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The language of realizers (recall)

Terms of system T (= λ-calculus + primitive pairs & integers)

λ-terms t, u ::= x | λx . t | tu
| 〈t1, t2〉 | π1(t) | π2(t)
| 0 | S(t) | rec(t0, t1, u)

Syntactic worship: Free & bound variables. Renaming. Work up to α-conversion.
Set of free variables: FV (t). Capture-avoiding substitution: t[x := u]

Notation: n̄ :≡ Sn 0 (n ∈ N)

Reduction rules

(λx . t) u � t[x := u]

π1(〈t1, t2〉) � t1 rec(t0, t1, 0) � t0

π2(〈t1, t2〉) � t2 rec(t0, t1 S(u)) � t1 u (rec(t0, t1, u))

Grand reduction written t �∗ u (reflexive, transitive, context-closed)
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Definition of the relation t 
 A (recall)

Recall: For each closed FO-term e, we write eN its denotation in N

Definition of the realizability relation t 
 A (t, A closed)

t 
 ⊥ ≡ ⊥
t 
 > ≡ t �∗ 0
t 
 e1 = e2 ≡ eN1 = eN2 ∧ t �∗ 0
t 
 A ∧ B ≡ ∃t1 ∃t2 (t �∗ 〈t1, t2〉 ∧ t1 
 A ∧ t2 
 B)

t 
 A ∨ B ≡ ∃u ((t �∗ 〈0̄, u〉 ∧ u 
 A) ∨ (t �∗ 〈1̄, u〉 ∧ u 
 B))

t 
 A⇒ B ≡ ∀u (u 
 A ⇒ tu 
 B)

t 
 ∀x A(x) ≡ ∀n (t n̄ 
 A(n))

t 
 ∃x A(x) ≡ ∃n ∃u (t �∗ 〈n̄, u〉 ∧ u 
 A(n))

Lemma (Closure under anti-reduction)

If t �∗ t′ and t′ 
 A, then t 
 A
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The main Theorem (recall)

Lemma (Adequacy)

Let d : (A1, . . . ,An ` B) be a derivation in NJ. Then:

for all valuations ρ : FOVar→ N,

for all realizers t1 
 A1[ρ], . . . , tn 
 An[ρ],

we have: d∗[ρ][z1 := t1, . . . , zn := tn] 
 B[ρ]

writing d∗ the λ-term extracted from the derivation d (following Curry-Howard)

Lemma

All axioms of HA are realized

Theorem (Soundness)

If HA ` A, then t 
 A for some closed λ-term t
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Harrop formulas (1/2)

The class of Harrop formulas

Harrop formulas H ::= e1 = e2 | > | ⊥
| H1 ∧ H2 | A⇒ H | ∀x H

Intuition: Harrop formulas do not contain the two “problematic”
constructions ∨ and ∃, except on the left-hand side of implications

Therefore, Harrop formulas are classical:

Proposition

For each Harrop formula H(~x):

HA ` ∀~x (H(~x) ⇔ ¬¬H(~x))

Proof. By structural induction on H(~x).
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Harrop formulas (2/2)

To each (possibly open) Harrop formula H, we associate a closed
λ-term tH that is computationally trivial:

τH :≡ 0 (H atomic) τA⇒H :≡ λ . τH
τH1∧H2 :≡ 〈τH1 , τH2〉 τ∀x H :≡ λ . τH

Theorem

For all closed Harrop formulas H:

If H is realized, then τH 
 H

Moreover, all realizers of H are “computationally equivalent” to τH

Intuition: Harrop formulas have computationally irrelevant
realizers, that can be replaced by the trivial realizers τH

Useful for optimizing extracted programs (cf next slide)

But shows that Harrop formulas are computationally irrelevant
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Optimizing program extraction (1/2)

Idea: While turning derivations intro λ-terms, use Harrop realizers τH
whenever possible (instead of following Curry-Howard)

⇒ Optimized program extraction

Definition (Optimized program extraction)

Each derivation d : (Γ ` B) is turned into a λ-term dopt as follows:

If B is a Harrop formula, then dopt :≡ τB
Otherwise, follow Curry-Howard for the last rule:

If d ≡


.... d1

Γ,A ` C

Γ ` A⇒ C

then dopt :≡ λzA . d
opt
1

If d ≡


.... d1

Γ ` A⇒ B

.... d2

Γ ` A
Γ ` B

then dopt :≡ dopt
1 dopt

2

etc.
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Optimizing program extraction (2/2)

Lemma (Adequacy of the optimized extraction)

Let d : (A1, . . . ,An ` B) be a derivation in NJ. Then for all valuations
ρ : FOVar→ N and for all realizers t1 
 A1[ρ], . . . , tn 
 An[ρ], we have:

dopt[ρ][z1 := t1, . . . , zn := tn] 
 B[ρ]

Example:

Let F :≡ ∀x ∀y ∀z ∀n (n > 2⇒ xn + yn 6= zn)

(Fermat’s last theorem, as a Harrop formula)

Given a derivation d ≡


.... dI

` F ⇒ A

.... dF
` F

` A

(where A is not Harrop)

we have: dopt ≡ dI
optdopt

F ≡ dI
optτF

≡ dI
opt(λ , , , , , . 0) 
 A

⇒ Don’t need to know the proof of Fermat’s last theorem to realize A!
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How to cope with classical logic?

Kleene realizability is definitely incompatible with classical logic:

Proposition (cf previous talk)

6
 ∀x (Halt(x) ∨ ¬Halt(x))

any term 
 ¬∀x (Halt(x) ∨ ¬Halt(x))

(The same holds for all variants of Kleene realizability)

Two possible solutions:

1 Compose Kleene realizability with a negative translation from
classical logic (LK) to intuitionistic logic (LJ) (next slide)

2 Reformulate the principles of realizability to make them compatible
with classical logic: Krivine classical realizability (next talk)
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The Gödel-Gentzen negative translation

Idea: Turn positive constructions (atomic formulas, ∨, ∃) into
negative constructions (⊥, ¬, ⇒, ∧, ∀) using De Morgan laws

Every formula A is translated into a formula AG defined by:

>G :≡ > ⊥G :≡ ⊥
(A⇒ B)G :≡ AG ⇒ BG (e1 = e2)G :≡ ¬¬(e1 = e2)

(A ∧ B)G :≡ AG ∧ BG (A ∨ B)G :≡ ¬(¬AG ∧ ¬BG)

(∀x A)G :≡ ∀x AG (∃x A)G :≡ ¬∀x ¬AG

writing: ¬A :≡ A⇒ ⊥

Theorem (Soundness)

1 LK ` AG ⇔ A

2 If PA ` A, then HA ` AG
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Realizing translated formulas

Strategy:

1 Build a derivation d of A (in PA)

2 Turn it into a derivation dG of AG (in HA)

3 Turn dG into a Kleene realizer (program extraction)

Does not work! Failure comes from:

Proposition (Realizability collapse)

For every closed formula A:

1 AG is a Harrop formula (computationally irrelevant)

2 Kleene’s semantics for AG mimics Tarski’s semantics for A:

AG is realized iff τAG 
 AG iff N |= A

Proof. By structural induction on A.

Conclusion: Kleene ◦ Gödel-Gentzen = Tarski (in N)
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Friedman’s R-translation (called A-translation by Friedman)

Principle: In Gödel-Gentzen translation, replace each occurrence
of ⊥ (absurdity) by a fixed formula R, called the return formula
Note: The return formula R may contain free variables!

Every formula A is translated into a formula AF defined by:

>F :≡ > ⊥F :≡ R

(A⇒ B)F :≡ AF ⇒ BF (e1 = e2)F :≡ ¬R¬R(e1 = e2)

(A ∧ B)F :≡ AF ∧ BF (A ∨ B)F :≡ ¬R(¬RAF ∧ ¬RBF)

(∀x A)F :≡ ∀x AF (∃x A)F :≡ ¬R∀x ¬RAF

(if x /∈ FV (R)) (if x /∈ FV (R))

writing: ¬RA :≡ A⇒ R

Theorem (Soundness)

If PA ` A, then HA ` AF (independently from the formula R)

Beware! The formulas A and AF are no more classically equivalent (in general)
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Π0
2-conservativity (1/2)

The interest of Friedman’s translation comes from the following:

Theorem (Π0
2-conservativity)

PA is a Π0
2-conservative extension of HA, that is:

PA ` ∀~x ∃~y f (~x , ~y) = 0 iff HA ` ∀~x ∃~y f (~x , ~y) = 0

for every primitive recursive function f (~x , ~y)

This more generally implies that:

PA ` ∀~x ∃~y A(~x , ~y) iff HA ` ∀~x ∃~y A(~x , ~y)

for every formula A(~x , ~y) with bounded quantifications
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Π0
2-conservativity (2/2)

Proof. Assume that PA ` ∀x ∃y f (x , y) = 0.

Working with an unknown formula R, we observe that:

HA ` ∀x¬R∀y¬R¬R¬R f (x , y) = 0 (by R-translation)

HA ` ∀x¬R∀y¬R f (x , y) = 0 (since ¬R¬R¬R ⇔LJ ¬R)

HA ` ¬R∀y¬R f (x0, y) = 0 (by ∀-elim, with x0 fresh)

HA ` ∀y (f (x0, y) = 0⇒ R) ⇒ R (from the def. of ¬R)

We now take: R :≡ ∃y0 f (x0, y0) = 0 (Friedman’s trick!)

From the def. of R, we have:

HA ` ∀y (f (x0, y) = 0⇒ ∃y0 f (x0, y0) = 0) ⇒ ∃y0 f (x0, y0) = 0

But the premise of the above implication is provable

HA ` ∀y (f (x0, y) = 0⇒ ∃y0 f (x0, y0) = 0) (by ∃-intro with y0 = y)

hence we get

HA ` ∃y0 f (x0, y0) = 0 (by modus ponens)

HA ` ∀x0 ∃y0 f (x0, y0) = 0 (by ∀-intro)

The converse implication (HA ` · · · implies PA ` · · · ) is obvious.
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Realizing translated formulas, again

Strategy:

1 Build a derivation d of a Π0
2-formula A (in PA)

2 Turn it into a derivation F-trick(dF) of A (in HA)

3 Turn F-trick(dF) into a Kleene realizer of A (program extraction)

This technique perfectly works in practice. However:

The formula AF is not a Harrop formula (in general), even when A is.
Possible fix: Introduce specific optimization techniques, e.g.:

Refined Program Extraction [Berger et al. 2001]

The translation A 7→ AF completely changes the structure of the
underlying proof. Possible fix: cf next parts
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Uniform vs non-uniform quantifiers (1/2)

In the Curry-Howard correspondence (and in realizability), there are
two different ways to interpret quantifiers:

∀x A(x) ∃x A(x)

Non-uniform
(Type Theory style)

(Kleene realiz.)

∏
x∈D

A(x)

(type of dep. functions)

∑
x∈D

A(x)

(type of dep. pairs)

Uniform
(ML/Haskell style)

⋂
x∈D

A(x)

(intersection type)

⋃
x∈D

A(x)

(union type)

Remark: Tarski/Kripke/Heyting/Cohen models do not distinguish
the two interpretations: the difference only appears in realizability
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Uniform vs non-uniform quantifiers (2/2)

1st-, 2nd- and higher-order logic support both interpretations
(But uniform interpretation is more concise & natural)

The same holds for impredicative set theories: ZF, IZFC , IZFR

Arithmetic (PA/HA) only supports the non-uniform interpretation
(due to the induction principle)

But in all cases, the non-uniform interpretation can be encoded from
the uniform interpretation, using a relativization:

(non-uniform) ∀x A(x) :≡ (uniform) ∀x (D(x)⇒ A(x)︸ ︷︷ ︸
type of functions

)

(non-uniform) ∃x A(x) :≡ (uniform) ∃x (D(x) ∧ A(x)︸ ︷︷ ︸
type of pairs

)

where D(x) is a suitable relativization predicate (the domain of quantification)

This is why we shall prefer the uniform interpretation (in what follows)
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Uniformity in realizability

Kleene realizability interprets quantifiers in a non-uniform way:

t 
 ∀x A(x) ≡ ∀n (t n̄ 
 A(n))

t 
 ∃x A(x) ≡ ∃n ∃u (t �∗ 〈n̄, u〉 ∧ u 
 A(n))

Realizers of ∀x A(x) expect an argument (representing x)
Realizers of ∃x A(x) bear a witness

But realizability can also interpret quantifiers in a uniform way:

Definition of the uniform realizability relation t 
u A

t 
u ∀x A(x) :≡ ∀n (t 
u A(n))

t 
u ∃x A(x) :≡ ∃n (t 
u A(n))

(other clauses of the definition are the same as for 
)

Realizers of ∀x A(x) do not expect an argument
Realizers of ∃x A(x) do not bear a witness

What does it change... in NJ? ... in HA?
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The uniform interpretation of first-order logic (1/3)

Recall:

To prove the adequacy of the rules of NJ w.r.t. the relation t 
 A
(where ∀/∃ are interpreted non uniformly), we defined a translation

d : (A1, . . . ,An ` B) 7→ d∗

where the λ-term d∗ depends on the proof variables zA1 , . . . , zAn and
on the free variables x1, . . . , xk of the sequent A1, . . . ,An ` B

The rules for quantifiers were translated as follows:
.... d

Γ ` A
Γ ` ∀x A


∗

:= λx . d∗


.... d

Γ ` ∀x A

Γ ` A[x := e]


∗

:= d∗e∗


.... d

Γ ` A[x := e]

Γ ` ∃x A


∗

:= 〈e∗, d∗〉


.... d1

Γ ` ∃x A

.... d2

Γ,A ` B

Γ ` B


∗

:= let 〈x , z〉 = d∗1 in d∗2
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The uniform interpretation of first-order logic (2/3)

To prove the adequacy of the rules of NJ w.r.t. the relation t 
u A
(where ∀/∃ are interpreted uniformly), we define a new translation

d : (A1, . . . ,An ` B) 7→ d◦

where the λ-term d◦ only depends on the proof variables zA1 , . . . , zAn

The rules for quantifiers are now translated as follows:
.... d

Γ ` A
Γ ` ∀x A


◦

:= d◦


.... d

Γ ` ∀x A

Γ ` A[x := e]


◦

:= d◦


.... d

Γ ` A[x := e]

Γ ` ∃x A


◦

:= d◦


.... d1

Γ ` ∃x A

.... d2

Γ,A ` B

Γ ` B


◦

:= let z = d◦1 in d◦2

(the other cases of the definition are the same as for d 7→ d∗)

Remark: d◦ does not depend on first-order variables
⇒ Witnesses are lost
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The uniform interpretation of first-order logic (3/3)

We can now prove the:

Lemma (Adequacy w.r.t. the uniform interpretation)

Let d : (A1, . . . ,An ` B) be a derivation in NJ. Then:

for all valuations ρ : FOVar→ N,

for all realizers t1 
u A1[ρ], . . . , tn 
u An[ρ],

we have: d◦[z1 := t1, . . . , zn := tn] 
u B[ρ]

Note that we do not need to apply the valuation ρ to the λ-term d◦, since the
latter does not depend on first-order variables

Conclusion: 1st-order int. logic supports both interpretations:

Non-uniform:
(Kleene)

∀x A(x) ≈
∏
x∈D

A(x) ∃x A(x) ≈
∑
x∈D

A(x)

Uniform:
(without witnesses)

∀x A(x) ≈
⋂
x∈D

A(x) ∃x A(x) ≈
⋃
x∈D

A(x)
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Uniformity and typing

Quantifiers also have their uniform typing rules (adequate w.r.t. 
u)

Uniform typing rules for ∀:

Γ ` t : A
Γ ` t : ∀x A

x /∈FV (Γ)
Γ ` t : ∀x A

Γ ` t : A[x := e]

Note: ∀ treated as an infinitary intersection type

Uniform typing rules for ∃:

Γ ` t : A[x := e]

Γ ` t : ∃x A
Γ ` t : (∃x A)⇒ B

Γ ` t : ∀x (A⇒ B)
x /∈FV (B)

Note: ∃ treated as an infinitary union type.
Equivalently, its elimination rule can be replaced by:

A left-rule of the form:
Γ, z : A, Γ′ ` t : B

Γ, z : ∃x A, Γ′ ` t : B
x /∈FV (Γ,Γ′,B)

A subtyping rule: (∃x A)⇒ B ≤ ∀x (A⇒ B) (if x /∈ FV (B))
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Uniformly realizing the axioms of HA

Lemma (Uniformly realizing true Π0
1-formulas)

Let e1(~x), e2(~x) be FO-terms depending on free variables ~x .

If N |= ∀~x (e1(~x) = e2(~x)), then 0 
u ∀~x (e1(~x) = e2(~x))

Since all defining equations of function symbols are Π0
1:

Corollary

All defining equations of function symbols are uniformly realized

Lemma (Uniformly realizing Peano axioms, recall)

λz . z 
u ∀x ∀y (s(x) = s(y)⇒ x = y)

any term 
u ∀x (s(x) 6= 0)

What about the induction principle?
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Why induction is not uniformly realized... (1/2)

Write A(x) :≡ x = 0 ∨ ∃y (x = s(y)) (“x is either zero or a successor”)

Proposition

We have HA ` ∀x A(x) but 6
u ∀x A(x)

Proof. HA ` ∀x A(x) by induction, using the induction predicate A(x).

Let us now assume that t 
u ∀x A(x) for some t, that is: t 
u A(n) for all n ∈ N.
For each n ∈ N, we have t �∗ 〈p̄n, un〉 for some pn ∈ N and un ∈ Λ such that:

(Left-hand side of the disjunction) either pn = 0 and un 
 n = 0;

(Right-hand side of the disjunction) either pn = 1 and un 
 ∃y (n = s(y)).

When n = 0, the second case is impossible, hence p0 = 0.
And when n = 1, the first case is impossible, hence p1 = 1.
From the confluence of �, we deduce that p0 = 0 = p1 = 1: contradiction!

Remark: The proof that 6
u ∀x A(x) crucially relies on the confluence of �.
Indeed, if we add a constant t (non-deterministic choice) with the rules

t t u � t and t t u � u (for all terms t, u)

then we easily check that t〈0̄, 0̄〉〈1̄, 0̄〉 
u ∀x A(x)
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Why induction is not uniformly realized... (2/2)

Write A(x) :≡ x = 0 ∨ ∃y (x = s(y)) (“x is either zero or a successor”)

Corollary (An induction axiom that is not uniformly realized)

6
u A(0) ∧ ∀x (A(x)⇒ A(s(x)))⇒ ∀x A(x) (with A(x) defined as above)

Proof. Assuming that t 
u A(0) ∧ ∀x (A(x)⇒ A(s(x)))⇒ ∀x A(x) for some t,
we easily deduce that t

〈
〈0̄, 0̄〉, λ . 〈1̄, 0̄〉

〉

u ∀x A(x): contradiction!

Exercise: Assuming the presence of a non-deterministic choice operator t in
the language of realizers (cf previous slide):

1 Define a term tnat such that tnat �∗ n̄ for all n ∈ N
2 Deduce a term tind that uniformy realizes all induction axioms

3 More generally, construct a “universal realizer” t (using t) such that for
each closed formula A:

t 
u A iff t 
 A iff N |= A

Conclusion: (uniform) realizability with t = Tarski (in N)
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... and how to recover it! (1/2)

To make the induction principle compatible with uniform realizability, we
need to go back to Peano’s seminal presentation:

Giuseppe Peano. Arithmetices principia, nova methodo exposita. 1889
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... and how to recover it! (2/2)

To make the induction principle compatible with uniform realizability, we
need to go back to Peano’s seminal presentation:

Giuseppe Peano. Arithmetices principia, nova methodo exposita. 1889

Peano’s axioms for arithmetic, using modern notations

1. 1 ∈ N
2. a ∈ N⇒ a = a

3. a, b ∈ N⇒ (a = b ⇔ b = a)

4. a, b, c ∈ N⇒ (a = b ∧ b = c ⇒ a = c)

5. a = b ∧ b ∈ N⇒ a ∈ N
6. a ∈ N⇒ a + 1 ∈ N
7. a, b ∈ N⇒ (a = b ⇔ a + 1 = b + 1)

8. a ∈ N⇒ a + 1 6= 1

9. k ∈ K ∧ 1 ∈ k ∧ ∀x (x ∈ N ∧ x ∈ k ⇒ x + 1 ∈ k)⇒ N ⊆ k

(where K is the class of all classes)

Open world assumption: N is only a subclass of the universe



Kleene realizability Gödel-Gentzen Uniformity and relativization Lafont-Reus-Streicher

Peano relative arithmetic (1/2)

To formalize Peano’s open world assumption, we introduce a new
first-order theory: Peano relative arithmetic (PAN)

(As usual, we write HAN the intuitionistic fragment of PAN)

The language of PAN/HAN is the language of PA/HA enriched with
a unary predicate symbol x ∈ N (“x is a natural number”)

Language of PAN/HAN

FO-terms e, e1 ::= x | f (e1, . . . , ek) (f of arity k)

Formulas A,B ::= e1 = e2 | e ∈ N | > | ⊥ | A⇒ B
| A ∧ B | A ∨ B | ∀x A | ∃x A

(Assuming one function symbol f for each definition of a prim. rec. function)

Notations: (∀x ∈N)A(x) :≡ ∀x (x ∈ N⇒ A(x))

(∃x ∈N)A(x) :≡ ∃x (x ∈ N ∧ A(x))
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Peano relative arithmetic (2/2)

Axioms of PAN/HAN

Domain of zero and successor

0 ∈ N
(∀x ∈N)(s(x) ∈ N)

Defining equations of all primitive recursive functions in N

(∀x ∈N)(x + 0 = x), (∀x , y ∈N)(x + s(y) = s(x + y))

(∀x ∈N)(x × 0 = 0), (∀x , y ∈N)(x × s(y) = x × y + x) (etc.)

Peano axioms, relativized to N

(∀x , y ∈N)(s(x) = s(y)⇒ x = y)

(∀x ∈N)(s(x) 6= 0)

∀~z [A(~z , 0) ∧ (∀x ∈N)(A(~z , x)⇒ A(~z , s(x)))⇒ (∀x ∈N)A(~z , x)]

From the above axioms, we easily prove that:

Theorem

For each 1st-order term e(~x): HAN ` (∀~x ∈N)(e(~x) ∈ N)
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Relating PA/HA and PAN/HAN (1/2)

The relationship between PA/HA and PAN/HAN can be studied via
a translation A 7→ AN : LPA → LPAN (relativization to N)

Definition of the translation A 7→ AN

>N :≡ > ⊥N :≡ ⊥
(e1 = e2)N :≡ e1 = e2 (A⇒ B)N :≡ AN ⇒ BN

(A ∧ B)N :≡ AN ∧ BN (A ∨ B)N :≡ AN ∨ BN

(∀x A)N :≡ (∀x ∈N)AN (∃x A)N :≡ (∃x ∈N)AN

Theorem

For each A ∈ LPA (closed): PA ` A iff PAN ` AN

HA ` A iff HAN ` AN

Therefore, the theories PA, PAN, HA and HAN are equiconsistent:

PAN ≈ PA ≈ HA ≈ HAN︸ ︷︷ ︸
by inclusion and

negative translation
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Relating PA/HA and PAN/HAN (2/2)

Proof of the equivalence: PA ` A iff PAN ` AN.

(Direct implication) We successively prove that

(1) For all Γ,A ∈ LPA: Γ `NK A implies ΓN, ~x ∈ N `NK AN,
writing ~x = FV (Γ,A). (Proof: by induction on the derivation.)

(2) For each axiom A of PA, we have: HAN ` AN

The desired implication immediately follows from (1) and (2).

(Converse implication) For each formula A of PAN, we write A−N the formula
of PA obtained by replacing in A all subformulas of the form e ∈ N by the
trivial formula > (thus removing relativizations). Then we prove that

(1) For all Γ,A ∈ LPAN : Γ `NK A implies Γ−N `NK A−N

(Proof: by induction on the derivation.)

(2) For each axiom A of PAN, we have: HA ` A−N

(3) For each closed formula A ∈ LPA: `NJ (AN)−N ⇔ A
(Proof: by induction on A)

Finally, assuming that PAN ` AN, we deduce that PA ` (AN)−N

(from (1) and (2)), and conclude that PA ` A (from (3)).

The corresponding equivalence for HA/HAN is proved similarly.
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HAN and uniform realizability (1/2)

We extend the relation t 
u A to the new predicate x ∈ N:

t 
u e ∈ N :≡ t �∗ eN (= the value of e as a λ-term)

We observe that:

t 
u ∀x (x ∈ N⇒ A(x))︸ ︷︷ ︸
Relativized ∀

iff ∀n (t 
u n ∈ N⇒ A(n))

iff ∀n ∀u (u �∗ n̄ ⇒ t u 
u A(n))

iff ∀n (t n̄ 
u A(n))︸ ︷︷ ︸
Kleene’s non-uniform interpretation of ∀

t 
u ∃x (x ∈ N ∧ A(x))︸ ︷︷ ︸
Relativized ∀

iff ∃n (t 
u n ∈ N ∧ A(n))

iff ∃n ∃u ∃v (t �∗ 〈u, v〉 ∧ u �∗ n̄ ∧ v 
u A(n))

iff ∃n ∃v (t �∗ 〈n̄, v〉 ∧ v 
u A(n))︸ ︷︷ ︸
Kleene’s non-uniform interpretation of ∃

Conclusion: Relativized uniform ∀/∃ = Non-uniform ∀/∃
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HAN and uniform realizability (2/2)

Lemma (Uniformly realizing the axioms of HAN)

All the axioms of HAN are uniformly realized:

0 
u 0 ∈ N
λx . S(x) 
u (∀x ∈N)s(x) ∈ N

λ . 0 
u (∀x ∈N)(x + 0 = 0)

λ , . 0 
u (∀x , y ∈N)(x + s(y) = s(x + y)) (etc. for each f )

...

λx , y , z . z 
u (∀x ∈N)(s(x) = s(y)⇒ x = y)

any term 
u (∀x ∈N)(s(x) 6= 0)

rec 
u ∀~y [A(~y , 0)⇒ (∀x ∈N)(A(~y , x)⇒ A(~y , s(x)))⇒ (∀x ∈N)A(~y , x)]

(writing rec :≡ λz0, z1, x . rec(z0, z1, x))

Proof: Exercise

Therefore, all theorems of HAN are uniformly realized:

Theorem (Soundness): If HAN ` A, then t 
u A for some t
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Kleene realizability vs uniform realizability

Remark: The uniform realizers of the axioms of PAN are essentially the
same as the Kleene realizers of the axioms of PA.

This is due to the following result:

Proposition (Kleene realizability vs uniform realizability)

For all closed formulas A of HA and for all closed λ-terms t:

t 
 A iff t 
u AN

Proof. By induction on the size of A (Exercise)

Conclusion: Kleene realiz. = Uniform realiz. ◦ (A 7→ AN)

Moreover, the following diagram commutes: (Exercise)

d : (Γ `NJ A)
( )N //

( )∗

��

dN : (ΓN, ~x ∈ N `NJ AN)

( )◦

��
d∗ (dN)◦

(where ~x = FV (Γ,A))
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Conclusion

The equivalence t 
 A iff t 
u AN implies that:

For all A ∈ LPA and t ∈ Λ (closed):

t 
 ∀x A(x) iff t 
u ∀x (x ∈ N⇒ AN(x))

t 
 ∃x A(x) iff t 
u ∃x (x ∈ N ∧ AN(x))

Conclusion: Non-uniform quant. = relativized uniform quant.:

(non-uniform) ∀x A(x) = (uniform) ∀x (D(x)⇒ A(x)︸ ︷︷ ︸
type of functions

)

(non-uniform) ∃x A(x) = (uniform) ∃x (D(x) ∧ A(x)︸ ︷︷ ︸
type of pairs

)

where D(x) is the domain of quantification

Uniform realizabilty appears to be more primitive than Kleene’s

⇒ In what follows, we shall sistematically use uniform realizability
(while introducing the needed relativization predicates)
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A in the (intuitionistic) closet... (1/3)

It is well-known that the following equivalences hold in NJ/NK

∀x (A(x) ∧ B(x)) ⇔ ∀x A(x) ∧ ∀x B(x)

∃x (A(x) ∨ B(x)) ⇔ ∃x A(x) ∨ ∃x B(x)

(Commutation ∀/∧)

(Commutation ∃/∨)

whereas in LJ/LK, we only have the implications

∀x (A(x) ∨ B(x)) ⇐ ∀x A(x) ∨ ∀x B(x)

∃x (A(x) ∧ B(x)) ⇒ ∃x A(x) ∧ ∀x B(x)

(∀/∨ ⇐ ∨/∀)

(∃/∧ ⇒ ∧/∃)

The converse implications do not hold... Really?

Proposition (The ‘scandalous commutation’ ∀/∨)

Given formulas A(x) and B(x) depending only on x , we have:

〈λz . z , λz . z〉 
u ∀x (A(x) ∨ B(x)) ⇔ ∀x A(x) ∨ ∀x B(x)

Proof. Just check that both sides of ⇔ have the same uniform realizers.

Note: The dual commutation ∃/∧ is not uniformly realizable
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A in the (intuitionistic) closet... (2/3)

The ‘scandalous commutation’ ∀/∨ also holds in all (parametrically)
polymorphic functional languages (ML, Haskell), where both types

∀α.(τ(α) + σ(α)) and (∀α.τ(α)) + (∀α.σ(α))

have (at least morally) the same inhabitants

Nevertheless, we can observe that:

1 In classical logic, the commutation ∀/∨ trivializes the universe:

Proposition: LK + comm(∀/∨) ` ∀x ∀y (x = y)

Proof. Classically, we have:

∀x ∀y (x = y ∨ x 6= y) (by excluded middle)
hence ∀x (∀y (x = y) ∨ ∀y (x 6= y)) (by comm(∀/∨))
and since ¬∀y (x 6= y) (take y = x as a counter example)
we get: ∀x ∀y (x = y)

So that all non-trivial classical theories (PA, ZF, ...) refute the commutation ∀/∨



Kleene realizability Gödel-Gentzen Uniformity and relativization Lafont-Reus-Streicher

A in the (intuitionistic) closet... (3/3)

2 The commutation ∀/∨ is compatible with HAN

Proposition: The theory HAN + comm(∀/∨) is consistent

Proof. All axioms of HAN are universally realized, as well as comm(∀/∨).

3 The commutation ∀/∨ is incompatible with HA

Proposition: The theory HA + comm(∀/∨) is inconsistent

Proof. We observe that:

HA ` ∀x (x = 0 ∨ ∃y (x = s(y)))
hence HA + comm(∀/∨) ` ∀x (x = 0) ∨ ∀x ∃y (x = s(y)))
But since HA ` ¬∀x (x = 0)
and since HA ` ¬∀x ∃y (x = s(y))
we get: HA + comm(∀/∨) ` ⊥

Remark: The commutation ∀/∨ remains compatible with all intuitionistic
theories where quantifiers can be interpreted uniformly: HAN, IZ, IZF (etc.)
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Plan

1 Kleene realizability

2 Gödel-Gentzen negative translation

3 Uniformity and relativization

4 Lafont-Reus-Streicher negative translation
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Kleene realizability and negative translations (recall, 1/2)

Recall: Classical proofs can be turned into programs, by composing
Kleene realizability with a negative translation. For example:

Gödel-Genzten translation A 7→ AG (Recall)

>G :≡ > ⊥G :≡ ⊥
(A⇒ B)G :≡ AG ⇒ BG (e1 = e2)G :≡ ¬¬(e1 = e2)

(A ∧ B)G :≡ AG ∧ BG (A ∨ B)G :≡ ¬(¬AG ∧ ¬BG)

(∀x A)G :≡ ∀x AG (∃x A)G :≡ ¬∀x ¬AG

Theorem (Soundness)

1 LK ` AG ⇔ A

2 If d : (PA ` A), then dG : (HA ` AG)

Problem: AG is always Harrop; therefore:

I Extracted λ-term (dG)∗ has no computational contents

I Kleene ◦ (A 7→ AG) mimics Tarski: 
 AG iff N |= A
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Kleene realizability and negative translations (recall, 2/2)

Friedman’s R-translation A 7→ AF (Recall)

>F :≡ > ⊥F :≡ R

(A⇒ B)F :≡ AF ⇒ BF (e1 = e2)F :≡ ¬R¬R(e1 = e2)

(A ∧ B)F :≡ AF ∧ BF (A ∨ B)F :≡ ¬R(¬RA
F ∧ ¬RB

F)

(∀x A)F :≡ ∀x AF (∃x A)F :≡ ¬R∀x ¬RA
F

(if x /∈ FV (R)) (if x /∈ FV (R))

writing: ¬RA :≡ A⇒ R, where R is the return formula

Theorem (Soundness & Π0
1-conservativity)

1 If d : (PA ` A), then dF : (HA ` AF) (for any return formula R)

2 Given A ≡ ∀x ∃y f (x , y) = 0: (Π0
1-formula)

If d : (PA ` A), then F-trick(dG) : (HA ` A) (using a suitable R)

Pro: In the Π0
1-case, the program (F-trick(dF))∗ does the expected job

Contra: The translation d 7→ dF completely changes the structure of the
underlying proof. Possible fix: cf next slides
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The Lafont-Reus-Streicher negative translation (1/2)

The Lafont-Reus-Streicher (LRS) translation works across two languages:

Source language: A minimal language for classical logic:

Formulas A,B ::= p(e1, . . . , ek) | ⊥ | A⇒ B | ∀x A
(no equality, no arithmetic – remaining constructions defined by De Morgan laws)

(+ deduction rules of LK)

Target language: The usual language of LJ

Principle of the LRS-translation: Translate each formula A (of the

source language) into two formulas (of the target language):

A formula A⊥ (target language) representing the negation of A

A formula ALRS (target language) representing A itself

Moreover, ALRS is uniformly defined by ALRS :≡ ¬RA⊥ ≡ A⊥ ⇒ R,
where R is the return formula that parameterizes the construction



Kleene realizability Gödel-Gentzen Uniformity and relativization Lafont-Reus-Streicher

The Lafont-Reus-Streicher negative translation (2/2)

To every predicate symbol p (source language) we associate a predicate
symbol p̄ (target language) representing the negation of p

The translations A 7→ A⊥ and A 7→ ALRS (source → target)

are defined by mutual recursion as follows:

(p(e1, . . . , ek))⊥ :≡ p̄(e1, . . . , ek) ⊥⊥ :≡ >
(A⇒ B)⊥ :≡ ALRS ∧ B⊥ (∀x A)⊥ :≡ ∃x A⊥

ALRS :≡ ¬RA⊥ ≡ A⊥ ⇒ R

Theorem (Soundness)

(1) When R ≡ ⊥, and under the axioms ∀~x (p(~x)⇔ p̄(~x)) (for all p, p̄)

LK + axioms ` A⊥ ⇔ ¬A and LK + axioms ` ALRS ⇔ A

(2) If LK ` A, then LJ ` ALRS (independently from the formula R)

Proof: (1) By induction on A
(2) By induction on the derivation (Exercise)
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Computational interpretation

Intuition: The translated formula A⊥ represents the type of stacks
opposing (classical) terms of type A:

(A1 ⇒ · · · ⇒ An ⇒ B)⊥ ≡ ALRS
1 ∧ · · · ∧ ALRS

n ∧ B⊥

(A1 → · · · → An → B)⊥ ≡ ALRS
1 × · · · × ALRS

n × B⊥

To analyze the computational contents of the LRS-translation, we
now need to work across two λ-calculi:

A source calculus to represent classical proofs:

λsource = λ→ + cc : ((A→ B)→ A)→ A (Peirce’s law)

(Polymorphic constant cc introduces classical reasoning)

An intuitionistic target calculus to represent translated proofs:

λtarget = λ→,×

(In this calculus, pairs are used to represent stacks)
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The source λ-calculus ({⊥,⇒,∀}-fragment of LK)

Syntax (Minimal fragment of LK)

Types A,B ::= ⊥ | p(e1, . . . , ek) | A⇒ B | ∀x A
Proof-terms t, u ::= z | λz . t | tu | cc

Classical logic obtained by introducing an inert constant cc (call/cc) for
Peirce’s law (taken as an axiom) ⇒ No reduction rule!

Constructions >, ∧, ∨, ∃ encoded using De Morgan laws (= full LK)

Typing rules

Γ ` z : A
(z:A)∈Γ

Γ ` cc : ((A⇒ B)⇒ A)⇒ A

Γ, z : A ` t : B

Γ ` λz . t : A⇒ B
Γ ` t : A⇒ B Γ ` u : A

Γ ` tu : B

Γ ` t : A
Γ ` t : ∀x A

x /∈FV (Γ)
Γ ` t : ∀x A

Γ ` t : A[x := e]
Γ ` t : ⊥
Γ ` t : A

Note: ∀ is treated uniformly: ∀x A(x) ≈
⋂

x A(x) (no function argument!)
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The target λ-calculus ({>,⇒,∧,∃}-fragment of LJ)

Syntax (Fragment of LJ)

Types A,B ::= > | p̄(e1, . . . , ek) | A⇒ B | A ∧ B | ∃x A
Proof-terms t, u ::= z | λz . t | tu | 〈t, u〉 | π1(t) | π2(t)

+ usual reduction rules for proof-terms

Typing rules

Γ ` z : A
(z:A)∈Γ

Γ ` t : >
FV (t)⊆dom(Γ)

Γ, z : A ` t : B

Γ ` λz . t : A⇒ B
Γ ` t : A⇒ B Γ ` u : A

Γ ` tu : B

Γ ` t : A Γ ` t : B
Γ ` 〈t, u〉 : A ∧ B

Γ ` t : A ∧ B
Γ ` π1(t) : A

Γ ` t : A ∧ B
Γ ` π2(t) : B

Γ ` t : A[x := e]

Γ ` t : ∃x A
Γ, z : A ` t : B

Γ, z : ∃x A ` t : B
x /∈FV (Γ,B)

Note: ∃ treated uniformly: ∃x A(x) ≈
⋃

x A(x) (no witness!)
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The Lafont-Reus-Streicher logical translation

The logical translation A 7→ ALRS

(p(e1, . . . , ek))⊥ :≡ p̄(e1, . . . , ek) ⊥⊥ :≡ >
(A⇒ B)⊥ :≡ ALRS ∧ B⊥ (∀x A)⊥ :≡ ∃x A⊥

ALRS :≡ ¬RA
⊥

corresponds to a program transformation on untyped proof terms,
called a continuation-passing style (CPS) translation:

(z)LRS :≡ λs . z s
(λz . t)LRS :≡ λ〈z , s0〉 . tLRS s0

(tu)LRS :≡ λs0 . t
LRS 〈uLRS, s0〉

(cc)LRS :≡ λ〈z , s0〉 . z 〈ks0 , s0〉
where ks :≡ λ〈z , 〉 . z s

Note: λ〈z, s〉 . t defined as λz0 . (λzs . t) (π1(z0)) (π2(z0))

Theorem (Soundness)

If Γ ` t : A

then ΓLRS ` tLRS : ALRS

(in the source λ-calculus)

(in the target λ-calculus)
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Computational analysis

Given a term t : A and a “stack” s : A⊥ (in the target calculus), we
use the notation t @ s :≡ t s (application of t to the stack s)

We observe that:

(λz . t)LRS @ 〈u, s〉 ≡ (λ〈z , s0〉 . tLRS s0) @ 〈u, s〉
�∗ tLRS[z := u] @ s

(t u)LRS @ s ≡ (λs0 . t
LRS 〈uLRS, s0〉) s

�∗ tLRS @ 〈uLRS, s〉

ccLRS @ 〈u, s〉 ≡ (λ〈z , s0〉 . z 〈ks0 , s0〉) @ 〈u, s〉
�∗ u @ 〈ks , s〉

ks @ 〈u, s ′〉 ≡ (λ〈z , 〉 . z s)@〈u, s ′〉
�∗ u @ s
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Towards the Krivine abstract machine

From the computational behavior of translated proof terms tLRS...

(λz . t)LRS @ 〈u, s〉 � tLRS[z := u] @ s
(tu)LRS @ s � tLRS @ 〈uLRS, s〉
(cc)LRS @ 〈u, s〉 � u @ 〈ks , s〉

ks @ 〈u, s ′〉 � u @ s

... we deduce evaluation rules for classical proof terms:

Krivine Abstract Machine (KAM)

Grab λz . t ? u · π � t[z := u] ? π
Push tu ? π � t ? u · π
Save cc ? u · π � u ? kπ · π
Restore kπ ? u · π′ � u ? π

Reformulating Kleene realizability through the LRS translation (and
its CPS), we get Krivine classical realizability (cf next talk)
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