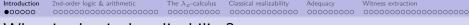


An introduction to Krivine realizability

Alexandre Miquel

November 3th, 10th, 17th & 24th, 2021



What is classical realizability?

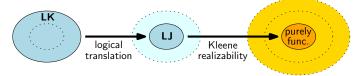
- A complete reformulation of the principles of Kleene realizability to take into account classical reasoning [Krivine 1994, 2009, ...]
 - Based on Griffin's discovery about the connection between classical reasoning and control operators (call/cc) [Griffin 1990]

 $\mathsf{call}/\mathsf{cc} \ : \ ((A \Rightarrow B) \Rightarrow A) \Rightarrow A \qquad \qquad (\mathsf{Peirce's law})$

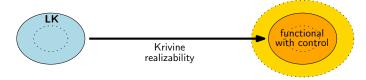
- Interprets the Axiom of Dependent Choices (DC) [K. 2003]
- Initially designed for PA2, but extends to:
 - Higher-order arithmetic (PA ω)
 - Zermelo-Fraenkel set theory (ZF) [K. 2001, 2012]
 - The calculus of inductive constructions (CIC) [M. 2007] (with classical logic in Prop)
- Deep connections with Cohen forcing [K. 2011]
 → can be used to define new models of PA2/ZF [K. 2012]

The design of classical realizability

• Traditionally, classical proofs are turned into intuitionistic proofs (via some translation/interpretation from LK into LJ) before being interpreted as purely functional programs



• Rather than restricting to LJ a priori, interpret classical proofs directly, using functional programs with control operators



Programming with continuations

- Control operators give to the programs the ability to capture their evaluation context (the "continuation"), so that they can backtrack when something goes wrong.
 - \rightsquigarrow Allow programs to use the method of trial and error.
- **Technically:** Extend the pure λ -calculus with a new binder $Ck \cdot t$ that captures the current continuation in the bound variable k:

$$\frac{k:A \Rightarrow B \vdash t : A}{\vdash Ck.t : A}$$

- The variable k : A ⇒ B captures the current A-continuation, that is: the evaluation context asking for a value of type A.
- When applied to an object of type A (the "new answer"), the A-continuation k : A ⇒ B restores the evaluation context that was saved in k, with the new answer of type A. The current context is aborted, hence B can be any type (typically: B ≡ ⊥).

Programming with continuations

2nd-order logic & arithmetic

Introduction

000000

• In practice, the binder $Ck \cdot t$ is implemented from the control operator $\mathfrak{C}(\text{``call/cc''})$, letting $Ck \cdot t \equiv \mathfrak{C}(\lambda k \cdot t)$.

The λ_c -calculus

 $\begin{array}{lll} \text{We have:} & \mathfrak{cc} & : & ((A \Rightarrow B) \Rightarrow A) \Rightarrow A & (\text{Peirce's law}) \\ & \mathfrak{cc} & : & (\neg A \Rightarrow A) \Rightarrow A & (\text{particular case: } B \equiv \bot) \end{array}$

(2/2)

- Question: $A \lor \neg A$? • Answer: $EM \equiv \mathfrak{cc} (\lambda k \cdot \operatorname{right} (\lambda x \cdot k (\operatorname{left} x)))$: $A \lor \neg A$ where left : $\forall X \forall Y (X \Rightarrow X \lor Y)$ right : $\forall X \forall Y (Y \Rightarrow X \lor Y)$
 - Note that EM does not even need to know the formula A!
 It is actually polymorphic in A: EM : ∀X (X ∨ ¬X)

Introduction 000000 2nd-order logic & arithmetic

The λ_c -calculus

Classical realizability 000000000000000

Adequacy 00000000

The role of paraproofs (metaphore)

Georges de la Tour. Le tricheur à l'as de carreau (~ 1636)

Introduction	2nd-order logic & arithmetic	The λ_c -calculus	Classical realizability	Adequacy	Witness extraction
000000	000000000000000000000000000000000000000	0000000000	000000000000000000	000000000	000000000000000000000000000000000000000

Plan

1 Introduction

2 Second-order logic (NK2) and arithmetic (PA2)

3 The λ_c -calculus

4 The classical realizability interpretation

5 Adequacy

6 Witness extraction

Plan

Introduction

2 Second-order logic (NK2) and arithmetic (PA2)

3 The λ_c -calculus

4 The classical realizability interpretation

5 Adequacy

6 Witness extraction

Introduction 000000 The λ_c -calculus

lassical realizability A

The language of (minimal) second-order logic

- Second-order logic deals with two kinds of objects:
 - 1st-order objects = individuals (i.e. basic objects of the theory)
 - 2nd-order objects = k-ary relations over individuals

First-order terms and formulas

First-order terms	e,e'	::=	$x \mid f(e_1,\ldots,e_k)$
Formulas	А, В		$\begin{array}{c c} X(e_1,\ldots,e_k) & & A \Rightarrow B \\ \forall x A & & \forall X A \end{array}$

- Two kinds of variables
 - 1st-order vars: *x*, *y*, *z*, ...
 - 2nd-order vars: X, Y, Z, ... of all arities $k \ge 0$
- Two kinds of substitution:
 - 1st-order subst.: $e[x := e_0]$, $A[x := e_0]$ (defined as usual)
 - 2nd-order subst.: $A[X := P_0], P[X := P_0]$ (postponed)

First-order terms

• Defined from a first-order signature Σ (as usual):

First-order terms
$$e, e' ::= x | f(e_1, \dots, e_k)$$

• f ranges over k-ary function symbols in Σ

- In what follows we assume that:
 - Each k-ary function symbol f is interpreted in IN by a function $f^{\mathbb{N}} : \mathbb{N}^k \to \mathbb{N}$
 - The signature Σ contains at least a function symbol for every primitive recursive function (0, s, pred, +, -, ×, /, mod, ...), each of them being interpreted the standard way
- Denotation (in IN) of a closed first-order term e written $e^{\mathbb{N}}$

Introduction	2nd-order logic & arithmetic	The λ_c -calculus	Classical realizability	Adequacy	Witness extraction
000000	000000000000000000000000000000000000000	0000000000	000000000000000000	000000000	000000000000000000000000000000000000000
Form	ulas				

• Formulas of minimal second-order logic

Formulas
$$A, B ::= X(e_1, \dots, e_k) | A \Rightarrow B$$

 $| \forall x A | \forall X A$

only based on implication and 1st/2nd-order universal quantification

• Other connectives/quantifiers defined via second-order encodings:

		$\begin{array}{l} \forall Z \ Z \\ A \Rightarrow \bot \end{array}$	(absurdity) (negation)
		$ \forall Z ((A \Rightarrow B \Rightarrow Z) \Rightarrow Z) \forall Z ((A \Rightarrow Z) \Rightarrow (B \Rightarrow Z) \Rightarrow Z) $	(conjunction) (disjunction)
		$ \forall Z (\forall x (A(x) \Rightarrow Z) \Rightarrow Z) \forall Z (\forall X (A(X) \Rightarrow Z) \Rightarrow Z) $	(1st-order ∃) (2nd-order ∃)
$e_1 = e_2$	≡	$\forall Z(Z(e_1) \Rightarrow Z(e_2))$	(Leibniz equality)

Introduct 00000		The λ_c -calculus	Classical realizability	Adequacy 000000000	Witness extraction			
Pre	dicates							
	 Concrete relations 	are represe	nted using <mark>pre</mark>	dicates	(syntactic sugar)			
	Predicates	P, Q ::=	$\hat{x}_1 \cdots \hat{x}_k A_0$		(of arity $k \ge 0$)			
	$Predicate = 2nd\operatorname{-ord}$	er formula abs	stracted w.r.t. so	me 1st-order	r variables			
	Definition (Predicate app	lication and	2nd-order subst	titution)				
	• $P(e_1, \ldots, e_k)$ is the formula defined by							
	$P(e_1,,e_k) \equiv A_0[x_1 := e_1,,x_k := e_k]$							
	where $P \equiv \hat{x}_1 \cdots \hat{x}_k A_0$, and where e_1, \ldots, e_k are k first-order terms							
	2nd-order substitution A[X := P] (where X and P are of the same arity k) consists to replace in the formula A every atomic subformula of the form							
	$X(e_1,)$	$(, e_k)$ by	the formula	$P(e_1,\ldots,$, e _k)			
	• Note: Every <i>k</i> -ary	2nd-order v	ariable X can b	e seen as a	predicate:			
		$X \equiv \hat{x}_1$	$\cdots \hat{x}_k X(x_1,\ldots,$	$x_k)$				

Unary predicates as sets

• Unary predicates represent sets of individuals Syntactic sugar: $\{x : A\} \equiv \hat{x}A, e \in P \equiv P(e)$

Example: The set IN of Dedekind numerals

 $\mathbb{N} \equiv \{x : \forall Z (0 \in Z \Rightarrow \forall y (y \in Z \Rightarrow s(y) \in Z) \Rightarrow x \in Z\}$

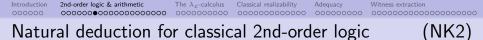
Relativized quantifications:

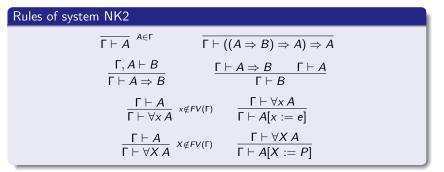
$$\begin{aligned} (\forall x \in P) A(x) &\equiv \forall x (x \in P \Rightarrow A(x)) \\ (\exists x \in P) A(x) &\equiv \forall Z (\forall x (x \in P \Rightarrow A(x) \Rightarrow Z) \Rightarrow Z) \\ &\Leftrightarrow \exists x (x \in P \land A(x)) \end{aligned}$$

Inclusion and extensional equality:

• Set constructors:
$$P \cup Q \equiv \{x : x \in P \lor x \in Q\}$$
 (etc.)

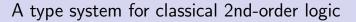
 $P \subset O = \forall x (x \in P \rightarrow x \in O)$





- From these rules, one can derive the introduction & elimination rules for \bot , \land , \lor , \exists^1 , \exists^2 , = using their 2nd-order definition
- Classical logic obtained via Peirce's law: $((A \Rightarrow B) \Rightarrow A) \Rightarrow A$
- Elimination rule for 2nd-order ∀ implies all comprehension axioms:

 $\forall \vec{z} \; \forall \vec{Z} \; \exists X \; \forall \vec{x} \; [X(\vec{x}) \; \Leftrightarrow \; A(\vec{x}, \vec{z}, \vec{Z})]$



The λ_c -calculus

• Represent the computational contents of classical proofs using Curry-style proof terms, with call/cc for classical logic:

$$t, u ::= x \mid \lambda x \cdot t \mid t u \mid \infty$$

• Typing judgement:

2nd-order logic & arithmetic

$$\underbrace{\mathbf{x_1}:A_1,\ldots,\mathbf{x_n}:A_n}_{\text{typing context }\Gamma} \vdash t:B$$

 $(\lambda NK2)$

Typing rules $\overline{\Gamma \vdash x : A}^{(x:A) \in \Gamma}$ $\overline{\Gamma \vdash c : ((A \Rightarrow B) \Rightarrow A) \Rightarrow A}$ $\overline{\Gamma \vdash x : A}$ $\overline{\Gamma \vdash t : B}$ $\overline{\Gamma \vdash t : A \Rightarrow B}$ $\overline{\Gamma \vdash t : A \Rightarrow A}$ $\overline{\Gamma \vdash t : A \Rightarrow B}$ $\overline{\Gamma \vdash t : \forall x A}$ $x \notin FV(\Gamma)$ $\overline{\Gamma \vdash t : \forall x A}$ $\overline{\Gamma \vdash t : A}$ $x \notin FV(\Gamma)$ $\overline{\Gamma \vdash t : \forall x A}$ $\overline{\Gamma \vdash t : A}$ $X \notin FV(\Gamma)$ $\overline{\Gamma \vdash t : \forall x A}$ $\overline{\Gamma \vdash t : \forall X A}$ $x \notin FV(\Gamma)$ $\overline{\Gamma \vdash t : \forall X A}$

Note: \forall interpreted uniformly \Rightarrow type checking & inference are undecidable

From the derivation to the proof term

• Deduction system NK2 and type system λ NK2 are equivalent:

Theorem $A_1, \ldots, A_n \vdash_{NK2} A$ iff $x_1 : A_1, \ldots, x_n : A_n \vdash_{\lambda NK2} t : A$ for some t $\overline{[A(x)]}^{u}$ $\frac{C(x)}{A(x) \Rightarrow C(x)} \lambda u$ $\frac{\overline{\forall x (A(x) \Rightarrow C(x))}}{\forall x (B(x) \Rightarrow C(x)) \Rightarrow \forall x (A(x) \Rightarrow C(x))} \lambda g$ $\forall x (A(x) \Rightarrow B(x)) \Rightarrow \forall x (B(x) \Rightarrow C(x)) \Rightarrow \forall x (A(x) \Rightarrow C(x)) \lambda f$

 $\lambda f . \lambda g . \lambda u . g (f u)$

Typing examples

• Intuitionistic principles:

$$\begin{array}{rcl} \text{pair} &\equiv& \lambda xyz . z \, x \, y &:& \forall X \,\forall Y \, (X \Rightarrow Y \Rightarrow X \wedge Y) \\ \text{fst} &\equiv& \lambda z . z \, (\lambda xy . x) &:& \forall X \,\forall Y \, (X \wedge Y \Rightarrow X) \\ \text{snd} &\equiv& \lambda z . z \, (\lambda xy . y) &:& \forall X \,\forall Y \, (X \wedge Y \Rightarrow Y) \\ \text{refl} &\equiv& \lambda z . z &:& \forall x \, (x = x) \\ \text{trans} &\equiv& \lambda xyz . \, y \, (x \, z) &:& \forall x \,\forall y \,\forall z \, (x = y \Rightarrow y = z \Rightarrow x = z) \end{array}$$

• Excluded middle, double negation elimination:

$$\begin{array}{rcl} \operatorname{left} &\equiv& \lambda xuv \cdot u \, x &:& \forall X \, \forall Y \, (X \Rightarrow X \lor Y) \\ \operatorname{right} &\equiv& \lambda yuv \cdot v \, y &:& \forall X \, \forall Y \, (Y \Rightarrow X \lor Y) \\ \operatorname{EM} &\equiv& \operatorname{cc} \left(\lambda k \cdot \operatorname{right} \left(\lambda x \cdot k \, (\operatorname{left} x) \right) &:& \forall X \, (X \lor \neg X) \\ \operatorname{DNE} &\equiv& \lambda z \cdot \operatorname{cc} \left(\lambda k \cdot z \, k \right) &:& \forall X \, (\neg \neg X \Rightarrow X) \end{array}$$

• De Morgan laws:

$$\begin{array}{rcl} \lambda zy \, . \, z \, (\lambda x \, . \, yx) & : & \exists x \, A(x) \, \Rightarrow \, \neg \forall x \, \neg A(x) \\ \lambda zy \, . \, \mathfrak{c} \left(\lambda k \, . \, z \, (\lambda x \, . \, k \, (y \, x))\right) & : & \neg \forall x \, \neg A(x) \, \Rightarrow \, \exists x \, A(x) \end{array}$$

Extensional equality

Recall that in (intuitionistic or classical) second-order logic:

• Equality between individuals (i.e. 1st-order objects) is defined by

$$e = e'$$
 := $\forall Z (Z(e) \Rightarrow Z(e'))$ (Leibniz equality)

• Equality between predicates (i.e. 2st-order objects) is defined by:

P = Q := $\forall \vec{x} (P(\vec{x}) \Leftrightarrow Q(\vec{x}))$ (Extensional equality)

Proposition (Extensionality in 2nd-order logic)

For each 2nd-order formula $A(X, \vec{z}, \vec{Z})$ depending on X, \vec{z}, \vec{Z} , we have: NJ2 $\vdash \forall \vec{z} \forall \vec{Z} \forall X \forall Y [X = Y \Rightarrow (A(X, \vec{z}, \vec{Z}) \Leftrightarrow A(Y, \vec{z}, \vec{Z}))]$

Proof: By induction on the size of the formula $A(X, \vec{z}, \vec{Z})$ – Exercise!

Remark: The proposition holds because $X(e_1, \ldots, e_k)$ (predicate application) is the only construction of the language that involves 2nd-order variables X_{\ldots} ... but it does not hold anymore in higher-order formalisms: NK3, ..., NK ω

Introduction

2nd-order logic & arithmetic

The λ_c -calculus

Classical realizability 000000000000000 Witness extraction

Classical second-order arithmetic (PA2)

Classical 2nd-order arithmetic (PA2) is the (classical) 2nd-order theory whose axioms are:

• Defining equations of all primitive recursive functions:

 $\begin{aligned} &\forall x (x + 0 = x) & \forall x (x \times 0 = 0) \\ &\forall x \forall y (x + s(y) = s(x + y)) & \forall x \forall y (x \times s(y) = x \times y + x) \\ &\forall x (\mathsf{pred}(0) = 0) & \forall x (x - 0 = 0) \\ &\forall x (\mathsf{pred}(s(x)) = x) & \forall x \forall y (x - s(y)) = \mathsf{pred}(x - y) \end{aligned}$ etc.

Peano axioms:

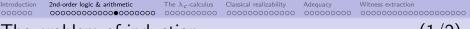
(P3)	$\forall x \forall y (s(x) = s(y) \Rightarrow x = y)$
------	---

- $(\mathsf{P4}) \qquad \forall x \neg (s(x) = 0)$
- $(\mathsf{P5}) \qquad \forall Z \left[0 \in Z \Rightarrow \forall y \left(y \in Z \Rightarrow s(y) \in Z \right) \Rightarrow \forall x \left(x \in Z \right) \right]$

Remark: Thanks to 2nd-order \forall , induction is now a single axiom:

Ind
$$\equiv \forall Z [0 \in Z \Rightarrow \forall y (y \in Z \Rightarrow s(y) \in Z) \Rightarrow \forall x (x \in Z)]$$

 $\Leftrightarrow \forall x (x \in \mathbb{N})$ ("every individual is a natural number")



The problem of induction

- Problem: Induction axiom Ind (⇔ ∀x (x ∈ IN)) is not realizable! (Due to uniform interpretation of ∀)
- Nevertheless, we observe that:

Proposition

The following formulas are derivable in HA2⁻ (:= HA2 - Ind) NJ2 $\vdash 0 \in \mathbb{N}$ NJ2 $\vdash (\forall x \in \mathbb{N})(s(x) \in \mathbb{N})$ NJ2 + def. of + $\vdash (\forall x, y \in \mathbb{N})(x + y \in \mathbb{N})$ NJ2 + def. of $\times \vdash (\forall x, y \in \mathbb{N})(x \times y \in \mathbb{N})$ (etc.) NJ2 $\vdash \forall Z [0 \in Z \Rightarrow$ $(\forall y \in \mathbb{N}) (y \in Z \Rightarrow s(y) \in Z) \Rightarrow$ $(\forall x \in \mathbb{N}) (x \in Z)]$ writing $\mathbb{N} := \{x : \forall Z [0 \in Z \Rightarrow \forall y (y \in Z \Rightarrow s(y) \in Z) \Rightarrow x \in Z]\}$

Exercise: Write the corresponding proof-terms (in system λ NK2)

- Problem: Induction axiom Ind (⇔ ∀x (x ∈ IN)) is not realizable! (Due to uniform interpretation of ∀)
- Solution: Restrict to PA2⁻ := PA2 Ind and relativize all 1st-order quantifications to IN:

Definition of the operation of relativization $A \mapsto A^{\mathbb{N}}$

$$\begin{array}{rcl} (X(e_1,\ldots,e_k))^{\mathbb{N}} & :\equiv & X(e_1,\ldots,e_k) & (\forall x \, A)^{\mathbb{N}} & :\equiv & (\forall x \in \mathbb{N})A^{\mathbb{N}} \\ (A \Rightarrow B)^{\mathbb{N}} & :\equiv & A^{\mathbb{N}} \Rightarrow B^{\mathbb{N}} & (\forall X \, A)^{\mathbb{N}} & :\equiv & \forall X \, A^{\mathbb{N}} \end{array}$$

Theorem

If $PA2 \vdash A$, then $PA2^- \vdash A^{\mathbb{N}}$

• Conclusion: In what follows, we shall work in PA2⁻ := PA2 - Ind, relativizing 1st-order quantifications to IN whenever needed

Proof: Exercise.

Two semantics for classical 2nd-order logic

2nd-order logic & arithmetic

There are two semantics for (classical) 2nd-order logic:

The λ_c -calculus

Full semantics vs. Henkin semantics

(1/3)

Moreover, full semantics is a particular case of Henkin semantics

Full semantics: A full model \mathcal{M} of LK2 is given by:

- A nonempty set $|\mathcal{M}|$ (domain of 1st-order objects)
- A function $f^{\mathscr{M}} : |\mathscr{M}|^k \to |\mathscr{M}|$ for each k-ary function symbol f
- A relation $f^{\mathscr{M}} \subseteq |\mathscr{M}|^k$ for each k-ary predicate symbol p

As usual, the interpretation of a 1st-order term (or a 2nd-order formula) is parameterized by a valuation (in \mathcal{M}), that is: a function ρ mapping

- each 1st-order variable x to an element $\rho(x) \in |\mathscr{M}|$, and
- each k-ary 2nd-order variable X to a relation $ho(X) \in \mathfrak{P}(|\mathscr{M}|^k)$

The denotation of a 1st-order term e in a valuation ρ (notation: $e[\rho]^{\mathscr{M}}$) is defined as usual (i.e. Tarski semantics of 1st-order terms)

Introduction 000000 2nd-order logic & arithmetic

The λ_c -calculus

lassical realizability . 00000000000000

Adequacy 000000000

Two semantics for classical 2nd-order logic

(2/3)

Full semantics (continued):

Definition of the satisfaction predicate $\mathcal{M} \models A[\rho]$

$\mathscr{M} \models \bot[\rho]$	never	r holds
$\mathscr{M}\models p(e_1,\ldots,e_k)[ho]$	iff	$(e_1[ho]^{\mathscr{M}},\ldots,e_k[ho]^{\mathscr{M}})\in p^{\mathscr{M}}$
$\mathscr{M} \models X(e_1, \ldots, e_k)[\rho]$	iff	$(e_1[ho]^{\mathscr{M}},\ldots,e_k[ho]^{\mathscr{M}})\in ho(X)$
$\mathcal{M} \models (A \Rightarrow B)(\rho)$	iff	$\mathscr{M} \models A[\rho]$ implies $\mathscr{M} \models B[\rho]$
$\mathscr{M} \models (\forall x A)[\rho]$	iff	$\mathscr{M}\models A[ho, x\leftarrow a] \qquad ext{for all } a\in \mathscr{M} $
$\mathscr{M} \models (\forall X A)[\rho]$	iff	$\mathscr{M}\models A[ho,X\leftarrow R]$ for all $R\in\mathfrak{P}(\mathscr{M} ^k)$

Note that in the model, 2nd-order objects are all the possible relations $R \in \mathfrak{P}(|\mathscr{M}|^k)$. So that when $|\mathscr{M}|$ is infinite, the model (1st- and 2nd-order objects) is uncountable.

• A full model of a 2nd-order (classical) theory \mathscr{T} (for example: PA2) is a full model of LK2 that satisfies all the axioms of \mathscr{T}

• Example: The (full) standard model of PA2: $|\mathscr{M}| := \mathbb{N}, \quad s^{\mathscr{M}} := (n \mapsto n+1), \quad (+)^{\mathscr{M}} := (n, m \mapsto n+m) \quad (\text{etc.})$

Two semantics for classical 2nd-order logic

The λ_c -calculus

2nd-order logic & arithmetic

Henkin semantics: A pre-Henkin model *M* of LK2 is given by:

- The same ingredients $(|\mathcal{M}|, f^k..., p^k...)$ as before, plus:
- A set of relations $\operatorname{Rel}_k(\mathscr{M}) \subseteq \mathfrak{P}(|\mathscr{M}|^k)$ (domain of 2nd-order objects)

(3/3)

Definition of the satisfaction predicate $\mathcal{M} \models A[\rho]$

 $\mathscr{M} \models (\forall X A)[\rho] \quad \text{iff} \quad \mathscr{M} \models A[\rho, X \leftarrow R] \quad \text{for all } R \in \operatorname{\mathsf{Rel}}_k(|\mathscr{M}|)$ (Other clauses of the definition remain unchanged)

Note that in the model, 2nd-order objects are only the relations $R \in \text{Rel}_k(\mathcal{M})$. So that even when $|\mathcal{M}|$ is infinite, the model (1st- and 2nd-order objects) may be countable.

• A Henkin model of LK2 is a pre-Henkin model *M* that satisfies all comprehension axioms:

$$\mathscr{M} \models \forall \vec{z} \forall \vec{Z} \exists X \forall \vec{x} [X(\vec{x}) \Leftrightarrow A(\vec{x}, \vec{z}, \vec{Z})]$$

(where $A(x_1, \ldots, x_k, \vec{z}, \vec{Z})$ is any formula with free vars. $\vec{z}, \vec{Z}, x_1, \ldots, x_k$)

• As before, a Henkin model of a 2nd-order theory \mathscr{T} (for example: PA2) is a Henkin model of LK2 that satisfies all the axioms of \mathscr{T}

Full semantics vs Henkin semantics

• Clearly: Full semantics = Henkin semantics where

 $\operatorname{\mathsf{Rel}}_k(\mathscr{M}) \;=\; \mathfrak{P}(|\mathscr{M}|^k)$ (for all $k \geq 0$)

Note: $\operatorname{Rel}_k(\mathscr{M}) = \mathfrak{P}(|\mathscr{M}|^k) \Rightarrow \mathscr{M}$ satisfies all (k-ary) comprehension axioms

• When designing a notion of model, we are in general interested in the properties of soundness, completenes and compactness.

Regarding full and Henkin models, the situation is the following:

	Soundness	Completeness	Compactness
Full semantics	Yes	No	No
Henkin semantics	Yes	Yes	Yes

Intuition: The notion of full model is too restrictive, hence we lose the properties of completeness and compactness.

• The fact that Henkin models preserve completeness/compactness is due to the possibility of presenting 2nd-order logic as a 1st-order *theory*

Second-order logic as a first-order theory

2nd-order logic & arithmetic

2nd-order logic over a 1st-order language \mathcal{L} (NK2_{\mathcal{L}}) can be presented as a multi-sorted 1st-order theory $\mathscr{T}_{LK2,\mathcal{L}}$ that is defined as follows:

 \bullet The language of $\mathscr{T}_{\mathsf{LK2},\mathcal{L}}$ has infinitely many sorts:

The λ_c -calculus

- a sort ι of individuals, and
- a sort o_k of k-ary relations, for each $k \ge 0$
- The function symbols of *𝔅*_{LK2,𝔅} are all the (*k*-ary) function symbols of the language 𝔅, now seen as function symbols of arity *ι^k* → *ι*

So that the terms of sort ι in $\mathscr{T}_{\mathsf{LK2},\mathcal{L}}$ are exactly the 1st-order terms of \mathcal{L} . On the other hand, the only terms of sort o_k are the variables $X : o_k$.

- A predicate symbol Q_k of arity o_k × ι^k → Prop (application of a k-ary predicate symbol to k individuals)
- The axioms of $\mathscr{T}_{\mathsf{LK2},\mathcal{L}}$ are all the comprehension axioms: $(\forall \vec{z} : \iota)(\forall \vec{Z} : o_*)(\exists X : o_k)(\forall \vec{x} : \iota)[@(X, \vec{x}) \Leftrightarrow A(\vec{x}, \vec{z}, \vec{Z})]$

(1/2)

Second-order logic as a first-order theory

The λ_c -calculus

2nd-order logic & arithmetic

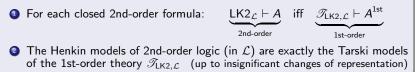
00000000000000000000000

There is an almost^(*) one to one correspondence between the 2nd-order formulas of \mathcal{L} and the 1st-order formulas of $\mathscr{T}_{LK2,\mathcal{L}}$:

Formulas of \mathcal{L} (2nd-order)		Formulas of $\mathscr{T}_{LK2,\mathcal{L}}$ (1st-order)
$X(e_1,\ldots,e_k)$	\approx	$\mathbb{Q}_k(X, e_1, \ldots, e_k)$
$\forall x A(x)$	\approx	$(\forall x : \iota)A(x)$
$\forall X A(X)$	\approx	$(\forall X:o_k)A(X)$

(*) Up to the fact that =, \top , \bot , \land , \lor and \exists are defined in 2nd-order logic

Theorem



⇒ Henkin models enjoy soundness, completeness & compactness

Introduction	2nd-order logic & arithmetic	The λ_c -calculus	Classical realizability	Adequacy	Witness extraction
000000	000000000000000000000000000000000000000	•000000000	0000000000000	000000000	000000000000000000000000000000000000000

Plan

1 Introduction

2 Second-order logic (NK2) and arithmetic (PA2)

3 The λ_c -calculus

4 The classical realizability interpretation

5 Adequacy

6 Witness extraction

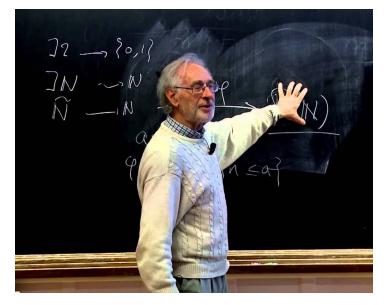
Introduction 000000 2nd-order logic & arithmetic

The λ_c -calculus 000000000

lassical realizability

Adequacy

Witness extraction



Jean-Louis Krivine (1939–)

Introduction	2nd-order logic & arithmetic	The λ_c -calculus	Classical realizability	Adequacy	Witness extraction
000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	000000000	000000000000000000000000000000000000000

Terms, stacks and processes

- The syntax of the λ_c -calculus is parameterized by
 - A countable set K = {c,...} of instructions, containing at least the instruction c (call/cc)
 - A countable set Π_0 of stack constants (or stack bottoms)

Terms, stacks and processes										
Terms	t, u	::=	x	λx.t		tu		κ	$ k_{\pi}$	$(\kappa \in \mathcal{K})$
Stacks	π,π'	::=	$lpha \mid$	$t\cdot\pi$					$(\alpha \in \Pi_0)$, t closed)
Processes	p,q	::=	$t\star\pi$							(t closed)

- A λ -calculus with two kinds of constants:
 - Instructions $\kappa \in \mathcal{K}$, including \mathbf{c}
 - Continuation constants k_{π} , one for every stack π (generated by ∞)

• Notation: Λ , Π , $\Lambda \star \Pi$ (sets of closed terms / stacks / processes)

Introduction	2nd-order logic & arithmetic	The λ_c -calculus	Classical realizability	Adequacy	Witness extraction
000000	000000000000000000000000000000000000000	000000000000	0000000000000	000000000	000000000000000000000000000000000000000

Proof-like terms

• **Proof-like term** \equiv Term containing no continuation constant

Proof-like terms $t, u ::= x | \lambda x \cdot t | tu | \kappa \quad (\kappa \in \mathcal{K})$

- Idea: All realizers coming from actual proofs are of this form, continuation constants k_{π} are treated as paraproofs
- Notation: PL \equiv set of closed proof-like terms
- Natural numbers are encoded as proof-like terms, letting:

Krivine numerals $\overline{n} :\equiv \overline{s}^n \overline{0} \in \mathsf{PL}$ $(n \in \mathbb{N})$ writing $\overline{0} \equiv \lambda xy \cdot x$ and $\overline{s} \equiv \lambda nxy \cdot y (n \times y)$

• Note: Krivine numerals \neq Church numerals, but β -equivalent

The Krivine Abstract Machine (KAM)

2nd-order logic & arithmetic

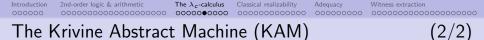
The λ_c -calculus

000000000

 We assume that the set Λ ★ Π comes with a preorder p ≻ p' of evaluation satisfying the following rules: (1/2)

Krivine Abstract Machine (KAM)					
Push	tu $\star \pi$	\succ $t \star u \cdot \pi$			
Grab		$\succ t[x := u] \star \pi$			
Save	$\mathbf{c} \star \mathbf{u} \cdot \pi$				
Restore	$k_{\pi} \star u \cdot \pi'$	$' \succ u \star \pi$			
(+ reflexivity & transitivity)					

- Evaluation is not defined but axiomatized. The preorder $p \succ p'$ is just another parameter of the calculus, like the sets \mathcal{K} and Π_0
- Extensible machinery: we can add extra instructions and rules (We shall see examples later)



• Rules **Push** and **Grab** implement weak head β -reduction:

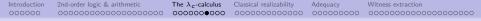
Push		$tu \star \pi$	\succ		$t \star u \cdot \pi$
Grab		$\lambda x.t \star u \cdot \pi$	\succ	t[x :=	<i>u</i>] * <i>π</i>
_	• Example:	(λxy.t)	uv >		$\lambda xy \cdot t \star u \cdot v \cdot \pi$ $t[x := u][y := v] \star \pi$

• Rules **Save** and **Restore** implement backtracking:

Save	$\mathbf{c} \star \mathbf{u} \cdot \boldsymbol{\pi}$	\succ	$u \star k_{\pi} \cdot \pi$
Restore	$k_\pi \star \mathit{u} \cdot \pi'$	\succ	$u \star \pi$

• The instruction $\boldsymbol{\alpha}$ is most often used in the pattern

$$\begin{array}{rcl} \mathfrak{cc} \left(\lambda k \, . \, t\right) \star \pi &\succ & \mathfrak{cc} \star \left(\lambda k \, . \, t\right) \cdot \pi \\ &\succ & \left(\lambda k \, . \, t\right) \star \mathsf{k}_{\pi} \cdot \pi \\ &\succ & t[k := \mathsf{k}_{\pi}] \star \pi \end{array}$$



Representing functions

Definition (function representation)

A partial function $f : \mathbb{N}^k \rightarrow \mathbb{N}$ is represented by a λ_c -term $\widehat{f} \in \Lambda$ if

$$\widehat{f} \star \overline{n}_1 \cdots \overline{n}_k \cdot u \cdot \pi \quad \succ \quad u \star \overline{f(n_1, \dots, n_k)} \cdot \pi$$

for all $(n_1, \ldots, n_k) \in \text{dom}(f)$ and for all $u \in \Lambda$, $\pi \in \Pi$

- Call by value encoding:
 - Consumes k values and returns 1 value on the stack
 - Control is given to the extra argument *u* (continuation, return block)

• Examples:

$$\begin{array}{rcl}
\widehat{s} &:= & \lambda xk \cdot k \left(\overline{s} x\right) \\
\widehat{+} &:= & \lambda xyk \cdot y k \left(\lambda k'z \cdot \widehat{s} z k\right) x \\
\widehat{\times} &:= & \lambda xyk \cdot y k \left(\lambda k'z \cdot \widehat{+} z x k\right) \overline{0}
\end{array}$$

Theorem (Representation of recursive functions)

All partial recursive functions are represented in the λ_c -calculus

• Numbering terms: the instruction quote:

quote
$$\star t \cdot u \cdot \pi \succ u \star [t] \cdot \pi$$

where $t \mapsto \lceil t \rceil$ is a fixed bijection from Λ to \mathbb{N}

- Useful to realize the axiom of dependent choices (DC) [K. 2003]
- Numbering stacks: the instruction quote':

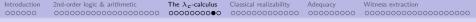
quote'
$$\star u \cdot \pi \succ u \star \overline{[\pi]} \cdot \pi$$

where $\pi \mapsto \lceil \pi \rceil$ is a fixed bijection from Π to IN

- Can be implemented using quote
- Useful to realize the axiom of dependent choices (DC) [K. 2003]
- Testing syntactic equality: the instruction eq:

$$\mathsf{eq} \star t_1 \cdot t_2 \cdot u \cdot v \cdot \pi \quad \succ \quad \begin{cases} u \star \pi & \text{if } t_1 \equiv t_2 \\ v \star \pi & \text{if } t_1 \not\equiv t_2 \end{cases}$$

• Can be implemented using quote or quote'



Example of extra instructions

• Non-deterministic choice operator: the instruction fork:

fork
$$\star u \cdot v \cdot \pi \rightarrow \begin{cases} u \star \pi \\ v \star \pi \end{cases}$$

• Useful for pedagogy - bad for realizability (collapses to forcing)

• The instruction stop:

stop
$$\star \pi \not\succ$$

 $\bullet\,$ Stops execution. Final result returned on the stack $\pi\,$

• The instruction print:

- Useful to display intermediate results without stopping the machine
- The instruction hace_mate:

 $hace_mate \star u \cdot \pi \succ u \star \pi + hace el mate$

On the determinism of evaluation

 A relation of evaluation ≻ (between processes) is deterministic when it is the reflexive-transitive closure of a relation ≻¹ of one step evaluation that is strictly deterministic, in the sense that:

$$p \succ^1 p'$$
 and $p \succ^1 p''$ implies $p' \equiv p''$ (for all p, p', p'')

• The relation of evaluation induced by the four basic rules (Grab, Push, Save and Restore) is clearly deterministic

On the other hand β -reduction (in the λ -calculus) is not:

$$(\mathbf{II})(\mathbf{II}) \begin{cases} \rightarrow^{1}_{\beta} & \mathbf{I}(\mathbf{II}) \\ \rightarrow^{1}_{\beta} & (\mathbf{II}) \mathbf{I} \end{cases}$$

- Instructions quote, quote', eq, stop, print and hace_mate preserve the determinism of evaluation, while fork completely breaks it
- Beware of non-determinism! As soon as the calculus contains a term with the same evaluation rules as fork, the corresponding realizability model is equivalent to a forcing model (collapse)

roduction 2nd-order logic & arithmetic

The λ_c -calculus 000000000

Classical realizability /

uacy Witness extraction

Plan

Introduction

Second-order logic (NK2) and arithmetic (PA2)

3 The λ_c -calculus

4 The classical realizability interpretation

5 Adequacy

6 Witness extraction

Introduction 000000 Classical realizability

cy Witness extraction 00000 000000000000000

Krivine the White (Courtesy of Vincent Padovani)

Classical realizability: principles

- Intuitions:
 - term = "proof" / stack = "counter-proof"
 - process = "contradiction" (Slogan: Never trust a classical realizer!)
- Each classical realizability model is parameterized by a pole \bot
 - = set of processes ("contradictions") closed under anti-evaluation
- Each formula A is interpreted as two sets:
 - A set of stacks ||A|| (falsity value)
 - A set of terms |A| (truth value)
- Falsity value ||A|| is defined by induction on A (negative interp.)
- Truth value |A| is defined by orthogonality:

$$|A| := ||A||^{\perp} := \{t \in \Lambda : \forall \pi \in ||A|| \ t \star \pi \in \bot\}$$

More generally, given $S \subset \Pi$, we let $S^{\perp} := \{t \in \Lambda : \forall \pi \in S \ t \star \pi \in \bot\} \ (\subseteq \Lambda)$

Architecture of the realizability model

- The realizability model $\mathscr{M}_{\mathbb{L}}$ is defined from:
 - The full standard model *M* of PA2: the ground model (but we could take any model *M* of PA2 as well)
 - An instance $(\mathcal{K}, \Pi_0, \succ)$ of the λ_c -calculus: the calculus of realizers
 - A saturated set of processes ⊥ ⊆ Λ ★ Π: the pole of the model (saturated = closed under anti-evaluation)
- Architecture:
 - First-order terms/variables are interpreted as natural numbers $n \in \mathbb{N}$
 - Formulas are interpreted as falsity values $S\in\mathfrak{P}(\Pi)$
 - k-ary second-order variables (and k-ary predicates) are interpreted as falsity functions F : IN^k → 𝔅(Π).

Formulas with parameters $A, B ::= \cdots | \dot{F}(e_1, \dots, e_k)$

Add a *k*-ary predicate constant \dot{F} for every falsity function $F : \mathbb{N}^k \to \mathfrak{P}(\Pi)$

Interpreting closed formulas with parameters

The λ_c -calculus

Let A be a closed formula (with parameters)

2nd-order logic & arithmetic

• Falsity value ||A|| defined by induction on A:

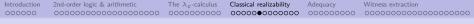
$$\begin{aligned} \|\dot{F}(e_1,\ldots,e_k)\| &:= F(e_1^{\mathbb{N}},\ldots,e_k^{\mathbb{N}}) \\ \|A\Rightarrow B\| &:= |A| \cdot \|B\| = \{t \cdot \pi : t \in |A|, \ \pi \in \|B\|\} \\ \|\forall x \ A\| &:= \bigcup_{n \in \mathbb{N}} \|A[x := n]\| \\ \|\forall X \ A\| &:= \bigcup_{F : \ \mathbb{N}^k \to \mathfrak{P}(\Pi)} \|A[X := \dot{F}]\| \end{aligned}$$

Classical realizability

• Truth value |A| defined by orthogonality:

$$|A| := ||A||^{\perp} = \{t \in \Lambda : \forall \pi \in ||A|| \quad t \star \pi \in \perp\}$$

Recall: For each $S \subseteq \Pi$ we write $S^{\perp} := \{t \in \Lambda : \forall \pi \in S \quad t \star \pi \in \perp\} (\subseteq \Lambda)$

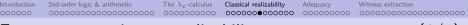


The realizability relation

Falsity value ||A|| and truth value |A| depend on the pole \bot

 \rightsquigarrow write them (sometimes) $\|A\|_{\bot}$ and $|A|_{\bot}$ to recall the dependency

Realizability relations		
$t \Vdash A :\equiv$	$t\in {\sf A} _{{\rm I\!I}}$	(Realizability w.r.t. \bot)
$t \Vdash A :\equiv$	$\forall \bot\!\!\!\bot \ t \in A _{\bot\!\!\!\bot}$	(Universal realizability)



From computation to realizability

Fundamental idea: The computational behavior of a term determines the formulas it realizes:

Example 1: A closed term *t* is identity-like if:

 $t \star u \cdot \pi \succ u \star \pi$ for all $u \in \Lambda, \pi \in \Pi$

Proposition

If t is identity-like, then $t \Vdash \forall X (X \Rightarrow X)$

Proof: Exercise!

Remark: The converse implication also holds - Exercise!

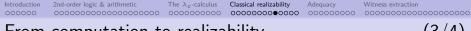
- Examples of identity-like terms:
 - $\lambda x . x$, $(\lambda x . x) (\lambda x . x)$, etc.
 - $\lambda x \cdot \mathbf{c} (\lambda k \cdot x)$, $\lambda x \cdot \mathbf{c} (\lambda k \cdot k x)$, $\lambda x \cdot \mathbf{c} (\lambda k \cdot k x \omega)$, etc.
 - λx . quote $x (\lambda n$. unquote $n (\lambda z . z))$
 - print 42, hace_mate

From computation to realizability

Proof of: t identity-like iff $t \Vdash \forall X (X \Rightarrow X)$ (\Rightarrow) Assume that t is identity-like, i.e.: $t \star u \cdot \pi \succ u \star \pi$ for all $t, u \in \Lambda, \pi \in \Pi$. Given a pole \bot , we want to prove that $t \in |\forall X (X \Rightarrow X)|$ (w.r.t. the pole \bot). For that, it suffices to prove that $t \star \pi \in \mathbb{L}$ for all $\pi \in \|\forall X (X \Rightarrow X)\|$. Take an arbitrary $\pi \in \|\forall X (X \Rightarrow X)\|$. Since $\|\forall X (X \Rightarrow X)\| = [] \|\dot{S} \Rightarrow \dot{S}\|$, we have $\pi \in \|\dot{S} \Rightarrow \dot{S}\|$ for some $S \subseteq \Pi$. And since $\|\dot{S} \Rightarrow \dot{S}\| = |\dot{S}| \cdot \|\dot{S}\|$, we also have $\pi \equiv u \cdot \pi'$ for some $u \in S^{\perp}$ $(= |\dot{S}|)$ and $\pi' \in S$ $(= ||\dot{S}||)$. Now observe that $t \star \pi \equiv t \star u \cdot \pi' \succ u \star \pi' \in \bot$ (since t is identity-like, and since $u \in S^{\perp}$ and $\pi' \in S$), so that by anti-evaluation, we get $t \star \pi \in \bot$ as desired. (\Leftarrow) Assume that $t \Vdash \forall X (X \Rightarrow X)$. Given $u \in \Lambda$ and $\pi \in \Pi$, we want to show that $t \star u \cdot \pi \succ u \star \pi$. For that, consider the pole $\bot := \{p \in \Lambda \star \Pi : p \succ u \star \pi\}$ (closed under anti-evaluation) and the falsity value $S := \{\pi\}$ (with only one stack). Now observe that $u \star \pi \in \mathbb{L}$, hence $u \in S^{\mathbb{L}}$. Therefore we get

$$u \cdot \pi \in S^{\perp} \cdot S = \|\dot{S} \Rightarrow \dot{S}\| \subseteq \|\forall X (X \Rightarrow X)\|,$$

from which we deduce that $t \star u \cdot \pi \in \bot$ (since $t \in |\forall X (X \Rightarrow X)|$). From the definition of the pole \bot , we conclude that $t \star u \cdot \pi \succ u \star \pi$.



From computation to realizability

Example 2: Control operators:

$$\begin{array}{ccc} \mathbf{cc} \star t \cdot \pi &\succ t \star \mathbf{k}_{\pi} \cdot \pi \\ \mathbf{k}_{\pi} \star t \cdot \pi' &\succ t \star \pi \end{array}$$

• "Typing"
$$k_{\pi}$$
: $k_{\pi} \star t \cdot \pi' \succ t \star \pi$

Lemma If $\pi \in ||A||$, then $k_{\pi} \Vdash A \Rightarrow B$ (*B* any) Proof: Exercise • "Typing" \mathfrak{c} : $\mathfrak{c} \star t \cdot \pi \succ t \star k_{\pi} \cdot \pi$ Proposition (Realizing Peirce's law) $\mathfrak{c} \parallel \vdash ((A \Rightarrow B) \Rightarrow A) \Rightarrow A$

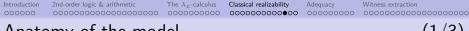
Proof: Exercise

From computation to realizability

Proof of: $\pi \in ||A||$ implies $k_{\pi} \in |A \Rightarrow B|$ (w.rt. a fixed pole \bot) Assume that $\pi \in ||A||$. We want to prove that $k_{\pi} \in |A \Rightarrow B|$. For that, it suffices to prove that $k_{\pi} \star \pi' \in \bot$ for all $\pi' \in ||A \Rightarrow B||$. Take an arbitrary $\pi' \in ||A \Rightarrow B||$. Since $||A \Rightarrow B|| = |A| \cdot ||B||$, we have $\pi' \equiv u \cdot \pi''$ for some $u \in |A|$ and $\pi'' \in ||B||$. Now observe that $k_{\pi} \star \pi' \equiv k_{\pi} \star u \cdot \pi'' \succ u \star \pi \in \bot$ (since $u \in |A|$ and $\pi \in ||A||$), so that by anti-evaluation, we get $k_{\pi} \star \pi' \in \bot$ as desired.

Proof of: $\mathfrak{cc} \Vdash ((A \Rightarrow B) \Rightarrow A) \Rightarrow A$

Given a fixed pole \mathbb{L} , we want to prove that $\mathfrak{a} \in |((A \Rightarrow B) \Rightarrow A) \Rightarrow A|$. For that, it suffices to prove that $\mathfrak{a} \star \pi \in \mathbb{L}$ for all $\pi \in ||((A \Rightarrow B) \Rightarrow A) \Rightarrow A||$. Take an arbitrary $\pi \in ||((A \Rightarrow B) \Rightarrow A) \Rightarrow A||$. Since $||((A \Rightarrow B) \Rightarrow A) \Rightarrow A|| = |(A \Rightarrow B) \Rightarrow A| \cdot ||A||$, we have $\pi \equiv t \cdot \pi'$ for some $t \in |(A \Rightarrow B) \Rightarrow A|$ and $\pi' \in ||A||$. Now observe that $\mathfrak{a} \star \pi \equiv \mathfrak{a} \star t \cdot \pi' \succ t \star k_{\pi'} \cdot \pi'$. Therefore it remains to prove that $t \star k_{\pi'} \cdot \pi' \in \mathbb{L}$ (using the closure by anti-evaluation). For that, we observe that $k_{\pi'} \in |A \Rightarrow B|$ (using the previous proposition) and $\pi' \in ||A||$, hence $k_{\pi'} \cdot \pi \in |A \Rightarrow B| \cdot ||A|| = ||(A \Rightarrow B) \Rightarrow A||$ But since $t \in |(A \Rightarrow B) \Rightarrow A|$, we conclude that $t \star k_{\pi'} \cdot \pi' \in \mathbb{L}$ as desired.



Anatomy of the model

• Denotation of universal guantification:

Falsity value:
$$\|\forall x A\| = \bigcup_{n \in \mathbb{N}} \|A[x := n]\|$$
 (by definition)Truth value: $|\forall x A| = \bigcap |A[x := n]|$ (by orthogonality)

 $n \in \mathbb{N}$

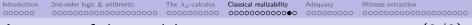
(and similarly for 2nd-order universal quantification)

(by orthogonality)

• Denotation of implication:

Falsity value: $||A \Rightarrow B|| = |A| \cdot ||B||$ (by definition) Truth value: $|A \Rightarrow B| \subset |A| \rightarrow |B|$ (by orthogonality) writing $|A| \rightarrow |B| = \{t \in \Lambda : \forall u \in |A| \ tu \in |B|\}$ (Kleene arrow)

• **Note:** In general, we have $|A| \rightarrow |B| \not\subseteq |A \Rightarrow B|$. Nevertheless: $t \in |A| \rightarrow |B|$ implies $\lambda x \cdot t x \in |A \Rightarrow B|$ (Exercise)



Anatomy of the model

Degenerate case: $\bot\!\!\!\bot = \varnothing$

• Classical realizability mimics the Tarski interpretation:

Degenerated interpretation

$$A| = \begin{cases} \Lambda & \text{if } \mathscr{M} \models A \\ \varnothing & \text{if } \mathscr{M} \not\models A \end{cases}$$

Non degenerate cases: $\bot\!\!\!\bot \neq \varnothing$

• Every truth value |A| is inhabited:

Existence of paraproofs

Proof. Since $\bot \neq \emptyset$, pick a process $t_0 \star \pi_0 \in \bot$ and write $\Psi_{\bot} :\equiv k_{\pi_0} t_0$. For all stacks π , we have: $\Psi_{\bot} \star \pi \equiv k_{\pi_0} t_0 \star \pi \succ k_{\pi_0} \star t_0 \star \pi \succ t_0 \star \pi_0 \in \bot$. This immediately implies that $\Psi_{\bot} \Vdash A$ for all closed formulas A.

Anatomy of the model

The big dilemma:

 $\left\{ \begin{array}{ll} \mbox{When } \bot = \varnothing: \mbox{ classical realizability is useless (?)} \\ (since it mimics Tarski semantics) \\ \mbox{When } \bot \neq \varnothing: \mbox{ classical realizability is inconsistent (?)} \\ (since \ \mbox{$\Psi_{\bot} \Vdash A$ for all closed formulas A}) \end{array} \right.$

Solution: Only consider proof-like terms (\in PL) as "valid" realizers **Recall:** Proof-like term (\in PL) = term without continuation constants (k_{π})

Definition (Realized formulas)

In a given realizability model, a closed formula A with parameters is realized (notation: $\Vdash A$) when A is realized by at least a proof-like term:

$$\begin{array}{ll} \Vdash A \ (``A \ \text{is realized''}) & :\equiv & t \Vdash A \ \text{for some} \ t \in \mathsf{PL} \\ \Leftrightarrow & |A| \cap \mathsf{PL} \neq \varnothing \end{array}$$

Introduction	2nd-order logic & arithmetic	The λ_c -calculus	Classical realizability	Adequacy	Witness extraction
000000	000000000000000000000000000000000000000	0000000000	0000000000000	00000000	000000000000000000000000000000000000000

Plan

1 Introduction

2 Second-order logic (NK2) and arithmetic (PA2)

3 The λ_c -calculus

4 The classical realizability interpretation

5 Adequacy

6 Witness extraction



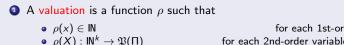
Aim: Prove the theorem of adequacy:

t: A (in the sense of $\lambda NK2$) implies $t \Vdash A$ (in the sense of realizability)

... and since t is proof-like (from λ NK2), we deduce that A is realized (in each pole \perp)

- Closing typing judgments $z_1 : A_1, \ldots, z_n : A_n \vdash t : A$
 - We close logical objects (1st-order terms, formulas, predicates) using semantic objects (natural numbers, falsity values, falsity functions)
 - We close proof-terms using realizers

Definition (Valuation)



for each 1st-order variable xfor each 2nd-order variable X of arity k

2 The closure of A with ρ is written $A[\rho]$

(formula with parameters)

Definition (Adequate judgment, adequate rule)

Given a fixed pole \bot :

• A judgment $z_1 : A_1, \ldots, z_n : A_n \vdash t : A$ is adequate if for every valuation ρ and for all $u_1 \Vdash A_1[\rho], \ldots, u_n \Vdash A_n[\rho]$ we have:

$$t[z_1 := u_1, \ldots, z_n := u_n] \Vdash A[\rho]$$

A typing rule is adequate if it preserves the property of adequacy (from the premises to the conclusion of the rule)

Theorem

- All typing rules of λ NK2 are adequate
- **2** All derivable judgments of λ NK2 are adequate

Proof: Exercise!

Corollary: If $\vdash t : A$ (A closed formula), then $t \parallel \vdash A$ (with $t \in PL$)

Extending adequacy to subtyping

Definition (Adequate subtyping judgment) Judgment $A \leq B$ adequate $:= ||B[\rho]|| \subseteq ||A[\rho]||$ (for all valuations ρ)

Remark: Implies that $|A[\rho]| \subseteq |B[\rho]|$ (for all ρ), but strictly stronger

• Some adequate typing/subtyping rules:

$\frac{A \leq B B \leq C}{A \leq C} \frac{\Gamma \vdash t : A A \leq B}{\Gamma \vdash t : B}$
$\overline{\forall x A \leq A[x := e]} \overline{\forall X A \leq A[X := P]}$
$\frac{A \leq B}{A \leq \forall x B} \times \notin FV(A) \qquad \frac{A \leq B}{A \leq \forall X B} \times \notin FV(A) \qquad \frac{A' \leq A \qquad B \leq B'}{A \Rightarrow B \leq A' \Rightarrow B'}$
$\overline{\forall x (A \Rightarrow B)} \leq A \Rightarrow \forall x B x \notin FV(A) \qquad \overline{\forall X (A \Rightarrow B)} \leq A \Rightarrow \forall X B X \notin FV(A)$
• Example: $\forall X \forall Y (((X \Rightarrow Y) \Rightarrow X) \Rightarrow X) \leq \forall X (\neg \neg X \Rightarrow X)$

Peirce's law

(derivable from the above rules)

DNF

Realizing equalities

• **Recall:** Equality between individuals is defined by

 $e_1 = e_2 := \forall Z \left(Z(e_1) \Rightarrow Z(e_2) \right)$ (Leibniz equality)

(and a pole \bot)

Denotation of Leibniz equality

Given two closed first-order terms e1, e2

$$\|e_1 = e_2\| \quad = \quad \begin{cases} \|\mathbf{1}\| \ = \ \{t \cdot \pi \ : \ (t \star \pi) \in \bot\!\!\!\! \ \} & \text{if} \quad e_1^{\mathsf{N}} = e_2^{\mathsf{N}} \\ \|\top \Rightarrow \bot\| \ = \ \Lambda \cdot \Pi & \text{if} \quad e_1^{\mathsf{N}} \neq e_2^{\mathsf{N}} \end{cases}$$

writing $\mathbf{1} :\equiv \forall Z (Z \Rightarrow Z)$ and $\top :\equiv \dot{\varnothing}$

Proof: Exercise!

Intuitions:

- A realizer of a true equality (in the model) behaves as the identity function λz . z
- A realizer of a false equality (in the model) behaves as a point of backtrack (breakpoint)

Introduction	2nd-order logic & arithmetic	The λ_c -calculus	Classical realizability	Adequacy	Witness extraction
000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000

Realizing axioms

Corollary 1	(Realizing true	equations)
-------------	-----------------	------------

lf	$\mathbb{IN} \models \forall \vec{x} (e_1(\vec{x}) = e_2(\vec{x}))$	(truth in the ground model)
then	$\mathbf{I} \equiv \lambda z . z \Vdash \forall \vec{x} (e_1(\vec{x}) = e_2(\vec{x}))$	(universal realizability)

Corollary 2

All defining equations of primitive recursive function symbols (+, -, ×, /, mod, \uparrow , etc.) are universally realized by $\mathbf{I} \equiv \lambda z \cdot z$

Corollary 3 (Realizing Peano axioms 3 and 4)

$$I \quad \Vdash \quad \forall x \,\forall y \, (s(x) = s(y) \Rightarrow x = y)$$

$$\lambda z \, . \, z \, I \quad \Vdash \quad \forall x \, \neg (s(x) = 0)$$

Theorem: If $PA2^- \vdash A$, then $\theta \parallel \vdash A$ for some $\theta \in PL$

Realizing true Horn formulas

Definition (Horn formulas)

A (positive/negative) literal is a formula *L* of the form

$$L \equiv e_1 = e_2$$
 or $L \equiv e_1 \neq e_2$

A (positive/negative) Horn formula is a closed formula H of the form

$$\mathcal{H} \equiv \forall \vec{x} [L_1 \Rightarrow \cdots \Rightarrow L_p \Rightarrow L_{p+1}] \qquad (p \ge 0)$$

where L_1, \ldots, L_p are positive; L_{p+1} positive or negative

Theorem (Realizing true Horn formulas)[M. 2014]If $\mathscr{M} \models H$, then: $I \equiv \lambda z . z \parallel \vdash H$ (if H positive) $\lambda z_1 \cdots z_{p+1} . z_1 (\cdots (z_{p+1} \mathbf{I}) \cdots) \parallel \vdash H$ (if H negative)

• All axioms of $PA2^- := PA2 - Ind$ are Horn formulas

• Quantifications not relativized to IN \rightarrow H holds for all individuals

Introduction	2nd-order logic & arithmetic	The λ_c -calculus	Classical realizability	Adequacy	Witness extraction
000000	000000000000000000000000000000000000000	0000000000	0000000000000	000000000	000000000000000000000000000000000000000

Provability, universal realizability and truth

• From what precedes:

- A provable \Rightarrow A universally realized (by a proof-like term)
- $\rightsquigarrow \mathsf{Provability} \ \subsetneq \ \mathsf{Universal} \ \mathsf{realizability} \ \subsetneq \ \mathsf{Truth}$

Beware!

Intuitionistic pro	Intuitionistic proofs of A		Classical proofs of A
\bigcap Intuitionistic realizers of A		⊈ ⊉	Classical realizers of A
• Counter-example:	λz . z λz . refl λz . z		$ \forall x \ \forall y \ (s(x) = s(y) \Rightarrow x = y) \\ \forall x \ \forall y \ (s(x) = s(y) \Rightarrow x = y) \\ \forall x \ \forall y \ (s(x) = s(y) \Rightarrow x = y) $
but:	/\ _ · _		$\forall x \ \forall y \ (s(x) = s(y) \Rightarrow x = y)$ $\forall x \ \forall y \ (s(x) = s(y) \Rightarrow x = y)$

(where $\mbox{ refl}\equiv 0$ (Kleene) or $\mbox{ refl}\equiv I$ (Krivine) uniformly realizes true equalities)

Introduction	2nd-order logic & arithmetic	The λ_c -calculus	Classical realizability	Adequacy	Witness extraction
000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	00000000	000000000000000000000000000000000000000

Program extraction

Extracting a program from a proof in PA2

- If $PA2 \vdash A$, then there is $\theta \in PL$ such that $\theta \Vdash A^{\mathbb{N}}$
- $(A^{\mathbb{N}}$ obtained from A by relativizing all 1st-order quantifications to \mathbb{N})

• In practice:

- Only apply the adequacy theorem to the computationally relevant parts of the proof
- For the computationally irrelevant parts (i.e. Horn formulas), use 'default realizers' \rightsquigarrow realizer optimization
- Example 1: $\lambda_{-,-} \cdot I \Vdash (\forall x, y \in \mathbb{N}) (x + y = y + x)$

• Example 2: Fermat's last theorem¹

$$(\forall x, y, z, n \in \mathbb{N}) (x \ge 1 \Rightarrow y \ge 1 \Rightarrow n \ge 3 \Rightarrow x^n + y^n \ne z^n)$$

1. realized by: $\lambda_{-, -, -, -}, u_1, u_2, u_3, v \cdot u_1 (u_2 (u_3 (v I)))$

Introduction	2nd-order logic & arithmetic	The λ_c -calculus	Classical realizability	Adequacy	Witness extraction
000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	000000000	•0000000000000000000000

Plan

1 Introduction

2 Second-order logic (NK2) and arithmetic (PA2)

3 The λ_c -calculus

4 The classical realizability interpretation

5 Adequacy

6 Witness extraction

Some problems of classical realizability

The specification problem

Given a formula A, characterize its universal realizers from their computational behavior

Specifying Peirce's law [Guillermo-M. 2014]

Witness extraction from classical realizers

(cf next slides)

③ Realizability algebras + Cohen forcing

Realizability algebras: a program to well-order IR [K. 2011] Forcing as a program transformation [M. 2011]

Models induced by classical realizability

What are the interesting formulas that are realized in \mathcal{M}_{\perp} that are not already true in the ground model \mathcal{M} ?

Realizability algebras II: new models of ZF + DC [K. 2012]

The problem of witness extraction

• Problem: Extract a witness from a universal realizer (or a proof)

$$t_0 \Vdash (\exists x \in \mathbb{N}) A(x)$$

i.e. some $n \in \mathbb{N}$ such that A(n) is true

• This is not always possible!

$$t_0 \Vdash (\exists x \in \mathbb{N}) ((x = 1 \land C) \lor (x = 0 \land \neg C))$$

(C = Continuum hypothesis, Goldbach's conjecture, etc.)

- Two possible compromises:
 - Intuitionistic logic: Restrict the shape of the realizer t₀ (by only keeping intuitionistic reasoning principles)
 - Classical logic: Restrict the shape of the formula A(x) (typically: Δ⁰₀-formulas)

Storage operators

• The call-by-value implication:

FormulasA, B::= \cdots $\{e\} \Rightarrow A$ with the semantics: $\|\{e\} \Rightarrow A\|$:= $\{\bar{n} \cdot \pi$ $n = e^{\mathbb{N}}, \pi \in \|A\|$ [Recall: $\|e \in \mathbb{N} \Rightarrow A\|$:= $\{u \cdot \pi : u \in |e \in \mathbb{N}|, \pi \in \|A\|$

• From the definition: $e \in \mathbb{N} \Rightarrow A \leq \{e\} \Rightarrow A$

so that: I $\Vdash \forall x \forall Z [(x \in \mathbb{N} \Rightarrow Z) \Rightarrow (\{x\} \Rightarrow Z)]$ (direct implication)

Definition (Storage operator)

A storage operator is a closed proof-like term M such that:

 $M \Vdash \forall x \forall Z [(\{x\} \Rightarrow Z) \Rightarrow (x \in \mathbb{N} \Rightarrow Z)]$ (converse implication)

Theorem (Existence)

Storage operators exist, e.g.: $M := \lambda fn \cdot n f (\lambda hx \cdot h(\bar{s}x))\bar{0}$

Proof: Postponed.

[Krivine]

Storage operators

Intuitively, a storage operator

$$M \Vdash \forall x \forall Z [(\{x\} \Rightarrow Z) \Rightarrow (x \in \mathbb{N} \Rightarrow Z)]$$

is a proof-like term that is intended to be applied to

- a function f that only accepts values (i.e. intuitionistic integers)
- a classical integer $t \Vdash n \in \mathbb{N}$ (that may contain continuations k_{π})

and that evaluates (or 'smoothes') the classical integer t into a value of the form \bar{n} before passing this value to f

• By subtyping, we also have:

 $M \Vdash \forall Z [\forall x (\{x\} \Rightarrow Z(x)) \Rightarrow (\forall x \in \mathbb{N}) Z(x)]$

This means that if a property Z(x) holds for all intuitionistic integers, then it holds for all classical integers too

• Conclusion: $e \in \mathbb{N} \Rightarrow A$ and $\{e\} \Rightarrow A$ are equivalent

Storage operators

(3/3)

Proof of existence of storage operators: Take $M :\equiv \lambda fn \cdot n f (\lambda hx \cdot h(\bar{s}x))\bar{0}$. Given a pole \bot , we want to prove that $M \Vdash \forall x \forall Z [(\{x\} \Rightarrow Z) \Rightarrow (x \in \mathbb{N} \Rightarrow Z)]$. This amounts to prove that $M \Vdash (\{n\} \Rightarrow S) \Rightarrow n \in \mathbb{N} \Rightarrow S$ for all $n \in \mathbb{N}$ and $S \subseteq \Pi$. For that, pick a stack in $||(\{n\} \Rightarrow S) \Rightarrow n \in \mathbb{N} \Rightarrow S||$, that is of the form $t \cdot u \cdot \pi$, where $t \in |\{n\} \Rightarrow S|$, $u \in |n \in \mathbb{N}|$ and $\pi \in S$. We want to prove that $M \star t \cdot u \cdot \pi \in \bot$. Since $M \star t \cdot u \cdot \pi \succ u t (\lambda hx \cdot h(\bar{s}x)) \cdot \bar{0} \cdot \pi \succ u \star t \cdot (\lambda hx \cdot h(\bar{s}x)) \cdot \bar{0} \cdot \pi$, it suffices to prove that $u \star t \cdot (\lambda hx \cdot h(\bar{s}x)) \cdot \bar{0} \cdot \pi \in \bot$ (by anti-evaluation).

Let us now consider the falsity function $F : \mathbb{N} \to \mathfrak{P}(\Pi)$ defined by:

$$F(p) := \begin{cases} \|\{n-p\} \Rightarrow \dot{S}\| := \{\overline{n-p}\} \cdot S & \text{if } p < n \\ \|\top\| := \emptyset & \text{if } p \ge n \end{cases}$$
(for all $n \in \mathbb{N}$)

We easily check that $\lambda hx \cdot h(\bar{s}x) \in |\dot{F}(p) \Rightarrow \dot{F}(p+1)|$ for all $p \in \mathbb{N}$, (Exercise) and therefore: $\lambda hx \cdot h(\bar{s}x) \in |\forall x(\dot{F}(x) \Rightarrow \dot{F}(s(x)))|$.

Now observing that: $u \in |n \in \mathbb{N}| \subseteq |\dot{F}(0) \Rightarrow \forall x (\dot{F}(x) \Rightarrow \dot{F}(s(x))) \Rightarrow \dot{F}(n)|$ whereas: $t \in |\{n\} \Rightarrow \dot{S}| = |\dot{F}(0)|$ $\lambda hx \cdot h(\bar{s}x) \in |\forall x (\dot{F}(x) \Rightarrow \dot{F}(s(x)))|$ and $\bar{0} \cdot \pi \in ||\{\bar{0}\} \Rightarrow \dot{S}|| = ||\dot{F}(n)||$ we deduce that $u \star t \cdot (\lambda hx \cdot h(\bar{s}x)) \cdot \bar{0} \cdot \pi \in \bot$ as desired.

ш

Computing with storage operators

• Given a k-ary function symbol f, we let:

$$\mathsf{Total}(f) \qquad := \quad (\forall x_1 \in \mathsf{IN}) \cdots (\forall x_k \in \mathsf{IN}) (f(x_1, \dots, x_k) \in \mathsf{IN})$$

$$Comput(f) := \forall x_1 \cdots \forall x_k \forall Z [\{x_1\} \Rightarrow \cdots \Rightarrow \{x_k\} \Rightarrow (\{f(x_1, \ldots, x_k)\} \Rightarrow Z) \Rightarrow Z]$$

Theorem (Specification of the formula Comput(f))

For all $t \in \Lambda$, the following assertions are equivalent:

•
$$t \Vdash Comput(f)$$

2 t computes f: for all $(n_1, \ldots, n_k) \in \mathbb{N}^k$, $u \in \Lambda$, $\pi \in \Pi$:

$$t \star \overline{n}_1 \cdots \overline{n}_k \cdot u \cdot \pi \succ u \star \overline{f(n_1, \dots, n_k)} \cdot \pi$$

Proof: Same technique as for: "t identity-like iff $t \Vdash \forall X (X \Rightarrow X)$ " (Exercise!)

• Using a storage operator M, we can build proof-like terms:

$$\xi_k \Vdash \operatorname{Total}(f) \Rightarrow \operatorname{Comput}(f)$$

 $\xi'_k \Vdash \operatorname{Comput}(f) \Rightarrow \operatorname{Total}(f)$

The naive extraction method

• A classical realizer $t_0 \Vdash (\exists x \in \mathbb{N}) A(x)$ always evaluates to a pair witness/justification:

Naive extraction

If $t_0 \Vdash (\exists x \in \mathbb{N}) A(x)$, then there are $n \in \mathbb{N}$ and $u \in \Lambda$ such that:

 $t_0 \star M(\lambda xy \, . \, \operatorname{stop} x \, y) \cdot \pi \quad \succ \quad \operatorname{stop} \star \overline{n} \cdot u \cdot \pi$

(where $u \Vdash A(n)$ w.r.t. the particular pole needed to prove the property)

Proof. Take $\mathbb{L}_{\pi} := \{ p \in \Lambda \star \Pi : p \succ \operatorname{stop} \star \overline{n} \cdot u \cdot \pi \text{ for some } n \in \mathbb{N} \text{ and } u \in \Lambda \}$ and prove that $M(\lambda xy . \operatorname{stop} xy) \cdot \pi \in \|(\exists x \in \mathbb{N})A(x)\| \quad (\text{w.r.t. } \mathbb{L}_{\pi}).$

- But $n \in \mathbb{N}$ might be a false witness because the justification $u \Vdash A(n)$ is cheating! (*u* might contain hidden continuations)
- In the case where t₀ comes from an intuitionistic proof, extracted witness n ∈ IN is always correct (This can be proved using Kleene realizability adapted to PA2⁻)

Extraction in the Σ_1^0 -case

2nd-order logic & arithmetic

Extraction in the Σ_1^0 -case (+ display intermediate results)

The λ_c -calculus

If $t_0 \Vdash (\exists x \in \mathbb{N})(f(x) = 0)$, then

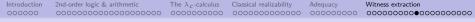
 $t_0 \star M(\lambda xy \, . \, \text{print} \, x \, y \, (\text{stop} \, x)) \cdot \pi \quad \succ \quad \text{stop} \star \overline{n} \cdot \pi$

Witness extraction

for some $n \in \mathbb{N}$ such that f(n) = 0

Proof. Take $\mathbb{L}_{\pi} := \{ p \in \Lambda \star \Pi : p \succ \text{stop} \star \overline{n} \cdot \pi \text{ for some } n \in \mathbb{N} \text{ s.t. } f(x) = 0 \}$ and prove that $M(\lambda xy . \text{print} x y (\text{stop} x)) \cdot \pi \in \|(\exists x \in \mathbb{N})(f(x) = 0)\|.$

- Storage operator *M* used to evaluate 1st component (*x*)
- 2nd component (y) used as a breakpoint (Relies on the particular structure of equality realizers)
- Holds independently from the instruction set
- Supports any representation of numerals (One has to implement the storage operator *M* accordingly)



Example: the minimum principle

• Given a unary function symbol f, write:

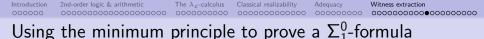
$$\begin{aligned} & \text{Fotal}(f) & := \quad (\forall x \in \mathbb{N})(f(x) \in \mathbb{N}) & (\text{totality predicate}) \\ & x \leq y & := \quad x - y = 0 & (\text{truncated subtraction}) \end{aligned}$$

Theorem (Minimum principle – MinP)

$$\mathsf{PA2}^{-} \vdash \mathsf{Total}(f) \Rightarrow (\exists x \in \mathsf{IN}) \underbrace{(\forall y \in \mathsf{IN}) (f(x) \le f(y))}_{\mathsf{undecidable}}$$

Proof. Reductio ad absurdum + course by value induction

- The minimum principle is not intuitionistically provable (oracle)
- We cannot apply the Σ₁⁰-extraction technique to the above proof (applied to a totality proof of f), since the conclusion is Σ₂⁰ The body (∀y ∈ IN) (f(x) ≤ f(y)) of ∃-quantification is undecidable



 Idea: The value x given by the minimum principle can be used to prove a Σ⁰₁-formula, so that we can perform program extraction:

$$\begin{array}{rcl} \mathsf{Corollary} \\ \mathsf{PA2}^{-} & \vdash & \mathsf{Total}(f) \ \Rightarrow \ (\exists x \in \mathsf{IN}) \underbrace{(f(x) \leq f(2x+1))}_{\mathsf{decidable}} \\ \\ \mathsf{More \ generally:} & \mathsf{PA2}^{-} & \vdash & \mathsf{Total}(f) \land \mathsf{Total}(g) \ \Rightarrow \ (\exists x \in \mathsf{IN}) \left(f(x) \leq f(g(x)) \right) \end{array}$$

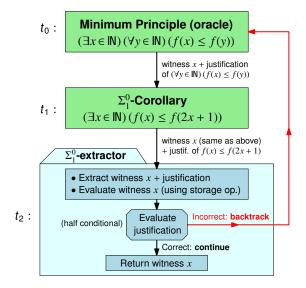
Proof. Take the point x given by the minimum principle

- Applying Σ⁰₁-extraction to the above non-constructive proof, we get a correct witness after finitely many evaluation steps
- How is this witness computed?

The algorithm underlying Σ_1^0 -extraction

The λ_c -calculus

2nd-order logic & arithmetic



Witness extraction

Transcript of the extraction process

 $\begin{array}{ll} \mbox{Take} & f(x) = |x - 1000| & (\mbox{real minimum at } x = 1000) \\ \mbox{and apply Σ_1^0-extraction to the proof of $(\exists x \in IN)(f(x) \leq f(2x+1))$} \end{array}$

Oracle says: take x = 0 since $(\forall y \in \mathbb{N}) (f(0) \le f(y))$ Step 1 (false) Corollary says: take x = 0 since f(0) < f(1)(false) Σ_1^0 -extractor evaluates incorrect justification and backtracks Step 2 Oracle says: take x = 1 since $(\forall y \in \mathbb{N}) (f(1) < f(y))$ (false) Corollary says: take x = 1 since f(1) < f(3)(false) Σ_1^0 -extractor evaluates incorrect justification and backtracks Step 3 Oracle says: take x = 3 since $(\forall y \in \mathbb{N}) (f(3) \le f(y))$ (false) Corollary says: take x = 3 since f(3) < f(7)(false) Σ_1^0 -extractor evaluates incorrect justification and backtracks Step 4 Oracle says: take x = 7 since $(\forall y \in \mathbb{N}) (f(7) < f(y))$ (false) **Step 11** Oracle says: take x = 1023 since $(\forall y \in \mathbb{N}) (f(1023) \le f(y))$ (false) Corollary says: take x = 1023 since $f(1023) \le f(2047)$ (true) Σ_1^0 -extractor evaluates correct justification and returns x = 1023

Note that answer x = 1023 is correct... but not the point where f reaches its minimum

[M. 2010]

Definition (Conditional refutation)

 $r_A \in \Lambda$ is a conditional refutation of the predicate A(x) if

For all $n \in \mathbb{N}$ such that $\mathcal{M} \not\models A(n)$: $r_A \overline{n} \Vdash \neg A(n)$

 Such a conditional refutation can be constructed for every predicate A(x) of 1st-order arithmetic

This result is a consequence of the following

Theorem (Realizing true arithmetic formulas) [Krivine, Miguev] For every formula $A(x_1, \ldots, x_k)$ of 1st-order arithmetic, there exists a closed proof-like term t_A such that: If $\mathcal{M} \models A(n_1, \ldots, n_k)$, then $t_A \bar{n}_1 \cdots \bar{n}_k \Vdash A(n_1, \ldots, n_k)$ (for all $n_1, \ldots, n_k \in \mathbb{N}$)

[M. 2010]

The Kamikaze extraction method

Let

 $t_0 \Vdash (\exists x \in \mathbb{N}) A(x)$

2 r_A a conditional refutation of the predicate A(x)

Then the process

 $t_0 \star M(\lambda xy . \operatorname{print} x(r_A x y)) \cdot \pi$

displays a correct witness after finitely many evaluation steps

Proof. Take $\mathbb{L} := \{ p \in \Lambda \star \Pi : p \succ \text{stop} \star \overline{n} \cdots \text{ for some } n \in \mathbb{N} \text{ s.t. } \mathcal{M} \models A(n) \}$ and prove that $M(\lambda xy . \text{print } x(r_A xy)) \cdot \pi \in \|(\exists x \in \mathbb{N})(f(x) = 0)\|.$

• **Remark:** No correctness invariant is ensured as soon as the (first) correct witness has been displayed!

After, anything may happen: displaying incorrect witnesses, infinite loop, crash, etc. (Kamikaze behavior)

Introduction	2nd-order logic & arithmetic	The λ_c -calculus	Classical realizability	Adequacy	Witness extraction
000000	000000000000000000000000000000000000000	0000000000	000000000000000000	000000000	000000000000000000000000000000000000000

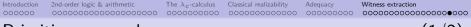
Interlude: on numeration systems

• Numeration systems used in the History:

Tally sticks	(35000 BC)	
Babylonian	(3100 BC)	<<< <ii< td=""></ii<>
Egyptian	(3000 BC)	$\square \square \square \square \square$
Roman	(1000 BC)	XLII
Hindu-Arabic	(300 AD)	42

• Numeration systems used in Logic:

Peano:	555555555555555555555555555555555555555
Church:	$ \lambda \times f . f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f$
Krivine:	$ \begin{split} & (\lambda nxf.f(nxf))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf)))((\lambda nxf.f(nxf))((\lambda nxf.f(nxf)))((\lambda n$



Primitive numerals

To get rid of Krivine numerals $\bar{n} = \bar{s}^n \bar{0}$ (cf paleolithic numeration) we extend the machine with the following instructions: [M. 2010]

• For each number $n \in \mathbb{N}$, an instruction $\widehat{n} \in \mathcal{K}$ (primitive numeral) with no evaluation rule (i.e. inert constant: pure data)

Intuition: $\widehat{n} \star \pi \succ$ segmentation fault

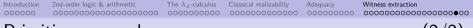
• An instruction $\mathsf{null} \in \mathcal{K}$ with the rules

$$\operatorname{null} \star \widehat{n} \cdot u \cdot v \cdot \pi \quad \succ \quad \begin{cases} u \star \pi & \text{if } n = 0 \\ v \star \pi & \text{otherwise} \end{cases}$$

• Instructions $\check{f} \in \mathcal{K}$ with the rules

$$\check{f} \star \widehat{n}_1 \cdots \widehat{n}_k \cdot u \cdot \pi \succ u \star \widehat{m} \cdot \pi \qquad \text{where } m = f(n_1, \dots, n_k)$$

for all the usual arithmetic operations f



Primitive numerals

• Call-by-value implication, yet another definition:

FormulasA, B::= \cdots $[e] \Rightarrow A$ with the semantics: $\|[e] \Rightarrow A\| = \{\widehat{n} \cdot \pi : n = e^{\mathbb{N}}, \pi \in \|A\|\}$

• Redefining the set of natural numbers:

$$\begin{split} \mathbf{N}' &:= \{x : \forall Z (([x] \Rightarrow Z) \Rightarrow Z)\} \\ \text{box} &:= \lambda xk \cdot kx \qquad \qquad \parallel \vdash \quad \forall x ([x] \Rightarrow x \in \mathbf{N}') \\ \text{box} \widehat{n} \qquad \qquad \parallel \vdash \quad n \in \mathbf{N}' \\ \lambda n \cdot n \lambda x \cdot \check{s} \times box \qquad \qquad \parallel \vdash \quad (\forall x \in \mathbf{N}')(s(x) \in \mathbf{N}') \\ \lambda nm \cdot n \lambda x \cdot m \lambda y \cdot (\check{+}) \times y \text{ box} \qquad \parallel \vdash \quad (\forall x, y \in \mathbf{N}')(x + y \in \mathbf{N}') \\ \text{rec_cbv} &:= \lambda z_0 z_s \cdot \mathbf{Y} \lambda rx \cdot null x z_0 ((\check{-}) \times \widehat{1} \lambda y \cdot z_s y (ry)) \\ \qquad \parallel \vdash \quad \forall Z [Z(0) \Rightarrow \forall y ([y] \Rightarrow Z(y) \Rightarrow Z(s(y))) \Rightarrow \forall x ([x] \Rightarrow Z(x))] \\ \text{rec} &:= \lambda z_0 z_s n \cdot n \lambda x \cdot \text{rec_cbv} z_0 (\lambda yz \cdot z_s (box y) z) x \\ \qquad \parallel \vdash \quad \forall Z [Z(0) \Rightarrow (\forall y \in \mathbf{N}')(Z(y) \Rightarrow Z(s(y))) \Rightarrow \quad (\forall x \in \mathbf{N}')Z(x)] \end{split}$$

• Conclusion: $\parallel \vdash \forall x (x \in \mathbb{N}' \Leftrightarrow x \in \mathbb{N})$

Introducti	0.000	The $\lambda_{\it C}\text{-calculus}$ 0000000000	Classical realizability	Adequacy 000000000	Witness extraction 00000000000000000	00000	
Krivine's realizability vs the LRS-translation (2						/2)	
 Krivine's realizability can be seen as the composition of the Lafont-Reus-Streicher (LRS) translation with Kleene realizability: CPS o Krivine = Kleene o LRS [Oliva-Streicher 2008] 							
The dictionary							
	Classical realizability	Lafont-Reus-Streicher translation					
	Pole ⊥		Return formula <i>R</i>				
	Falsity value $ A $		Negative translation A^{\perp}				
	$\ A \Rightarrow B\ := A \cdot \ B\ $		$(A \Rightarrow B)^{\perp} := A^{LRS} \wedge B^{\perp}$				
	Truth value $ A :=$	$A^{LRS} := A^{\perp} \Rightarrow R$			J .		

• Through the CPS-translation, Krivine's extraction method in the Σ_1^0 -case is exactly Friedman's trick (transposed to LRS) [M. 2010]

n 2nd-order logic & arithmetic The λ_C -calculus Classical

bility Adequacy

Witness extraction

Krivine's realizability vs the LRS-translation

Beware of reductionism!

- The decomposition holds only for *pure* classical reasoning (extra instructions are not taken into account)
- Classical realizers are easier to understand than their CPS-translations (and more efficient)
- Classical realizability is more than Kleene's realizability composed with the Lafont-Reus-Streicher translation

An image:

$$2H_2 + O_2 \longrightarrow 2H_2O$$

but can we deduce the properties of water from the ones of H_2 and O_2 ?