
)
)
)




Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction

000000 Q0000000000000 000000 0000000000 OO000000000000 000000000 0000000000000 000e000
Primitive numerals (1/2)
To get rid of Krivine numerals A = 5"0 (cf paleolithic numeration)
we extend the machine with the following instructions: [M. 2010]

@ For each number n € IN, an instruction ne K (primitive numeral)
with no evaluation rule (i.e. inert constant: pure data)

Intuition: n*m > segmentation fault

@ An instruction null € K with the rules

uxm ifn=0

nullxn-u-v-m > .
vxm otherwise

e Instructions f € K with the rules

fxni---Ng-u-mT = wUuxm-m wherem:f(nl,...,nk)J

for all the usual arithmetic operations f



Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 0000000000000 000000000 0000000000000 0000e00

Primitive numerals (2/2)

o Call-by-value implication, yet another definition:
Formulas AB = - | [e]=A

with the semantics: H[e] =>A|| = {ﬁ-?‘r D n= eIN7 S ||A||}

@ Redefining the set of natural numbers:

N = {x : VZ(([x] = Z) = Z2)}

box := Axk.kx - Vx([x] = x € IN)
box 1 I nelN
An.nXx.3xbox I (Yx€IN")(s(x) € IN")
Anm.nAx.mMAy.(+)xybox I (¥x,y€IN)(x+y € IN')
rec.cbv = Azpzs. Y Arx.nullxz (Z)x1Ay.zsy (ry))
- YZ1Z(0) = Yy (] = Z() = Z(s(y)) = ¥x (1] = Z(3)]
rec := Azpzsn.nAx.rec_cbvzy (Ayz.zs (boxy) z) x

IF VZ[Z(0) = (Vy e IN')(Z(y) = Z(s(y))) = (Vx€IN')Z(x)]

e Conclusion: I Vx(x € N < x e IN)



Introduction
000000

2nd-order logic & arithmetic The Xc-calculus

Classical realizability
Q0000000000000 000000 0000000000 OO000000000000 000000000 0000000000000 00000e0

Krivine's realizability vs the LRS-translation

Adequacy Witness extraction

@ Krivine's realizability can be seen as the composition of the
Lafont-Reus-Streicher (LRS) translation with Kleene realizability:

CPS o Krivine =

Kleene o LRS

[Oliva-Streicher 2008]

The dictionary

Classical realizability (Krivine)

Lafont-Reus-Streicher translation

Pole 1L
Falsity value ||A]|
A= B| = [Al-[|B]

Truth value |A| = [|A|*

Return formula R
Negative translation A+
(A= B)t = ALRS A BL

Y

@ Through the CPS-translation, Krivine's extraction method in the

¥ 9-case is exactly Friedman's trick (transposed to LRS)

[M. 2010]

(1/2)




Introduction 2nd-order logic & arithmetic The Xc-calculus Classical realizability Adequacy Witness extraction
000000 Q0000000000000 000000 0000000000 0000000000000 000000000 0000000000000 000000e

Krivine's realizability vs the LRS-translation (2/2)

Beware of reductionism!

@ The decomposition holds only for pure classical reasoning

(extra instructions are not taken into account)

o Classical realizers are easier to understand than their
CPS-translations (and more efficient)

o Classical realizability is more than Kleene's realizability composed
with the Lafont-Reus-Streicher translation

An image:
2H, 4+ 05 —  2H,0

but can we deduce the properties of water from the ones of H, and 057



	Introduction
	

	Second-order logic (NK2) and arithmetic (PA2)
	

	The c-calculus
	

	The classical realizability interpretation
	

	Adequacy
	

	Witness extraction
	


