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The language of realizers (recall)

Terms of system T (= A-calculus + primitive pairs & integers)

(t,02) | m(t) | mao(t)
0 | s(t) | rec(to,ts,u)

Syntactic worship: Free & bound variables. Renaming. Work up to a-conversion.
Set of free variables: FV/(t). Capture-avoiding substitution: t[x := u]

o Notation: A :=8"0 (ne€lN)

Reduction rules

(Ax.t)u = t[x:=u]

7T1(<t1,t2>) - h I‘eC(t()7 t1, O) = 1o
m((t1, k) > b rec(ty, t1 S(u)) > t u (rec(to, t1,u))

o Grand reduction written t >=* u (reflexive, transitive, context-closed)
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Definition of the relation t |- A (recall)

@ Recall: For each closed FO-term e, we write eV its denotation in IN

Definition of the realizability relation t I- A (t, A closed)
ti- L = 1
tIET = t>"0
thFer=e0 = eN=e A t>*0
tFAAB = 3t 3 (t =" (ti, ) A tlFA A & IFB)
tFAVB = Ju((t=*0,u) A ul-A) Vv (t=*(1,u) A ulFB))

tFA=B = Vu(ultA = tulkB)
tIFVxA(x) = Vn(talk A(n))
tlF3xA(x) = 3Fn3u (t>"(A,u) A ulkA(n))

Lemma (Closure under anti-reduction)

If t>=*t and t'IFA, then tIFA
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The main Theorem (recall)

Lemma (Adequacy)

Let d:(Ai,...,A,F B) be a derivation in NJ. Then:
e for all valuations p: FOVar — IN,
o for all realizers t1 IF A1[p], ..., t, IF Aqlp],

we have: d*[pllzr :==t1,...,2z0 :=ta] IF B[p]

writing d* the A-term extracted from the derivation d (following Curry-Howard)

All axioms of HA are realized

Theorem (Soundness)
If HAF A, then tlI-A for some closed A\-term t
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Harrop formulas (1/2)

The class of Harrop formulas

Harrop formulas H = e=e¢ | T | L
| HHAH, | A=H | VYxH

@ Intuition: Harrop formulas do not contain the two “problematic”
constructions V and 3, except on the left-hand side of implications

@ Therefore, Harrop formulas are classical:

Proposition

For each Harrop formula H(X):

Proof. By structural induction on H(X). J
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Harrop formulas (2/2)

@ To each (possibly open) Harrop formula H, we associate a closed
A-term ty that is computationally trivial:
TH = 0 (H atomic) TAsH = A_.TH
THAH, = (THy, TH,) TuxH = A_.TH

For all closed Harrop formulas H:

If H is realized, then 74lIFH

Moreover, all realizers of H are “computationally equivalent” to 7y

@ Intuition: Harrop formulas have computationally irrelevant
realizers, that can be replaced by the trivial realizers 7y

o Useful for optimizing extracted programs (cf next slide)

o But shows that Harrop formulas are computationally irrelevant
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Optimizing program extraction (1/2)

Idea: While turning derivations intro A-terms, use Harrop realizers 7
whenever possible (instead of following Curry-Howard)

= Optimized program extraction

Definition (Optimized program extraction)

Each derivation d: (I - B) is turned into a A-term d°P* as follows:
o If B is a Harrop formula, then d°°* = 13
@ Otherwise, follow Curry-Howard for the last rule:

Cdy
olf d=X I A-C then d°® = Aza.d}™
rNFA=C
Cdy b
olf d=<{r-A—=B FEA then d°® = dPd™
r=B

e etc.
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Optimizing program extraction (2/2)

Lemma (Adequacy of the optimized extraction)

Let d:(A1,...,AsF B) be a derivation in NJ. Then for all valuations
p: FOVar — IN and for all realizers t; IF Ay[p], ..., t, IF Ap[p], we have:

dopt[p][zl =, 2= tn] I- B[p]

Example:

o Let F := VxVyVzVn(n>2= x"+y"#2z")

(Fermat's last theorem, as a Harrop formula)

© d de
o Given aderivation d = (F=A (where A is not Harrop)
FA
we have: dPt = P dPt = %P7
= dlopt(>\77 ] *?*'O) I A

= Don't need to know the proof of Fermat's last theorem to realize Al
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How to cope with classical logic?

o Kleene realizability is definitely incompatible with classical logic:

Proposition (cf previous talk)

I ¥x (Halt(x) Vv —Halt(x))
any_term |- —Vx (Halt(x) vV —Halt(x))

(The same holds for all variants of Kleene realizability)

@ Two possible solutions:

@ Compose Kleene realizability with a negative translation from
classical logic (LK) to intuitionistic logic (LJ) (next slide)

© Reformulate the principles of realizability to make them compatible
with classical logic: Krivine classical realizability (next talk)
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The Godel-Gentzen negative translation

o ldea: Turn positive constructions (atomic formulas, Vv, 3) into
negative constructions (L, =, =, A, V) using De Morgan laws

e Every formula A is translated into a formula A€ defined by:

TE = 16 = 1
(A= B)¢ = A= B¢ (e=&)% = (e =e)
(AANB)S = ASABS (AV B)¢ := —(-AC A -BS)
(Vx A€ = VxAC (IxA)C = -Vx-AC
writing: —-A = A= L

Theorem (Soundness)

O LKF ASs A
Q@ If PA- A then HA  AS
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Realizing translated formulas

o Strategy:
@ Build a derivation d of A (in PA)
@ Turn it into a derivation d€ of A® (in HA)
@ Turn d€ into a Kleene realizer (program extraction)

@ Does not work! Failure comes from:

Proposition (Realizability collapse)

For every closed formula A:
@ AS is a Harrop formula (computationally irrelevant)

@ Kleene's semantics for A® mimics Tarski's semantics for A:

AC is realized  iff T, IFAS iff  INEA

Proof. By structural induction on A. )

e Conclusion: Kleene o Godel-Gentzen = Tarski (in IN)
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Friedman’'s R-translation (called A-translation by Friedman)

@ Principle: In Godel-Gentzen translation, replace each occurrence
of L (absurdity) by a fixed formula R, called the return formula

Note: The return formula R may contain free variables!

@ Every formula A is translated into a formula AF defined by:

o= 1F =R
(A= B)f := AF = BF (e1 = &)F = —rr(er = &)
(AANB)F = AFABF (AV B)F = —g(-rAF A -rBF)
(Vx AF = vxAF (Ax AF = —g¥x—gAF
(if x ¢ FV(R)) (if x ¢ FV(R))
writing: —rA = A= R

Theorem (Soundness)

If PA - A then HA F AF (independently from the formula R)

Beware! The formulas A and AF are no more classically equivalent (in general)
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MI-conservativity (1/2)

The interest of Friedman's translation comes from the following:

Theorem (M3-conservativity)

PA is a I'Ig—conservative extension of HA, that is:
PA F VX 3y f(x,y)=0 iff HA F Vx 3y f(X,y) =0

for every primitive recursive function f(X, y)

This more generally implies that:
PA F VX 3y A(X,Y) iff HA F VX 3y A(X,Y)

for every formula A(X, y) with bounded quantifications
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MI-conservativity (2/2)

Proof. Assume that PA F Vx3yf(x,y)=0.

Working with an unknown formula R, we observe that:

HA + Vx—grVy—-r—r-rf(x,y) =0 (by R-translation)

HA + VX—‘RVy—\Rf(X,y) =0 (since TRTORTR LI _‘R)
HA F —gVy—gf(x,y) =0 (by V-elim, with xq fresh)
HA F Vy(f(x,y)=0=R) = R (from the def. of —g)

We now take: R := 3y f(x0,y0) =0 (Friedman'’s trick!)
From the def. of R, we have:
HA + Vy (f(x0,y) = 0= 3yo f(x0,%) =0) = Tyof(x0,%) =0

But the premise of the above implication is provable

HA + Vy (f(x0,y) = 0= 3yo f(x0, ¥0) = 0) (by 3-intro with yo = y)
hence we get

HA + 3y f(x0,%0) =0 (by modus ponens)

HA F Vxo3yo f(x0,¥0) =0 (by V-intro)

The converse implication (HA I - - - implies PA I - - - ) is obvious. O
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Realizing translated formulas, again

o Strategy:

@ Build a derivation d of a M3-formula A
@ Turn it into a derivation  F-trick(d") of A

Lafont-Reus-Streicher
00000000000

(in PA)
(in HA)

@ Turn F-trick(d¥) into a Kleene realizer of A (program extraction)

@ This technique perfectly works in practice. However:

o The formula AF is not a Harrop formula (in general), even when A is.
Possible fix: Introduce specific optimization techniques, e.g.:

Refined Program Extraction [Berger et al. 2001]

o The translation A — A" completely changes the structure of the

underlying proof. Possible fix: cf next parts
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@ In the Curry-Howard correspondence (and in realizability), there are
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Uniform vs non-uniform quantifiers

two different ways to interpret quantifiers:

Lafont-Reus-Streicher
00000000000

(Kleene realiz.)

(type of dep. functions)

Vx A(x) Ix A(x)
Non-uniform H A(x) Z Alx)
(Type Theory style) xeD xeb

(type of dep. pairs)

Uniform
(ML/Haskell style)

[ AK)
xeD
(intersection type)

U Ak
xeD
(union type)

e Remark: Tarski/Kripke/Heyting/Cohen models do not distinguish

the two interpretations: the difference only appears in realizability
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Uniform vs non-uniform quantifiers (2/2)

@ 1st-, 2nd- and higher-order logic support both interpretations
(But uniform interpretation is more concise & natural)

@ The same holds for impredicative set theories: ZF, IZF¢, 1ZFg

o Arithmetic (PA/HA) only supports the non-uniform interpretation
(due to the induction principle)

@ But in all cases, the non-uniform interpretation can be encoded from
the uniform interpretation, using a relativization:

(non-uniform) Vx A(X) ‘= (uniform) VX (D(X) = A(X))
—_———
type of functions

(non-uniform) Jx A(X) ‘= (uniform) dx (D(X) A A(X))
~—_——

type of pairs

where D(x) is a suitable relativization predicate (the domain of quantification)

@ This is why we shall prefer the uniform interpretation (in what follows)
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Uniformity in realizability

@ Kleene realizability interprets quantifiers in a non-uniform way:

tIFVxA(x) = Vn(talkA(n))
t IF 3x A(x) In 3u (t =* (A,u) A ul-A(n))

o Realizers of Vx A(x) expect an argument (representing x)
o Realizers of Ix A(x) bear a witness

@ But realizability can also interpret quantifiers in a uniform way:

Definition of the relation t Il A
tlh VxA(x) = Vn (tlg A(n))
tlh IxA(x) = 3n (tlk A(n))

(other clauses of the definition are the same as for I-)

o Realizers of Vx A(x) do not expect an argument
o Realizers of Ix A(x) do not bear a witness

@ What does it change... in NJ? ... in HA?
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The uniform interpretation of first-order logic (1/3)
Recall:

@ To prove the adequacy of the rules of NJ w.r.t. the relation tI- A
(where V/3 are interpreted non uniformly), we defined a translation

d:(Ar,...,ArFB) +— d*

where the A-term d* depends on the proof variables z4,, ..., z4, and
on the free variables xi, ..., xx of the sequent Ay,... A, F B

@ The rules for quantifiers were translated as follows:

. * . *
S d S d
rFA | = M.d I FVxA = dre”
M-vxA IE Alx = €]
. * . . *
o d L dp L dh
FFAx:=e] | = (e"d") F-3xA TLAFB| = let(x,z) =d ind}

FFaxA rFB



Kleene realizability Godel-Gentzen Uniformity and relativization Lafont-Reus-Streicher
00000000 00000000 00000@000000000000000000 00000000000

The uniform interpretation of first-order logic (2/3)

@ To prove the adequacy of the rules of NJ w.r.t. the relation t I A
(where V/3 are interpreted uniformly), we define a new translation

d:(A,..., A FB) — d°

where the A-term d° only depends on the proof variables z4,, .. ., za,

@ The rules for quantifiers are now translated as follows:

. o . o
S d S d
reEA | = d° [-VxA = d°
FFVxA M Ax = €]
. o . . o
S d D dy L
FEAx:i=el | = d° Fr-3xA TA-B| = letz=df indy
TTFR3xA r-B

(the other cases of the definition are the same as for d — d*)

@ Remark: d° does not depend on first-order variables
= Witnesses are lost
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The uniform interpretation of first-order logic (3/3)

@ We can now prove the:

Lemma (Adequacy w.r.t. the uniform interpretation)

Let d:(A1,...,AsF B) be a derivation in NJ. Then:
o for all valuations p: FOVar — IN,
o for all realizers t1 Ik Aifp], ..., ta Ik Anlp],

we have: d°lz1 :=t1,...,z, .=ty | B[p]

Note that we do not need to apply the valuation p to the A-term d°, since the
latter does not depend on first-order variables

@ Conclusion: 1st-order int. logic supports both interpretations:

Non-uniform: Vx A(x) = H A(x) IxA(x) =~ ZA(X)
(Kleene) xED xED
Uniform: VxA(x) ~ []AK) IxAKx) ~ | JAX)

(without witnesses) x€D x€D
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Uniformity and typing

Quantifiers also have their uniform typing rules (adequate w.r.t. Ii)

@ Uniform typing rules for V:

FrEt: A K FV(T) [-t:VxA
M=t:VxA FTEt:Alx:=e¢]

Note: V treated as an infinitary intersection type

@ Uniform typing rules for 3:
M-t Alx:= ¢ N=t:(3xA)=B
- - = x¢FV(B)
MEt:3xA N-t:vx(A= B) J

Note: J treated as an infinitary union type.
Equivalently, its elimination rule can be replaced by:
rz:A IFt:B

o A left-rule of the form: F 2. 9xA Ft. B x¢FV(T,I,B)

o A subtyping rule: (3xA)=B < ¥x(A= B) (if x ¢ FV(B))
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Uniformly realizing the axioms of HA

realizing true M9-formulas)

Let e1(X), e2(X) be FO-terms depending on free variables X.
If IN | VX(e(X) = ex(X)), then 0 I VX (ei(X) = ex(X))

Since all defining equations of function symbols are M9:

All defining equations of function symbols are uniformly realized

realizing Peano axioms, recall)

Az.z |k YxVy(s(x)=s(y)=x=y)
any_term | Vx(s(x) # 0)

What about the induction principle?
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Why induction is not uniformly realized... (1/2)

Write A(X) = x=0Vvdy (X = s(y)) (“x is either zero or a successor”)

Proposition

We have HA F VxA(x) but Iff VxA(x)

Proof. HA F VxA(x) by induction, using the induction predicate A(x).

Let us now assume that t iy Vx A(x) for some t, thatis: tlg A(n) for all n € IN.
For each n € IN, we have t >* (pn,un) for some p, € N and u, € A such that:

@ (Left-hand side of the disjunction) either p, =0 and u,lF n=0;
@ (Right-hand side of the disjunction) either p, =1 and u, Ik 3y (n = s(y)).

When n = 0, the second case is impossible, hence pg = 0.
And when n = 1, the first case is impossible, hence p; = 1.
From the confluence of >, we deduce that pp = 0 = p; = 1: contradiction! O

v

Remark: The proof that Iff Vx A(x) crucially relies on the confluence of .
Indeed, if we add a constant r (non-deterministic choice) with the rules

htu >~ t and Mtu > u (for all terms t, u)
then we easily check that ~ M(0,0)(1,0) Ik Vx A(x)
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Why induction is not uniformly realized... (2/2)

Write A(x) :== x=0V3y(x=s5s(y)) (“xis either zero or a successor")

Corollary (An induction axiom that is not uniformly realized)

I A(O) A Vx (A(X) = A(S(X))) = Vx A(X) (with A(x) defined as above)

Proof. Assuming that t Il A(0) A Vx (A(x) = A(s(x))) = Vx A(x) for some t,
we easily deduce that t{(0,0), A_.(I1,0)) ki VxA(x): contradiction! DJ

Exercise: Assuming the presence of a non-deterministic choice operator rh in
the language of realizers (cf previous slide):

@ Define a term tyat such that th.c =" 7 forall n€IN
@ Deduce a term ting that uniformy realizes all induction axioms

© More generally, construct a “universal realizer” t (using ) such that for
each closed formula A:

tik A iff ti-FA iff INE=A

Conclusion: (uniform) realizability with i = Tarski (in IN)
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. and how to recover it! (1/2)

To make the induction principle compatible with uniform realizability, we
need to go back to Peano's seminal presentation:

Giuseppe Peano. Arithmetices principia, nova methodo exposita. 1889

Axiomata.

a,beN.D:a=b.=.a+1=0b-+1.
zeN.p.a+1—-=1.
keK.:lek:.xeN.wek:Dz.x+1€k::n.NDE.

1. ieN.

2. aeN.p.a=ga.

3. a,bceN.np:a=b.=.b=a.

4. a,beN.n.a=b.b=c:p.a=c.
5. a=b.beN:p.aeN.

6. aeN.n.a+1€eN.

7.

8.

9.
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and how to recover it! (2/2)

To make the induction principle compatible with uniform realizability, we
need to go back to Peano’s seminal presentation:

Giuseppe Peano. Arithmetices principia, nova methodo exposita. 1889

Peano's axioms for arithmetic, using modern notations

[y

1eNlN

acelN=a=a

a,beN=(a=b< b=a)

a,bce N=(a=bAb=c=a=¢)
a=bAbelN=aclN

aelN=a+1€IN

a,beN=(a=bsa+l=b+1)

acelN=a+1#1

ke KN1e kAVx(xeNAxek=x+1ek)=INCk

(where K is the class of all classes)

CRCORSIROINO ISR CONND

Open world assumption: [N is only a subclass of the universe



Kleene realizability Godel-Gentzen Uniformity and relativization Lafont-Reus-Streicher
00000000 00000000 000000000000 0e0000000000 00000000000

Peano relative arithmetic (1/2)

@ To formalize Peano’s open world assumption, we introduce a new
first-order theory: Peano relative arithmetic (PA™)

(As usual, we write HAN the intuitionistic fragment of PAN)

o The language of PAN/HA™ is the language of PA/HA enriched with
a unary predicate symbol x € IN  (“x is a natural number")

Language of PAN /HAN

FO-terms e, e; == x | f(e,...,e) (f of arity k)

Formulas A B 1= e=e | ecIN | T | L | A=B
| AAB | AVB | W¥xA | 3xA

(Assuming one function symbol f for each definition of a prim. rec. function)

o Notations: ("xeN)A(x) = Vx(x € IN= A(x))
(IxeN)A(x) = Ix(x € NAA(X))
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Peano relative arithmetic

Lafont-Reus-Streicher
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(2/2)

Axioms of PAN /HAN
Domain of zero and successor
@ 0cIN
@ (VxeIN)(s(x) € IN)
Defining equations of all primitive recursive functions in IN
o (VxelN)(x+ 0= x), (Vx,y e IN)(x+ s(y) = s(x+y))
@ (VxelN)(x x0=0), (Vx,y eIN)(x x s(y) = x X y + x)
Peano axioms, relativized to IN
o (Vx,yeIN)(s(x) =s(y) = x=y)
o (VxelIN)(s(x) #0)
@ VZ[A(Z,0) A (Vx € IN)(A(Z, x) = A(Z,s(x))) = (Vx € IN)A(Z, x)]

(etc.)

From the above axioms, we easily prove that:

For each 1st-order term e(X): HAN - (VX € IN)(e(x) € IN)
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Relating PA/HA and PAN /HAM (1/2)

o The relationship between PA/HA and PAN/HA™ can be studied via

a translation A AN . L — Fpaw  (relativization to IN)
Definition of the translation A — AN
TW o= T AW o= 1
(a=e)"V = ea=e (A= BN = AV = BN
(AAB) = AMAB" (AvB) = AVv B"
(Vx AN = (vxecIN)AM AxAN = @Exen)a"

For each A € %pa (closed): PAFA iff  PANE AW
HAFA iff  HAM | AN

\

@ Therefore, the theories PA, PA'N, HA and HAN are equiconsistent:
PAN ~ PA ~ HA ~ HAM
N————

by inclusion and
negative translation
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Relating PA/HA and PAN /HAM

Proof of the equivalence: PAF A iff PAN | AN,
(Direct implication) We successively prove that
(1) ForallT,A€ %a: ThHnk A implies TN %€ INFy AV,
writing X = FV(T, A). (Proof: by induction on the derivation.)
(2) For each axiom A of PA, we have: HAMN |- AN

The desired implication immediately follows from (1) and (2).

(Converse implication) For each formula A of PAN, we write A=N the formula

of PA obtained by replacing in A all subformulas of the form e € IN by the
trivial formula T (thus removing relativizations). Then we prove that

1) ForallT,A€ Zun: Thnk A implies TNy A—N
PA
(Proof: by induction on the derivation.)
(2) For each axiom A of PAN, we have: HA R A=W

(3) For each closed formula A € Zpa: Fny (AN)N < A
(Proof: by induction on A)
Finally, assuming that PAN - AN e deduce that PA (A'N)_IN
(from (1) and (2)), and conclude that PAF A (from (3)).

The corresponding equivalence for HA/HAIN is proved similarly.

Lafont-Reus-Streicher
00000000000

(2/2)
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HAN and uniform realizability (1/2)

o We extend the relation t I A to the new predicate x € IN:

tlihbeelN = t>* e (= the value of e as a )\—term)J

@ We observe that:

tls Vx(x € IN= A(x)) iff Vn (tlk ne N = A(n))
Relativized V/ iff VnVu(u>="n = tulk A(n))
iff  Vn (tal A(n))
—_—

Kleene's non-uniform interpretation of V

tlg Ix(x € NAA(x)) iff In (tlk neINAA())
—_—
Relativized v/ iff In3Ju v (t =" (u,v) Au>="aA vik A(n))
iff 3n3v (t>="(A,v) A vig A(n))

Kleene's non-uniform interpretation of 3

e Conclusion: Relativized uniform ¥/3 = Non-uniform V/3
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HAMN and uniform realizability

Lemma (Uniformly realizing the axioms of HA™)

All the axioms of HAN are uniformly realized:

0
Ax . 8(x)
A_.0
A, .0

AX,V,2.2
any_term

rec

(writing rec :=

Ilg
Ik
Ik
|

cr

& & & -

Godel-Gentzen Uniformity and relativization Lafont-Reus-Streicher
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(2/2)

0€lN

(Vx€IN)s(x) € IN

(VxeIN)(x+0=0)

(Vx,y €IN)(x + s(y) = s(x+ y)) (etc. for each f)

(VxelN)(s(x) = s(y) = x=y)
(Vx € IN)(s(x) # 0)
Vy [A(Y,0) = (Vx € IN)(A(Y, x) = A(Y, s(x))) = (¥x € IN)A(Y, x)]

Az9, 21, x . rec(29, 21, X))

Proof: Exercise

Therefore, all theorems of HAM are uniformly realized:

Theorem (Soundness): If HAMF A then tlg A for some t J
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Kleene realizability vs uniform realizability

Remark: The uniform realizers of the axioms of PAN are essentially the
same as the Kleene realizers of the axioms of PA.

This is due to the following result:

Proposition (Kleene realizability vs uniform realizability)

For all closed formulas A of HA and for all closed \-terms t:
ti-A iff ¢l AN

Proof. By induction on the size of A (Exercise)
Conclusion: Kleene realiz. = Uniform realiz. o (A~ AN) |
Moreover, the following diagram commutes: (Exercise)

IN
d: (M A) — 2 o gV (TN 2 € IN g AY)

()*l \L()o (where X = FV(T, A))

d* (dIN)o
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Conclusion

@ The equivalence tIFA iff tlg AN implies that:
For all A€ %pa and t € A (closed):
t IF VxA(x) iff t g Vx(x € IN= AN(x))
t IF 3xA(x) iff t g 3Ix(x € INAAN(X))

@ Conclusion: Non-uniform quant. = relativized uniform quant.:
(non-uniform) Vx A(X) = (uniform) Vx (D(X) = A(X))
N————

type of functions
(non-uniform) 3x A(X) = (uniform) dx (D(X) AN A(X))
—_————

type of pairs
where D(x) is the domain of quantification

@ Uniform realizabilty appears to be more primitive than Kleene's

= In what follows, we shall sistematically use uniform realizability
(while introducing the needed relativization predicates)
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A SKELLETON in the (intuitionistic) closet... (1/3)

It is well-known that the following equivalences hold in NJ/NK

Vx (A(x) A B(x)) < VxA(x) A ¥x B(x) (Commutation V/A)
Ix (A(x) V B(x)) & 3IxA(x) V IxB(x) (Commutation 3/V)

whereas in LJ/LK, we only have the implications

Vx (A(x) V B(x)) < VxA(x) V ¥xB(x) (V/V <= V/V)
Ix (A(x) A B(x)) = 3xA(x) A VxB(x) 3/A=A/3)

The converse implications do not hold... Really?

Proposition (The ‘scandalous commutation’ V/V)

Given formulas A(x) and B(x) depending only on x, we have:

(Az.z,Xz.z) |k Vx(A(x)V B(x)) & VxA(x) V Vx B(x)

Proof. Just check that both sides of < have the same uniform realizers. D)

Note: The dual commutation 3/A is not uniformly realizable
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A SKELETON in the (intuitionistic) closet... (2/3)

The ‘scandalous commutation’ V/V also holds in all (parametrically)
polymorphic functional languages (ML, Haskell), where both types

Va.(1(a) + o(a)) and (Va.7(a)) + (Va.o())
have (at least morally) the same inhabitants
Nevertheless, we can observe that:

@ In classical logic, the commutation V/V trivializes the universe:

Proposition: LK 4+ comm(V/V) F VxVy (x = y)

Proof. Classically, we have:

VxVy (x =y Vx#y) (by excluded middle)
hence Vx(Vy (x =y)VVy(x #y)) (by comm(V/V))
and since  —Vy (x # y) (take y = x as a counter example)
we get: VxVy (x =y) O

So that all non-trivial classical theories (PA, ZF, ...) refute the commutation V/V
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A SKELLETON in the (intuitionistic) closet...

@ The commutation V/V is compatible with HA™

Proposition: The theory HAN ++ comm(V/V) s consistent

Proof. All axioms of HAN are universally realized, as well as comm(¥/V). O

@ The commutation V/V is incompatible with HA

Proposition: The theory HA + comm(V/V) is inconsistent

Proof. We observe that:
HA F Vx(x =0V 3y (x =s(y)))
hence HA 4+ comm(V/V) F Vx(x =0) V Vx3y (x = s(y)))
But since HA F —Vx(x =0)
and since  HA F =Vx 3y (x = s(y))
we get: HA + comm(V/V) F L O

Remark: The commutation V/V remains compatible with all intuitionistic
theories where quantifiers can be interpreted uniformly: HA™, 1Z, IZF (etc.)
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Kleene realizability and negative translations (recall, 1/2)

Recall: Classical proofs can be turned into programs, by composing
Kleene realizability with a negative translation. For example:

Godel-Genzten translation A AS (Recall)
76 =T I
(A= B)¢ = A®= BS (1= &)¢ = (a1 = &)
(AAB)S = A®ABS (AV B)¢ = —(—-A% A-B)
(Vx A)¢ = VxAS (Ax A€ = —vx-AS

Theorem (Soundness)

QLKF A=A
@ If d:(PAF A), then d°:(HAR A%)

@ Problem: AS is always Harrop; therefore:

» Extracted A-term (d®)* has no computational contents
> Kleene o (A + A®) mimics Tarski: - AS iff INEA
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Kleene realizability
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Kleene realizability and negative translations

Friedman’s R-translation A —
TF = T
(A= B)f = AF= BF
(AAB)Y = AFABF
(Vx A)F = VxAF

(if x ¢ FV(R))

writing: —gA = A= R,

AF
JﬁF
(&1 =e)F
(AvV B)F
(3x AF

Uniformity and relativization
0000000000 00O00000O0000000

(

R
_‘R_‘R(el = 6‘2)
—\R(—\RAF A —|RBF)

o ﬁRVX ﬁRAF
(if x ¢ FV(R))

where R is the return formula

Lafont-Reus-Streicher
00®00000000

(recall, 2/2)

Recall)

Theorem (Soundness & M3-conservat

ivity)

Q@ If d:(PAFA), then

d" . (HA - AF)

(for any return formula R)

Q@ Given A = Vxdyf(x,y)=0: (N9-formula)
If d:(PAF A), then F-trick(d®): (HAF A) (using a suitable R)
@ Pro: In the M{-case, the program (F-trick(d"))* does the expected job

@ Contra:

underlying proof. Possible fix:

cf next slides

The translation d — d" completely changes the structure of the
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The Lafont-Reus-Streicher negative translation (1/2)

The Lafont-Reus-Streicher (LRS) translation works across two languages:

@ Source language: A minimal language for classical logic:

Formulas AB = ple,....,e) | L | A=B | VxA \

(no equality, no arithmetic — remaining constructions defined by De Morgan laws)

(4 deduction rules of LK)
o Target language: The usual language of LJ
Principle of the LRS-translation: Translate each formula A (of the
source language) into two formulas (of the target language):
o A formula Al (target language) representing the negation of A
o A formula ARS (target language) representing A itself

Moreover, ALRS is uniformly defined by ALRS = — A+ = AL = R,
where R is the return formula that parameterizes the construction
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The Lafont-Reus-Streicher negative translation (2/2)

@ To every predicate symbol p (source language) we associate a predicate
symbol p (target language) representing the negation of p

o The translations A — AL and A ALRS (source — target)
are defined by mutual recursion as follows:

(p(er,...,e))t = pler,-..,ex) 1L = T
(A= B)t = ARSABL (Vx A)t = Ix At
ARS .= AL = A= R

Theorem (Soundness)

(1) When R = L, and under the axioms VX (p(X) < p(x)) (for all p, p)
LK + axioms F At < —A and LK + axioms - ARS = A

(2) If LK - A, then LJ - A'RS (independently from the formula R)

Proof: (1) By induction on A
(2) By induction on the derivation (Exercise)J
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Computational interpretation

o Intuition: The translated formula AL represents the type of stacks
opposing (classical) terms of type A:

(Al=---=> A, =Bt = ARSA...ANARS A Bt

(A == A, — B)t = AWRS ... ALRS gL

@ To analyze the computational contents of the LRS-translation, we
now need to work across two A-calculi:

e A source calculus to represent classical proofs:
dsource = A +a@:((A=>B)—=A) = A (Peirce’s law)

(Polymorphic constant « introduces classical reasoning)

o An intuitionistic target calculus to represent translated proofs:
>\target = )\—>,><

(In this calculus, pairs are used to represent stacks)
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The source A-calculus ({L,=,V}-fragment of LK)

Syntax (Minimal fragment of LK)

Types AB == 1 | ple,...,ex) | A=B | VxA
Proof-terms tbu == z | Az.t | tu | «

@ Classical logic obtained by introducing an inert constant « (call/cc) for

Peirce’s law (taken as an axiom) = No reduction rule!
@ Constructions T, A, V, 3 encoded using De Morgan laws (= full LK)
rFz: A" TFc. (AsB SA) A
rhz:AFt:B rFt:A=B ThHu:A
Fr’EXz.t:A=B Ml-tu:B
Fr-t:A X FV(T) TFt:VxA [ S
F-t:VxA F-t: Alx:=e€] FrEt: A

v

Note: V is treated uniformly: VxA(x) ~ [, A(x) (no function argument!)
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The target \-calculus ({T,=, A, 3}-fragment of LJ)

Syntax (Fragment of LJ)

Types AB == T | pler,....,ex) | A=B | AANB | IxA
Proof-terms t,u = =z | Az.t | tu | (t,u) | m(t) | m(2)

+ usual reduction rules for proof-terms

Typing rules

TFz:A Y e T 7Osen®
z:A-t:B rFt:A=B TFu:A
r'EXz.t: A= B lEtu: B

Fr'Et: A r'-t: B r'Et: AAB Fr-t: AAB
M= (t,u): ANB Mem(t): A I m(t) : B
M-t Alx:=e] Mz:AFt:B
D — T xgFV(T,B)

M=t:3dxA z:d3xAkFt: B

4

Note: 3 treated uniformly: 3IxA(x) =~ U, A(x) (no witness!)
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The Lafont-Reus-Streicher logical translation

o The logical translation A — ALRS

(p(er,...,ea)) = pler,...,ex) I+ =T
(A= B)t = ARSABE (VxA)L = IxA*
ARS = AL

corresponds to a program transformation on untyped proof terms,
called a continuation-passing style (CPS) translation:

LRS

(2) As.zs

= LRS ._
()\Z . t)LRS = )\(Z, 50> . tLRS S0 Whicrce) K ; ié;: S(>)> 'zzs<k507 50>
(tU)LRS = As. tLRS <uLRS’ 50> s = 9= o
Note: A(z,s).t defined as Az .(Azs.t)(7w1(20)) (m2(20))

Theorem (Soundness)

If Fr=t: A (in the source A-calculus)
then FH [ glhds o i (in the target A-calculus)
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Computational analysis

o Givenaterm t:A anda “stack’ s: A" (in the target calculus), we
use the notation t @ s := ts (application of t to the stack s)

@ We observe that:

Az . )RS @ (u,s) =  (Mz,5).t*RSs) @ (u,s)
=* tRS[z:=uy]@s

(t U)LRS Qs = (. tLRS (uLRS, %)) S
o+ {LRS @ <ULRS’5>

RS @ (u,s) (Mz,50) -z (ks,, 50)) @ (u, s)

u @ (ks,s)

e

ks @ (u,s’) (Mz,-).z5)0(u,s")

u@s

Yl
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Towards the Krivine abstract machine

@ From the computational behavior of translated proof terms ttRS_ ..

(A\z.t)'RS @ (u,s) = tRS[z:=u]@s
(tu)RS @ s - ttRS @ (utRS s)
()RS @ (u,s) = u @ (ks,s)

ks @ (u,s’y > u®s

. we deduce evaluation rules for classical proof terms:

Krivine Abstract Machine (KAM)

Grab Az.txu-m = tlz:=ul*7
Push tu x T - txu-m
Save CTHU-T = uxky-m
Restore ke % u-m > u* T

@ Reformulating Kleene realizability through the LRS translation (and
its CPS), we get Krivine classical realizability (cf next talk)
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