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1 Introduction

In this book we explore 2-dimensional topological quantum field theories (TQFTs)
and certain algebraic structures that model them. Such algebraic structures are
called Frobenius structures for they all are generalizations of the concept of Frobenius
algebra and they are relatively simple to define and study from a mathematical
perspective, while at the same time they preserve a lot of the formal properties of
quantum field theories that appear in string theory. Let us start by describing the
simplests of cases.

A Frobenius algebra over a field k is a (non-necessarily commutative) associative
algebra A, together with a non-degenerate trace 0 : A — k. In other words, we
have that (xly) = 0(xy) = 6(yx) is a non-degenerate bilinear form. They have
been studied since the 1930’s — specially in representation theory — for their very
nice duality properties [BN37], [Nak39], and [Nak41]. In recent times the surprising
connection found to topological quantum field theories has made them subject of
renewed interest. In this book most Frobenius algebras will be (graded) commutative
(or super commutative).

Every finite group G provides us with the basic example, the center of the group
algebra A = C[G] with the trace 8 (}_ agg) = % is a Frobenius algebra.

A second important example is the Poincaré algebra associated to every compact
closed manifold M, provided by its cohomology algebra A = H*(M) with trace

o(w) :JMW,

for w € H*(M).
Poincaré duality is equivalent to the assertion that this is a Frobenius algebra.

In topology this fact manifests in many ways, for instance, in the existence of
an intersection product in homology that becomes a coproduct in cohomology. The

coproduct A is the composition of the Poincaré duality isomorphism D : H,(M) —
H*(M) with the dual map for the ordinary cup product p : H*(M) ® H*(M) —
H* (M)

AQA A
o

recall here that we are working over a field k.



If we consider the case of a non-compact manifold M, its cohomology algebra is
no longer a Frobenius algebra, but we may ask ourselves what structure remains. In
this way we arrive at the following definition:

Definition 1.1. A nearly Frobenius algebra A is an algebra together with a commu-
tative coassociative comultiplication A : A — A ® A such that A is an A-bimodule
morphism.

What this means explicitly is that whenever A(b) =3 ;b; ® b/ we have in turn
that the following equation holds: A(ab) =} ;(a-b;)®c;. Alsoif A(a) =) ;a1®a
then A(ab) =3 ; a;® (aj-b). We write these identities more compactly as follows:

A(ab) = aA(b) = A(a)b, (1)

and we call these equations the Abrams’ condition.

Clearly every Frobenius algebra is also a nearly Frobenius algebra. The first
important algebraic result [Abr96] is that a nearly Frobenius algebra is a Frobenius
algebra if and only if A admits a co-unit (or trace). In chapter 3 of this book we
look at Frobenius algebras and nearly Frobenius algebras from the point of view of
an algebraist, and we prove this result. In particular we classify semi-simple nearly
Frobenius algebras.

For ordinary Frobenius algebras there is a striking folk theorem stating that
it is the same to have a Frobenius algebra as it is to have a (1 + 1)-dimensional
topological quantum field theory (TQFT). A TQFT [Ati88] is a rule that assigns to
every topological (real 2-dimensional) oriented surface L whose boundary is divided
(according to orientation) into n incoming circles and m-outgoing circles, a linear
map:

Zy : AP — A®™

where A is a fixed (finite dimensional) vector space —the space of states of the theory.
We agree to define A®% = k. As these maps Zs run over all surfaces £, they must
satisfy certain compatibility conditions, the most important of which states if we
cut up a surface L into two smaller surfaces £’ and £’ in such a manner that the
intersection £’ N X" is the same as the outgoing circles of £’ and, in turn, equal to
the incoming circles of £”; we must have that the operator Zs is the composition of
the operators Zy, and Zy~, as in the picture.

We will also request that reflecting a picture X in a mirror (changing the orien-
tation) to obtain X, change the operator Zy by dualizing it:



Z-Z = ZZ" e} Z-):’

) )

Finally, and without loss of generality, we will assume that the cylinder

_sxi 0

corresponds to the identity operator, namely Zg1,; = ida. The structure of a TQFT
on A automatically endows A with the structure of a Frobenius algebra, where we
have the product as the operator induced by the pair of pants and the trace as the
operator induced by the right sided cap:

oD B



It is a fun exercise to show that the following pictures imply commutativity,
associativity, identity and non-degeneracy of the trace.

@ unit axiom

commutativity

associativity

non-degeneracy

If, instead of using (1 + 1)-dimensional surfaces interpolating between, we use
(n + 1)-dimensional manifolds interpolating between n-dimensional manifolds we
arrive at the concept of (n + 1)-dimensional TQFT.



Whenever we consider a closed (n + 1)-manifold £ (with empty boundary), we
define the number ¥y € k = A®° by observing that the linear map Zy: k — k if of
the form:

Z):(V) = W):X.

The number W5 € k = A®0 is called that partition function of the theory (evaluated
at X) and it is a topological invariant of X.

We motivate this abstract definition by the formalism of Feynman path integrals
in the first two sections of chapter 2. Sections 2.1, 2.2 and 5.1 in this book are
heuristic rather than mathematical, but the results of the rest of this work does
not depend logically on what appears there. They are included for the matter of
exposition.

In physics partition functions are thought of as containing the whole information
of a quantum field theory; however, there are more general topological quantum
field theories which do not have a partition function. We define a positive boundary
topological quantum field theory (TQFT+) just as an ordinary TQFT except that
Zs is possibly non-defined whenever the outgoing boundary of X is empty. Clearly
every TQFT is a TQFT+ but not conversely. If a Z is a TQFT+ it may not have
a partition function. In chapter 2 of this book, we prove that it is the same to have
a TQFT+ as it is to have a nearly Frobenius algebra. This fact generalizes the folk
theorem that we alluded at before. A TQFT+ is to be thought as a TQFT on a
non-compact background.

Ezample 1.1. There is a very beautiful example of a (n+ 1)-dimensional TQFT due
to Dijkgraaf and Witten [DWQ, [Seg99, ICV]. This is a (n + 1)-dimensional TQFT
(AG WG 7G) .4 associated to a finite group G. In this model we have:

e F(Y) = [Y,BG] = Bung(Y), where Bung(Y) is the set isomorphism classes of
G-principal bundles on Y. This is called the space of fields of this theory. In
chapter 2, we will explain in more generality what we mean by a field.

e AG(Y) = Maps(Bung(Y), C). Here we remark that Bung(Y) = Homy(m(Y), G)/ ~,

this last bijection being induced by the holonomy of the bundle. The symbol
~ denotes conjugation.

e For a boundaryless Y we have Z¢(Y) = [Hom(m;(Y); G)|/|Gl.

e If Y = Z has no output boundary then for each P € Bung(Z) we have:

1
WP = ) gy c©

QeBung (Y), Q|Z=P

10



Segal has shown that when the dimension of the model is T + 1, then we have:

e The Frobenius algebra (Ag,0g) associated to (AS, WS ZG),; is isomorphic
to the center of the group algebra C[G], with trace

1
0¢ (Z ?\gg) = @7\1.
g

e For a boundaryless genus g Riemann surface £ we have:

_ 1
Vs =2(5) =GP ) e
\%

where g is the genus of X and V runs through irreducible representations of G.

Ezxample 1.2. Consider any compact, closed manifold M, its cohomology An =
H*(M) is a Frobenius algebra (because Poincaré duality holds). From this we con-
clude that there is a TQFT Zn associated to M. We will return later on to the
construction of this theory from a space of fields. If we consider a non-compact
manifold M, then A is a nearly Frobenius algebra, and we can construct from this
a positive boundary TQFT.

The most fruitful method to produce examples of TQFTs in dimension 2 is to
consider moduli spaces M of maps from the surface X to a background manifold
X. integrating over the (virtual) fundamental class of the space M (also called
obstruction class) one gets rid of the dependance on the map and obtains a bona
fide TQFT. Orbifolds thus play a dual role in this book, for often the moduli space
M is naturally an orbifold, but also we are motivated by the physics to consider
background spaces X that are orbifolds and their virtual fundamental classes. These
are the subjects covered in chapters 5 (virtual fundamental classes) and 7 (orbifolds).

An orbifold X is a space X together with an structure that is very much like
that of a manifold, only that instead of locally looking like R™, orbifolds locally
look like R™/G, where G is a finite subgroup of GLx(R). In this book we will often
deal with orientable orbifolds so that we will further have G C SLx(R) for every
local group G. We will write X|yy = [U/G] to indicate that U — U/G = V is a
local chart of X, where U = R™ and G C SL,(R) is finite. An orbifold could be
of the form X = [M/G] for M a smooth manifold and G a finite group acting by
diffeomorphisms of M, and in this case we follow convention and call it a global
quotient orbifold [Moe02]. We will very often think about the case X = [M/G]. In
chapter 7 we deal with the formalism of orbifolds in a more leisurely manner.

11



Topological quantum field theories in dimension 2 on compact backgrounds
[Ati88| associated to orbifolds appeared first in physics [DHVWS6, DHVWS5]. In
the last decade such theories have become the object of intense study in mathe-
matics, specially since the seminal paper of Chen and Ruan [CR04a]. Chen-Ruan
cohomology is the state space for a TQFT with closed strings on a compact back-
ground [JKKO7]. Chen-Ruan cohomology and its variants are covered in chapter
11.

So far we have been dealing only with closed strings while physics teaches us
that introducing open strings with boundary conditions (branes) is a very fruitful
approach. A mathematical axiomatization of general 2-dimensional topological the-
ories with open strings and branes on compact backgrounds was put forward by
Moore and Segal in [MS]. In this book we introduce a generalization to the case of
non compact backgrounds. Both formalisms are dealt with in detail in chapter 4.
These structures are indistinctly called (nearly) Calabi-Yau categories or (nearly)
Frobenius structures, although we favour the latter name. From an algebraist point
of view they are categorical generalizations of Frobenius algebras. The orbifold or
equivariant formalism where we include the action of a global finite group G is
studied carefully in chapter 8.

The remaining chapters deal with important examples of nearly Frobenius struc-
tures.

There is a TQFT+ whose state space is the homology H,(LM) of the free loop
space LM of any smooth manifold M. This theory was first introduced in [CS]
and studied from the point of view of obstruction classes in [CJ02]. Cohen and
Godin [CGO04] proved that this theory is a TQFT+ (nearly Frobenius algebra). It
cannot be made into a TQFT even when M is compact. We give a new proof of
their result. We introduce string topology in chapter 6 and prove that this nearly
Frobenius algebra (TQFT+) can be extended to a full nearly Frobenius structure.
This is closely related to the result of Blumberg, Cohen and Teleman [BCT09)|.

Chapter 9 deals with the generalization of string topology from a background
manifold M to a background orbifold X. We prove in this chapter that orbifold
string topology [LUXO0S8| admits the structure of a nearly G-Frobenius structure.

While, on a manifold we have that the natural circle action (rotating the loops)
of the circle S! on LM has as its fixed points (LM)Sl, the situation is slightly
different for an orbifold X where we have that X C I(X) = (LfXZ)S] . (the localization
principle of theorem , where I(X) is the inertia orbifold of X, also called the
space of ghost loops of X. We can define a new TQFT+ by considering a sort of
string topology of ghost loops. We call such a theory wvirtual orbifold cohomology

12



[LUX07]. We prove in chapter 10 that virtual orbifold homology is the state space
of a full nearly G-Frobenius structure.

In chapter 11 we prove that when X is hyperkahler the virtual orbifold coho-
mology of the ghost loop orbifold I(X) is isomorphic to the Chen-Ruan theory of X
providing a link between different theories.

Discrete torsion is a beautiful degree of freedom for orbifold theories. In chapter
12 we motivate gerbes from the point of view of electromagnetic theory; then we
see discrete torsion as a particular case of a gerbe over a orbifold. Then we show
that discrete torsion provides a universal example of a G-Frobenius algebra, and
by tensoring Frobenius algebras, we can twist any G-Frobenius algebra by discrete
torsion providing an algebraic approach to this degree of freedom.

In chapter 12 everything comes together in the study of a beautiful example.
The (naive) symmetric product of a space X is defined often as the topological space
M"/G,, ;= M X --- x M/G,. In this book we consider instead the orbifold X :=
M™/SH] = [M x -+ x M/G4]. The final chapter of this book is a study of the
whole theory for the orbifold X = [M™/&,].

The prerequisites for this book are minimal, all the necessary background should
be covered in the graduate courses in geometry, topology, and algebra for first year
graduate students. The book tries hard to be self-contained, and the distinct chap-
ters can be read mostly independently. We include seven appendices of standard
material to help the novice. We tried to make the book amenable to physicists and
we hope that it may serve as a bridge between researchers in physics and mathe-
matics.

We would like to thank all the mathematicians that influenced this work through
conversations and correspondence, in particular, Alejandro Adem, Ralph Cohen,
Dan Freed, Hugo Garcia-Compean, Tommaso de Fernex, Samuel Gitler, André Hae-
fliger, Mariana Hain, Nigel Hitchin, Tyler Jarvis, Maxim Kontsevich, Ieke Moerdijk,
Jack Morava, Jacob Mostovoy, Thomas Nevins, Mainak Poddar, Yongbin Ruan,
Graeme Segal, Dennis Sullivan, Constantin Teleman, Ed Witten and Miguel Xi-
coténcatl were very influential in our approach to these questions.

We would also like to thank the institutions that partially funded this work. The
CONACYT partially financed the work of the first three authors and the Alexander
von Humboldt Foundation partially financed the work of the fourth author.

We dedicate this book to Anika, Ayelén, Leonardo, Karla and Luisa. May their
generation overcome the challenges we bequeath them.
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2 Classifying 2-dimensional TQFTs

2.1 DMotivation

Let M be R3 the 3-dimensional euclidean space.

Given two points in M, say p and ¢, we would like to compute the probability
that a particle which starts in p lands in q after certain amount of time T. The
answer is, of course, zero, but we can nevertheless still ask what the probability is
that the particle will be at a distance less than € from q.

Feynman gave a remarkable formula for the probability [Fey06]. Say that ¢ is the
initial probability distribution for the position of the particle at t = 0 (meaning that
J dol is the probability that the particle is in U at t = 0). Then the probability
distribution |¢| for the position at t =T is given by the path integral:

or(q) =JT oly(0))e MWDy 2)
where
Py = {y: 0,T] = Miy(T) = q} © Maps([0, T, M)
q
p
and -
1
S(y) = = '(1)[2dt.
v =3 ], wkar

In the picture we stress the classical (Euler-Lagrange) path minimizing S.

Moreover, if we think of |[¢p1) = ¢(q,t) as a one parameter family of vectors
(kets) in H = Maps(M, C) (usually thought of as a Hilbert space) then we have that
the main result of Feynman in this case is that ¢ satisfies the Schrédinger equation.

14



We can try to extract the formal structure behind formula [2] as follows:

Consider Pt to be a compact 1-dimensional manifold with boundary (namely
P =0, T]). We define the fields on a 1-manifold Y to be

F(Y) = Maps(Y,M),

the moduli space of all maps from Y to M. We will return to the subject of mod-
uli spaces below. Moduli spaces are often orbifolds. In any case we will divide
the boundary of Y into two portions that we will call the incoming and outgoing

boundaries
oY =Y Jar.

As part of the structure we need an action map:
Sy: F(Y) 5 R

which in our case could be given by:

1
Sty) =5 | W1~
=3
We have the following properties:

i) We have restriction maps (forming a correspondence)

F(d,Y) F(01Y)

ii) Whenever we have Y =Y’ UY” where Y/ NY” =9;Y' =0oY”

Y/ T] Y//

° ° .T] +T,

then
Sy(v) = Sy(vlyr) + Sy(yly~)

iii) We have the following pull-back diagram. The fact that this diagram is carte-
sian implies that we do have a l-parameter action on H = Maps(M,C) =

15



Maps(F(e), C):

F(Y)
LS
F(Y") / » F(Y" }

F(dY Y ny” 1Y)

iv) The initial ket[| |bo) evolves along Y according to the formula

[b1) = (i (m(Ido)) - e 7). (3)

We will call this the pull-push evolution formula. 1t is the fundamental formula
for all that follows and requires some clarification.

|bo) € H can be seen as an element in Maps(F(00Y),C) for 0pY = e a
point and hence F(9oY) = F(e) = Maps(e, M) = M.

75(Ido)) is an element in Maps(F(Y),C). In fact when we evaluate at
Y € F(Y), we get (m5(ldo)))(v) = dolv(d0Y)) = do(v(0)).

(711),: Maps(F(Y),C) — Maps(F(e),C) is the map that integrates over
the fiber of 7ty: F(Y) — F(e) (which in this example is the path space Pq
and therefore it is given by a path integral). Namely:

() (©))(q) —L o (y)Dy

You may want to think of the exponential term as a sort of Chern class
for a line bundle over F(Y). It causes the integral to become oscillatory,
and when h approaches 0, stationary phase approximation makes the
probability that the particle travels the classical (Euler-Lagrange) path
approach to 1. Feynman designed it with this specific purpose [Fey06].

Formula [3]is in fact exactly equivalent to formula

'The word ket comes from bracket. So for a given vector space 3 elements |§p) in K itself are
called kets and elements (T|; in the dual space H* are called bras. The numerical evaluation (T|})
ends up being a bracket. The joke is Dirac’s.

16



The algebraic abstract structure that we will extract from this is the following.
Define

Hy: = Maps(F(Y),C)

then we have

a) We will write H for H(e). To every O-dimensional manifold we have
associated a vector space H.

b) To every 1-dimensional manifold (say of length T) we have associated a
linear operator
L H—-H

Z1(do) = .

¢) Whenever we glue 1-manifolds, we compose the corresponding linear op-
erators. Namely we have homomorphism from R to GL(H).

The field theory just described is not topological, for the operators depend on the
length T of the 1-manifold. In a topological theory the operators are independent on
the geometry of the 1-manifold and only depend on their topology (hence we only
have two operators: the one associated to the interval, and the number associated
to the circle).

Here we should mention that in string theory we usually start by assuming
that, rather than point particles interacting at singular points, we consider extended
strings as in the following picture:

o

b

Particle interaction

String interaction

17



In the picture we have a particle a scattering in to a pair of particles b and ¢, and
the corresponding situation with a string scattering. You should think of this picture
as living inside the ambient space time M. Notice that the string interaction has no
singularity.

Traditionally one thinks of M as a smooth manifold, for example, in general
relativity. Later on we will think instead that the ambient space-time is an orbifold
X. While a (parameterized) string on a manifold can be modeled by an element of
the free loop space:

v € LM = Map(S',M),

namely a piecewise smooth map form the circle to M; in an orbifold the definition
of a loop is more intricate, we will come on this issue later. For now let us see what
the basic formal structure is for string interactions.

2.2 Feynman’s Path Integral Heuristics.

The purpose of this section is to provide motivation to the definition of a topological
quantum field theory (TFT) in geometry and topology. The subject has a long and
very interesting history in physics before it entered the mathematician’s language,
where it was incepted primarily though the influence of E. Witten [Wit89]. It was
him who proved that the concept was very fruitful to study a host of mathematical
phenomena in geometry and topology, specifically giving remarkable applications to
knot theory.

Let us start by describing briefly what is usually meant by a quantum field
theory in physics. We start by a space-time M which is a given smooth manifold of
dimension n + 1. We are also given for every manifold M (with boundary) a space
of fields F(M). For every x € M, we have (complex valued) local observables of the
form Oy: F(M) — C, so that Ox(¢p) € C for every field ¢ € F(M). The notation
Ox(d) is meant to signify that its value depends on ¢, the germ of ¢ around x.
The most important part of the structure is a probability measure u on F(M) called
the Feynman measure. All the physics of a quantum system is then contained in the

expectation values (Oy), and the correlation values (O,(J])O,%)OQ) e oQﬂ).

In a great majority of examples we have that
n=e SPDg,

where the action S: F(M) — R if of the form
() = | L6, Dplax,
M
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where £: TM — R is called the Lagrangian of the theory.

Following Atiyah [Ati88] and Segal [Seg88al,[Seg99] we will extract an algebraic
gadget out of this picture. To do this, notice that whenever we cut up a manifold
M into two submanifolds M1 and M; with common boundary X as in the picture:

M

/_/%

M,

We can use the fact that S(b) = S(d1) + S(d2) where ¢ is the restriction of ¢
to M, and roughly write:

Zn = J e SPIpg — J Z1($)Z2($) D,
F(M) F(X)

where
Zi(p) = J e Sy,
GieF(My), dilx=v
Let us denote by Hx := Maps(F(X),C). Clearly Hx has the structure of a vector
space, and we have that since Zi: F(X) — C, then Z; = Zyp, € Hx for an +1
dimensional manifold Mj with boundary X. In other words, whenever a n + 1
dimensional manifold N has as its boundary a n dimensional manifold X we set:

e*iS(CDiJ-Dq)i'

Zui) = |
GiET(N), dilx=
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Obtaining in this manner a vector:

ZN € Hx.

In this way a quantum field theory (of dimension n + 1) provides us with an
assignment X — Hx of a vector space for every n-dimensional manifold, and a
vector N — Zx whenever a n 4+ 1 dimensional manifold has boundary ON = X.

We can do a little better. Consider a scattering process. Suppose now that we
think of the manifold as having an initial boundary 09N = Xp and a final boundary
01 = Xj:

\
>
I
@ e () Mx
L=

Let Hx, := Maps(JF(X;),C). Then we can write a linear operator of the form:
ZNi HXO — HX] ,

by the formula:
(Zn(¥)) (1) J K1, bo)¥ (o) Do,

F(Xo)
where the kernel K is given by

K($1, ) = J e SIDg,
HEF(N), blx; =y

We should also note that (formally at least) since Hx := Maps(F(X),C), then
we have that:

Hx 11x, = Maps(F(X; HXz),C) = Maps(F(X1), C)xMaps(F(X2),C) = Hx, xHx,.
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If, as in the picture above, Xy (resp. Xj) can be written as the disjoint union of
its connected components Xo1 [ [ Xo2 (resp. X171 [ [ X12][X13,) then the map

ZNI me X HXOZ — }‘IX]1 X ]‘{X]2 X HX13,
is actually a map
ZN: HXO] ®HX02 HHX]] ®HX]2 ®HX]3)

for the required multilinearity conditions are easy to verify.

Also easy to verify is that, whenever we glue two cobordisms N = No U N7 as
depicted below:

we have that

Zn=2Zn, o Zn,.

What is quite surprising at first is that for many examples, roughly speaking,
the assignments:
X = Hx, N — ZN»

for all X and for all N, contain all the information of the field theory, namely
we can recover all correlations from those mappings. For topological field theories
and 2-dimensional conformal field theories, this is the case. This is great news
for mathematicians since the purported measure on the space of fields F(M) often
does not exists. Nevertheless the assignments do exist and provide a mathematical
definition for the field theories in question.

When the assignment N — Zx depends on the metric of N we refer to the theory
as an Fuclidean field theory, when it depends only on the conformal structure we
call it a conformal field theory, and when it only depends on the topology of N we
call it a topological field theory. In the last case the correlations will be independent
of the metric.
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2.3 Topological Field Theories in Dimension 1+1

Michael Atiyah in [Ati88] and [Ati90] defined nD-Topological Field Theory (nD-TFT)
ZA, using the following data:

1. A vector space Z(X) associated to each (n — 1)-dimensional closed manifold
z.

2. A vector Z*M) € Z*(dM) associated to each oriented n-dimensional mani-
fold M with boundary oM.

3. An isomorphism Z(f) : Z(Xq) — Z(X;), where f : X1 — X, is an orientation
preserving diffeomorphism.

This data is subject to the following axioms:

(i) Z* is functorial with respect to orientation-preserving diffeomorphisms of &
and M.

(ii) ZA is involutory, i.e. ZME*) = ZML)* where L* is £ with opposite orientation
and Z*(Z)* is the dual vector space of Z(X).
(iil) Z? is multiplicative

ZMI U L) = ZM(Z) @ ZA(Z2).

(iv) Z*(0) = k, where () is interpreted as the empty (n — 1)-dimensional closed
manifold.

(v) ZM0) =1, where ) is interpreted as the empty n-dimensional manifold which
interpolates between two empty (n — 1)-dimensional closed manifolds.

(vi) If f: £ — X, is an orientation-preserving diffeomorphism, then Z(f) : Z(Z1) —
Z(X;) is an isomorphism.

These axioms are meant to be understood as follows: The functoriality axiom
means that an orientation-preserving diffeomorphism f : £ — X’ induces an isomor-
phism ZA(f) : ZMX) — ZA(X’) and that Z*(gf) = Z*(g) ZM(f) for g : £’ — Z”. Also
if f extends to an orientation-preserving diffeomorphism M — M’, with oM = L
and OM’ = ', then ZA(f) takes the element Z*(M) to Z*(M'). The multiplicative
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axiom is clear. Moreover if 0My = ;U X3, OM, = X3 X and M = M Ug, M3 is
the manifold obtained by gluing together the common X3-component:

% 2y

23

Then we require:

ZA M) = (ZA (M), ZA(M2))

where (,) denotes the natural pairing coming from the duality map,
ZM(Z1) @ ZM(Z3)" ® ZM(L3) ® ZM(E2) — ZM(Z) @ Z7(L2)

defined by a® g @ b®c — @(b)a®c. This is a very powerful axiom which implies
that Z*A(M) can be computed (in many different ways) by “cutting M in half” along
3.

2.4 Categorical Definition of a TQFT

The first step is to define an appropiate category of cobordisms that permits us to
give a functorial definition of a nD-TFT.

Definition 2.1. Let Ly and X two compact, connected, oriented (n— 1)-manifolds,
we say that they are cobordant if there is a n-manifold M, with boundary X7 L X;
in this case we say that M is a n-cobordism of X to Z,.

If we fix a positive integer n, we can construct a category nCob where the
objects are the closed smooth (n—1)-dimensional manifolds, and the morphisms are
the oriented smooth n-dimensional manifolds (n-cobordism). We need to address
whether the composition of two cobordisms of the same dimension is a smooth
manifold. Up to a smoothing process this can be arranged (see [Koc04]). Let be
nCob’ = néﬁ)/ ~ where ~ is equivalence by diffeomorphisms. Let £ be a closed
submanifold of M of codimension 1. We assume that both are oriented. At a point
x € X, let [vy,...,vn_1] be a positive basis for TyX. A vector w € T,M is called a
positive normal if [vq,...,vn_1,W] is a positive basis for T,M. Now suppose L is
a connected component of the boundary of M with an specific orientation; then it
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makes sense to ask whether the positive normal w points inward or it points outward
as compared to M. Locally the situation is the following, a vector in R™ either points
inward or outward with respect to the half-space H™ (H™ = {(x1, ..., xn) € R™: xy >
0)}). If a positive normal points inward we call £ an in-boundary, and if it points
outward we call it an out-boundary. To see that this makes sense we have to check
that this does not depend on the choice of positive normal (or the choice of the
point x € X). If some positive normal points inward, it is easy to verify that every
other positive normal at any other point y € X points inward as well. This follows
from the fact that the normal bundle is a trivial line bundle on X. This in turn
is a consequence of the assumption that both M and I are orientable (see Hirsch
[Hir95], theorem 4.4.2). Thus the boundary of a manifold M is the union of various
in-boundaries and out-boundaries. The in-boundary of M may be empty, and the
out-boundary may also be empty. Note that if we reverse the orientation of both
M and its boundary X, then the notion of what is in-boundary or out-boundary
remains the same. We will denote by nCob the category nCob’ where every object
is given an orientation (therefore any cobordism has a direction).

For the next definition we will assume that the reader is familiar with the concept
of monoidal category; if this is not the case, we refer the reader to Appendix 16.

Definition 2.2. An n-dimensional topological field theory is a symmetric monoidal
functor Z€, from (nCob,U,(,T) to (Vecty,®,k,o).

In all that follows we will further assume that the topological cylinder Xy :=
ST x [0, 1] seen as a cobordisms between a circle and itself gets assigned the identity
map by the functor, to wit Z¢(Zy) = id.

Proposition 2.3. Atiyah’s definition and the categorical definition of a TFT coin-
cide.

Proof. Suppose Z” is a TFT in the sense of Atiyah, then for M an oriented n-
dimensional manifold, the next isomorphism gives the correspondence

Y ZA(L)* ®ZME3) — Hom(ZA(£4),ZA(%,))

7 M) — ZS(M) (%)

where 9M = % U ;. Set ZS(M) := ZA(M); if we identify the image of the
idempotent element Z*(Z x 1) with the identity T7A(5), then we get a functor

7€ : nCob — Vecty. This functor is well defined by the functorial and multiplicative
axioms. Moreover, the monoidal structure is given by U — ® and it is symmetrical
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since ZC(szz/) = O—ZC[Z),ZC(Z/]'

Conversely, given a symmetrical monoidal functor Z¢ : nCob — Vecty, if X
is a closed (n — 1)-dimensional smooth manifold, set ZA(Z) := Z¢(Z). For M a
n-dimensional oriented smooth manifold we take

ZAM) =Z(M)(1) € Z(Z1m)* ® Z9(Zow),

where M’ is M reversing the orientation to the in-boundary. By hypothesis, we have
Z€(0) = k. Moreover, the functor Z€ is multiplicative and it is independent of the
cut by the correspondence[64] As consequence, the axioms (iii) and (iv) are satisfied.
Clearly ZA(0) =1® 1. Axiom (v) follows from W(ZA(0)) = Y(1®1) =k. Axiom (i)
is satisfied because Z¢ factors through differential homotopy classes. Axiom (ii) is
proposition [2:5

L J

Corollary 2.4. For a Topological Field Theory 7. of any dimension and X an object
in nCob, the image of X under Z is a finite dimensional vector space.

Proof. Let
(,)s Z(D)®Z(Z") — k

and
Os:k — Z(Z") ® Z(X)

the maps associated to B and @ respectively. Since Z is a TFT, then the next
diagram:

(,)s ®id
Z(%) (Z(2) © 2(£)) @ Z(2) s k@ Z(%)
T 5 |
Z(D) ok Z(2)® (Z(Z*) @ Z(X)) Z(X)
is the identity map. Graphically:
~ QC_0
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then we have ((, )y ® 1z(x)) o (Iz(x) ® 05) = lyix). For 6z(1) = } v; ® wj and
a € Z(X) then we have:

a—a®l=((,);®lyg)o(lzx®0z)(ax 1)
=({(, >z®]Z(z))(Za®Vj ® wj)
= Z (a,vj)y @ Wj — Z (a,vj) sWj.

Therefore a = }_ (a,v;)ywj, and consequently {wj} generates Z(Z), but since k is
at least a division ring, we can extract a basis from the generating set. Now since
every division ring has the property of invariance of dimension then Z(X) is finitely
generated with n = rank(A) < [{wj;}/.

L J

The simplicity of the definition may be misleading: it is remarkable how much
information a TFT encodes. For example, the fact that the theory only depends on
the topology implies that to the cobordisms

~o o
~~ ~o

we associate the same linear transformation, which is the identity. This equivalences
are called the zig-zag identities. This simple fact implies that for any n-dimensional
TFT the vector space associated to every object of nCob inherits the structure of a
Frobenius algebra.

Proposition 2.5. Let Z be an n-dimensional TFT, and ¥ an n-dimensional ori-
ented closed smooth manifold, then Z(X) is equipped with a nondegenerate pairing

and Z(X*) ~ Z(X)".

Proof. Similarly to we have that the next diagrams:

(Ns®Tz(s)
Z(X) (Z(L) @ Z(Z*)) @ Z(X) k®Z(X)
:\L 17(5)®6s T: l:
Z(L)®k Z2(X)® (Z(X*) ® Z(X)) Z(X)
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and

O @17z %)
k®Z(Z*) ———— (Z(Z*) ® Z(X2)) ® Z(X*) Z(xr)
_T* . J/_ wny 12z ©0)5 j_
Z(rr) Z(2*) ® (Z(X) ® Z(x")) Z(r) @k

are the identity maps of Z(X) and Z(Z*) respectively, i.e.

Tzis) = ((, ) ®1z5)) o (1z(x) ® 05)

and
Tzi5) = gz @ (, )g) o (0 @ 17(5+))

An easy algebraic exercise proves that (, )y is a nondegenerate pairing and that the

map
Nete © Z(Z¥) —  Z(Z)*

Y — <X,y>z

is an isomorphism (for we can use that Z(X) and Z(X*) are finitely generated).

2.5 (1+1)-Dimensional TQFTs as Frobenius Algebras

Theorem 2.6. There is a canonical equivalence of categories
2D-TFTy ~ cFAk

where cFAy is the category of commutative Frobenius algebras.

Proof. We only sketch the proof. We closely follow Moore-Segal [MS] for this. It is
easy to see that a 2D-TFT determines a Frobenius algebra. This is the vector space
A associated to the circle. The next cobordisms induce a product u: A A — A

and a unid u:k — A.

LAA— A uk—A
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The next pictures imply respectively the properties of associativity, commutativity,
unit and non-degeneracy:

We need to prove that when we have a commutative Frobenius algebra we can
assign a well defined functor from 2 Cob to Vecty, for this first we note that the cate-
gory is generated under composition and disjoint unions by the next five elementary

cobordisms: b; Q.0 0.0 @

For this fix a 2-dimensional cobordism X. It is not hard to associate a linear
operator to a pair consisting of a cobordism together with a decomposition on the
previous five elementary building blocks. The problem is to show that the operator
is independent of the chosen decomposition.

The basic idea of the proof is analogous to the proof of the Poincaré-Hopf theo-
rem, where one embeds the discrete space of triangulations on the continuous space
of vector fields on a manifold and moving around in the space of vector fields one
proves that the Euler characteristic does not depend on the triangulation. Now we
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will embed the discrete space of possible decompositions of X into the continuous
space of Morse functions on X.

Given a Morse function f: £ — R on a 2-dimensional cobordism (with the bound-
aries attaining constant values corresponding to the max and the min of the function
f, and all critical points of Morse type and taking different values) we must associate
a decomposition of L. This is easily achieved by cutting up sigma along f~'(t) for
one choice of t between any two consecutive critical values of f.

Moreover every decomposition in elementary cobordisms can be achieved by a
Morse function of this sort. The construction of a well defined functor is possible
because there is a path in the space of Morse functions that joins any pair of Morse
functions associated to a specific cobordism. According to Cerf’s theory [Cer70], two
Morse functions can always be connected by a good path in which every element is
a Morse function except for a finite set which belongs to one of the two following
cases:

1. The function has one degenerate critical point where in local coordinates (x,y)
it has the form +x? + y3.

2. Only two critical values of Morse type coincide.

It is understood that in any of the two cases the remaining critical values are
different (for the case 1, they are even different to the degenerate critical points)
and of Morse type. The invariance of the operator associated to X in the first case is
implied by the unit and counit axioms; for the second case we must use the identity
for the Euler number:

X = Z(—1 ) ea

with c) the number of critical points of index A of its Morse function. Since every
elementary cobordism has at most a critical point of index O, 1 or 2; then for the
case X = 2 the cobordism corresponding to the two critical values has Euler number
—2,0 or 2. When x =0 or 2 the only relevant possibilities are the cylinder and the
sphere while for x = —2 it is just a torus with two holes or the sphere with four holes.
In the case (1,1,1) (one entry, genus one and one exit) there is nothing to check,
because, though a torus with two holes can be cut into two pair of pants by many
different isotopy classes of cuts, there is only one possible composite cobordism, and
we have only one possible composite map:

A—-ARA — A.
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Note that the coproduct is just

A—L-A@A

Al %1@)\‘

m

where A is the corresponding Frobenius isomorphism between A and its dual. For a
commutative algebra is easy to prove that

Ala) =) ae@ef =) eiwela

with {e;} a basis for A and # denotes the dual. For the sphere with four holes
when we have (3,0,1) and (1,0, 3) these cases are covered by the associativity of
the product and coassociative of the coproduct respectively. Finally for (2,0, 2) it is
enough to prove that it is well defined for all the possible pants decomposition; it is
known that for a compact surface (m, g,n) (meaning m input circles, genus g and n
output circles,) every pair-of-pants decomposition has 3g —3 + m + n simple closed
curves which cut the surface in 2g — 2 + m +n pairs of pants, hence for this case we
have only a curve dividing in two pair of pants and then the only possibilities are:

but this is clearly Abrams’ condition [I| from the introduction.
L

Notice that to have a full proof of the theorem we need the result stating that an
almost Frobenius algebra with a count is exactly the same as a Frobenius algebra.
We will prove this result in the next chapter.

2.6 The Case of Positive Boundaries

— +
We define the category nCob by considering its object to be oriented non-empty
closed smooth (n — 1)-dimensional manifolds, and the morphisms are the oriented
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smooth n-dimensional manifolds(n-cobordism). Notice we do not allow the empty
manifold to be the in-bounday nor the out-boundary. We always have components
on both sides so in the following picture the first cobordism m is allowed while the

second ¢ is forbidden:

—~ +
Let be nCobt =nCob / ~ where ~ is the relation of diffeomorphism equivalence.

Definition 2.7. An n-dimensional positive boundary topological field theory (TQFT+)
is a symmetric monoidal functor Z<, from (nCob™,U,(,T) to (Vecty,®,k,o).

Theorem 2.8. There is a one-to-one correspondence between nearly Frobenius al-
gebras and (1+1)-dimensional positive boundary topological quantum field theories.

Proof. We want to show that it is the same to have a positive boundary 2-dim
TQFT (where every connected component of the 2-dim surfaces that represent the
morphisms in Cobzr always have non-empty input and output boundaries) as it is
to have a nearly Frobenius algebra (without units). To do this, we must consider
a surface with m > 0 incoming boundary circles, n > 0 outgoing boundary circles,
and genus g which we denote by L, gn. We want to define the maps:

Wy o oo tAET 5 AR

and to do so we decompose the surface into three types of elementary pieces, namely
pieces that look like pair of pants, cylinders, and inverted pair of pants:

To do this, it is enough to consider a perfect Morse function over Ly, g n, that is to
say a function f : L, g n — R with isolated critical points x1, ..., X} € L and a strict
inequality f(x1) < f(x2) < ... < f(xi). Moreover, we can request that f1(0) = dinZ
and f1(1) = 8ouwX. Let us pick real numbers

0=1to < f(x7) <t1 <f(x) <ty<..<fF(xx)<tg.
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As all of the ty are regular values we have that fq(tj) is a union of circles, also
f~1[t;, tj41] has only one critical point and so f~[tj, tj;1] is the disjoint union of
elementary pieces. Therefore the function f, together with the choice of ty, ..., ty,
gives a decomposition of Xy gn that (by the way) is clearly independent of the
choice of ty, ..., tk.

For a given decomposition of X gn, a convenient f realizing one such decom-
position can always be obtained from a particular embedding J¢ : Zm gn — R3, in

such a manner that

J
f=molf: Zmgn < RZHR,

For example consider the following decomposition of 4> 5 obtained by an embedding

J:

Lo
to tl t2 tS t4 t5 t6 t7 t8 t9 th tll

v

So let us assume that we are given a decomposition of X, gn in elementary pieces.
) )
We can associate a linear mapping

Zimgm : AT — A®T
using only the given decomposition, and the structure of nearly Frobenius algebra

(A, u,A) over A. Recall that the multiplication is a map u: A — A ® A and the
comultiplication is map A: A — A ® A.

Using p and A and the decomposition of Ly, gn We can construct Zy, gn by

32



associating to every elementary piece a map as follows

— HIA®A-—A

Q0 5 iaa—a

— A:A—AQA

At this moment it is relevant to point at that we can identify two decomposition of
L m,gn that differ only by insertion or deletion of cylinders, for example nothing is
gained or lost by the following insertions:

The five subdivision of £ > get the same map A: A — A ® A associated to them.
It is at this point that we use both the commutativity of u and the co-commutativity
of A in order to be able to uncross the cylinders in the case that they are braided.

Therefore from now on we will identify two subdivisions if they differ by the insertion
or deletion of cylinders, even when they are braided (in which case we are allowed
to unbraid them).

To construct the map Zy gn we use the symmetric monoidal structure ® and
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the composition. For example to the following decomposition of X; 7 >:

We associate the map Z 12 : A®2 5 A®2 given as follows. Write A(a) = 2 i &iom,
then consider the composition

1
Zr1siaob—22L Alg)eb———Z Ala)b = Y, & ® (nib)

: a > i &ilnib) A A () ;&mib)

Notice that we could decompose X5 1 in a different manner:

getting in turn:

Zéj,z:a@b* s ab't = A(ab)'—H'H(A(ab))l—’A(u(A(ab)))

Namely Zéj)z(a ®b) =A(n(A(ab))).
Now the Frobenius identity:
A(a)b = A(ab).

Tells us that we can always exchange a portion of the decomposition that looks like




for one that looks like:

a®b+— Alab)

Geometrically this has the effect of exchanging the critical points x7 and x» permut-
ing them.

Algebraically this shows that Z; 1, = Zé 1 for we have

Zh 15 € Alu(A(ab))) =

= A(u(A(a)b))) = A(H(Z £ ® (nib))) =
= A(Z &mib) = Z312(a®Db)

The associativity of the product p allows one to exchange two left-handed saddle
()
b() D)
(L1 () (ab)e

(14 ()

b ' . )
P
¢ . a(be)

Correspondingly, the coassociativity of A also permits the exchange of critical points
but the right handed ones:

|
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points of f as follows:

is the same as




We want to show more generally that given X, gn, and a pair of pants decom-
position (and cylinders) the map Zy, gn defined by the above procedure does not
depend on the chosen decomposition.

Let us start by pointing out that any pair of pants decomposition can be realized
by an f = 7ty o] for an embedding J : L1y gn < R3 depending on the decomposition.
Given the combinatorial data of the decomposition we obtain the embedding by
assembling back X, gn on top of a flat wall out of elementary pieces that look like
straight pairs of pants and straight cylinders. All the pair of pants (left sided and
right sided) we use are of some length 1 =1 but their height h is allowed to change
arbitrarily, we can stretch a pair of pants horizontally. Cylinders are all of the same
length 1 = 1. Starting by the combinatorial data of the decomposition we assemble a
3-dimensional model of the surface J : L1y gn < R3 by using the pieces we described,
adding as many cylinders as necessary. At this point we may need to slightly perturb
the embedding to make sure that the Morse function f =y 0J: Ly gn — R sat-
isfies f(xi) # f(x;) for every pair of critical points xi,%;. The picture below depicts
an example of such perturbation:

. . xl
Perturbation

-

ll 1
T 1/2 T

= L f65) foe) ol

X3

%o

A 4

h 4

f(x1) < flx2) < f(x3)

The previous procedure produces the embedding J : £y gn < R3 that induces
the given decomposition (up to cylinders) by making a cut in between every two
consecutive critical values, f(xi) < tif(xi11). We need the extra cylinders to con-
struct the embedding J, but the linear mapping Zmy gn : A¥™ — A®™ is unaffected
by them. We want to show that Zy, g is independent of the initial decomposition.
To do this let us introduce the normal embedding JNormal . Limgn — R3. In the
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picture below we depict the normal embedding J: X475 < R3,

! | | | L 11|
tO tl tQ t3 t4 ts te t7 t8t9 t10 t11

N
7

flx1) < f(x2) < f(x3) < flxa) <fxs) < flxe) < flx7) <flxg) < flxg) <flx10) < flx11)

The dotted lines in the figure indicate the values at which we cut the surface. The
induced pair of pants decomposition of L gn is called the normal decomposition,
and the corresponding map is Zm‘,’gy}d AP A®M Al we need to show for
an arbitrary decomposition with associated linear map Z : A®™ — A®™" is that
Zﬁ?g}}al, and this will imply the independence on the decomposition. Let us start
with an arbitrary decomposition of L, gn; and construct as above its associated
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embedding J : Ly gn — R3 as below:

Notice that using the fact that the Fuler characteristic satisfies:
e X(AUB) =x(A)+x(B) —x(ANB)
o x(S=x(S"xI)=0
® X(X201)=-1

We can conclude that —x(Xm gn) is the number of pairs of pants in any decomposi-
tion, and this in turn is equal to the number of critical points x1, ..., Xy for any f = 70
J; and therefore we can conclude that the curves o1, o2, B1, B2, B3,Y1,Y2,01,02,03,04
are in one to one correspondence with the corresponding curves for the normal em-
beding JN°T™al Ty finish the proof all we need to do is to pull one by one every one
of the curves oy, a2, 31, P2,B3,vY1,Y2 01,02,03,084 into normal form. To facilitate
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this we first may need to add as many cylinders as necessary at any given cut point
tk as in the picture below

o<(0 I 00
(@ 000D

Notice that s=m —1, r=n —1 and g are topological invariants.
As we pull the curves into normal form one at a time, and each curve has at most
one critical point we got a finite sequence of decompositions, and a finite sequence

of linear mappings
Zo=2,71,23,...,Zn = ZNormal

m,g,n

To show that Z; = Zi;1 notice that the corresponding decompositions (or rather
embeddings) differ by the crossing of two critical points of f = 77 0 J (where t is the
time parameter for the time dependent embedding as we pull the curves into normal
form). But then Z; = Zi;1 is ensured by the Frobenius equation, the associativity
of i and the coassociativity of A. This concludes the proof.

L J

We should point out here that the most general version of this type of clas-
sification theory is the Baez-Dolan cobordism hypothesis proved by Jacob Lurie
IBD95L Lur09].
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3 Frobenius Algebras

3.1 Frobenius Algebras

We start with the classical result of F. G. Frobenius from 1903 ([Fro03]) character-
izing the finite dimensional algebras over fields for which the left and right regular
representations are equivalent, which are called Frobenius algebras. We present the
basic characterizations of Frobenius algebras, which was established in 1937-1941 by
R. Brauer, C. Nesbitt and T. Nakayama.

Fix a field k of characteristic zero. A unital k-algebra is a k-vector space A
together with two k-linear maps

m:ARA—A and u:k— A

called multiplication and unit such that m is associative and u is the unit (u(1) =
TA).

Let A be a finite dimensional k-algebra, {a1 , a2, ..., an} is a basis of the k-vector
space A, and o5 € k, 1,j,k € {1,2,...,n} are the associated structure constants,
that is,

n
Q;ax = Z Kijai
i=1

for all j,k €{1,2,...,n}.
We consider the matrices
L(gj) = (L(aj)ix) = (xiji) y € Mn(k),j € {1,...,n},

R(a) = (R(at)ik) = (xia);, € Mn(k),Le {1,...,n},

which determine k-linear maps L: A — My (k) and R: A — Myu(k), respectively.
We denote also by Rt: A — My (k) the k-linear map such that RY(a) = R(a)t, the
transpose of the matrix R(a), for any a € A. The maps

L:A— Mp(k) and R':A — My,(k)

are representations of the algebra A over k, called by Frobenius the first (left) reqular
representation and the second (right) reqular representation of A over k, respectively.
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Definition 3.1. A finite dimensional k-algebra A over a field k is said to be a
Frobenius algebra if the first (left) regular representation L and the second (right)
regular representation Rt of A over k are equivalent (for a chosen basis of A over k).

For a finite dimensional k-algebra A over a field k, a k-bilinear form ( , ) :
A ® A — k is said to be associative if (ab,c) = (a,bc) for all elements a,b,c € A.
Moreover, a k-bilinear form ( ,) : A ® A — k is said to be non-degenerate, if for
every nonzero element a € A, the linear forms (a, ), (,a): A — k are nonzero.

We present theorems of R. Brauer, C. Nesbitt and T. Nakayama from [BN37],
INak39|, and [Nak41] which give a criteria for a finite dimensional k-algebra A to be
a Frobenius algebra, and are independent of the choice of a basis of A.

Theorem 3.2. Let A be a finite dimensional k-algebra over a field k. The following
conditions are equivalent.

(i) A is a Frobenius algebra.
(i) There exists a non-degenerate associative k-bilinear form (,): A ® A — k.

(iii) There exists a k-linear form € : A — k such that ker(e) does not contain a
nonzero right ideal of A.

(iv) There exists an isomorphism A : A — A* of right A-modules, where the dual
space A* is an A-module with the action (f — a)(b) = f(ab), for allb € A.

Proof. To show the equivalence (i)&(ii) we observe that a matrix P = (pij)i]. de-
termines the k-bilinear form ( , )p : A ® A — k such that (aj, aj)p = py; for all
i,j €{1,2,...,n}. Conversely, every k-bilinear form (,): A ® A — k is of the form
< , > = ( , >P, where P = (pij)ij S Mn(k) with Py = <ai, Cl)'> for i,j € {1,1,. .. ,TL}.

Let P = (pij)i]. be a matrix from My (k). We claim that the following equivalences
hold:

(1) The form (, )p is associative if and only if PL(a) = R*(a)P for all a € A.

(2) The form (, )p is non-degenerate if and only if the matrix P is invertible.

The equivalences (1) and (2) show that the conditions (i) and (ii) are equivalent.

(il)=(iii) Let (,): A ® A — k be a non-degenerate associative k-bilinear form.
Define the k-linear form ¢ : A — k by

e(a) =(a,Ta) =(1a,a) forae€A.
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(iii)=(ii) Let € : A — k be a k-linear form such that ¢(I) # 0 for any nonzero
right ideal of A. Define the k-bilinear form (,): A ® A — k by

(a,b) =¢(ab) forall a,beA

(iii)=(iv) We define the k-linear map A : A — A* such that A(a)(b) = ¢(ab) for
a,beA.

(iv)=(iii) Assume A : A — A* is an isomorphism of right A-modules. Define the
k-linear map ¢ : A — k by ¢ = A(1) € A*.

L J

Lowell Abrams in [Abr96] and Aaron D. Lauda in [Lau05] gave two additional
characterizations of Frobenius algebras. They assumed that the algebra A is com-
mutative to prove these results. We prove, in the next theorem, the same results in
the general possibly non-commutative case (see [Hai06]).

Theorem 3.3. A finite dimensional k-algebra A over a fieldk (possibly non-commutative)
1s a Frobenius algebra if and only if it satisfies one of the next conditions

(1) There are linear maps A: A — A® A and ¢ : A — k such that (A, A €) is
a coalgebra and A satisfies the Frobenius identities. Fxplicitly, the following
diagrams commute:

e The coalgebra axioms

A A LA9A Aok AnA-2LikgA

NN

A®Am>A®A®A

If we note A(x) = Y_x1 ® x2, then for x € A the coalgebra axioms are given
by the next relations

A@TAK) =) xn®x12@x2=) X1 ®x21 @x2 = (1 ®A)(A(x))

(@e)(Ax) =) xielxa) =x =) elx1)x2 = (e @ 1)(Ax)).

o The Frobenius identities

m m

ARA A ARA A
1®Ai lA A®1l iA
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e ) xy1®@y2 = (xy)1 ® (xy)2 =2 x1 ®x2y, forx,y € A.

(2) There exists a co-pairing 0 :k — A ® A and a linear map € : A — k such that
the following diagrams commute:

126 0

A ARAR®A k ARA
e@i x lm@l ei\ Le@]
ARARA o ARA ARA e

Let x € A, if we denote 0(1) = 5 & ® & then the Lauda condition is the

following:
ZX& ® &= ZM ®x2 = Zc‘q ® E2%,

Z e(&1)ér=1a= Z E1e(&2).

and

Proof. (1) (&) We suppose that (A, m,u,A,¢) is an algebra-coalgebra where A
satisfies the Frobenius identities. We define the linear map A : A — A* as
A = ¢ —, where A(a)(b) = (e — a)(b) = ¢(ab). To prove that A is an
isomorphism we will prove that 14 —: A* — A is the inverse function, where
Ta—f=) f(11)1, with A(]A) => 11 ®1y,

(Ta—)o(e=)(x) =Ta—(e=x) =) elxI)lz=xIa=x,

the last identification is because A satisfies the Frobenius identities, and the
other identity

(e =)ol1a <)) () = D f(1)e(120) = £ (3 11e(122)) = fx), for all x € A,

as before, the last identification is because A satisfies the Frobenius identities.

The last step is to prove that A is a morphism of right A-modules, i.e. the
commutativity of the following diagram

m

A®A A

8‘—®1l Lgl—

A*QA —>A®A*
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((e =) om(x®y))(z) = (e = (xy))(2) = e((xy)z)
((e =x) =) (2) = (e — x)(yz) = e(x(y2))
and the commutativity is due to the associativity of the product.

(=) Now we suppose that (A, m,u, € /—) is a Frobenius algebra, {61, cen en}
a basis of A and {ei* } the dual basis. We define the coproduct A: A —- AQA

by
-1
= eri ® (e =) (e})
i
It is easy to prove that this coproduct is given by

A LAQA

A
€*L T(ﬁ*)‘é@@*)1

° C’oassociatz'm'ty' (A® 1)A( = Zi‘j xeie; ® (e =)~ (e;-") ® (e —)! (e}f),
(1@ A)AX) =Y ;%65 @ (e =) (ef)er ® (e =)' (eF).

Applylng the 1somorphlsm 1 ® (¢ =) ® (¢ =) we need to prove

E xeie; ® e ® e} = E xej ® e ~— e{ ® e, (5)
ij L,j

where (¢ z—)((s )l (e;.")e ) = e ey Ifwe prove that ) xze]®e _
Zi,j xej®ej —z forallz€ A we deduce

ZXZCj ®ej | (w) = sze]-e;k(w) = (xz) (Z eje; (w)) = (xz)w.
i)

erj®e}‘f—z (w) er] e —z) (Zee zw)-x(zw)
i,

e Counit aziom: (e®1)A(x) =Y e(xei)(e =)' (e}) = (e =) (X e(xei)e})
=(e—)Te—=x)=x.
(T®e)A(x) = X xeie ((e —)7"(ef)) = Xxeile —)(e =)' (ef)(1a) =

xY eief(la) =xIa=x

44



o Frobenius identities: A( xy nyel ) ](e?:) =x® 1A(y).
On the other hand, A(x) =3 xe;®@(e—)(e})y =Y xei® (e
G
Applying the isomorphism 1 ® (& —) we need to prove that

nyeu@ef :eri® (ef —v).

That is true because

(Z xye; ® el ) (xy) (Z eiej > (xy)z =x(yz) = x (Z ew?(yz))
foele —y)( <er1 el '—y)>(z), for all z € A.

(2) It is easy to see that this condition is equivalent to condition (1). Given the
coproduct A: A - A®A we define 0 : k - ARA by 0 = Aou. We deduce the
commutativity of the diagrams using the Frobenius identities. If we consider
the co-pairing 8 : k — A ® A we define A: A - A® A as follows

A=(1Teom)o(0®1)=Mm®1)o(1®06).
L3

Yet another characterization of Frobenius algebras is given by a relation between
the coalgebra structure and an isomorphism by the dual algebra and the coalgebra,
as the next result shows:

Theorem 3.4. A is a Frobenius algebra if and only if A is a coalgebra and there
exrists an isomorphism ¢ : A* — A of right A*-modules, where A is an A*-module
with the action —: A* ® A — A given by f —x =) f(x1)x2

Proof. (=) Let (A, m,u, A, e) be a Frobenius algebra, then (A, A, 5) is a coalgebra.
We define ¢ = 1o ~—: A* — A, note that 15 +— is an isomorphism and the inverse
function is € ~—: A — A*. We only need to prove that 14 - is a morphism of right
A*-modules, that is, the next diagram commute

*

]A‘—®1l l]A‘—

A®A*
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A=A (fog)=) A (feg)(1)la=) f(11)g(12)1s

(Ia=1f)=g=) f(1)la—g=> f(11)9(12)13,
then 14 — is a morphism of right A*-modules.

(&) Let be (A,A, a) a coalgebra and ¢ : A* — A an isomorphism of right A*-
modules. First, we observe that the morphisms ¢ : A* — A of right A*-modules are
of the form ¢ =t —, for some t € A. To prove this, we only need to check that for
t = ¢(e) we have ¢ =t —. We know that the diagram

A*

) ) o

A®A* A

commutes, then ¢ (A*(a ® f)) =¢(e)—f=t+~—f,and A*(E@f) =) £(x1) ( )
f (X e(x1)x2) = f(x). Therefore A*(e ® f) =f and ¢(f) =t — f, for all f € A*,

Then we suppose then ¢ = t +— and we define m(x ® y) = xy = > _(t —
) 1(x) (y1)y2, for all x,y € A. It is easy to prove that this product satisfies

AQA A

T(tg)‘

(t~)’®(t~)1t

where m°P is the opposite product. Note that, as t « is an isomorphism of right
A*-modules, the inverse function (t —)' satisfies that

*

(tg)‘@ﬁ 1(%)‘ (6)
AR A*

A

commutes.

e Unit aziom: We will prove that t =t ~— ¢ is the unit.
xt=) (t=) " x)(t)ta=t— (t=)"(x)=({t=)o(t=)")(x)=x
tx = Z(t =) (x1)x2 = Z e(x1)x2 = x,
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e Frobenius identities: (x @ 1)A(y) = Alxy) = Ax)(1®vy).
Alxy) =D (t=)"(x)(y1)v2 @ s,

x@NAY) =) 1 @yz=) (t—)'(x)(y1)y2®ys,

AX)(T®y) = ZX1®X2U = ZM ® (t =)' (x2) (y1)v2.

Then A(xy) = (x ® 1)A(y).
Note that, if we prove that Y (t =)' (x2)(y)x1 = ¥ (t =)~ '(x)(y1)y2, then
we conclude that A(xy) = A(x)(1 ®y).

As @ commutes we have that ((t ) (x — f)) (y) = A*((t —)x)® f) (y),
for all y € A*. Then

F( T x)x) = 3 =) (x2) )
= ()7 (X k) ()
= (t)"x= 1) W)
= At T e ()
= >t W) f(y2)

= (Xt wn)v2)
for all f € A*, and Y (t )" (xz) (yx1=>_(t *)_](X)(Ul)yz-
o Associativity: (xy)z = Y (t =) ')yt =) (y2)(z1)z2 = z — (t —
)1 (y ()] (x)), using that @ commutes we have
)z = 2= (o)) @ (L))

)

= Y (k) 'wet—) ") (@)n
= Y =)Wt =) x)(=)

= x(yz).

Z3

L J

Definition 3.5. A Frobenius algebra homomorphism ¢ : (A, e) — (A’, e’) between
two Frobenius algebras is an algebra homomorphism which is at the same time a
coalgebra homomorphism. In particular it preserves the Frobenius form, in the sense
that e = ¢poe’.

47



Let FAy denotes the category of Frobenius algebras, and let cFA denotes the
full subcategory of all commutative Frobenius algebras.

Lemma 3.6. If a k-algebra homomorphism &, between two Frobenius algebras (A, 8)
and (A’, s’), is compatible with the forms in the sense that the diagram

¢

N

k

A

A/

commutes, then ¢ s injective.

Proof. The kernel of ¢ is an ideal and it is clearly contained in ker(e). But ker(e)
contains no nontrivial ideals, so ker(¢) = 0 and thus ¢ is injective.

L J

Lemma 3.7. A Frobenius algebra homomorphism ¢ : A — A’ is always invertible.
In other words, the category FAy is a groupoid and similarly is cFAj.

Proof. Since ¢ is comultiplicative and respects the counits ¢ and ¢’ (as well as the
units  and 1’), the dual map ¢* : A — A* is multiplicative and respects the
units and counits. But by the preceding lemma an immediate consequence is that
¢®* is injective. Since A is a finite-dimensional vector space, then ¢ is surjective. We
already know it is injective, hence it is invertible.

L J

Remark 3.8. Notice that for a fixed algebra structure on A, the set of all compatible
Frobenius algebra structures on A is determined by one, that is, two traces on A
will differ only by an invertible element of the algebra A.

Ezample 3.1. Let A =k, and ¢ : A — k be the identity map of k. Clearly there are
no ideals in the kernel of this map, so we have a Frobenius algebra.

Ezxample 3.2. The field of complex numbers C is a Frobenius algebra over R: an
obvious Frobenius form is taking the real part

C—R
a—+ib — a.
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Ezample 3.3. Let A be a skew-field (also called division algebra) of finite dimension
over k. Similarly as for a field, a skew-field has no nontrivial left ideals (or right
ideals), any nonzero linear form A — k will make A into a Frobenius algebra over
k, for example the quaternions H form a Frobenius algebra over R.

Example 3.4. Let A be the space Matn (k) of all n x n matrices over k, this is a
Frobenius algebra with the usual trace map

Tr:Matn(k)— k

(ay) Z aij

To see that the bilinear pairing resulting from Tr is nondegenerate, take the linear
basis of Matn (k) consisting of Ej; with only one nonzero entry ey; = 1. Clearly Ej;
is the dual basis element to Ej; under this pairing. Note that this is a symmetric
Frobenius algebra since two matrix products AB and BA have the same trace. If we
twist the Frobenius form by multiplication with a noncentral invertible matrix we
obtain a nonsymmetric Frobenius algebra.

For example consider Mat,(R) = { (2 3

map

) :a,b,c,d e R} with the usual trace

Tr: Map,(R) — R
(< o)
— a+d
c d
We can twist and then take as the Frobenius form the composition

Maty(R) — Mat;(R) IR

a b ., (@ b\ /0 1 —y bac’
c d c d/\1 0
o . 10 1 1
the composition is not central, for if we take A = and B = then

0 2 00
11 1 2
AB = (O O) and BA = (O O)'

Example 3.5. Let G ={e, g1,...,9gn} be a finite group, the group algebra A := C[G]
is defined as the set of formal linear combinations ) i";cigi, where ¢; € C, with
multiplication given by the multiplication of G. It can be made into a Frobenius
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algebra by taking the Frobenius form to be the functional

e: CG — C
e — 1
g +— 0 fori#0.

Indeed, the corresponding pairing g®h — ¢(gh) is nondegenerate since gh +— 1

if and only if h =g .

Ezxample 3.6. Assume the group field is k = C. Let G be a finite group of order n. A
class function on G is a function G — C which is constant on each conjugacy class;
the class functions form a ring denoted A := R(G). In particular, the characters
(traces of representations) are class functions, and in fact every class function is a
linear combination of characters. There is a bilinear pairing on R(G) defined by

(00) = - ().
teG

The characters form an orthonormal basis of R(G)with respect to this bilinear pair-
ing, so in particular the pairing is nondegenerate and provides a Frobenius algebra
structure on R(G).

Ezample 3.7. Let M be a compact, closed, connected, oriented manifold of finite
dimension n.. Let us consider the singular cohomology of M and write A := H*(M).
We can define a counit map ¢ : H*(M) — k by

el@) =o(M]) = JMcp,

where [M] is the fundamental class of M in homology. This map induces the pairing
(,) :H*(M)@H*(M) — k

defined by (@, ) = e(q) — 11)) = ((p — 1]))([1\/[]) = (p([M] —~ 1])). Remember that
we have the next isomorphism induced by Poincaré duality

@ : H (M) 5 Homy (Hn (M), k) 2 Homy (HY(M), k)
where h is the map induced by the evaluation of cochains on chains, and D* is

the dual of Poincaré duality. Then @ (¢)() = (p([M] —~ 11)), this proves that the
pairing is nondegenerate.
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3.2 Nearly Frobenius Algebras
In this section we focus on one of the central objects of study in this book. That
is the structure of nearly Frobenius algebra.

Definition 3.9. An algebra A with product m: A ® A — A is a nearly Frobenius
algebra if there exists a coproduct A: A — A® A that makes the following diagrams
commutative:

1. The coalgebra axioms

A 4 A®A
Al iA®1
A®A AQA®A

10A

If we note A(x) = )_x71 ® x2, then for x € A the coalgebra axioms are given
by the next relations

(A1) (AKX) = ZXH ®@x12®@%x2 = ZM ®xn ®@x2 = (1®A)(Ax),
(1T®e)(AX)) Y xelx) =x=) elxi)xz=(e®1)(Ax)).

2. The Frobenius identities

m m

ARA A ARA A

] PR

ADA®A AA ABARATARA

1®m
Le. Y xy1®@yz2=2 (xy)1 ® (xy)2 =>_x1 ®@xyy, for all x,y € A.
Lemma 3.10. Let A be a k-algebra and A: A — A ® A a k-linear map such that
Alx) = (x®@ 1DA(T) =A(1)(T ®x)

for allx € A. Then A is an A-bimodule morphism.

Proof. The linear map A is an A-bimodule morphism if Aom =(1®@m)o(A®1)
and Aom=(m®1)o(1®A). Let x,y € A then

(Tem)o(Ax1)(x®y) =AX)(10y) =A1)(Tex)(Tey) =A(1)(1®xy) = Alxy)
M®1)o(1A)(x®Yy) =x1NA(Y) =x 1)y T1)A() = (xy @ 1)A(1) = A(xy)
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L J

Ezample 3.8. Every Frobenius algebra is also a nearly Frobenius algebra, but a
nearly Frobenius algebra is a Frobenius algebra only when we have a compatible
counit.

Ezample 3.9. Let A be the truncated polynomial algebra in one variable k[x]/x™7.
We will determine all the nearly-Frobenius structures on A.

We consider the canonical basis B = {1,x,...,x™} of A. Then the general ex-
pression of a k-linear map A: A — A ® A in the value 1 is

n
) = Z aini®Xj.
1,j=1
This map is an A-bimodule morphism if
AR = xFo DA =AM x5, VYke(0,...,n. (7)

The equation (7)) when k =1 is

Z ayx'M@x = Z agx'@x "

7) 1 l],—]

This happens if ag;—1 =0,j=1,...,n;ai_10=0,1=1,...,nand ayj—1 = aj_y; in
other case. Then

n
]):Zakﬂ Z x'®x
k=0 iH=nik

We denote ax = axn. Applying the lemma we need to prove that A(x¥) =
(xk ® 1)A(1) =A(1) (1 ® xk) to conclude that A is an A-bimodule morphism.

n n
AM(ext) = Zak Z x'ox | (1@x!) Zak Z xt@x T
k=0 i+Hj=n+k i+Hj=n+k
n
= Zak< Z xi®xm>—Zak Z xr+1®xm>
k=0 i+m=n+k+l1 k=0 r+m=n-+k
n
= (x1®1)Zak< Z ) (xl®1)A
k=0 r+m=n-+k
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Finally, we need to check the coassociativity axiom: Let x! € A with 1 > 0.

(A®1) iak Z xt @ X :kZ:)ak Z A(xi)®xj

k=0 iH=n+k+1 iH=n+k+1

= iakam Z Z X" @ x5 @ %
0

(Be1)(A())

k,m= iH=n+k+1lr+s=n+m+i
n
= Z Al Z X' Q x5 ®x
k,m=0 T+s+H=2n+m+k+1
n n
(] ®A)(A(xl)) = (1 ® A) Zak Z xt @ x) :Zak Z xi®A(xj)
k=0 iH=ntk+l k=0 iHj=ntk+l
n
= Z axm Z Z x'®x" @ x®
k,m=0 iH=n+k+1lr+s=n+m+j
n
= Z Al Z X' Qx5 ®x
k,m=0 T+s+H=2n+m+k+1

Then the pair (A, A) is a nearly-Frobenius algebra. In particular we have that the
coproduct A is a linear combination of the coproducts Ay defined by

Ay (xh) = Z xt@x, forkel0,...,n}
=tk

n
that is A = Z axAy where a € k for all k € {1,...,n}.
k=0
Note that Ag is the Frobenis coproduct of A where the trace map ¢ : A — C
is given by a(xi) = din. The other coproducts, Ay k # 0, do not come from a
Frobenius algebra structure. That is, it does not exist a trace map ¢ : A - AR® A
such that (A, Ay, s) is a Frobenius algebra for k =1,...,n.

m(e® 1) (Ax(xY)) = Z e(x")x,
H=n4k+1
with j > 1, so m(e ® 1)Ak(x!) # xh
Ezample 3.10. Let A be the algebra C[[x,xqﬂ of formal Laurent series. Consider
the coproducts given by:
A (xi) = Z x* @ xh

kHl=i+j
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These coproducts define nearly Frobenius structures that do not come from a Frobe-
nius structure.

Ezample 3.11. The Poincaré algebra A := H*(M) of a non-compact manifold M is

a nearly Frobenius algebra. Consider the diagram:

M 2 _MxM

a| Jxa

MxM——MxMxM
Ax1

Using transversality we have that:
(A x 1)*(1 x A) =A'A¥,

where A* : H*(M) @ H*(M) = H*(M x M) — H*(M) is the map induced by the
diagonal map in cohomology, and A': H*(M) — H*(M) @ H*(M) is the Gysin map
of the diagonal map. Therefore

(A*@1)(1e4A") =A'A"

Then H*(M) is an algebra with a coproduct which is a module homomorphism.
For non-compact manifolds we can not assume the existence of a fundamental class
in homology, so we can not integrate and we do not have a trace in cohomology.

An interesting family of examples of nearly-Frobenius algebras is the produced
by quivers. In [AGL], Artenstein, Lanzilotta and the first author studied the nearly-
Frobenius structures that admit these objects. We describe briefly these results (see
[ASS06]).

Definition 3.11. A quiver Q = (Qo, Qq, s,t) is a quadruple consisting of two sets:
Qo (whose elements are called points, or vertices) and Q1 (whose elements are called
arrows), and two maps s,t : Q1 — Qo which associate to each arrow « € Qq its
source s(a) € Qo and its target t(x) € Qoq, respectively.

An arrow o € Q7 of source a = s(«) and target b = t(«) is usually denoted by
x:a—b. A quiver Q = (QO,Q1,s,t) is usually denoted briefly by Q = (Qq, Q1)
or even simply by Q. Thus, a quiver is nothing but an oriented graph without any
restriction as to the number of arrows between two points, to the existence of loops
or oriented cycles.
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Definition 3.12. Let Q = (Qo, Q1,s,t) be a quiver and a,b € Qq. A path of length
1 > 1 with source a and target b (or, more briefly, from a to b) is a sequence

(aler, oz, ..., b)),

where oy € Qg for all 1 <k <1, and we have s(x7) = a, t(ox) = (o) for each
1 <k <1, and finally t(oq) =Db. Such a path is denoted briefly by a1x;... .

Definition 3.13. Let Q be a quiver. The path algebra kQ is the k-algebra whose
underlying k-vector space has as its basis the set of all paths (aloq, X2y .- oqlb) of

length 1 > 0 in Q and such that the product of two basis vectors (aloq L0, ..., oqlb)
and (c|B1, Ba,..., Bk\d) of kQ is defined by

((1|O(],(X2,. . .,0(1|b) (0”3]) BZ) ER) Bk‘d) = 6bc((1|061,. coy O, B]) ) Bk|d))

where 0y denotes the Kronecker delta. In other words, the product of two paths
o7 ...0and B1... Rk is equal to zero if t(oq) #* 5(61) and is equal to the composed
path o1...000B71... PRk if t(oq) = s([?n). The product of basis elements is then
extended to arbitrary elements of kQ by distributivity.

Ezample 3.12. If Q is the following quiver:

oy o, o5 o

N N
7 7

1 2

we
N
SI
—
=)

Then the path algebra A =kQ
kQ = (er1,e2,...,en, ... 0tiqj:i=1,...,m,j >0).
admits a unique nearly-Frobenius structure, where the coproduct is defines as follows

Aler1) = awg...on1Qeq,

Alen) aen ® ®1...0%n 1,

Aley) aAci...0n—1 @ &1 ... K1,
Alog...q5) = acq...otn1® oq...q;,

—

where a € k.

Theorem 3.14. Let A = kQ with Q a finite, connected quiver with no oriented
cycles. Then A has a nearly-Frobenius structure if and only if Q = A with all the
arrows in Q having the same orientation.
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If we introduce relations in the quiver Q then the nearly-Frobenius structures
over QQ are very interesting.

Proposition 3.15. The path algebra associated to the quiver

QR: ° al a2 Om Bl Bn

N N
> e L] > e

"2 "3 m 0 m+1 m+n

with the relation axmP1 = 0, admits mn+2 independent nearly-Frobenius structures,
these are

A(e1) = ax]...xm® eq A(em+]) = bB2...Pn R P

A(ei) = a0i...0m @ Ky...HKi] A(eeri) = bRit1.--Pn®P1...R1

Alem) = axm®@ ot ... Km_1 Alemin) = bemin®PB1...Pn
A(O(i...O(j) = axi...0m @ x7...0H A(Blﬁ)) = bBi...Pn®P1...B;

m n
Aleo) :aeo®oq...cxm—i—bB]...Bn®eo—|—ZZcﬁB1...Bj®oq...ocm
im1 j—1

where a, b, cy € k.

Theorem 3.16. The path algebra A associated to the cyclic quiver Q

1 1
3, % ., 0 On  n+l
4 H
1 ' 2
% ...... o?
2 ° o N2
2
ol &
14 o N1 +3
Ol Olg
° L]
Nyt -
W o< ‘.




with m maximal paths of length ni, 1 = 1,..., m admits R nearly-Frobenius struc-
tures, where

m
R=m+ Z MNiNi+]
i=1
whit Ny = My.

The next results construct nearly-Frobenius structures in tensor algebras and
quotient algebras.

Theorem 3.17. If (A, A1) and (B, Az) are nearly-Frobenius algebras then (A®B, A)
18 a nearly-Frobenius algebra where

A=(1T®t®1)o (A1 ® Az), with T is the transposition.

Proof. The map A is coassociative because the external diagram is commutative
since the internal diagrams commute:

A®B L6% A®A®BOB 191 (A®B)® (A®B)
A QA A RIRA; ®1 A1RARTIR1
A9A®B®B 2% o A©A@BRBRB 22 - A9A®BRB®A®B
T®T®1 T®T®1 TTRIRIR1

A®B®B®A®B1W®QZ®B®A®A®B®§®W®/{‘\®B®A®B®A®B

The linear map A satisfies the Frobenius identities because the next external diagram
is commutative using that the internal diagrams commute:

T®T®1 m Rmy

(A®B)® (A ®B) ARARQB®B (A®B)
A RA®1 A RTIRA;®1 A1 RA)
1
A9A®BRBRA®B 2 L AQA®A®BeBoB Y™ Ao A®B®B
TRTRIR1 TRTRIR1 11
A@BOABBRAGE -~ A®BRARARBEB ———>~AQBRAGB
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Let be (A,A) a nearly-Frobenius algebra.

Definition 3.18. A linear subspace ] in A is called a nearly-Frobenius ideal if

(a) J is an ideal of A and
(b) AJ)CTRA+A®].

Proposition 3.19. Let be (A,A) a nearly-Frobenius algebra, | a nearly-Frobenius
ideal and p : A — A/] the natural projection. Then A/] admits a unique nearly-
Frobenius structure such that p is a coalgebra morphism.

Proof. Since (p @p)A(J) C (p ® p)(] RA+AR ]) = 0, by the universal property
of the factor vector space it follows that there exists a unique morphism of vector

spaces
A AA/] A/ JRA/]

for which the diagram

A——"s A/
A J{A@A
AWA/] ®A/]

is commutative. This map is defined by A(a@) = Y a7 ® @z where @ = p(a), i.e.
A=(p@p)oA.

The fact that (Z@ 1)3(6) = (1 ®Z)Z(ﬁ) =) a1 ®a;®az follows immediately
from the commutativity of the diagram.

The last step is to prove that the coproduct is a bimodule morphism:

AlJ@A)] — A/] A/JoA)] —2 A/]

o s el s

ATOATOA/T o= A/TOA/]  A/J@A/I@ A/ 5 A/TGA/]

First note that A(a) =) a1 ® az, A(b) =) by ® by.
Am(a® b) = Alp(ab)) = (p ® p)A(ab) = (p @ p)((1 ® Mm)(A @ 1)(a ® b))
=(p®p)(X a1 ®azb) =) a1 ® azb.
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On the other hand

(Tem(A®l)(@a®b)=1eom) (X a7®a;®b) =Y a3 ® arb. Then the first
diagram is commutative.

L

3.3 The Moduli Space of nearly Frobenius Structures of a Fixed
Algebra A

Theorem 3.20. Let A be a fixed k-algebra. Then the set of nearly Frobenius co-
products of A making it into a nearly Frobenius algebra is a k-vector space.

Proof. Let be B = {ej}ic1 a basis as k-vector space of A and Ay and A, two nearly
Frobenius coproducts.

The product eje; can be expressed as ch]fjek, the value of the coproduct A4
on 1 as Zi,j dijje; ® ej and A1) = Zi,j aijjei X ej.

Now, we consider the linear map A = A1+ A : A = A® A, with «, 3 € k.
First we prove that this map is an A-bimodule morphism.

Mme(1eA) = me1)(1e(aA+ BAL))
= amN(TRA)+RM®1)(1®A,)
= aAm+ fAm =Am.

In the same way (1@ m)(A® 1) = Am.

To prove the coassociativity, first we note that Aj(ex) = (ek ® 1)A1(1) =
Aq (1)(1 ® ek) is equivalent to say that

2_dicjie=)_ducy (8)
1 1
and As(ey) = (ek ® 1)A2(1) = A2(1)(1 ® ek) is equivalent to say that
2_@cik=)_ancy;. (9)
1 1
The coassociativity condition is
(A TA=(1®A)A

using the definition of A this is equivalent to say

(A2 1A — (1®@A1)A7) + (A1 @ 1)A;— (1@ A7)Ay) =0.
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Note that if we prove that (A> ® 1)A1(1) — (1 ® A1)A2(1) = 0 then we can conclude
that the map (A ® 1)A; — (1 ® A1)A, = 0. This is because

(A2 NA(X) = (T2 ANAAX) = (A0 AT @x) — (1 ANA(1)(1@X)
= ((Az@Naq(1) (]®A1)A2(1))(1®x)20.

(A2®1 Aq(1) = Z (Z duaklc 1) ek & em ® ej
j,k,1

s Iy

and

T@A)A (1) =) (Z dmlamCh) ek ® em @ e

j,k,1

Using the equations [§ and [9] we see that
Z dml(l]dclu = Z dij aklc{’-f.
il il

If we change Ay with A, we conclude that (A7 ® 1)A; — (1 ® Ay)A1 =0.
&

Definition 3.21. The Frobenius space associated to an algebra A is the vector of
all the possible co-products A that make it into a nearly Frobenius algebra. Its
dimension over k is called the Frobenius dimension of A.

3.4 Semisimple Algebras

In this section we study the particular case of semi-simple algebras.

Ezample 3.13. We consider a non-commutative field k.
The linear map A : k — k satisfies the Frobenius identities, then

Alx) =AM ®x)=(x®1)A(1), Vxek.
If we define A(1) =al ®1 =a® 1, with a € k then
AxX)=a®@x=ax®1=xa®1 & ax=xa & a € Z(k).
Finally, we need to prove that this coproduct is coassociative:

(A 1DAKX) = Al@ax = a®l®ax = ax®11
(TRAAX) = ax®A(l) = ax®a®1 = axa®1x1
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As a € Z(k) we have that a®x = axa, then (A ® 1)A(x) = (1 ® A)A(x), Vx € k.
Therefore the algebra k is a nearly-Frobenius algebra and we have as much nearly-
Frobenius structures as elements in the center of k.

Note that these structures come from Frobenius structures, the trace map ¢ : k — k
ise(1)=1.

Example 3.14. Let be A the matrix algebra Muxn(k), with k a commutative field.
We consider the canonical basis of A, {Eii i, = 1,...,n}, where Ei; = (ekl)

with
o[ k=i l=]
7Y 0 in other case -

kl

Eu ifj =k

0 in other case In particular EiiEy; = Ei and

First note that EijEq = {
EijEjj = Eija then

A(Eyj) = A(Ey) (1 © Bj5) = (Eu® T)A(Ey)
and

A(Ey) = A(Ew) (1 @ By) = (Ey @ 1)A(Ey).
The last equations imply that

n 11 n .o n .o

A(Ey) = Z apBik @ By = Z aaEik ®@ By = Z a Bk ® By,
Kk1=1 Kk 1=1 k=1
then a,ijl = a’ﬁ = a%zl, for all k,1=1...,n. As a consequence we have that
n
A(Ey) = Z aEik ® By, Yi,j.
k,1=1

Finally we need to check that this coproduct is coassociative:

n n n
(A2DAE) = ) @A) @Ey = ) ) ananEy®Eg®Ey
k,1=1 k,1=11s=1
n n n
(T®A)A(Ey) = Z arsEir ® A(Eg5) = Z Z arsaxEir @ Ege ® By
r,s=1 r,s=1k,1=1

As k is commutative we have that (A ® 1)A(Eﬁ) =(1® A)A(Eij).
Note that M xn(k) admits n x n independent coproducts, one for each ayy, that
is

n
A(Ei]’) = Z aklAkl(Eij), where Akl(Eij) = Eik® Elj.
k,1=1
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Example 3.15. Let G be a cyclic finite group. The group k[G] is a nearly-Frobenius
algebra. A basis, as vector space, of k[G] is {gi i= 1,...,n} where |G| =n. As
before, if we determine the value of the coproduct in the unit of the group we have
the value over all element of the algebra.

A general expression of A(1) is
n . .
A1) = Z O(i)'gl ® g
ij=1

Using that A(gk) = A(])(1 ® gk) = (gk® 1)A(]) we have that

n n
Z (Xijgk—H ® g) — Z (Xijgl ® g)—l—k.

1,31 i,j=1

then o1y = &4k, also 51 = apnj and oy = «i—17. This permit us to express
the coproduct as

n i—1 n
A(]) — Z i {Z gk® gifk_i_ Z gk® gn—l—ik} )
i=2 k=1 k=i

This implies that
A(gY) = AM(12gY)

n i—1 n
_ Z o {Z gk+l ® gifk_l_ Z gk+l® gn+ik}
i:%( k=1 k=i
A(g¥) = (g“®1)A(1)

n i—1 n
— Z o {Z gk ® giJrl—k_l_ Z gk® gn+i+1—k}'

i=2 k=1 k=i

These expressions of A(gk) coincide by a simple change of variables. An a similar
reasoning permit us to prove the coassociativity of the coproduct.

Theorem 3.22. 1. Let A be a k-algebra. Then, A is a nearly-Frobenius algebra
if and only if A°P is a nearly-Frobenius algebra.

2. Let Aq,...,An bek-algebras and A = A1 XAy x--- X An. Then A is a nearly-
Frobenius algebra if and only if A1, ..., An are nearly-Frobenius algebras.
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Proof. 1. The opposite algebra A°P of the algebra A is the algebra with the
same set of elements and the same addition but with multiplication * given by
a*xb=Dba for a and b in A.

We define the coproduct A°P : A°? — A°P @ A°P as To A, where A is the
coproduct in A and T is the transposition. It is clear that A°P is coassociative
because A is coassociative. We need to check that A°P is morphism of A°P-
bimodule.

A°P(axb) = A%(ba) = 1(A(ba)) = Z a,®ba; = Z a,®a1xb = (18%) (A°P(a)@b)

A(axb) = A°P(ba) = T(A(ba)) = ) bra®b; = ) axby@b;y = (1) (a®AP(b))

2. First, we suppose that A1,..., Ay, are nearly-Frobenius algebras and Ay..., Ay
are the associated coproducts.

Note that a direct product for a finite index is identical to the direct sum. We
n

can suppose that A =A1® ---® A, in Vecty and let q;: Ay — EB A; be the
i=1

canonical injections. Then there exists a unique morphism A in Vecty such

that the diagram

n
.
A —— DA
i=1

commute.
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The coassociativity is a consequence of the commutativity of the cube

AR

ARA®A A®A
A®1
AL @A ® A; i A ® Ay A
TRA
Ay
194 A®A A A
% /
AL ® A4 Aj

A

To prove the Frobenius identities, first we note that the diagram

A Pi Ai
| s
ARA WAi X Ai

n
commute, where pj: @Ai — Aj is the canonical projection. This implies

i=1
that the next cube commute.

ARA A
Pi®Pi
Pi
A ® A e Aj A
AR1
1em A
A1 ARARA ARA
zﬁﬁw// j@//
Tom
AiQAL®A; gm A ® A4

Then (A, A) is a nearly-Frobenius algebra.
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n
Now, we suppose that A = @Ai is a nearly-Frobenius algebra and A: A —

i=1
A ® A is the associated coproduct.
We define the linear map A;: A; — A; ® A; as the composition

Ar—3 A D AgA TP Ao A

n

By the universal property of the coproduct A = EB A we have that the next
i=1

diagram is commutative

Aq A
Ih
A1®Aicm>A®A

Then A(X1,...,%n) = > 1,4 (qi ® qi)Ai(xi). It can be checked immediately
looking at this expression that (Ai, Ai) is a nearly-Frobenius algebra.

L J

Corollary 3.23. If char(k) does not divide the order of G, then K[G] is a nearly-
Frobenius algebra.

Proof. Applying the Maschke’s theorem we have that k[G] is semisimple, then it
is a product of simple algebras My, xn, (k). Therefore, by the Theorem we
conclude that k[G] is a nearly-Frobenius algebra. Even more we can determine all
the nearly-Frobenius structures that it admits.

L J

From what we have seen we conclude that in the case of semi-simple algebras
the Frobenius space of A is a vector space of dimension equal to the dimension of A,
and that it has a one dimensional subspace (minus the origin) of bona fide Frobenius
structures.
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4 (Non-compact) Calabi-Yau Categories

A 2-dimensional open-closed topological field theory (2D O-C TFT) is a general-
ization of a 2D TFT. Now the category of cobordism is modified in the sense the
boundary objects are compact, oriented, one-manifolds, X, together with a labeling
of the components of the boundary, 0X, by objects of a C-linear category B, see
figure You can think of such objects as labels, or colors. So now the bound-
ary of a surface is coloured by objects of B, and the color black. The morphisms
generalize the usual notion of a cobordism between manifolds with boundary, but
with the additional data of the labeling category B. A cobordism Xx, x, between
two objects X7 and X3 is an oriented surface £, whose boundary is partitioned into
three parts: the incoming boundary 9;,X which is identified with X7, the outgoing
boundary 0,.,tZ which is identified with X, and the remaining part of the boundary
is referred as the “free part” OreeX whose path components are labeled by objects
of B. Note that 9reeX is a cobordism between 0X7 and 0X;, which preserves the

labeling, see figure

a

a.
as

a.
Figure 1: A one manifold with labels a; € Obj(B).

A monoidal functor from this category to the category of complex vector spaces
will be called a (141)-dimensional open-closed topological fiel theory. We write A for
the vector space associated to the standard circle S', and ©4p = Hom(a,b) for the
vector space associated to the interval [0, 1], with ends labeled by a,b € Obj(B).

You may imagine that such a bordism represents the evolution of closed and open
strings in time, and that the labels are boundary conditions on the open strings.
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4.1

[en

Q

Q

C_/
G

d‘Pd

Figure 2: An open-closed cobordism.

Algebraic Structure of the Moore-Segal Formalism for Com-
pact Backgrounds.

Recall that an ordinary closed string TF'T is the same as a Frobenius algebra. Moore
and Segal [MS|] consider 2D O-C TFTs and prove that to have such a theory is
the same as to have a Calabi- Yau category also called a Frobenius structure whose
definition is as follows:

2a.

2b.

2c.

A Frobenius structure consists of the following algebraic data:

(A,-,Aa, 14) is a commutative Frobenius algebra.
A C-linear category B, where O4, = Hom(a,b) for a,b € B.
With associative linear maps n&. and units uq
Noc : Oab ® Ope — Oae, (10)

Uq:C — Oqq. (11)
The spaces Oqq have nondegenerate traces

Oq:0qa — C. (12)
In particular, each Oqq is not necessarily a commutative Frobenius algebra.

Moreover,

b
qu & Oba M Oaa &) (C

by Oy (13)
Oba®oab — Obb — C
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3a.

3b.

3c.

3d.

3e.

are perfect pairings with

Oa(P1P2) = BOp(PP1)

for Y1 € Oqp, and V2 € Opq.

. There are linear maps

ta: A= OQaq, Y:0qa— A
such that

Lq is an algebra homomorphism
ta(P1d2) = ta(d1)ta(d2),

the identity is preserved

Moreover, L4 is central in the sense that

ta(P)p = Vu(P),
for all d € A and P € Ogp.

Lq and ¢ are adjoint
OA(L"(W)P) = Oa(ra(d)).

The “Cardy conditions”. Define the map

a._ .a b .
7Tb .—nbeToAaa. Oaa_> Obb,

(15)

where T: Ogp ® Opq = Opa ® Ogp is the transposition map. We require the

“Cardy condition”:
a a
7Tb =lpOLl .
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@@)@@

A—k ARA—A A—> ABRA

Figure 3: Four diagrams defining the Frobenius structure.

4.2 Topological Interpretation

For the case of a closed 2D TFT the Frobenius structure is provided by the
diagrams in Fig. The consistency conditions follow from Fig. [l In the open
case, entirely analogous considerations lead to the construction of a non necessarily
commutative Frobenius algebra in the open sector. The basic data are summarized
in Fig. The fact that the traces are dual pairings follows from Fig. [6] The
new ingredients in the open-closed theory are the open to closed and closed to
open transitions. in 2D TFT these are the maps L4, 9. they are represented by
Fig. [7] There are five new consistency conditions associated with the open-closed
transitions. They are illustrated in Fig. [§ to Fig

Theorem 4.1. There is a one-to-one correspondence between (1+1)-dimensional
Open-Closed Topological Field Theories and Frobenius structures.

The proof of this theorem is a slightly more elaborate than that of the theorem
relating commutative Frobenius algebras with TQFTs, but the basic ideas are all
the same. The interested reader can find a full account of this proof in [MS].

4.3 Example: Representations of a Finite Group G

A simple example of an open-closed TFT is the associated to a finite group G.
Where the category B is the category Rep(G) of finite representations of G. If
E € Obj (Rep(G)) the trace Og : Ogg — C takes{:E — E to |G| tr().

The algebra A is the center of the group algebra C[G] such that

L : Z(C[G]) — OEE,

Z xgg — Z ®XgPg
g g
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(D1 D) Dy = Dy (D203)

0
@, @
@, @

(cpl(DZ) = (q)2®1)
@,
(ON
= o,
D,
= CD' ' ' )
®®

lo=o

Figure 4: Associativity, commutativity, Abrams condition and unit constraints in
the closed case.

D, @,
CDZ e CDZ
(ON 3
1
2

(& Oge — Z(C[G)),
Y:E—-Em ) tr(bgle)g
g
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> G
b
a
b a 7\ \ 7
b > c >F(&): @ab @@bc—} @ac
c
a —
= Oa @aa —k
a

C]a — F&): k— Cha

l'—}la

5 FE)=1d:Op— Oy

Figure 5: Basic data for the open theory.

Figure 6: Assuming that the strip corresponds to the identity morphism we must
have perfect pairings.

a

a N
aZ) 2 Cp— A

Figure 7: Two ways of representing open to closed and closed to open transitions.
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(Dz( ( a o, a

(@) 1y(D,) (@ D,)

Figure 8: 14 is a homomorphism.

A -4

L1y =14

Figure 9: 14 preserves the identity.

T e

@) =T la(®)

Figure 10: 14 maps into the center of Oqq.
a

r ) ) r
a . a
o o[

ORI D)= 04 (D)

D

Figure 11: 1% is the adjoint of .

and the trace



TC: @éa% @bb

Figure 12: The double-twist diagram defines the map 75 : Oqq — Oypp.

Figure 13: The Cardy-condition is expressing the factorization of the double-twist
diagram in the closed string channel.

The next step is to verify the axioms.

1.

2a.

2b.

(Z((C[G]),BZ((C[G]) , 1Z((C[G])> is a Frobenius algebra.

Let I C ker <ez(<c[ > be an ideal of Z(C[G]), and Zgocgg € I. Then

Gl)
eZ(C[G}) (Zg xXgg) = ¢ =0, hence oy = 0. If h € G we have Zgocggh_1 €
[,thus GZ(C[G]) (Zg ocgghq) = % = 0. For this reason o, = 0 for any h € G.
Then I ={0}.
Cldg, ifi=j,

0 in other case.
Then Oy ® Ojxc — Ojk is zero except for 1 =j = k. In this case

Notation Oy = HOHI(E{_,E]') = {

04 ® Oy — Ou
AMdeupld — Apld

The trace 8; : Oy — C is nondegenerate. Note that if P € Oy then there
exists A € C such that 1 = AIdi, hence ker(0;) = {0}.
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2c¢. First, suppose that i £ j then
0405 — Oy 25 C,
0;i®04 — 05 NG
we have 0;(Pp¢) =0 = 0;(P).

If i =j then Oy ® Oy — Oy G—i> C. In this case Y = Ald and ¢ = pld, hence
Vo = P, and as a consequence 0;(\PP) = 0;(dY).

3a. (g is an algebra homomorphism.

() agg)(Y Brh)) = (D agBngh) = ) agBnpgn
9 n
() agg)te() Brh) =D agpg ) anpn=) &gBnpgpn
g h g h

This expressions are the same because p is a group homomorphism.
3b. The identity is preserved by definition (tg(e) = Idg).

3c. The linear map t is central i.e. tg(Y_,xgg)h = Wtr(X , xgg) with b € Ofr.
If 1 € Oy, then P =0 for 1 #j or P = Ald; for i =j.
If i # j the statement is true. Now we see the case i = j, but since we have
1P = AId then it follows.

3d. The linear maps tg and (F are adjoint, i.e. GZ(C[G]) (LEN’)d)) = GE(lj)LE(d))).

O (Wie(d)) = eE(wZ agPg) = eE(Z aghpg)

@tr Zocgll)pg Gl Z(xg tr(Ppg)
92 cra) (T (W)9) =0 (cre) %agt 19) =0,(cia) %“Qtf(ﬂ)pg))

1
= Gl Z Xg tr(‘l’pg)
g

3e. First

01 — 034 ® 0ji —— 05 ® Oy — Oj
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Ifi;éjthenn}:o. If i =j we have
Oit = 011 ® 041 — 01 ® 041 — Oy

Ald — )\Id®@1d — @Id@ﬂ\ld — @Md
ny ny ny

Then 7ti(A1d) = ?A where n; = dim E;.
Now we need to study V.
The map (' : Oy — Z(CI[G]) takes AId to Y tr(Apg)g = A X, xi(g)g and
G+ Z(CIGl) — Oy takes Y agg to Y, xgpg. Consequently (iU (A1d) =
Azgxi(g)pg . Ej — Ej.
For the map pg : E; — E;, with Ej an irreducible representation, there exists
u € C such that pg = pld;. Hence tr(pg) = pdimEj, so p = ni]_xj(g). For

this ;U (A1d) = AZQXi(g)%Xj(g)Idj = %ZgXi(g)X)"(g)Idj = %5i*j|G|Idj-
Using that the representations are real, we have that xi(g) = ¥Xi(g), then
dix; = dij and the maps coincide.

4.4 2D Open-Closed TFT with Positive Boundary

In a 2D open-closed TF'T we have a family of maps A¢y : Oqp — Oqc ® Ocp, which
are called coproducts, with a,b,c € B. These are defined by the commutativity of
the square

C

Aab
Oab Oac & ch

Dt Dyl Dy

* * * * *
Oba nex > Obc ® Oca T Oca ® Obc

ba

where @ qp : Oqp — Of . is Pap(x)(y) = Oalxy), for x € Ogp and Yy € Opq.

a

c 4 C
Ay~

b

It is clear that Ag, is a linear map.
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Remark 4.2. The spaces Qg are of finite dimension with bilinear maps
ngb :0ac ® Ocy — Oqp.

In the case a =b =c, ng, is an associative product.
These maps satisfy the next commutative diagram

Mg ®1
Oab ® Ope ® Ocg—> 0ac ® Oca

1®n§dl lngd

Oad ® Opa Oaa

b
Naa

Lemma 4.3. The maps A, are coassociative, i.e. the next diagram commutes

d
Aab

Oab Oad®odb

Agbt iAgd®1

Oac®O0cp ——> 0ac ® 0cqa ® Ogp

10Ad,
for all a,b,c,d € B.

Proof. Note that in the next diagram we need to prove that the external diagram
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commutes.

* *
@ O0%a ® 034 .
/ﬂ \
* * *
Oba 04a ® Opq
D3Py
O O
gL @1 ad ® OUap
(Dad®]
O"QQJ/ 0% © 0%, @ O4a ® Oav
oa Ny, ®1
0% ® Oca 0ca ® 034 ® Oy @1 03c ® 0¢a ® Oap
1®nf}z 1®T
™1
1R1,)
Oza ® O:;lc ® O*l;d Oza ® Otlc & Odb
oleo lor Dl oD ] @1
Oa\:@ch Oza®o>{)d®ozc Oac®ocd®odb
—1 —1
10y ol elel 100 4 @Dy,
Oac ® O, Oac ® 0 ® Ogq
\ 4

"0 e @ OFy ® 0%,

Note that @ commutes trivially. The diagram @ can be divided into four com-

77



mutative diagrams

d*
Mpa T

* * * * *
ba vd @ 0gq ——> 03, ® Ogq

nazl 1®n5;;l lnf;;@

be ® Oca W 0%a ® O ® O¢q — Odc ® 0¢q ® Opq

i - i l@]

Oza ® Oj;)c T@?dgza ® o%d ® Ofic ]4> Oza ® Ofic ® Ojt;d
bc

T
The diagram @ is the following

1 o1
D q®Dy, Dra®1
- 5 O

da @ Opq ad ® Ogp 10 @ Oav
ﬂ‘f{;@ll iﬂaﬁ®1
ac ® 0% ® 034 4 ® 0%, ® Oap
T®]l ift@]
Oza®ozc®ozd 1 O:‘;a@) Otlc(g) Odb
]®(Ddb

and it commutes naturally. Now we check that the diagram @ commutes

1emd* 1
Oza ® Ozc Hb' O:a ® O;d ® Otlc ﬂ) Oza ® Ofic ® Ozd

O lon,] l \ \L]@T

Oac® ch Oza® OT)d® Otic
1®®Cbl @_]@]
OGC ® OEC 7) OGC ® O;d ® Ofic
1®nbc

It commutes naturally. Finally, it remains to prove that the diagram @ commutes.

Then the external diagram commutes. The diagram @ can be divided into the
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next diagrams.

107
0% ® 03,054 © 0% ® 0% @ Oap

19T

* * * — —1
Oca® Obd® odc Dl BD 4 @1

ol ®1

Oac & Oj{)d & OEC T Oac & OEC & O{;dlm]oac ® Ocd ® Odb

It is clear that they are commutative, and the coproducts are coassociative.

Lemma 4.4. Given the maps Oq: Oqq — k, we have that the triangles

b a
Aab

Oab O ®0pb  Oap —>0a0a ®Oqp

| o e

Oab®k k®oab

commute.

Proof. Note the identity @4 = uj o @ 4. It is clear that the next diagram commutes,

(Dab * ngz * *
Oub ba vb @ Obq
iT
N * *
= ] va @ Oty
D @uF
ab b 1 1
/ iq)ab(@d)bb
" q)ab®‘I
Oap ®C r— Oab ® Oy, oo, Oab ® Opp
b

the reason is that the identity ngao (up®1) =1 implies that (uy ®1) ongz =1 then
(DL oup)otonpm=10(100)o(uj@)ondi=10(12d)

This proves the lemma.
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Consider the maps
ﬁ: Oab — Hom(Ocq, Oct) = Ocp ® 0%y,
X — X : Ocq = Ocp, product by the right ofx
E,Tab: Oab — Hom(Ope, Oqc) = Oge ® Of,
X = X 1 Ope — Oqc, product by the left of x
It is not difficult to prove that the next diagrams commute

-1

q)ab * (Dab
Oab ba Oab
A(C:lb L“%Z Lﬂgb
Oac®0 0%, ® O Ocp ® OF
ac Cttq)cb ®®Dqc)oT be ca ;t} cb ca
Dayp * ®@ap
oab ba Gab

Aﬁbt ‘/“%Z ‘(gb

O(IC ® Ocqq)cb@@ac)ogic ® Oza To(q)ac®1) OGC ® O%C

Proposition 4.5. The coproduct A¢y is a morphism of Ogqq X Ope-bimodules for all
d,e, i.e. the squares

ng Nae
Oda ® Oqp — = Oap Oab ® Ope ————> O
1®A%, lA‘éb Aﬁb@”l Age
Oda®oac®ocbwodc®ocb Oac®ocb®obewoac®oce
dc ce

commute.
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Proof. Consider the diagram

Ma

db
®© %

——> 04 ®0

cb ngc®1* dc cb i;é\(bcb
: 1Dy

Ng.®17 ‘

04c ® OT)C

Oda ® OC{C ® OEquOda ® Oqc ® O

0 0%
191* de ® be

If we prove that the external diagram, and the diagrams @, @, @, @ commute
then the diagram @ commutes. Note that the diagramas @ and @ commute
using the last statement. Clearly the diagrams @ and @ commute, and finally

the external diagram commutes by definition of E,Tab.

We use the next diagram to prove that the other diagram commutes.

b
Mab

Oab® Obe an

oM, ®1) onc .
ab Aflb@] Aﬁe Mae

O:;a ® Ocb ® Ope m Oac ® Ocp ® Ope T Oac ® Oce

®Mce
Dgc®1
m 1*®1

Oza & Oce 1*4@1) Oza ® Oce

L J

Applying the Proposition [£.5] we have that the cobordisms of the figure [14] coin-
cide.

Lemma 4.6.

C C
C b c al c
_c b _ b

C b—aQb - a
c a a ) b
a a
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o T_o
fe)

o

C C
c d b c

d— d—5b
[htp] & a

Figure 14: Abrams condition.

Proof.
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hence

Y c
c C b
al C b
b C a
a a
T b
a

Remark 4.7. Let Ogp : C — Ogp ® Opq defined by
@ab = Aga O Ugq,

where Uq : C — Oqq is the unit. Then Ogp(1) = L;W; ® Wi, where {¥;) is a basis of
Oab, and {W is the dual basis of Opq, i.e. <‘Pi,‘1’j> = dyj.

Proof. Let be Oqp(1) = Zi;B4¥s ® W), where i € C.

Then we have (1@0p) o (1@n1g,)(ZByVi@ W @ W) = (106)(ZyBy¥i@ YV =
Zﬁﬁﬁ@b(‘yﬂyk)\yi = ZiBik\yi = \yk and hence Bij = 61)'.

L J

Proposition 4.8. We can modify the axiom 2 in the definition of Frobenius struc-

ture as follows (see Section : there exist a family of coassociative linear maps
Al i Oqp = Oqe ® Ocp which are Ogq X Opp-bimodule morphisms and linear maps
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O4: Oqa — C such that

b AL

Oab > Oab(g)obb Oab L Oaa®oab
:l A ll A
Oab®k k®oab

commute.

Proof. We only need to prove that the trace @4 : Oqq — C is non-degenerate. For
this we consider the next commutative diagram

O(l(l ® O(l(l ® O(l(l

Aga®] W
U ®1 10

C®Oaa—>(‘)aa®(‘)aa Oaa(g)(‘)ac14>oaa(g)(j
ACL

a
Naa

Oaa

This implies the next property

Tx—= 1a0x%x— (Zui®ei)®xr—>Zui@)eix»—)Z@a(eix)ui:x
i i i

where {e;} is a basis of Oq4q. Hence {u;} is also a basis of Oqq.

If we take x = uj, then Oq(equ;) = 8i5. We suppose y = ) ; ajei with the property
that ©4(yx) = 0for all x € Oqq. Therefore, if we take x = u; hence ) ; xiOq(eiu;) =
oy = 0 for all j. This proves that y = 0 and consequently the trace is non-degenerate.

L J

Definition 4.9. We define a positive (outgoing) boundary open-closed topological field
theory (2D OC-TFT.) just as we defined a 2D OC-TFT with the difference that
the morphisms have at least one outgoing boundary. In particular there is no linear
form associated to the surfaces illustrated in the Figure Namely, we no longer
have traces. Now, we describe the algebraic axioms of this theory.

A positive boundary 2D open-closed TFT is given by the following algebraic
data:
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1.

DD

Figure 15: Traces in the open theory and closed theory.

(A,Ay,14) is a commutative non compact Frobenius algebra.

2 Ogp is a collection of vector spaces for a,b € B.

2a.

2b.

2c.

3a.

3b.

There is a family of associative linear maps

N2 Oab @ Ope — Oqc (20)

There is a family of co-associative linear maps

A(Clb :0a = Oac ® Ocp.

Moreover, A¢y is a morphism of Ogq X Ope-bimodule, i.e. the diagrams0

ng Nhe
Oda ® Oqp ———— Oap Oab ® Opp Ode

1AL, iAgb Agb®1l AS .

0da ® 0qec ® OC%W O0ac®0¢p Oac ®O0cp ® Obel®4> Oac ® Oce

b
dc Tce

commute.

. There are linear maps:

ta: A= O0aa, 1% :0qa — A (21)
such that

Lq is an algebra homomorphism
ta(P1d2) = ta(P1)ta(d2) (22)

The identity is preserved
ta(la) =1a (23)
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3c. Moreover, Lq is central in the sense that
ta(P) = Pip(P) (24)
for all ¢ € A and P € Ogp.

3d. The “Cardy conditions”. For this we define the map 7y : Oqa — Opp as
follows. Since Ogp and Opq are in duality (using 04 or 8y), if we let P, be a
basis for Opq then there is a dual basis P* for Ogp. Then we set

o) = ) bt (25)
08

and the “Cardy condition” is
g = Lp o L. (26)

Remark 4.10. This algebraic construction is equivalent to the categorical one in the
2D open-closed TFT case, with the restriction that it does not contain traces for
the closed and the open part.
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5 Virtual Fundamental Classes

5.1 Motivation

One of the most fruitful ways of constructing examples of TQFTs is by the
method of the virtual fundamental classes on moduli spaces (of fields).

Moduli spaces often do not quite have a fundamental class (that we will require
to do the integration). The problem is that roughly speaking M is given as the
intersection of two submanifolds (equations) N; and N; of a larger manifold V
(taking only two is possible by using the diagonal map trick, namely NyN...NN; =
(N7 x---x Ny )NA(VT)). Often this intersection is not transversal. Therefore rather
than a tangent we have a virtual tangent bundle (in K-theory)

[TM]V = [TN1]v¢ + [TN2]|ve — [TV

whose orientation (in cohomology, K-theory, complex cobordism) is called the virtual
fundamental class [M]¥"*. This is closely related to the theory of derived manifolds
and could be reinterpreted in the language of [Spil0] but as it is not strictly necessary,
we prefer to work in a more traditional topological language.

The basic example is afforded to us by Poincaré duality. This model written
(HM ZM) 11 = (Am, Oam) depends only of a fixed oriented compact closed smooth
manifold M and lives in dimension 1+ 1. Let Maps®(Y, M) be the space of constant
maps from Y to M. Clearly if Y is connected (and non-empty), Maps® (Y, M) = M
and in fact this last homeomorphism is given by the map

evy: Maps®(Y,M) - M

that evaluates at y € Y. For Z C Y we will write evz: Maps®(Y, M) — Maps®(Z, M)
to be the restriction map defined by evz(f) = f|z.

In this theory the fields are
F(Y) = Maps®(Y,M),

namely the moduli space of constant maps from Y to M. We consider Y to be
(1 4+ 1)-dimensional. Notice that

Maps®(,M) =M x M x --- x M

where the product contains as many copies of M as connected components has Y.
Consider now the situation in which Y = P a 2-dimensional pair-of-pants (a 2-sphere
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with three small discs removed) with two incoming boundary components and one
outgoing, and M is an oriented compact closed smooth manifold. Let a,b and c be
three boundary components P each one diffeomorphic to S'.

F(01Y)
that is to say

Maps®( (27)

y\

Maps®(S', M) x Maps®( Maps®(S', M)

/\

M x M

which becomes thus

and indeed, since that is a smooth correspondence of degree —d we have that
A =eveo (evg X evyp)r: Hy (M) ® Hy (M) = H,_g(M)

is the induced homomorphism of degree —d in homology. Namely, the Feynman
evolution for a pair of pants in this field theory is simply the intersection product in
homology.

We could have used the space 8 consisting of the wedge of two copies of S!
instead of P (they are after all homotopy equivalent, we can define ev. by choosing
a quotient map ¢ — 8 identifying two points of ¢). Notice that by using pairs-of-
pants we can recover any compact oriented 2-dimensional cobordism Y which is not
boundaryless. In fact by using correspondences we can recover ‘PQA for all Y that
has at least one outgoing boundary component. In a sense correspondences encode
a big portion of Poincaré duality this way, the so-called positive boundary sector of
the TQFT.

For this model we have,

o An = H(e) = H.(M) (the homology of M which is graded).
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e The mapping associated to the pair of pants
AM @AM = AMm (28)

is the intersection product on the homology of the manifold (and is of degree
—d).

e The trace is defined as Op: Apm = Hi(M) — H,(e) = C via the pushforward
map associated to the canonical map p : M — e, i.e. Opm(x) := p«(x) The
nondegeneracy of the trace is a consequence of Poincaré duality.

It may be instructive to see how the Pontrjagin-Thom construction and the
Thom isomorphism can be used to induce the map . That basic idea is to use

the diagonal map
AN M — M x M.

m e (m, m)

The product on Apq is precisely the Gysin map /A, which can be defined using
integration over the fiber, or as follows. It is not hard to verify that the normal
bundle v of M = A(M) in M x M is isomorphic to the tangent bundle TM of M.
Let us write M a small neighborhood of M in M x M, and M™ the Thom space
on TM. Then we have a natural map

MxM-—MxM/(MxM-M,)=MM
which by the use of the Thom isomorphism induces

as desired.

Ezample 5.1. This is a famous example due to Chas and Sullivan [CS|. Following
Cohen and Jones [CJ02] we do something rather drastic now and let the maps roam
free, namely we write the correspondence but with the whole mapping spaces
rather than just the constant maps.

Maps(8, M)
y €Ve
(LM)? = Maps(S', M) x Maps(S', M) Maps(S',M) = LM

(29)
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which is a degree —d smooth correspondence. We must replace the pair of pants P
for the figure eight space 8 in order to ensure that Maps(8, M) — LM x LM is a
finite codimension embedding. This in turns implies the existence of the Gysin map

(eva X evp)r: Ho (LM x LM) — H,_g(Maps(8, M)).
The induced map in homology
o: H,(LM) ® H(LM) — H,_4(LM)

is called the Chas-Sullivan product on the homology of the free loop space of M.
From the functoriality of correspondences it is not hard to verify that the product
is associative.

Chas and Sullivan proved more, by defining a degree one map A: H,(LM) —
H, . 1(LM) given by A(0) = p.(0 ® o) where p: S! x LM — LM is the evaluation
map and 0 is the generator of H'(S?, Z), they proved that (H.(M), e, A) is a Batalin-
Vilkovisky algebra, namely

e (H, 4(M),e) is a graded commutative algebra.
e A2=0

e The bracket {o, B} = (—1)/%A(x @ B) — (—1)1®¥A(x) @ p — ot @ A(B) makes
H._4(M) into a graded Gerstenhaber algebra (namely it is a Lie bracket which
is a derivation on each variable).

This statement amounts essentially to the construction of ‘PﬁM for all positive
boundary genus zero (1 + 1)-dimensional cobordisms Y due to a theorem of Get-
zler (cf. [Get94]). The case of positive genus has been studied by Cohen and Godin
ICGO4].

Ezample 5.2. The Gromov-Witten invariants introduced by Ruan in [Rua96] can be
understood in terms of a field theory [PSS96]. Now we consider a Riemmann surface

Y = X4 of genus g with k marked points. These marked points will take the place
of 0pY and for simplicity we will not consider outgoing boundary for now.

al
Q,
a3

ay
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In this (141)-dimensional quantum field theory we start by considering a fixed sym-
plectic manifold (M, w). The space of fields is given (roughly speaking) by the space
of J-holomorphic maps on the class p € Ha(M),

F(Y) = Mz = Holg(Z, M) = {f € Hol(Z, M)[f.[Z] = B},

If we denote by evi: My — M the evaluation map at a; € L, then we have the

correspondence diagram
Mg
) Flo) =

Mk = ?(Hiai

Given k cohomology classes up,...,ux € H*(M) we can let them evolve accord-
ing to Feynman’s pull-push formalism to obtain the corresponding Gromouv- Witten
mvariant

Qg xlur,...,u) = J eviug AL Aeviuy
Mz

Here we should mention two important technical points regarding the moduli space
Ms. Firstly Kontsevich [Kon95| discovered that the most convenient space for defin-
ing this field theory is the moduli space of stable maps (where at most ordinary
double points are allowed, and with finite automorphism groups). The moduli space
turns out to be an orbifold, not a manifold. We will return to the definition of an
orbifold later.

The corrected formula for the Gromov-Witten invariants is then
(Dg»ﬁyk(l‘H Yo »uk) = J ) eVi‘fU—] AN ev*kuk.
[Mz]vlrt

Ezample 5.3. Floer theory is also a quantum field theory. Now we consider Y = X1
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to be a genus g Riemann surface with k small discs removed.

7 e
7

The fields are again holomorphic mappings F(Y) = Ms.

Ms

F(o)=-e (LM)* = F(0:1)

In this case rather than simply considering the homology of LM we consider
its semi-infinite (co)homology. This means that we consider the homology of cycles
that are half-dimensional in LM. The semi-infinite (co)homology H¥(LM) is also
known as the Floer (co)homology HF.(M).

5.2 The Calculus of Obstruction Classes

We need the technical machinery of obstruction classes for our computations of
virtual fundamental classes. The technical details of such theory are found in the
last appendix of this book.
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6 String Topology

String topology is the study of the topological properties of the free loop space
LM of a smooth manifold M by the use of methods originating in quantum field
string theories and in classical algebraic topology. Here LM is by definition the
space Maps(S'; M) of piecewise smooth maps from the unit circle S! to M. This
study was initiated by Chas and Sullivan in their seminal paper [CS] where they
defined a remarkable product o on the homology H,(LM) of the loop space of a
smooth manifold. As we will see, string topology provides us with a family of TFTs,
one for for each manifold M.

Let M be a smooth, orientable manifold of dimension n. The space of free loop
space is
LM ={x:S" = M}

where every loop is assumed piecewise smooth.
Chas and Sullivan in [CS| proved the next result.

Theorem 6.1 (Chas and Sullivan, 1999). Let M be a compact, closed, smooth,
orientable manifold of dimension d. There is a commutative and associative product

H,(LM) @ Ho(£M) = Hyyqa(LM)

e making Hy,(LM) := H, a(LM) an associtive, commutative graded algebra and

e compatible with the intersection product on Hy(M), i.e., the following diagram
commautes.
H,(LM) @ Hq(LM) —— Hp 1 q—a(LM)

eV ®ev*l lev*

H, M ® HyM H, g aM

In this section we present a generalization of this result when M is not necessarily
compact. Moreover, we will prove that H,(LM) is a nearly Frobenius algebra. In
particular, using the folk theorem we have an example of a 2D-TFT with positive
boundary. In the next chapter, we will give an extension of the string theory that
permits us to give a new example of 2D Open-Closed TFT with positive boundary.
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6.1 Algebraic Structure

The Loop product: Following Cohen and Jones the Chas-Sullivan “loop product”
in the homology (over a field k of zero characteristic) of the free loop space of a
closed oriented d-manifold,

w: Hy(LM) ® Hg(EM) — Hyyq_a(LM)

is defined as follows.

Let Map(8, M) be the mapping space from the figure 8 (i.e the wedge of two
circles) to the manifold M. Chose a basis point in the circle, notice that Map(8, M)
can be viewed as the subspace of LM x LM consisting of those pair of loops that
agree at the basepoint. In other words, there is a pullback square

Map(8, M) —= LM x LM (30)
evi levxev
M M x M,

where ev : LM — M is the fibration given by evaluating a loop at the basepoint.
The map ev : Map(8, M) — M evaluates the map at the crossing point on the figure
8. Since ev X ev is a fibre bundle, e : Map(8, M) — LM x LM can be viewed as a
codimension d embedding, with normal bundle ev*(va) = ev*(TM).

The existence of this pullback diagram of fiber bundles, means that there is
a natural tubular neighborhood of the embedding e : Map(8, M) — LM x LM.
Namely, the inverse image of a tubular neighborhood of the diagonal embedding
A:M — M x M. That is, e = (evxev) ' (na). Because ev is a locally trivial
fibration, the tubular neighborhood 1. is homeomorphic to the total space of the
normal bundle ev*(TM). This induces a homeomorphism of the quotient space to
the Thom space,

(LM x LM)/((£M x LM) —ne) = (Map(8, M))*¥" (TM),

Combining this homeomorphism with the projection onto this quotient space,
defines a Thom-collapse map

Te: LM x LM — (Map(8, M))e¥" (TM),

For notation, we refer the Thom space of the pullback bundle ev*(TM) —
Map(8, M) as Map(8, M) ™.

94



There is a functorial construction in homology which goes in the wrong direction.
This is called the Gysin map or Umkher map, see [CK09]. We define an umkehr
map,

H.(LM x LM) =% H,(Map(8, M)™) £ H,_q(Map(8, M)
where u € H4(Map(8, M)™) is the Thom class.

Chas and Sullivan also observed that given a map from the figure 8§ to M then
one obtains a loop in M by starting at the intersection point, traversing the top loop
of the 8, and then traversing the bottom loop, this defines a map

p:Map(8, M) — LM.
Definition 6.2. We consider the next diagram
Map(8, M)
LM x LM

where e is defined in Diagram . The loop product in the homology of the loop
space is the composition

n:Ho(LM) @ H, (LM) = Ho (BM x LM) =5 H,_g(Map(8,M)) 25 H,_4(LM)

The Loop coproduct: Notice that Map(8, M) can be viewed as the subspace
of LM consisting of loops that agree at 0 and at % In other words, there is a
pullback square

Map(8, M) *—— M

eVOl leVO Xev%

M x M

where evg X evy : LM — M x M is the map given by evaluating a loop at 0 and ]
Then we can deﬁne the umkehr map

H,(LM) =5 H, (Map(8, M) ™) 2% H, 4(Map(8, M)).

Definition 6.3. The loop coproduct for the homology of the loop space is the com-
position

A:H, q(LM) -2 H, (Map(8, M)) =5 H, (LM x LM) = H,(LM) @ H,(LM).
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The unit and counit: Consider the disk D as a cobordism with zero incoming
boundary component and one outgoing boundary component (see Figure . The
restriction map to the zero incoming boundary is the map

Pin : Map(D, M) — Map(@, M) = point.
Notice that the disc D is homotopy equivalent to a point, then the smooth mapping

gl

Figure 16: The disc D

space Map(D, M) is homotopy equivalent to the manifold M. The umkehr map in
this setting is
(pin)i : Hi(point) — H.1a(M),
which is defined by sending the generator to [M] € Hgq(M). The restriction to the
outgoing boundary component is the map
Pout : M ~ Map(D,M) — LM,
which is given by t: M — LM. Thus the unit is given by
w: (Pout)s © (Pin)1 = Lo (pPin)i: H*(DOint) — H*er(M) — H*er(LM)»

which sends the generator to the image of the fundamental class.

The reason of the nonexistence of a counit in the Frobenius structure is formally
the same to the existence of a unit. Namely, for this operation one must consider D as
a cobordism with one incoming boundary, and zero outgoing boundary components.
In this setting the role of the restriction maps pin and pout are reversed, and one
obtains the diagram

Map(, M) <2 Map(D, M) —2= LM
IIl ll I
point s M . LM

where € : M — point is the constant map. Now notice that in this case the embed-
ding Map(D, M) < LM is of infinite codimension, and to our knowledge there is no
way to define the umkher map. Ando and Morava [AMO1] have given an argument
that says that if one has a theory where this umkehr map exists, one would need
that the Euler class of the normal bundle e(v(t)) € H*(M) is invertible.

96



6.2 Verification of the nearly Frobenius Algebra Axioms

We will use the Proposition to prove of the next theorem.
Theorem 6.4. H,(LM) is a nearly Frobenius algebra.

Proof. 1. Associativity of the loop product

(1) (2)

The loop product is defined by the next diagram.
Map(8, M)

(1)

LM x LM x LM LM x LM LM
(2)

\
LM x LM x LM LM x LM LM
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We will use Quillen’s result to prove this property.

@*(TM) = k* ev*(TM) — — > Map(Jd, M)

li

ev*(TM) - — — — — > Map(8, M) —5> LM x LM
evl \Levo X evp
A
™--——————~— M M x M

where @ = evok and ev*(TM) is the normal bundle of i.

ev*(TM) = — = Map(d, M) —= Map(8, M) x LM
iev ieVXeV

M x M
(1) We have that 0 — ev*(TM) — @*(TM) — F; — 0 is an exact sequence.
Note that @ = ev, then F; = 0. Similarly, for (2) we have F» = 0, then
e(F1) = e(F2).

A

2. Coassociativity of the coproduct

g

LM LM x LM LM x LM x LM



Map(&b, M)

MapSM ) x LM

LM x LM LM x LM x LM

(1) In the first case we have:

ev*(TM) - — = Map(Jd, M) — > Map(8, M)

iev lev1 X evp
2
A

™~ - - - - -M M x M

and

i"(ev xev)*(TM) = — — > Map(&, M)

|

LM x Map(8, M) 26~ 1M x LM

eVXeVl ievxevxev;

MxMxM

Then, we have the next short exact sequence 0 — ev*(TM) — r3(ev x ev)*(TM) —
F1 — 0. We conclude that F; = 0 since ev*(TM) = 15(ev x ev)*(TM).

(2) In the other case there are the diagrams

ev*(TM) — — > Map(&, M) s Map(8, M)

iev leVo Xeviy
2
A

M x M
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and

ji*(ev x ev)*(TM) - — - >Map(&, M)
ljz
Map(8, M) x LM L~ 1M x LM
s evl levxev% < ev
Ax1

MxMxM

Then we have the exact sequence 0 — ev*(TM) — j5(ev x ev)*(TM) — F, — 0.
Since ev*(TM) = j5(ev x ev)*(TM) then F, = 0.

3. Abrams condition

LM x Map(8, M)

Ixp k

LM x LM LM x LM x LM LM x LM
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In the first diagram we have

i*ev*(TM) - — = Map(éd, M)

ev*(TM) - — —=>=Map(8§, M) ———= LM
ev levxe‘m
2
T™M----~-- ~M—2>MxM
and .
ev*(TM) — = > Map(dd, M) —— Map(8, M)
\Lev J{evxevl X ev
2
A
™--- - - - M M x M

Then we have the exact sequence 0 — ev*(TM) — k™ ev*(TM) — F; — 0.
Since ev ok’ = ev then F; = 0.

For the second diagram

j*(ev x ev)*(TM) = = — > Map(dh, M)

£

(ev x ev)*(TM) — — > Map(8, M) x &M 2o LM x LM x LM

evXev\L levxevxev
Ax1

MxMxM

and
ev*(TM) = = > Map(&, M) —> LM x Map(8, M)

lev levxev
A

M x M

Therefore we have the exact sequence 0 — ev*(TM) — j*(ev x ev)*(TM) —
F2 — 0. Note that ev*(TM) = j*(ev x ev)*(TM), then F, = 0.
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4. Unit axiom

0%) ()
(1) (2)

\
/

LM LM

First, we note that ¢ and ¢’ are homotopic maps, then @, = ..
In (1) we have

v (TM) - — = LM —5M x LM
evl iidxev
A
™M- - - >M—2MxM

and
ev*(TM) - - —-->= LM

v

Map(8, M) — LM x LM

evi levxev
A

M x M




Then Fy = 0. In the second diagram is trivial to prove that F, = 0.
L)

From this we can conclude that string topology defines a TQFT+, this has been
proved by different methods in [CG04]

6.3 String Topology as a non-Compact Calabi-Yau Category

Let B be the category of D-branes, the objects of this category are a collection
of submanifolds of M,

Obj(B) ={Dj € M : submanifold of M}.
Now we consider the path spaces, see Figure
Pm(Di, Dj) ={y:[0,1] — M picewise smooth :vy(0) € Di,y(1) € Dj}
Then, the morphisms of the category B are
Homg(Dj, Dj) = Hi(Pm(Dy, Dj)),
for Dy, Dj € Obj(B).

Y(1)eD;

10)e Dy

Figure 17: Space Pm(Djy, Dj).

We have already endowed the free loop space (H«(LM), A, u) with the structure
of a nearly Frobenius algebra. In waht follows we will describe the other structural
maps.

Consider the path space

TM(D1,D2,D3) = {(X: [O,” — M: O((O) S D],O( (l) & Dz, 0((1) S Dg}
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Y(1)eDj
Y12)e D,

Y(0)e Dy
Now we consider the next diagram

Pm(D1, Dy, D3)

. . )
J12%J23 Us

Pm(D1,D2) x Pm(D2,D3) Pm(Dq,D3)

where i%_q, :Pm(Dq,Dy,D3) — fPM(D1,D2) is the natural inclusion, j12 : Pm(D1, D32, D3) —

Pm(Dy,Dy) is defined by ji2(x)(t) := x(3), and j23 : Pm(D1,D2,D3) — Pm(D2, D3)
is defined by jo3(o)(t) := 1?).

The main idea to defining the product is to construct the umkehr map
(J12 x j23)! : Hi(Pm(D1, D2)) @ Hu(Pm(D2,D3)) — Hi(Pm(D1, D2, D3))
and we define the product n%3 as the composition
M73 = (if3) 0 (j12 X j23)! : Hi(Pm(D1,D2)) © Hu(Pm(D2,D3)) — He(Pm(D1, D3)).
Now we observe that there is a pullback diagram of fibrations,

Pm(D1,D3,D3) &)?M(DLDZ) x Pm(D2,D3),

evi

7 evy Xevp
Dz A Dz X Dz
this let us define the umkehr map (j12 X jo3)!.
As before we can consider the diagram
m(D1,D2,D3)
/ \ZXJZ\
Pm(Dq,D3) m(D1,D2) x Pm(D2,D3)
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Then, we define a coproduct
A3z Hy(Pm(D1, D3)) = Ho(Pm(D1,D2)) @ Hy(Pm(D2, D3))

as the composition (j12 X j23)« 0 (i3)! : Hu(Pm(D1,D3)) — Hy(Pm(Dq, D2, D3)) —
H,(Pm(D1,D2)) ® Hi(Pm(D2, D3)).
We can define the umkehr map (i%)! because we have a pullback diagram of fibra-

tions,
22

1
Pm(D1,D3,D3) 2 Pm(Dq,D3)
e\)]l le\qxe\)]
2 2 2
D», X MxM

For the unit we consider the diagram

J D\
pt Tm(D,D)

where T : D — pt is the constant map and 1: D — Pam(D, D) is the inclusion. This
diagram defines the unit

up : Hi(pt) = Hi(Pm(D, D))

as up := iy or!, where r!: Hy(pt) — H,(D) sends the generator to the fundamental
class [D].

To finish the construction we need to define the connection maps. Consider
the open-closed cobordism i between an interval, whose boundary is labeled by a
D-brane D, and a circle. This cobordism is pictured in the Figure As in the

Dl

Figure 18: The cobordism 1.

previous cases, we consider the space,

LpM) ={p € LM : (0) € D}
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and the diagram

We define the map (P by the composition,
t” = (ip)x © (jp)! : Hu(Pm(D, D)) = Hi(Lp(M)) — H.(LM).

For defining the umkehr map we observe that there is a pullback square

Lp(M) —2 9 (D, D)
evy evp X evy
D A D xD

Finally we define the map tp = (jp)« o (ip): : Hi(LM) — H.(Pm(D,D)) —
H.(Pm(D, D)), where the umkehr map (ip), can be defined because the existence
of a pullback square,

Lp(M) —2 LM
(A% evy X evyp
D X M x M

Theorem 6.5. (H,(LM),B) is a 2D open-closed TFT with positive boundary.

Proof. We only need to prove the open axioms since we have given already a proof
for the closed axioms. We will use Proposition [22.6]

1. Abrams condition.
This condition is represented in the next figure.
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(M 2 Dy 3

For this we just meed to prove that the maps for (1) and (2) are the same. The
same applies for the the maps for (2) and (3). The next diagrams represent
these composition maps.

(M

Pm(D1,D2,D3,D4)

Pm(D1,D2) x Pm(D2, D3, Dy

Xj23 %34

Pm(D1,D3) x Pm(D3, Da) Pm(D1,D2) x Pm(D2, D3) x Pm(D3, Da) Pm(D1,D32) x Pm(D2,Da)

(2)

Pm(D1,D2,D3,D4)

Pm(D1,D2,Dy)

< 3 o S
113 X)34 i, i1, 112X)24

Pm(D1,D3) x Pm(D3,Dy) Pm(D1,D4) Pm(D1,D32) x Pm(D2, Da)

First, we note that &; = &5, 11 = 12 and that the squares are pullback squares.
To prove that the composition maps coincide we only need to check that the

Euler class of each square coincides.
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(1) In the first diagram we have the next constructions

(i35 x il3y)"(ev x ev1)*(TD3)

>Pm(D1,D2,D3,Dy)
LEESL

-
Pam(D1,D2) x Pa(D2, D3, Da) — 222 Py (D1, D2) x Pp(D2, D3) x Pa(D3, Da)

e\'xevl ev X ev X ev
T3 —— === = — = = —— — — — ~D, x D3 x4 D2 x D3 x D3
and
i3 xil]
(ev% xe %) (TD3) - — — - >Pm(D1,D2,D3,D4) ——— Pm(D1,D3,D3) x Pm(D3, Da)
evy xevy evy XevXev
3 3 2
TD3- - ———————— ~D, x D3 x4 D, x D3 x D3
Note that (evi xev2)*(TD3) = ( ;
3 3

ié X 1y34)" (ev X ev%)*(TDg). Then
0— (ev% X ev %) (TD3) — r3(ev xevy J(TD3) = F1 — 0
is exact where F; = 0.

(2) In the second case we have

(i354)" ev E(Vz) - —>Pm(D1,D2,D3,Dy4)
N
Pm(D1,D2,Dy) Pm(D1,Dy4)
eV]l lQV] X evi
2 2 2
A
V- —————— - = >D; M x M
and
evy
2

W\

Sk

M x M
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2. Associativity of the product.

m(D1,D2,D3,Dy)

\
m(D1,D2,D3) x Pm(D3,Da) m(D1,D3,D4)
P

m(D1,D2) x Pm(D2,D3) x Pm(D3,Da)

Pm(D1,D3) x Pm(D3, Da)
(2)

Pm(D1,D3,D3,Dy)

\
M(D1,D2) x Pm(D2,D3,D4) m(D1,D2,D4)
/‘X)zsxm/ Ixid, /

3411
W2 X3,

\
\
Pm(D1,D2) x Pm(D2,D3) x Pm(D3, Da) M(D1,D2) X Pm(D2,D4) Pm(D1,Da)
First, we note that the external maps coincide

In the diagram (1) we have

. 12
*g(TD3) - ———>Pm(D1,D2,D3,Dy4) RSk TI Pm(D1,D2,D3) x Pm(D3,D4)
ev% ev X ev
TD3 ********* >D3 A D3 X D3
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and

(i134)7ev3 (TD3) - - — — = P (D1, D, D3, D)
i%34
J13 X734
Pm(D1,D3,D4) ———— Pm(D1,D3) x Pm(D3,D4)
ev% ev X ev
A
M- —-—-———-—-——-—-- >D3 D3 x D3
Note that evi oi%34 = ev2, then ev} (TD3) = (evi1 01%34)*("1'D3), and as a
2 3 3 2
consequence F; = 0.

In the second diagram we have

evi(TDz) - —— - - Pm(Dy, D2, D3, Dg) — 22 Py (D1, D3) x Pp(D2, D3, Da)
eV% ev X ev
Dy - ===~ ~D, = D, x D5
and
(1924)* evz (TD2) - - = P(Dy, Dy, D3, D4)

-3
1124l

Pm(D1,D2,Dy)

Pm(D1,D2) x Ppm(D2, Dy)

evil ievxev
TDZ ********* >D2 A DzX Dz

We note that evi =ev: 01?24. Then ev?
3 2
0.

W=

(TD2) = (GV% Oi‘?zﬂ*(TDz) and Fp =

. Coassociativity of the coproduct.
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@)

m(D1,D2,D3,D4)
i34
Haa
Pm(D1,D2,Dy) Mm(D1,D2) x Pm(D2,D3,D4)
x / N
Pm(D1,Da) M(D1,D2) x Pm(D2,D4) Mm(D1,D2) x Pm(D2,D3) x Pm(D3, Da)
m(D1,D2,D3,D4)
Pm(D1,D3,D4) Mm(D1,D2,D3) x Pm(D3,D4)
Pm(D1,Dy) M(D1,D3) x Pm(D3, D4) Mm(D1,D2) x Pm(D2,D3) x Pm(D3, Da)

In the first case we have

3
ev”’%(u) - —>Pm(D1,D2,D3,Dy) M Pm(D1,D2,D3)

o)
<
Wi
-~
wIN
X
@
<
wiro

<
X
<
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(i334)*(ev x e‘”j)*(“) ***** >Pm(D1,D2,D3,Dy4)

1
l234l

1xi3
Pm(D1,D2) x Pm(D2, D3, Dyg) 2> Pp(D1,D32) x Ppm(D2, Da)

ev X evq \L
z
TxA

e — — — >~D;, x D3 Dy x M x M

evXxevy Xevj
ya ya

Then the sequence 0 — ev} (p) — ij(ev x evi)*(n) — F; — 0 is exact, with
3 pl

(i}34)*(ev X ev%)*(u) = ev% (1). And for that reason we conclude F; = 0.

In the second case, there is the diagram

W\

g

(1?23)*(6‘”2 xev) (V) - ———— >Pm(D1,D2,D3,Dy4)

-4
Y23 l

i2.x1
Pm(D1,D2,D3) x Pm(D3,D4) “—= Pp(D1,D3) x Pm(D3,Dy)

evy] Xev
j \L
1xA

Ve >D, x D3 M x M x D3,

evy] Xevy Xev
2 2

therefore ev’ (v) = (1‘1‘23)*(ev% x ev)*(v). Consequently F, = 0.
3

4. Cardy condition
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Consider

Lm(Dq,Dy) = {(X: 81 — M : «(0) € D7 and W(l) S Dz}

Lm(D4,D2)

m(D1,D2,Dy) m(D2,D1,D3)
Pm(D1,Dy) m(D2,D1) x Pm(D1,D2) Pm
where T is the transposition map.
(2)

Lm(D1,D2)
n / \ g
Lp, (M) Lp, (M)
S T
ip, ip,

Pm(Dq,Dy) LM m(D2,D3)

Note that the next diagram is a pullback square

Lm(Dq,D3) = Pm(D2,D1,D))

1 j21 %12

Pm(D1,D2,Dy) Pm(D1,D3) x Pm(D2,D3)

To(j12%j21)
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Then, for the first case

ev*(TD1) = — > Lm(D1, D2) —> Ppm(Dy, D2, Dy)

evl ievo X evy

D]XD1

To(j21%j12)

Pm(D2,Dq, D)

Pm(D1,D2) x Pm(D2, Dy)

ev ev X ev

A D]XD]

The next equality holds ev*(TD1) = (ev oi)*(TD1). And we conclude F; = 0.

In the second case

ev* () - — = Lm(Dy, D2) 2 Lp, (M)

ev] Xevi
o [y

C————~— =D, - MxM
and
j3ev*(C) - — =Lm(D1,Dy)
i
Lo, (M) —2—~ £m
C—————- =D> L MxM
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5. Unit axiom

Pm(D1,D2)

< . >
112X)22 i,

Pm(D1,D2) x pt Pm(D1,D2) x Pm(D2,D2) Pm(D1q,D2)

First, we note that the next diagram is a pullback square.

Pm(Dq, D) ! Pm(D1,D2,D2)

1><€1l lilzxizz

Pm(D1,D2) x D2 —7 Pm(D1,D2) x Pm(D2, D2)

Pm(D1,D2)

Pm(D1,D2)
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It is clear that for the second diagram we have F, = 0. Basically we have
N = id and & ~ id, then &, = id.. In the first diagram the umkher map
(1 x €7)! due to the next square

1><€1

ev*(TD2) — = = Pm(D1,D2) —="Pm(D1,D2) x D2

evl lev xid
A

DzXDz

Pam(D1, D2, D) 2222 9 (Dy, D3) x Pa(D2, D)

1
7 ev X ev

A Dz X Dz
Since (ev% oi)*(TD;) = ev*(TD>), then F; = 0.

6. tp is morphism of algebras

(M )

Let be
Mapp (8, M) ={x:8 - M : «(0) € D}
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LM
(2)
Mapp(8, M)
/ \
M) x Lp(M
% x /
LM x LM m(D,D) x Pm(D, D)

In the first diagram there is the square

ev*(p) — — = Mapp (8, M) —— Map(8, M)
ev levxev

M x M

and

Clearly ev*(p) = j*ev*(p). Then F; = 0.
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On the other hand in (2) we have

ev*(TD) — — > Mapp (8, M) —— Lp(M) x Lp(M)

v lwev
- - -D A D x D
and
i ev*}?(TD) - — — —>Mapp(8,M)

|

Ppm(D,D,D) 2 (D, D) x Pp(D, D)

evil levl X evy
D A D x D

As before, jjev*(TD) = ev*(TD). Consequently F» = 0.

7. tis a central morphism

o, ll!
Dl D2
2T

NG

Lp, (M) x Pm(D4,D2) m(D1,D1,D2)

ip, x1 \ /

LM x Pm(D1,D3) m(D1,D1) x Pm(Dy,D2) Pm(Dq,D2)
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Pm(D1,D2)e, X oL, (M)

Lp, (M) x Pm(Dy,D2)

. . < . 5
ip, x1 'ro(]Dle )12X)22 i,

LM x Pm(D1,D3) Pm(D1,D2) x Pm(D2, D) Pm(Dq,D2)

Note that in the last case we have that the pullback spaces are different. For
this particular case we use the corollary for this, we first need to prove
that Lp, (T)e,; X e, PMm(D1,D2) and Lp, (T)¢, X, Pm(D1, D2) are homotopically
equivalent spaces. For this we construct the maps.

We define the map
P @ I—D1 (T)e] XGO“PM(D])DZ) — ?M(D1»QZ)€] XGOI—DZ (T)
(e, B) — (By B oxx ),
and in the same way define
11) : .:PM(D1aD2)€1 XeoI—Dz (T) — I—D1 (T)e] XGO(PM(D])DZ)
(v, ) — (v * 8Y,v).
See these maps in Figure
Now we check that these maps determine a homotopy equivalence.
Voo, B) =W(B,B*axP)= (o, axPxotxa)=(af)
@o(v,8) =@(y*0xY,y) =(v,¥*y*dx¥xvy)~(v,5).

Finally we need to check that the external maps are homotopic.

oo, B)=n'(B,Bxaxp) (Bxoxp,B)~(xp)
n(«, B) = («,B)

oo, B)=E&'(B,BraxxP)=P*BraxxpP~axfp
E(a, B) = (ax B)

nod(y,8) =nly*d*¥,y) =(y*0xy,v)~(8,7)
n'(v,8) = (3,7)

EoP(y,8) =&(y*d*Y,y) =vy*0xy*xy=vy*d
E'y,8) =y *b
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N BN

x€D, yeD.

(@p)  —> (B, Braxp)

x €D, y€D,
1d)  ——  (yxo+,7)

Figure 19: The map @ : Lp, (T)e, X ¢, PMm(D1,D2) = Lp, (T)¢, X e, Pm(D1,D2)
Then, we can use Corollary It remains to calculate the Euler classes.

In the first diagram we have

evi, (TD1) = — = Lp, (T)e, X eo PMm(D1,D2) —— Lp, x Ppm(Dy, D2)

evool J/€1><€o

D]XD]

j*evﬂ; (TD1) - = >LD] (T)€1 XeO?M(DbDZ)

]'l

Pam(D1,D1,Dz) 22 L P (Dy, Dy) x Pa(D1, Da)

evq
zi \Lelxeo

D]XD]

A

Note that j*ev’ (TD1) = ev}, (TD1). Then Fy = 0.
2
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In the second diagram there is the square

eviy(TD2) — — = = = Pm(D1, D2)e; Xy Lp, (M) ——> Lp, (M) x Pp(D1, D2)
Ty-—————————— ~D, 7 D2 x D2
and

j"evi(TD2) - = » Pp(Dy, Da)e, X e Lb, (M)

w

Pm(D1,D2, D)) 2z | Pm(D1,D2) x Pm(D2,Dy)

evq
zl iaxeo

DzXDz

A

Clearly j™* ev* (TD3) and ev*_ (TD3) coincide, then F; = 0.
LE o0

2
Finally, we need to determine that v, = 0. For this we will construct the next
homotopy.

H: I X (]—D1 M€1 XEOTM(D1»D2) — LMEﬁE?M(D1)D2) X I
(S)(O(>B)) — (BS*(X*BS)B)S)

where the map € : I x Papm(D1,D2) — M is given by €(s, ) := B(s), and the
curve Bs: I — Mis Bs(t) = B(st) for all t,s € 1.

Note that H(0, (e, B)) = (&, B) and H(1, (e, B)) = (B * o x B, B) = To @[, B).
Now we need to prove that these spaces of infinite dimension have a smooth
structure i.e. a infinite dimensional manifold; see [KM91]. The space W =
LMe, xePm(D1,D3z) x I'is determined by the next pullback square.

W = LMel XefPM(DLDz) X —LM x TM(D1,D2) x 1

exll ieoxexl

M x1 T MxMxI

Then W is a infinite dimensional manifold. In the other hand, the next pull-
back square give us that the spaces Zs := Lp, Mg, X¢,Pm(D1,D3) are sub-
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manifolds of W of codimension one.

Zs = [-D1 Me1 XGS{PM(DLDZ) X {S}*)LMQ Xe(PM(DlyDZ) x 1

eooxsl leowd

M x {s]¢ M x 1

In particular we have the next situation

Zo =Lp, Mg, X¢,PMm(D1,D2) Zo = Lp,M¢, X, Pm(D1,D2)
Zo=Lp, M¢, X, Pm(D1,D2) Z1 =Pm(D1,D2)¢, Xeo Lp,M

Then v, =0 and e(vy) = 1.

This result holds as well at the chain level (cf. [BCT09]).
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7 Orbifolds and their Mapping Spaces

7.1 Orbifolds

The notion of orbifold was first introduced by Satake in his seminal paper [Sat56].
In this 1956 paper Satake defines for the very first time the concept of an orbifold
by means of orbifold atlases whose charts Satake calls local uniformizing systems.
The name that orbifolds take in this early work are V—manifolds. Quite remarkably
he already works with a version of Cech groups. He goes on to prove the De Rham
theorem and Poincaré duality with rational coefficients. For about two decades the
japanese school carried out brilliantly the study of orbifolds. It deserves special
mention the work of Tetsuro Kawasaki. In his papers of the late 70’s Kawasaki
generalizes index theory to the orbifold setting [Kaw78| [Kaw79, Kaw81]. Another
important work along these veins in the work of Thurston specially his concept of
orbifold fundamental group [Thu97]

Somewhat independently the algebraic geometers developed the concept of stack
in order to deal with moduli problems. As it happens orbifolds arise quite naturally
from the very same moduli problems and it did not take long to realize that the
theory of stacks provided another way of understanding the category of orbifolds,
and viceversa. For example, the Deligne-Mumford moduli stack Mg for genus g
curves [DMG69] is in fact an orbifold. This is one of the reasons for the importance of
orbifolds, many moduli spaces are better understood as orbifolds. The paper of Artin
[Art74] is the place where a very explicit conection with groupoid atlases takes place
for the first time. Implicitly these ideas are already present in Grothendieck’s toposes
[Gro72]. The groupoiod approach to orbifolds is finally carried out by Haefliger
[Hae84] and by Moerdijk and his collaborators [Moe91, IMP99, [CM00, MP97]. In
this work they put forward the important concept of Morita equivalence.

The interest of orbifolds in physics can be traced back to the work of Dixon, Har-
vey, Vafa and Witten [DHVWS5L [DHVWS6] who where motivated by superstring
compactification to introduce an orbifold theory using a K3 with 27 singular points.
It is there that the orbifold Euler characteristic is defined motivated by the physics.
It is a remarkably insightful notion of their work to realize that their results depend
only on the orbifold and not on group actions, for all their examples are global
orbifolds. This work produced an explosion of activity related to orbifolds in the
physics community. The introduction to the mathematics side of the geometrization
of many of these ideas and results is due to Chen and Ruan. Their highly influen-
tial papers [CR04al [Rua02b|] introduced many concepts from the physics literature
rigorously into symplectic and algebraic geometry. In this book orbifolds are often
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completely general, not necessarily global quotients.

7.1.1 Group Actions

Given a space M we often want to study all its self-transformations that preserve
some of its properties. Often such transformations are called symmetries and often
they are also called automorphisms.

Ezample 7.1. Consider a triangle T as a subset of R2. We may ask how many
mappings g: T — T there are with the property

d(x,y) = d(g(x), g(y))

for every pair of points in the triangle, where d denotes the usual distance. Such a
map is called an isometry of the triangle.

The answer of course depends very much on the triangle.
o If the triangle is scalene only the identity is an isometry of T.
e If the triangle is isosceles then there are two such isometries.

o If the triangle is equilateral there are six isometries of T.

This can be verified by noticing that an isometry is completely determined by
its restriction to the vertices.

Here, as we all know, we can take a remarkable conceptual leap: we decide to
remember how the different symmetries interact rather than the symmetries them-
selves. For this we observe that

e If g and h are symmetries of T so is go h = gh.
e (gh)k = g(hk)
e There is always the identity symmetry 1.

e Given a symmetry g there is another symmetry k such that gk = kg = 17.

This motivates the definition of (abstract) group [Lan02]. A group is a set of
things, that together with a composition law that satisfy all the previous axioms.
We say for example that the isometries of T form a group.
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Once we have this definition we end up with groups that are (at first) not natu-
rally the symmetries of anything. For example, the fundamental group of a space X
is at first an abstract group formed with homotopy classes of paths. In this case it
may come as a surprise to learn that 7t7(X) in fact acts as some sort of symmetry,
namely as deck transformations of the universal cover M = X. It is often important
to realize that an (abstract) group is indeed a group of transformations of some
space M.

Definition 7.1. We say that the group G acts on the object M if we are given a
homomorphism

¥: G — Aut(M),

Namely, for every g € G and every m € M we have

e mg =1Y(g)(m) € M such that
e mipy=m
e (mg)h =m(gh)

Definition 7.2. We say that the group G acts effectively on the object M if{: G —
Aut(M) is injective, namely for all g € G, g # 1 there is an m € M so that mg # m.

Definition 7.3. The equivalence relation induced by the action of G on M is the
relation generated by
X ~ Xg.

The quotient M/ ~ is also written
M/G.

The equivalence classes of this relation are called the orbits of the action. They are
written
[m] =m- G ={mglg € G}.

If there is only one equivalence class (orbit) for the action we say that G acts
transitively on M.

Definition 7.4. The stabilizer subgroup of m € M is
Gm={g € Glmg = m}.

Notice that even effective actions often have nontrivial stabilizers.
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Proposition 7.5. If G acts on M then
G/Gh=m-G
as sets.

Ezample 7.2. Let M = P be the set of all lines in R3 containing the origin. Then
the group of all linear automorphisms of R3, G = GL3(R) acts on M. Let m € M
be the x axis. Then it is not hard to see that G, = GL>(R) and therefore

P = GL3(R)/GL2(R)
We write
p:M— M/G

for the mapping
m — [m]

If M is a topological space and G acts on M then we can put a natural topology
on M/G, namely a subset U of M/G is declared to be open if and only if p~'(U) is
open in M.

Example 7.3. )~(/7t1(X) ~ X.

There are quotients in the category of sets, and also in the category of topological
spaces.

But the category of smooth manifolds is quite unlike the category of sets or of
topological spaces (for manifolds have structure sheafs).

7.1.2 Examples

Let M = T2 = S' x S! be a two-dimensional torus, and let G = Z, be the finite
subgroup of diffeomorphisms of M given by the action

(z,w) — (z,w)

Z, Zy
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Example 7.4. Show that while the quotient space X = M/G is topologically a sphere
it is impossible to put a smooth structure on X so that the quotient map M — X
will become smooth. It is in this sense that we say that X is not a smooth manifold.

What will enlarge the category of smooth manifolds to a bigger category is called
the category of orbifolds. Once we do this, when we consider the orbifolds M and X
then the natural orbifold morphism M — X becomes smooth.

While the orbifold M contains exactly the same amount of information as M
the orbifold X = [M/G] (known as a pillowcase) contains more information that the
quotient space X = M/G. For instance X remembers that the action had 4 fixed
points each with stabilizer G. It remembers in fact the stabilizer of every point, and
how these stabilizers fit together. On the other hand X does not remember neither
the manifold M nor the group G. In fact if we define N to be two disjoint copies
of M and H =G x G to act on M by letting G x 1 act by complex conjugation on
both copies as before, and 1 x G act by swapping the copies then

X =[M/G] = [N/H].

Not every orbifold can be obtained from a finite group acting on a manifold. An
orbifold is always locally the quotient of a manifold by a finite group but this may
fail globally.

For example consider the teardrop W(1,2):

This orbifold may be obtained by gluing two global quotients. Consider the
orbifold Xy = [C/Z,] where Z; acts by the holomorphic automorphism z — —z. Let
X, = C simply be the complex line. Then we have in the category of orbifolds a
diagram of inclusions

X] «— C" — DCZ

and therefore we can glue X and X, along C* to obtaining the teardrop X.
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Example 7.5. An important remark: there are orbifolds X that cannot be represented
by a groupoid of the form [M/G]. In other words, in spite of the fact that there is
indeed a groupoid representing X, nevertheless there is no manifold M with a finite
group action G so that X = [M/G]. We say in this situation that the orbifold in ques-
tion is not a global quotient. Examples are given by the toric orbifolds W(ay, ..., an)
whose quotient spaces are the weighted projective spaces P(ay, ..., an) (here a; are
coprime positive integers). For simplicity, let us discuss the case of the orbifold
W(1,2) whose quotient space is the weighted projective line P(1,2) = P'. One way
to describe W(1,2) is through the system of local charts:

[C* /1]

2-1/22 oz
[C/ Zz/ \[C/ {11.

If W(1,2) were Morita equivalent to a groupoid [M/G], then this would induce a
homomorphism p: G — Z; (this follows by looking at the unique point in W(1,2)
with isotropy Z;). Therefore the orbifold [M’/Z,] with M’ := M/ker(p) would be
equivalent to W(1,2). But this is a contradiction because any action of Z; in a
compact surface cannot have only one fixed point.

This example might be a source of misunderstanding because weighted projective
spaces are indeed quotient varieties of manifolds by actions of finite groups. For
instance, in our example, P(1,2) is isomorphic to the quotient of P! by Z/27 under
the action [x,y] — [x, —y] in homogeneous coordinates. On the other hand, although
the orbifold W(1,2) can be presented as a quotient of a manifold by an action of a Lie
group, namely [C?—{0}/C*] with A- (x,y) — (A%x,Ay), it is not equivalent to global
quotient by a finite group. It is worth pointing out that it is still an open question
whether every compact orbifold can be presented (up to Morita equivalence) as the
quotient of a manifold by a Lie group [HMO04].

There are several definitions of the concept of an orbifold. The first one due to
Satake [Sath7] was written using the so-called orbifold atlases, unfortunately quite
a few concepts are a bit cumbersome using this definition. We opt to think of an
orbifold as a certain kind of category following Grothendieck, Haefliger and Moerdijk
Moe02].

7.1.3 Groupoids

In this section we construct the category of orbifolds. It contains the category of
finite groups and also the category of manifolds. The category of orbifolds extends
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both categories at the same time.

Ezample 7.6. The most familiar situation in physics is that of an orbifold of the
type X = [M/G], where M is a smooth manifold and G is a finite group acting
smoothly on M; namely, we give ourselves a homomorphism G — Diff(M). We will
consider mostly right actions. Thus, instead of writing gx for the action of g in x we
will write xg, the action being (x,g) — xg. We make a point of distinguishing the
orbifold X = [M/G] from its quotient space (also called orbit space) X = M/G. As
a set, as we know, a point in X is an orbit of the action: that is, a typical element
of M/G is Orb(x) ={xg | g € G}.

For us an orbifold X = [M/G] is a smooth category (actually a topological
groupoid) whose objects are the points of M, Xop = Obj(X) = M, and we insist on
remembering that Xo = Obj(X) is a smooth manifold. The arrows of this category
are X1 = Mor(X) = M x G again thinking of it as a smooth manifold. A typical

arrow in this category is
(x,9)
X — Xg,

and the composition of two arrows looks like

x % xg Y
(x,gh)

xgh.

As we have already pointed out, an important property of this category is that it
is actually a groupoid: indeed, every arrow (x, g) has an inverse (depending smoothly
on (x,g)), to wit (x,g)" = (xg,g7").

To be fair, the definition of an orbifold is somewhat more complicated. First,
we must impose some technical conditions on the groupoids that we will be working
with. Second, we must consider an equivalence relation (usually called Morita equiv-
alence, related to equivalence of categories) on the family of all smooth groupoids.
Then one can roughly say that an orbifold is an equivalence class of groupoids
IMoe02), [LU04a]. For a nice motivation to the definition of a groupoid see [Wei96]
and [Wei0I]. Choosing a particular groupoid to represent an orbifold is akin to
choosing coordinates for a physical system, and clearly the theories we are inter-
ested in should be invariant under such freedom of choice.

For example, consider the manifold N = M x Z; consisting of two disjoint copies
of M, and the group H = G x Zy, and let H act on N by the formula

(TTL, €0) : (g>€1) = (mg) €0€1)-

Then not only are N/H = M/G homeomorphic, but moreover X = [N/H] = [M/G]
are equivalent groupoids, while clearly N = M and H # G.
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Definition 7.6. A Lie groupoid G is a category in which every morphism is invertible
such that Gp and Gj, the sets of objects and morphism respectively, are smooth
manifolds. We will denote the structure maps by:

s S
G1¢xs Gl > Gy —= G —= Go —— G
t

where s and t are the source and the target maps, m is the composition (we can
compose two arrows whenever the target of the first equals the source of the second),
i gives us the inverse arrow, and e assigns the identity arrow to every object. We
will assume that all the structure maps are smooth maps. We also require the maps
s and t to be submersions, so that Gj Xs Gj is also a manifold.

Definition 7.7. The stabilizer Gy of a groupoid G on x € Gy is the set of arrows
whose source and target are both x. Notice that Gy is a group.

Definition 7.8. A topological (Lie) groupoid is called étale if the source and target
maps s and t are local homeomorphisms (local diffeomorphisms).

For an étale groupoid we will mean a topological étale groupoid.

We will always denote groupoids by letters of the type G, H,S.

We will also assume that the anchor map (s,t) : G — Gpo x Gg is proper,
groupoids with this property are called proper groupoids. This will force all stabiliz-
ers to be finite.

Definition 7.9. A morphism of groupoids ¥ : H — G is a pair of maps ¥; : H;y — G;
i = 0,1 such that they commute with the structure maps. The maps W; will be
required to be smooth.

The morphism V¥ is called Morita if the following square is a cartesian square .

Hi— ' .G, (31)

(s,t) (s,t)
Wo x W,
Ho x Ho Lﬁ Go X Go

and if s o7 : Hoy, Xt G — G is an open surjection.

Two groupoids G and H are Morita equivalent if there exist another groupoid K
with Morita morphisms G & K = H.

A theorem of Moerdijk [Moe02] states that the category of orbifolds is equiva-
lent to a quotient category of the category of proper étale groupoids after formally
inverting the Morita morphisms.
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Whenever we write orbifold, we will choose a proper étale smooth groupoid
representing it (up to Morita equivalence).

Ezxample 7.7. Consider again the pillowcase (as in Example . Define the following
groupoids.

e The groupoid G whose space of objects are elements m € M with the topology
of M, and whose space of arrows is the set of pairs (m, g) with the topology
of M x G. We have the diagrams

(m,g)
m — mg

and the composition law

(m,g) o (mg,h) = (m, gh).

e Similarly we define the groupoid H using the action of H in N with objects
n € N and arrows (n,h) € N x H.

The orbifold X is the equivalence class of the groupoid G. Since there is a Morita
morphism H — G, we can say also that X is the equivalence class of H. By abuse
of notation we will often say that G is an orbifold when we really mean that its
equivalence class is the orbifold.

Ezxample 7.8. Smooth manifolds provide a natural source of groupoids. Let M be
a smooth manifold. It is well known that a smooth manifold is a pair (M,U) of a
(Hausdorff, paracompact) topological space M together with an atlas U = (Uy)ier,
and is only by abuse of notation that we speak of a manifold M. In fact a smooth
manifold is actually an equivalence class of a pair [M, U] where we say that (M, U;) ~
(M, U,) if and only if there is a common refinement (M, Us) of the atlas. We can
say this in a slightly different way that will be easier to generalize to the case of
orbifolds. To have a pair (M,U) is the same thing as to have a small topological
category My defined as follows.

e Objects: Pairs (m,1i) so that m € U;. We endow the space of objects with the

topology
ITu
i

e Arrows: Triples (m,1,j) so that m € U; N U; = Uj;. An arrow acts according

to the following diagram.

L),
(x,1) =7 (x,7).
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e The composition of arrows is given by
(x,1,j) o (x,j,k) = (x,1,k)

The topology of the space of arrows in this case is
[Ty
(i)

The category M is actually a groupoid, in fact
(X>i)j) o (X>j)i) = (X)i’)i) = Id(x,i]'

We will therefore define a manifold to be the equivalence class of the groupoid My
by an equivalence relation called Morita equivalence (that will amount exactly to
the equivalence of atlases in this case).

Ezample 7.9. More generally, let M be a smooth manifold and G C Diff(M) be a
finite group acting on it.

e We say that the orbifold [M/G] is the equivalence class of the groupoid X with
objects m € M and arrows (m,g) € M x G.

e We can define another groupoid representing the same orbifold as follows. Take
a contractible open cover U = {Uji}ic1 of M such that all the finite intersections
of the cover are either contractible or empty, and with the property that for
any g € G and any i € I there exists j € I so that Ujg = Uj. Define Gg as the
disjoint union of the U;’s with Go % M = X, the natural map. Take Gj as
the pullback square

G] — MxG

sXt
Go X Go 22 M x M

where s(m, g) = m and t(m, g) = mg. From the construction of G we see that
we can think of Gy as the disjoint union of all the intersections of two sets on
the base times the group G, i.e.

(1,j)eIxI

where the arrows in UiNU;jx{g} start in Ui|y, and end in (U;ly, )g. This defines
a proper étale Leray groupoid G and by definition it is Morita equivalent to X.
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7.1.4 Moduli Spaces

Moduli spaces are often given by orbifolds. Moduli spaces are “spaces” that contain
the universal family of objects of certain kind. If X is the moduli space of objects
of certain kind we want

Maps(S, X)

to classify families of objects of this kind over S. This is akin to the situation in
topology in which we represent, for example n-dimensional vector bundles over M
up to isomorphism by homotopy classes of maps to a certain universal space BU(n).
Remember that BU(n) = Gr(C*). Moduli spaces are often not spaces at all but
rather orbifolds.

Example 7.10. Let us consider the moduli space of triangles T. We identify an
Euclidean triangle T with a triple

T=(a,b,c)
satisfying the triangle inequalities
a+b>c,
b+c>a,
and
c+a>b.

The set M of all such T is diffeormorphic to
M~ AxR".

It is a positive cone over an equilateral triangle (of triangles of fixed perimeter
a+ b+ c) that we denote by A.

---- 4

. 5 .
O.--155celes /1 Equilateral Locus
[ -~ .
H ’Lgcus 4

/
' N\li/\
1] ’~
'

L
' L

The Moduli space of Triangles
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The is a natural action of &3 on M by multiplication of the corresponding
permutation matrix. The moduli orbifold of triangles is

T =[M/G3]

Now the class of smooth families of triangles over the circle S = S' is now endowed
naturally with the structure of an orbifold:

T5 = [P/G;]

where P is the family of paths I =[0,1] — M so that

for some g € &3. This is what we have called the loop orbifold [LU02Db, LUXO0§]|.
We will come back to this later.

7.1.5 Almost Free Lie Group Actions

We will suppose now that K is a Lie group. Let M be a smooth manifold in which
K is acting. We say that M is a K-manifold.

A map ¢: M — N between K-manifolds is said to be equivariant if
$(xg) = d(x)g.

We say that a vector bundle E — M is a K-vector bundle if K acts linearly on the
fibers and the projection map is equivariant.

Stabilizers Ky, of Lie group actions are closed subgroups and hence Lie groups.
Stabilizers of points in the same orbit are conjugate to each other:

King = 971 Kmg

The conjugacy class of a subgroup H will be written (H). Hence (K;u) only depends
on the orbit of m and not on m. Given m € M he map

fm: K/Kip — M

given by
fm(g) = mg,

is an injective immersion. It does not follow that m - K C M is a submanifold.
Just think of a torus with an irrational flow. Nonetheless, of course, if K is compact
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then m - K € M is always a submanifold. If K is compact M/K is Hausdorff and
p: M — M/K is proper and closed. So, from now on we shall suppose that K is
compact. Fix m € M and let

Vin = TiiM/Tin(mK).
Notice that for g € K;, we have
dmg: TiM — TygM = T,;M

Therefore
K — Aut(Vim).

Also K, acts freely on K x Vi, by h(g,v) = (gh~', hv). This defines a vector bundle
K Xk, Vm — K/Kn.

Theorem 7.10 (The Slice Theorem (Koszul 1953) [Kosb3]). There exists an equiv-
ariant diffeomorphism from an equivariant open neighborhood of the zero section of
K xx,, Vim — K/Kn to an open neighborhood of mK C M, sending the zero section
to mK by fi.

The union of all the orbits of a given type is a submanifold of M. If M is compact
there are only finitely many orbit types.

From now on we will suppose that all K, are finite, and that M /K is connected.
Then there exists a finite group G so that the set of points in M with stabilizers
conjugate to G (denoted by Mg)) is open and dense in M. (Prove it by induc-
tion over the dimension of the manifold M, and consider the sphere bundle of the
neighborhoods provided by the Slice Theorem.)

If K is a compact Lie group acting on M, and each stabilizer Ky is finite, then
K x M is an orbifold groupoid. Observe that the slice theorem for compact group
actions gives for each point x a ‘slice” Vy C M for which the action defines a
diffeomorphism K xx, Vx <— M onto a saturated open neighborhood Uy of x. Then
Ky X Vy is an étale groupoid which is Morita equivalent to K x Uy. Patching these
étale groupoids together for sufficiently many slices Vy yields an étale groupoid
Morita equivalent to K x M [AR03].

Definition 7.11. A orbivector bundle over X is a pair (E, 0) where E is an ordinary
vector bundle over X and 6 is an isomorphism s*E = t*E. (Here we are choosing a
representative of the Morita class.)

Ezample 7.11. This recovers the usual definition for a manifold acted on by the
identity group.
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Example 7.12. For the groupoid M x G this gives the usual definition of an equiv-
ariant vector bundle. The tangent bundle TX of an orbifold X is a orbibundle over

X.

Ezample 7.13. If U = [V/G] is a local chart (namely the restriction of the groupoid
to a very small neighborhood), then a corresponding local uniformizing system for
TX will be [TV/G] with the action g - (x,v) = (gx, dg(v)).

Definition 7.12. Given an orbifold X we say that the space X = X7/ ~ is its coarse
topological space, or quotient space. Here x ~y whenever there is an arrow from x
to y. We will often write t: X9 — X to denote the canonical projection.

Definition 7.13. Given a point x € X and an open neighborhood x € U C X we
define Xy, to be the restricted groupoid, namely its objects are V = 7t~ 'U and its
arrows are all arrows « such that both 7t(s(a)) and 7t(t(«)) are in U. It is easy
to show that for a sufficiently small U we have that Xy is isomorphic to [V/G] for
some finite group G acting on the manifold V. Such orbifold [V/G] is called a local
orbifold chart, or sometimes, a uniformizing system. An orbifold is called effective
if at every point of X we can find a local orbifold chart where the action of G in V
is effective.

Similarly the frame bundle P(X) is a principal orbibundle over X. The local
uniformizing system is U x O(n)/G with local action g - (x,A) = (gx,dg o A).
Notice that if the orbifold is effective then P(X) is always a smooth manifold for the
local action is free and (s,t): X7 — X x Xo is one-to-one. From this we deduce that
X = [P(X)/O(n)]. This proves the following proposition.

Proposition 7.14. Every effective orbifold arises from the almost free action of a
Lie group on a manifold.
7.1.6 The Homotopy Type of Orbifolds

Define
XM = Xq e xe - 1 xs X7

n

In the case in which X7 is a set then X™ is the set of sequences (y1,V2,...,¥n) SO
that we can form the composition yjovy0---0vyn.

With this data we can form a simplicial set [Seg68a].
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Definition 7.15. A (semi-)simplicial set (resp. group, space, scheme) Xo is a se-
quence of sets {XnJnen (resp. groups, spaces, schemes) together with maps

X0 5X15X5 S XnS -

0i: Xin = Xmn—1,  $5: X —= X1, 0<i,j <m.

called boundary and degeneracy maps, satisfying

aiaj = aj_ﬁ)i ifi< J

$i8§ = Sj+18i ifi<j
$j—1 ai if i< ]

aiS]' = 1 ifi=j,j4+1
85011 ifi>j+1

The nerve of a category (following Segal [Seg68a]) is a semi-simplicial set NC
where the objects of € are the vertices, the morphisms the 1-simplices, the triangular
commutative diagrams the 2-simplices, and so on.

For a category coming from a groupoid then the corresponding simplicial object
will satisfy NG, = Xy, = XM,

We can define the boundary maps 9; : X™ — X1 by:

(’YZ)“')’YTI) lfl:O
ai(Y]»-'-aYﬂ): (Y])"->m(Yi»Yi+]))--'vYT‘L) 1f1§1§n_1
(Y1, Y1) ifi=n

and the degeneracy maps by

S'(’Y1 ,Y ):{ (e(S(Yﬂ))Yb---,Yn) fOTjZO
D I (Y1, -, Y5 e(tv;), Yie1, .., ¥n) forj>1

We will write A™ to denote the standard n-simplex in R™. Let §;: A™ 1 — AM
be the linear embedding of A™! into A™ as the i-th face, and let 0j: AT 5 AT
be the linear projection of A" onto its j-th face.

Definition 7.16. The geometric realization |Xe| of the simplicial object X, is the

space
— n (z,0i(x)) ~ (8i(z),x)
el (J@I\;A XXﬂ)/ (z,55(x)) ~ (05(2), x)

Notice that the topologies of Xy, are relevant to this definition.
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The simplicial object NC determines € and its topological realization is called
BC, the classifying space of the category. Again in our case C is a topological category
in Segal’s sense.

Definition 7.17. For a groupoid X we will call BX = |NX| the classifying space of
the orbifold.

The following proposition establishes that B is a functor from the category of
groupoids to that of topological spaces. Recall that we say that two morphisms
of groupoids are Morita related if the corresponding functors for the associated
categories are connected by a morphism of functors.

Proposition 7.18. A morphism of groupoids X1 — Xy induces a continuous map
BX7 — BX,. Two morphism that are Morita related will produce homotopic maps.
In particular a Morita equivalence X1 ~ X will induce a homotopy equivalence
BXq ~ BX,. This assignment is functorial.

Example 7.14. For the groupoid G = (x x G = %) the space BG coincides with the
classifying space BG of G.

Consider now the groupoid X = (GxG = G) where s(g1,92) = g1, t(g1,92) = 92
and m((g1,92);(g2,93)) = (g1, g3) then it is easy to see that BX is contractible and
has a G action. Usually BX is written EG; here one has to be careful with the local
triviality for the map EG — BG and this is studied and resolved by Segal in [Seg68a].

A morphism of groupoids X — G is the same thing as a principal G bundle
over X and therefore can be written by means of a map G x G — G. If we choose
(g2,92) — gﬂg 2 the induced map of classifying spaces

EG — BG

is the universal principal G-bundle fibration over BG.

Example 7.15. Consider a smooth manifold X and a good open cover U = {Uy}q-
Consider the groupoid § = (§ = Go) where G consists on the disjoint union of the
double intersections Uyg. Segal calls Xy the corresponding topological category.
Then Segal proves [Seg68a] that BG = BXy ~ X.

If we are given a principal G bundle over G then we have a morphism § — G
of groupoids, that in turn induces a map X — BG. Suppose that in the previous
example we take G = GL1(C). Then we get a map X — BGL,(C) = BU.

Example 7.16. Consider a groupoid X of the form M x G = M where G is acting
on M continuously. Then BX ~ EG xg M is the Borel construction for the action
MxG— M.
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Definition 7.19. The fundamental group of X is defined to be 71(X) = m;(BX).
Similarly for the cohomology H*(X) = H*(BX).

This last definition of cohomology is a bit too naive whenever we have obtained
our orbifold by some geometric procedures. For example, as the space of solutions of
algebraic equations. We will return to this issue later once we have the perspective
given to us by topological quantum field theories.

7.2 Loop Orbifolds
7.2.1 The Definition of the Loop Groupoid

The loop space is slightly more complicated in the case of an orbifold.

To generalize this situation to an orbifold X (replacing the réle of M above),
we must be able to say what is the candidate to replace LM. This was done for a
general orbifold in [LUO2b]. The basic idea is that to a groupoid X we must assign
a new (infinite-dimensional) groupoid LX that takes the place of the free loopspace
of M in a functorial manner

L: Orbifolds — Orbifolds.

In the case in which X = [M/G], we proved that LX admits a much smaller and
very concrete model defined as follows. The objects of the loop groupoid are given
by

(LX)o:= | | Pq,

geG

where Py is the set of all pairs (y,g) with vy : R — X and g € G with y(t)g =
v(2m 4+ t). The space of arrows of the loop groupoid is

(LX)1:= | | Pgx G,
geG

and the action of G in Py is by translation in the first coordinate; and by conjugation
in the second; that is, a typical arrow in the loop groupoid looks like

(v,0)) -
(v,9) 25Y (y-h,hlgh),

or pictorially:
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Xg xh(F'gh)

x xh

7.2.2 The Loop Space as a Classifying Space for the Loop Orbifold
The following result describes the relation between LBX and LX
Theorem 7.20. There is a canonical map

T: LBX — BLX

that induces a weak homotopy equivalence.

Proof. We will construct two Serre fibrations over BX.

e Consider BLX.

Define a morphism of groupoids
evo: LX — X
induced by the equivariant map of G-spaces
evg: PgM) — M

given by evaluation at 0,
evo(v, g) :==v(0).

This morphism induces a map at the level of classifying spaces

levol: BLX — BX.

If we interpret the classifying spaces in terms of the Borel construction we
have BLX = Pg(M) xg EG and BX = M xg EG. For a point z € BX with
z = [m, &], the following holds

lev| 7 1(z) = [PT(M) x {&)]
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where
PEM) = | | PTM) x{g}
geG

with
P M) ={y € P4g(M)[y(0) = m}.

e On LBX.

Take the map
€o: LBX — BX

which evaluates a free loop at 0, i.e. for 0: ST — BX then €o(0) := ¢(0). Then
ey '(z) = Q.(BX) := P%(BX)
is the space of loops based at z.

Now let us define the map T. Consider the fixed z = [m, &] as above and for
o € LBX, lift it to 0 making the following diagram commutative

0,1 —2>M x EG

exp (27 )J/ ip

g1 —2>M xg EG

such that 6(0) = (m, &) (the construction follows from the fact that the map p is a
G-principal bundle and G is finite). Since G acts freely on EG there exists a unique
element k in G such that 6(0)k = 6(1). Define 7T in the following way

T(0): = [(m 05,k),&] € BLX,

where 711 : MXEG — M is the projection on the first coordinate. From the definition
of T it follows that it is well defined and that 71106 € P (M). Moreover the following
diagram is commutative

T

LBX BLX

BX.

Let us denote by T, := T|€g1 (z)> then
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Lemma 7.21. The map
T2: € (z) — levol ' (2)

18 a homotopy equivalence.

Proof. From the definition of T it is clear that T, is surjective. Let us now check
the homotopy type of the inverse image of a point. Recall from above that the map
T, goes from Q,(M xg EG) to [PT(M) x {&}]. Take (y,g) € PE(M). From the
definition of T above it follows that

' (((v,9),)]) = P5 ,(EG)

where fP‘;",] a(EG) stands for the paths in EG that go from & to (g~ '&).

The space ZPZ EG) is independent of the choice of representative in [((y, g), &)].

-1 a(
As the space ﬂ";",1 E(EG ) is contractible then it follows that T, induces a homotopy
equivalence.

L J

As T induces a homotopy equivalence on the fibers of the Serre fibrations given
by €o and |evp|, then the Theorem follows from a theorem of Dold [Dol63].
Hence T induces a weak homotopy equivalence between LBX and BLX.

L J

7.2.3 The Circle Action

We have seen that the map T: LBX — B (LX) is a weak homotopy equivalence,
and it is natural to wonder whether the equivalence is S'-equivariant. The answer
turns out to be negative as we will see shortly.

There is a natural action of S onto LBX by rotating the loop, but the action
does not get carried into BLX via t. The reason is the following, the loop orbifold LX
comes provided with a natural action of the orbifold [R/Z] which is a stack model
for the circle. The action of R into the orbifold loops of Pg(M) is the obvious one,
the map gets shifted by the parameter in R. The subtlety arises here, once we act
on the orbifold loop by 1 € R, we do not end up with the orbifold loop from the
beginning, but instead we get one that is related to the initial one via an arrow
of the loop orbifold category. This arrow in the loop orbifold is where 1 € Z gets
mapped. By the way, precisely this fact was the one that allowed us to define the
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loop orbifold in a non trivial way, namely a loop on the orbifold was not a map from
the circle to the orbifold, but a functor from [R/Z] to the orbifold.

More accurately, to define the action of [R/Z] on LX = [Pg(M)/G] we first define

an action of R on Pg(M) in the natural way, namely, take y € P (M) and s € R
and define

(s-Y)(t) = ys(t) = y(t+ 5 — [t + 5]kl

where | -] is the least integer function. Then for each (y,k) € Pg(M) and 1 € Z we
choose the arrow of LX that relates the orbifold loops (v, k) and (v1,k), this is the
arrow ((v,k),k) € Pg(M) x G. The source of ((y,k),k) is (v, k) and the target is
(v - k,k) = (v1,k) the loop shifted by 1.

Using the construction of section we have that
t(0): =[((m00,k), &),
and denote 711 0 ¢ by y. For s € R,
(s - o) = [(vs k), &)l

and 1-0 =0, but t(1-0) # 1(0). Instead T(1- 0) and t(0) are related by an arrow.

Nevertheless, if we take the coarse moduli space of LX (that we will write LX/~=
Pc(M)/G), the map induced by T is S'-equivariant. For in LX/~= Pg(M)/G the
elements T(1 - 0) and T(0) become by definition the same. Then we can conclude

Lemma 7.22. The space LX/~= Pc(M)/G has a natural S' action and the map
T:LBX — LX/~=Pc(M)/G
which is the composition of T with the projection BLX — LX/~, is S'-equivariant.
Corollary 7.23. The map T induces an isomorphism in homology
T HL(LBX; Q) — HW(LX/~Q),

and in equivariant homology

o HY(LBX;Q) = HE' (LX/~ Q)
Proof. As T is a weak homotopy equivalence, then

T, : Ho (LBX; Z) — H.(BLX;Z),
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and as the group G is finite then
Tt Ho(BLXG Q) — H(LX/~ Q).

The second isomorphism follows from the isomorphism of spectral sequences with
real coefficients associated to the each of the following fibrations

LBX xg1 ES! LX/~ x 1 ES!

~

BS'.

7.2.4 Cyclic Equivariant Loops

There is an alternative description of Pg(M) that although essentially obvious nev-
ertheless relates it to some models that have been studied before.

Given an element g € G it generates a cyclic group < g >C G. Let m be the
order of g in G. Then there is a natural injective morphism of groups

(0 <g>—S!

given by ((g) = exp(27mi/m).
We define the space LgM of g-equivariant loops in M to be the subspace of
LM := Maps(S'; M) of loops ¢ satisfying the following equation for every z € S

The space of cyclic equivariant loops of M is defined to be simply

LM = | | LgM x{g}.
geG

It is, again, naturally endowed with a G-action ((¢p,h);g) — (bg, g "hg).

The natural restriction map
Y: Lg(M) — Pg(M)

given by
¥(t) = d(exp(2mit/m)) = b(C(g)")
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is a diffeomorphism, and moreover it induces a G-equivariant diffeomorphism

W L(;(M) — :Pg(M)

We conclude this subsection by pointing out that as a consequence of these
remarks we have the following equality

La(M) xg EG ~ L(Mg) = LBX.

7.2.5 Principal bundles

Let us consider G-principal bundles on S' and their relation to the various models of
the loop orbifold. We are interested in the category of G-principal bundles 7t: Q — S’
over S! endowed with a marked point qo € Q so that 7(qo) =0 € S', and such that
7 is a local isometry.

Whenever we have such a pair (Q, qo) we have a well-defined lift é: [0,1] — Q,
é(0) = qo, of the exponential map e: [0,1] — S' given by t — exp(27mit), making
the following diagram commutative:

0,1] ———Q
N
ST,
Since €(0) and é(1) belong to 7w 1(0) there is a g € G so that
é(1)=¢(0)-g.

We well call this g € G the holonomy of Q.

The isomorphism classes of G-principal bundles with a marked point are classified
by their holonomy, for the set Bung(S') of such classes is given by

Bung(S') = m1BG = G.
The following proposition is very easy.

Proposition 7.24. The natural action of G on Bung(S') under the holonomy iso-
morphism hol: Bung(S') — G becomes the action of G on G by conjugation.
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This proposition can be slightly generalized as follows. Consider now the space
Bung(S', M) of isomorphism classes of G-equivariant maps from a principal G-
bundle Q over the circle to M. This space has a natural G-action defined as follows.
If Qg denotes the principal bundle with holonomy g then the pair

[(B: Qg — M);k] € Bung(S',M) x G
gets mapped by conjugation to
(Bx: Q-1 = M) € Bung(S', M).

Proposition 7.25. The loop orbifold LX = [Pg(M)/G] is isomorphic to the orbifold
[Bung(S', M)/G], and therefore

Bung(S',M) xg EG ~ L(Mg).
Proof. 1t is enough to give a G-equivariant diffeomorphism
Bung(S',M) — Pg(M),
this can be achieved by the following formula

(B: Qg —=M)—=vy=poe.
Since €(1) = €(0) - g, then y(1) =vy(0) - g.
&

To finish this section let us define Bung(S1, M) to be the space of isomorphism
classes of G-equivariant maps from a principal G-bundle Qg4 with holonomy g to M.
Then we have that

Bung(S',\M) = |_| Bung(S1,M),
geG

and in fact
Bung(S', M) = P4(M).
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7.3 Stacks

The yoga of stacks starts with the Yoneda Lemma. So say you have a (locally small)ﬂ
category € and you fix an object X € €. We define its functor of points Px: € — Sets
by Y — Px(Y) := Home(Y, X). The Yoneda lemma states the somewhat surprising
fact that one can recover X from Px. To state the lemma write F(C, Sets) to de-
note the category of functors from € to Sets where objects are said functors and
morphisms are natural transformations.

Theorem 7.26. The functor © — F(C, Sets) sending X to Px embeds € into F(C, Sets)
fully faithfully.

The proof is tautological and it is just a fun exercise.

Let us consider the example of manifolds. Say you have two manifolds X and Y.
What this is saying is that it is exactly the same to have a smooth map f: X —»'Y
that is it to have a natural transformation &¢: Px — Py, which sound slightly odd
but is nevertheless tautological.

Functors of the form Px behave like a sheaf living on the category €. And they
behave even more so when C is the category of smooth manifolds Man.

Proposition 7.27. For a given manifold X the functor P := Px satisfies:

e For every object Y € Man we have that P(Y) is non-empty.

e For every object Y € Man we have that P(Y) is a set contained in the set
HomSets(Yv X) .

o The functor P is a sheaf: whenever we glue two manifolds Z and Y along an
open submanifold W of both, and say that we have f € P(Y) and g € P(Z) so
that flw = glw, then there exists F € P(ZUw Y) gluing both f and g.

o IffcP(Y)and g€ C>®(Z,Y) then gof € P(Z).

Definition 7.28. A functor P : Man — Sets satisfying all of the properties of the
previous proposition is called a diffeology

Notice that it is enough to have the values P(U) of P at all open sets U of
euclidean spaces for manifolds can be obtained gluing those. A map p € P(U) is
called a plot of the diffeology P.

2Meaning that Home (X,Y) is a set for every two objects X and Y.
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It is an interesting fact that not every diffeology P is of the form P = Px for some
manifold X, and effective orbifolds can be modelled with diffeologies.

We often write X := P(e) for the value of P at a point. By abuse of notation
one writes X instead of Px and speaks of the diffeological space X instead of of the
diffeology P. It is the same to say that p € P(U) than to say that p: U — X is a
plot on X. Observe that the full functor P can be recovered by having the set X and
the prescription to decide when a map of sets U — X is a plot.

Iglesias, Karshon and Zadka have proposed a definition for an effective orbifold
in terms of diffeologies [IKZ10]. The following definitions are theirs:

Definition 7.29. Let X be a diffeological space, let ~ be an equivalence relation
on X, and let 71: X — Y := X/~ be the quotient map. The quotient diffeology on Y
is the diffeology in which p: U — Y is a plot if and only if each point in U has a
neighborhood V C U and a plot p : V: X such that ply = mo p.

Definition 7.30. A diffeological space X is locally diffeomorphic to a diffeological
space Y at a point x € X if and only if there exists a subset A of X, containing x,
and there exists a one-to-one function f: A — Y such that

1. for any plot p: U — X, the composition f o p is a plot of Y;

2. for any plot q: V — Y, the composition f~! o q is a plot of X.

An n dimensional manifold can be interpreted as a diffeological space which is
locally diffeomorphic to R™ at each point.

Definition 7.31. A diffeological orbifold is a diffeological space which is locally
diffeomorphic at each point to a quotient R™/T, for some n, where I' is a finite
group acting linearly on R™.

As expected diffeological orbifolds, with differentiable maps, form a subcategory
of the category of diffeological spaces.

Unfortunately this does not work so well for orbifolds that are non-effective as
for example X := [8/G]. The category of diffeological orbifolds contains the category
of manifolds, but the category of finite groups does not fit nicely on this approach.
To deal with non-effective orbifolds we must think of functors

P: Man — Groupoids.

rather than of functors P: Man — Sets.
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A stack can be thought of as a generalization of a diffeology where the values of
the functor P are discrete groupoids rather than sets. The main difficulty in making
this work is the sheaf condition. The gluing now occurs up to isomorphisms rather
than on the nose [Hei05].

Definition 7.32. A stack P is a 2-functor
P: Man — Groupoids,

so that:

e We can glue objects: For an open cover {Ui} of Y and local maps P; € P(U;)
that are isomorphic along the intersections ¢y; : Py = Pj satisfying the cocycle
condition pjodi; = Py along triple intersections, then there is a global object
P € P(Y) together with local isomorphisms ¢i: Ply, = Pi and ¢y = djo0 (I);].

e We can glue morphisms: Given two objects P, P’ € P(Y), an open cover {U;} of
Y and local isomorphisms ¢j: Ply, = P|u{ such that dilu;nu; = djlu;nu; then
there is a global isomorphism ¢: P = P’ such that ¢; = ¢ly;,-

Ezample 7.17. Consider the orbifold BG := [e/G]. Its associated stack is
P(Y) ={P — Y: Pis a G — principal bundle},

namely C*® (Y, BG) is the discrete groupoid of principal G-bundles over Y together
with isomorphisms of G-principal bundles. Here we stress that C*®(Y,BG) is a
groupoid and not only a set.

Let Cy be the category of open sets on Y (together with inclusions). Let 8y pg)
be the category of G-principal bundles over open sets of Y. To have the forgetful
functor p : §(ysg) — Cy which remembers only the base of the bundle is the same
as to have P. This can be seen by setting P(U) := Sy =p '(U).

Ezample 7.18. Consider the global quotient orbifold X := [M/G]. Its associated
stack is the groupoid

PY)={(P—=Y,f: P— M): E is a G — principal bundle and f(pg) = f(p)g},

namely C*®(Y,X) is the discrete groupoid of principal G-bundles over Y equipped
with equivariant maps to M, together with isomorphisms of G-principal bundles.
Here we stress again that C*°(Y,X) is a groupoid and not only a set. Let 8yx) be
the category of G-principal bundles over open sets of Y together with equivariant
maps to M. To have the forgetful functor p : 8yx) — Cy which remembers only
the base of the bundle is the same as to have P. This can be seen by setting
P(U) =8y =p (W),
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There is yet one more way to understand stacks.

Let @€, 8 be a pair of categories and p : § — € a functor. For each U € Ob(C) we
denote Sy =p ' (U).

Definition 7.33. The category S is fibered by groupoids over C if

e Forall : U — Vin C and y € Ob(S8y) there is a morphism f:x — y in 8
with p(f) = ¢.

eforallyp: VoW d:U->W, x:U—>V, f:x > yand g:y — z with
& =vox, p(f) = ¢ and p(g) = b there is a unique h : x — z such that
f=gohand p(h) =x.

x—>f y
N
z

X%

The conditions imply that the existence of the morphism f:x — y is unique up
to canonical isomorphism. Then for ¢ : U — V and y € Ob(8y), f: x — y has been
chosen; x will be written as ¢*y and ¢* is a functor from Sy to Sy.

Definition 7.34. A Grothendieck Topology (G.T.) over a category C is a prescrip-
tion of coverings {Uy — U} such that:

o Uy — Uy & {Ugp — Uylp implies {Ugpg — Ulnp
e {Uy— Uty & V — U implies {Uy xy V — Vig
eV U isomorphism, implies {V — U}
A category with a Grothendieck Topology is called a Site.

Example 7.19. € = Top, {Uy — U}, if Uy is homeomorphic to its image and
U=J,im(Ug).
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Definition 7.35. A Sheaf F over a site C is a functor p:F — € such that

e Forall S € Ob(€), x € Ob(Fg) and f: T — S € Mor(C) there exists a unique
¢y — x € Mor(F) such that p(¢p) = 1.

e For every cover {Sy — S}, the following sequence is exact

Fs = [ [Fsa = ][ Fsuxsss
Definition 7.36. A Stack in groupoids over C is a functor p : 8 — € such that

e 3§ is fibered in groupoids over C.
e For any U € Ob(€) and x,y € Ob(8y), the functor
U — Sets
¢:V—U— Hom(d™x, d*y)
is a sheaf. (Ob(U) ={(S,x)IS € Ob(€),x € Hom(S, U)}).

o If d;: Vi — U is a covering family in €, any descent datum relative to the
di’s, for objects in 8, is effective.

Ezample 7.20. For X a G-set (provided with a G action over it) let ¢ = Top, the
category of topological spaces, and S = [X/G] the category defined as follows:

Ob([X/Gl)s ={f: Es — X}

the set of all G-equivariant maps from principal G-bundles Eg over S € Ob(Top),

and
Mor([X/G]) € Hompg(Es, E§)

given by

Es<——S xg/ Eg

o | e

SxX=——=SxX

With the functor
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p:[X/G] — Top
(f:Es—X) — S

By definition [X/G] is a category fibered by groupoids, and if the group G is
finite [X/G] is a stack.

We can define the stack associated to an orbifold. Let X be an orbifold with
{(Vp, Gp, p) lpex a set of orbifold charts. Let C be the category of all open subsets
of X with the inclusions as morphisms and for U C X, let 8y be the category of
all uniformizing systems of U such that they are equivalent for every q € U to the
orbifold structure, in other words

Su=1{(W,H 1)[Vq € U, (Vq, Gq,q)&(W, H, T) are equivalent at q}

It is clear that the category 8 is fibered by groupoids. It is known, and this
requires more work, that this system § — C is also an stack, often called a C*-
Deligne-Mumford stack.

The most complete reference for stacks is The stacks project an online wiki site
at Columbia:
http://stacks.math.columbia.edu/browse

Some other excellent references are [Mum65|, [Hei05],[Fan01], [Vis89], and [LMB99]

7.4 The Localization Principle

Theorem 7.37 (The Localization Principle [dFLNU]). Let X be an orbifold and LX
its loop orbifold. Then the fized orbifold under the natural circle action by rotation
of loops is
(LX)S" = 1(X) (32)
where the groupoid 1(X) has as its space of objects
I(X)o ={o € Xy: s(a) =t(x)} = [ Autoe(m)
meXp

and its space of arrows is
I(X0)1 = Z(I(Xo)) ={g € X1: a € [(X)o = g™ g € I(X)ol,

a typical arrow in 1(X) from ap to &1 looks like



While for a smooth manifold the space of constant maps is
M= (LM)S'

we have in contrast

X C I(X) = (LX),

In [LUO4b] we define the ghost loop space LBX as the subspace of elements
v € LBX so that the composition with the canonical projection 7y : BX — X, oy
is constant. In that paper it is proved the following homotopy equivalence

Theorem 7.38. There is a homotopy equivalence between the classifying space of
the inertia orbifold and the ghost loop space:

BI(X) ~ L ¢BX.

Ezample 7.21. Let us consider now a Riemannian metric on M. There is then a
family of canonically defined operators: the Laplacians on k-forms AX. These are
related to a quantum field theory whose fields are maps from intervals the circle to
M. Roughly speaking, the Lagrangian of the theory is given by

Lio) = [ 4o

All the information of such quantum theory is contained in the spectrum of the
Laplacian. Recovering the classical theory from the quantum one is “hearing the
shape of the drum.” In any case, the Feynman functional integration approach for
the theory allows us to compute an integral over the free loop space of the manifold
L(M) = Maps(S'; M) by stationary phase approximation as an integral over M.

This quantum field formalism is related to the heat equation
drw + Akw = 0,
whose solution is given by the heat flow e In particular the fundamental solu-
tion for the trace of the heat kernels is given by

_NkT —tARy _ t—‘L(¢)® )
S (—1)FTe(e ") LMe b

where D¢ is the formal part of the Wiener measure on LM.

It turns out that the the sum of the traces of the heat kernels is independent
of t. The long time limit of this sum equals the Euler characteristic (by recalling
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Hodge’s theorem, which identifies the k-th Betti number of M as the dimension
of the kernel of AX), and the short time behaviour is given by an integral of a
complicated curvature expression.

If the dimension of the manifold is 2, this equality of long and short time be-
haviour of the heat flow leads to the Gauss-Bonet theorem

J KdA = x(M), (33)
M

where K is the Gaussian curvature and dA is the volume element.

In fact we have oversimplified: we can do better than to simply recover the Euler
characteristic. Suppose that M is a spin manifold; then we can recover through this
procedure the index of the Dirac operator and this is oulined in the Appendix [20]
on Orbifold Index Theory. But before we do that let us see how we stand in the
orbifold case.

To try to apply these methods to an orbifold X (replacing the role of M above),
we must replace LM for the loop orbifold.

Recall that while for a smooth manifold we have
M= (LM)S,
we have, by contrast
X CI(X) = (LX)S,

so we expect the Euler characteristic, the K-theory, and so, on to localize in I(X)
rather than in X. While the orbifold I(X) is called in the mathematical literature
the inertia orbifold of X, and it is, as Chen and Ruan [CR04b] have pointed out
(and as is reflected in their terminology), the classical geometrical manifestation of
the twisted sectors of orbifold string theory [DHVWS6].

Indeed, we have that for a general orbifold

Xorb(X) = x(I(X))
and as explained in Appendix [I8}

o (X)) @ C =K (I(X)) @ C.

orb

For example, in the case of a global quotient X = [M/G], one can readily verify
that
1(X) = [ [Me/Cla)], (34)
(9)
recovering thus Segal’s localization formula and the orbifold Euler characteristic (see

Section [18.2]).
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8 Orbifolding Calabi-Yau Categories

8.1 Equivariant Closed Theories

Let us begin with some general remarks. In n-dimensional topological field theory
one begins with a category nCob whose objects are oriented (n — 1)-manifolds and
whose morphisms are oriented cobordisms. Physicists say that a theory admits a
group G as a global symmetry if G acts on the vector space associated to each (n—1)-
manifold and the linear operator associated to each cobordism is a G-equivariant
map. When we have such a global symmetry group G we can ask whether the
symmetry can be gauged, i.e. whether elements of G can be applied independently
in some sense at each point of space-time. Mathematically the process of gauging
has a very elegant description: it amounts to extending the field theory functor
from the category nCob to the category nCobg whose objects are (n — 1)-manifolds
equipped with a principal G-bundle, and whose morphisms are cobordisms with a
G-bundle.

We have another interpretation of this category, this view is due to Turaev
[Tur99] and it consists on working in the language of pointed homotopy theory
(smooth version). For this, we consider a path-connected topological space X with
a base point x € X. We define an X-manifold to be a pair consisting of a pointed
closed oriented manifold M and a characteristic map gm : M — X. We say that
M is the base of the X-manifold gp. For M and M’ as before we can talk of a X-
diffeomorphisms between them. A cobordism W from Mg to M is endowing with
a map W — M sending the basis point of the boundary components into x. Both
basis M and M are considered as X-manifolds with characteristic maps obtained
by restricting the given map W — M. An X-diffeomorphism of a X-cobordisms f :
(W, Mo, M) = (W', Mj, M}) is an orientation preserving diffeomorphism inducing
a X-diffeomorphisms My — Mg, My — M/ and such that gw = gw/f where gw,
gw are the characteristic maps of W, W’ respectively.

We can glue X-cobordisms along the base. If (Wy, Mo, N), (W7, N’, M) are X-
cobordisms and f: N — N’ is an X-diffeomorphism then the gluing of Wy with W;
along f yields a new X-cobordism with base boundaries My and M;.

If we make a quotient by identifying diffeomorphic objects, hence any diffeomor-
phism becomes an identity. When we take X = BG we get an alternative viewpoint
for nCobg.

Yet another equivalent interpretation of nCobg comes from considering it as a
category of cobordisms of BG-manifolds where BG is defined as the orbifold BG :=
[e/G]. For a manifold with a map to BG is the same as a manifold equipped with
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a G-principal bundle.

Definition 8.1. A G-equivariant TF'T is a symmetrical monoidal functor from nCobg
to Vectc.

8.2 G-Frobenius Algebras

We start with the definition of the algebraic data, with a proposition that relates
the Frobenius structure of the G-invariant part and with the equivariant version for
the Abrams theorem. This definition was done in the paper of Moore and Segal
[MS].

Definition 8.2. A G-Frobenius algebra is an algebra C = @©gegCqy, where C4 is a
vector space of finite dimension for all g € G such that

1. There is a homomorphism &« : G — Aut(C), see Figure where Aut(C) is the
algebra of homomorphisms of € such that

on:Cg = Crgn1,
and for every g € G we have
xgle, = le,-
Note that oe : €g — Cg is the identity map.

g hgH'
1

Figure 20: The action ap: Cg = Cpgp1-

2. There is a G-invariant trace or counit € : e — C which induce nondegenerate
pairings, see Figure [21]
0g:Cg®Ce1 — C.

3. For all x € Cg and y € €y, we have that the product is twisted commutative

(see Figure [22), i.e.
XY = xg(y)x.
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Figure 21: The pairing 84: Cg® Cq-1 — C.

h g h_ ghg'
Olg )

Figure 22: The twisted commutativity of the product.

4. Let Ag =) ; &? ® &?71 € Cq ® €41 be the Euler element, where {E?} is a
basis of €4 and {5?71 } is the dual basis of C4-1. For all g,h € G (see Figure
the identity

Y an(eded =Y elaglel )
i i

holds.

[N

Figure 23: Torus axiom.

The next proposition provides us a natural consequence of this definition. It says

that the G-invariant part of the G-Frobenius algebra €S is a Frobenius algebra.

Proposition 8.3. For C a G-Frobenius algebra, the G-invariant part of this algebra,
denoted by Corp, is a Frobenius algebra.

Proof. Let be Cgyp := CC = (@gegeg)G. Note that Corp = GBQGTGQC(Q) where T is a

set of representatives for the conjugacy classes in G and C(g) is the centralizer of
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g € G. The maps that define this isomorphism are

. C(g) G
¥ @DgerCs ™ — (Brec Co)
deGyg 5 deT Zhe[g],h:kglc1 o‘k(yg)

and G Clo)
Y (@beGeg) — GageT Cq
deexg — deTXQ'
First, we prove that Coyp is an algebra. The product is simply the restriction of
the product in €, this is because for x,y € Cop we have that g -x = ag(x) = x
and g-y = ag(y) =y for all g € G, then g-xy = xg(xy) = ag(x)xg(y) = xy.
An additional property is the commutative of the product, to check this we take
X = deG Xgand Yy = ) g Yn € Corp. The calculations are as follows:

Xy = Z Z XgYnh = Z og(Yn)xg = Z Xg (Z yh> Xg = Zyxg = YX.

geGheG g,heG geG heG geG

For the Frobenius structure we define the trace ¢ : Corp — C as the restriction of
¢ : € — C with the value zero on €y with g # e. To complete the proof we need to
prove that the induced pairing is non-degenerate.

Let x = deGXQ € Corp and suppose e(xy) =0, for all y € Corp. We need to prove
that x = 0. If we show that xg = 0 for all g € T, we would be finished, and this
holds because x = deTZhe[g],h:kgk_l ok (xg). We can consider yn € Cp, where h
is the representative of [h] € T, then y:= 3 1 -1 ®1(yn) € Corp. Now

e(xy) = [[h]le(xp-1(yn))

Hence €(xy,-1yn) = 0 for all yp € Cp, and then x;,-1 = 0 for every h € T. Finally
x =0.

L J

Corollary 8.4. The coproduct in Corp is
A=(me1)- (10)

where © : C = Cop @ Corp 45 the copairing.
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Proof. We only need to construct a basis of Coyp.

—1
Let be {eg} a basis of Cg4 such that ock(eig) = e];gk is a basis of Cygp1.
For x € Cyyp there is the identity

X = Z Z “k(xg)»

geT helg],h=kgk!

where xqg = Y ;Ae! € C4. Therefore

1M l
x=) Y YAl =Y YA Y e =3 3 NE,
g€T helgl,h=kgk~! 1 geT i he(g],h=kgk~! geT i

where By g = Zhe[g] e?. This proves that {E; g} is a generator of Corp. Now we
prove that this set is linearly independent. Suppose that )_ geTiEL, BigEig =0, then

X getiet, Lnelg) Biget = Xgec (Zielg Bi,ge{‘> = 0, where Bi,g = By if h and g
are in the same conjugation class. As Zielg BigEig € Cg hence Zielg BigEig =0
for all g € G. We use that e? is a basis of Cg, to prove that Bi g =0 forall g €T,
iel,

Note that for E; g € Comp and k € G we have k- Ejg = Zhe[g] ock(e?) =
Y heig e =3 1o et = Eig, where L = khk ! € [g].

We can construct {Ef&g} = I[igl\ 2 he (ql e{f‘ as the dual basis of Cy. Then
#
2 Ele®Fig
geTiely

and

Ax)= Y xEf @Eg= ) Z ® ek

geTicly geTiely hkelg ]
»

Theorem 8.5. (Abrams equivariant case) Let C = ®©4ecCq be an algebra with an
associative product mgy : Cg@Cp — Cgn and a unit u: C — Ce, where every Cq is
a finite dimension space. We have that a trace € : Co — C is non-degenerate if and
only if it has a coassociative coproduct Agn : Cgn — Cy ® Cy, with € as its counit,
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such that for every g,h,k € G the following diagrams commute:

Mg hk Mgh, k

(Cg ® Chk Cghk (Cgh ® Cy Cghk (35)

1®Ah,kt lAgh,k Ag,h®1l lAg,hk

Cy@Crh®Cy Ch®Ci CyueCheCy Cy®Crx

mg h®]1 1My i

Proof. The necessity is the nontrivial part and for this we define the coproduct

A
Cqn on Cq® Ch
cpfl Tcpghg)cph1
Cgr——=CGeC ., —— - C ., 0C,

n1h71,971

where @ ¢(x])(y) = e(mg 1 (x®y)). This coproduct is coassociative and satisfies the
two Diagrams of .

L J

Theorem 8.6. Fvery 2D G-equivariant topological field theory defines a G-Frobenius
algebra from which it can be recovered, i.e. the categories 2d G-TQFT and G-
Frobenius algebras are equivalent

The proof of this theorem is very similar to the proofs we have already presented

in the non-equivariant case and we refer the reader to [MS| for full details.

8.3 Nearly G-Frobenius Algebras

Definition 8.7. A nearly G-Frobenius algebra is an algebra € = @©gcgCqy, where Cq4
is a vector space for all g € G such that

1. There is a homomorphism « : G — Aut(C), where Aut(C) is the algebra of
homomorphisms of €, such that

Xh - eg — ehgh—1,

for every g € G we have
O(g|@g = Id@g .

Note that oe : €5 — Cg is the identity map.
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2. For all x € Cg and y € C, we have that the product is twisted commutative,

i.e.
Xy = og(y)x.
3. There are coproducts Agp, : Cgn — Cg ® Cy, such that the following diagrams
commute.
Cg ® Chp —22 Cgne Cg ® Chp —= Cgne
1®Ant lAgh,f A 19T Agh,f
(Cgh®(Ch4 ® Chy (Cgh®(Cf Cgh®(Ch4 ® Chs P (Cgh®(Cf
h T =1 he
See Figure
gh g jch
ht
@)
Figure 24: Abrams condition.
4. These coproducts have the next properties
For every g,h € G the next diagram commutes
A 1®
Ce n Ch ® Cyn % Ch® Cgh—l g1
Ag My gh—Tg—1

CagCrt ——— > Crin-1 ®C 1 — > Chgp-14-1
9 g an@l - ngh 9 M1 g hgh™'g

Remark 8.8. Note that the condition 3 implies the next particular case. We take
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the particular commutative diagrams

Mg,e Me,g

Cy®Ce Cq Ce® Cq Cq

1®Ah*],h Agh*ﬁh Agh*ﬁhg*l‘g1 Agh*1,h

Cqi®Cy1 ®@Ch Con-1 ® Ch, Con-1 ®Cp -1 ®C Cop-1 ® Cp,
9 h mL g g g 97 Mg o 9

and x4 € Cy, then the next equality is satisfied
-1 —1 1
D xgel @ell=) " @el x,
i i

where {e{‘} is a basis of Cy,, which is a generalized condition of Lauda (see Figure

23).

Figure 25: Generalized Lauda condition.

Theorem 8.9. If C is a nearly G-Frobenius algebra then its G-invariant part, de-
noted by Corp, 15 a nearly Frobenius algebra.

Proof. We define the coproduct
A (Corb — (Corb ® Corb

similarly as in Corollary This is A(x) = deT,ieIg 2 hkelg) Xe{f1 ® ek.
To prove that (Cgo,A) 1s a nearly Frobenius algebra we only need to prove the
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Lauda condition, i.e.

Z Z xel ' @ek= Z Z e @ ekx.

geTi€ly hkeld] geTiely hke(g]

If x =) 1cgx1, then

> ) xel' ' @ ek = > ) lee?q@e‘f.

g€eTi€ly hkelg] g€eTi€ly hkelg] l€eG

. —1 —1
By Remark we have Y ;xgel* '® eh =3 eigh ® e?g Xg. If we act on the
second component by «;: Cy, = C,,—1 = Cy then the next identity is satisfied

—1 hfl h —1
nge? ® arle]) = Z ef" ®@ar(e® xgq),
i i

hence ] L

h-! k__ gh~ thg='r~

Z Xgei Qe = Z e; Qe or(xg).
i i

Therefore

h! k —1 —1.—1

22 xet wer= ) ) ) et @e™ T alal
g€eTi€ly hkelg] leG g€eTi€]ly hkelg] lEG

We use that Th™" and th1"r~! = krl~ '+~ are in the same conjugacy class and Th™!
and Th1~ '+~ vary over all G, so we can change the variables h, k for u,v. Then

Alx) = Z Z Ze}’1 ® e or(x1)

g€eTiely u,ve(g] l€G

-y ¥ e{“@e‘{ocr(le)

geTiely u,velg] G

= Z Z el ' ® eYoy(x)

geTielg u,velgl

= > > e ' @ elx.

geTiely u,velg]
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8.4 Examples of (nearly) G-Frobenius Algebras.
8.4.1 Chen-Ruan Cohomology

We will give now the definition of the Chen-Ruan cohomology following [CR04b)].
First we need to define the degree shifting and the obstruction bundle for the Chen-
Ruan theory.

The definition of the degree shifting is local so it is enough to define it in the
case of a global quotient (cf. [FG03]).

Consider Y an almost complex G-manifold with G a finite group. Given g € G
and y € Y9 we define a(g,y) the age of g at y as follows. Diagonalize the action of
g in TyY to obtain

g = diag(exp(2miry),. .., exp(2miry,)),

alg,y) =) T

The age a(g,y) only depends on the connected component Y§ of Y9 in which
y lies. For this reason we can simply write a(g,YJ) or even a(g) when there is no
confusion.

with 0 < r; < 1 and set

Note that the age has the following interesting property
a(g,Y§) + a(gq,Yg) = codim(Y%,Y).
The Chen-Ruan degree shifting number is defined then as
sg:=2a(g).
As a rational vector space the Chen-Ruan orbifold cohomology is

HER(Y, G) := H* (Y, G)[s] = D H*(Y9,C)ls,]
geG

or more generally

Her(§) == HY(AG)[s].

The definition of the obstruction bundle is modeled on the definition of the
virtual fundamental class on the moduli of curves for quantum cohomology.

Let M3(G) be the moduli space of ghost representable orbifold morphisms fy
from ]P’;) to G, where im(f) = y € Gp and the marked orbifold Riemann surface
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IP’; has three marked points, z1, z», and z3, with multiplicities m¢, m;, and ms,
respectively. In [ALROQT7] it is proved that

Ms(9) = G~

Let us fix a connected component 9% of G2.

To define the Chen-Ruan obstruction bundle €, — G2 we consider the elliptic
complex
3y : QFETS) — QO (FTS).

Chen and Ruan proved that coker(d,) has constant dimension along components
and forms an orbivector bundle €, — G2.

The formula for the Chen-Ruan product is then (see Section [11.3)

HER(S) X H*CR(Q) — HER(S)

given by
ok B = (en).(efor- €5 - e(€)).

The following is a theorem of Chen and Ruan [CR04b] (cf. [Kau03].)

Theorem 8.10. (H{R(G),*) is a graded associative algebra, moreover it has a nat-
ural Frobenius algebra structure compatible with this product.

We will study this theory in more detail in Chapter

8.4.2 Stringy K-theory

Here we should mention that both the Chen-Ruan and the virtual orbifold theories
can be written in K-theory without much modification in the formulee [JKKOT].
One just needs to change the Euler classes e(V) and e(&) for the corresponding
Euler classes in K-theory A_;(V) and A_;(€) respectively. As Z-modules we have
K¥ii (AG) = K*(AG) and Kjgi(G) = K*(AG). The corresponding expressions for
the products in K-theory are:

VxW.= (612)*(€>;V ® €3W® A_1(V),

and
Vax W= (e)«(e7V®eSW®A_4(E)),

respectively.
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Theorem 8.11 (Jarvis-Kaufmann-JKK [JKKOT7]). There exists a stringy Chern
character

Chykk : KjKK(S) ®C — H*CR(Sy(C)

that is a Frobenius algebra isomorphism

Thsi theory will be thoroughly studied in Chapter

8.4.3 Virtual Orbifold Cohomology

Let S be a complex manifold and let S; and S; be closed submanifolds that intersect
cleanly; that is, U := S1MNS3 is a submanifold of S and at each point x of U the tangent
space of U is the intersection of the tangent spaces of S; and S,. Let E(S,S4,S>)
be the excess bundle of the intersection, i.e., the vector bundle over U which is the
quotient of the tangent bundle of S by the sum of the tangent bundles of S and S,
restricted to U. Thus E(S,S1,S,) = 0 if and only if S; and S, intersect transversally.
In the Grothendieck group of vector bundles over U the excess bundle becomes

E(S,S51,S2) = Tslu + Tu—Ts, lu — Ts, lu.

Denote by e(S,S1,S>) the Euler class of E(S,S1,S,) and by

u—1-, (36)

I

52.4)5
)2

the relevant inclusion maps. Then for any cohomology class « € H*(S1) the following
excess intersection formula [Qui71l Prop. 3.3] holds in the cohomology ring of S;:

iai1eoe =124 (e(S,S1,S2)i7(x)) . (37)

Consider the orbifold [Y/G] where Y is an almost complex manifold and G acts
preserving the almost complex structure. Define the groups

H*(Y,G) := @D H"(Y9) x {g}

geG

where Y9 is the fixed point set of the element g. The group G acts in the natural
way. Denote by Yo" = Y9 10 YN and suppose that for every g,h € G we have
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cohomology classes v(g,h) € H*(Y9"), which are G-equivariant in the sense that
wv(k gk, kThk) = v(g, h) where w: Y* "9k Thk 5 yah takes x to w(x) = xk.
Define the map

x : H*(Y9) x H*(YM) —  H*(Y9M)
(o, ) = i (alyen - Blyon - v(g,h))
where 1: YO — Y9" ig the natural inclusion.

Let us define now a degree shift 0 on H*(Y, G). We will declare that the degree
of a class ag € H*(Y9) C H*(Y, G)[o] is

i+ 04
where
04 :=2(dimc Y — dim¢ Y9),
and i is the ordinary degree of ag. In this paper all dimensions and codimensions

are complex. Virtual orbifold cohomology was introduced in [LUX07]. There it was
shown that:

Theorem 8.12. For the cohomology classes v(g,h) = e(Y, Y9, Y") the map x defines
an associative graded product on H, (Y, G) := H*(Y, G)[o].

virt
We will prove and generalize this result in Chapter

Definition 8.13. In the case when v(g,h) = e(Y,Y9,Y"), we will call the prod-
uct x in H*(Y,G) the wirtual intersection product and we will write H}, (Y, G) :=
(H*(Y, G)[o], x). Given that H*(Y, G;R)E = H*(I[Y/G];R), the product x induces a
ring structure on the orbifold cohomology of [Y/G]. We will call this ring the virtual

intersection ring of a global orbifold and we will denote it by HZ. . (A[Y/G]).

The definition of the virtual ring generalizes to a non-global orbifold. To do this
we use the language of groupoids, and follow the notation of Adem-Ruan-Zhang
[ARZ07]. The Lemma 7.2 of [ARZ07] is the generalization of the clean intersection
formula of Quillen to the category of orbifolds. In the notation of [ARZ07] we must
replace Y9 and Y™ by two copies of AG, and Y9" by a copy of G%. We define in general
the virtual obstruction orbibundle V — G2 as the excess bundle of the diagram of
embeddings:

g S Ag (39)

N

AG——=§

j2
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The definition of the degree shifting is local so we can use the same definition. We

set
Hiit (AG) := H*(AG)[o].

virt

The formula for the product in general becomes

Hiirt (AG) @ Hijpi (AG) — Hi (AS)

virt virt virt

given by
o x = (er2)«(ejoc- e3p - e(V)),

where e : G4 — AG is the natural map that locally can be seen as the map
YO — yoh

We will study this theory in more detail in chapter 10.

8.5 G-OC-TFT with Positive Boundary

As before we define the notion of a G-open-closed theory with positive boundary
as a G-open-closed theory but with the restriction that the morphisms have at least
one outgoing boundary.

The algebraic characterization is the following.

1. A nearly G-Frobenius algebra associated to the circle.
2. For each pair a, b of labels a vector space Oqp with a G-action
p:G — Aut(Ogp)

such that
PgMap(@1® @2)) =ngplpgle1) ® pgle2)),

Agpl(pg(@)) = (pg @ pg)AGy @),

for @1 € Oqe, 92 € Ocp, © € Oqp and g € G. This conditions are represented
in the figures [26 and

3. For every label a the vector space O 4q is non necessarily a commutative nearly
Frobenius algebra.

4. There are also G-twisted open-closed transition maps
tg,a:Cq— Oqaq,

19%: 0qa — Cy,
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? P
C a C a
c /g\bz c b
9 9
b b

a a
a c a
¢ =~ O

b b

Figure 27: The coproduct is a G-morphism with the diagonal action.

which are equivariant.
The map 1: C — O is obtained by putting the 14 together, i.e. L = @gecglg is
a ring homomorphisms, then

Lg ((131)ng((1)2) =lg, g (D2D),

with @7 € C4, and @, € C4,. Moreover te(lc) = 1g,,. The G-twisted
centrality condition is
Lg(q))(pg\y) :th((D)»

where ® € Cy y ¥ € Oqa.
5. The G-twisted Cardy conditions. For each g € G we must have
Tgb = LgbtT%
Hence TCS,b is defined by
Tgb =Npp 0 To (1®pg)o Al Oaa = Opp
where T: Ogp ® Opq — Opa ® Oqp is the transposition map, see Figure

Theorem 8.14. The G-invariant part of a G-OC TFT with positive boundary is an
OC-TFT with positive boundary.
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a a b

a & 5 ‘ b a b
a D b 3 b a b

a a b

Figure 28: G-twisted Cardy condition.

9 Orbifold String Topology

Let M be a smooth, compact, connected, oriented manifold and let G be a finite
group acting on M. We will consider the global quotient orbifold X = [M/G]. We
define now the loop orbifold LX for X as follows:

Consider the space

M) = | | Po(M) x {g}

geG

where

Pg(M) ={y:[0,1] = Y:v(0)g =v(1)},
together with the G-action given by

G x |_|TP x{g}—>|_|‘P ) x {g}

geG geG

(h, (v,9)) = (yn,h"'gh)

where yn(t) :=y(t)h.
Xg xh(K'gh)

/N
a

x xh
Then we define the loop orbifold as

LX = [Pc(M)/G].
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In this section we associate a nearly G-Frobenius algebra to the loop orbifold

LX. This is Hy(Pg(M)) = @QGGH*(TQ(M)), with the G-action

an : Hi(Pg(M)) = Hi(Prgn-1 (M)

It is important to mention that ordinary string topology is included since P.(M) =
LM with e € G the identity element.

We will describe the structure maps in the next section.
9.1 Algebraic Structure

Orbifold string product: We will suppose that M is oriented and G acts by
orientation preserving diffeomorphisms. Now we define the product for the homology
of Pg(M). We start by defining a composition of path maps

® : Pg(M)e; X ey Pr(M) = Pgn(M)
where € : P (M) — M is the evaluation map at t, given by v — y(t) and
Pg(M)e; X o Pr(M) = {(vo,v1) : vol(T) =v1(0)}.
The map ® is given by
(Yo®y1)(t) := {
Notice that the following diagram is a pullback square

Py(M) e, X g Pr(M) —— Py(M) x Pr(M) (39)

€ool \LE]XEO

M A M x M

where j is the inclusion, A is the diagonal map and ey (Yo, Y1) = Yo(1) = v1(0). We
observe that due to the pullback square we can construct a Thom-Pontryagin
map

T:Pg(M) x Pr(M) = (Pg(M)e, x e, Pr(M))™,

where (Pg(M)e¢, Xe, Pr(M))™ denotes the Thom space of the pullback bundle
€5, (TM). This is the normal bundle of the embedding j.
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Let (i]’gh(l\/l))ﬂvl be the Thom space of the bundle €3 (TM) with er: Pgh(M) —
2

M. The map ® induces a map of Thom spaces
® 1 (Pg(M)e, X egPr(M))™ = (Pgn(M))™,

and therefore the next diagram is commutative

Pg(M) x Pr(M) T (Pg(M) e, X ¢ Pr(M)) ™ = (Pgn(M))
€1 X €p €00 617
M x M = M™ = M™

Then, we can consider the composition

Mg :Hp(Pg(M)) @ Ho(Pr(M)) =5 Hp 4 4(Pg(M) x Pr(M)) 25
Hp i q((Por(M)™) 25 Hpy g a(Pgn(M)),

where 1, is the Thom isomorphism. Adding over all elements g € G we obtain
the map
n: Hp(Pc(M)) ® Hq(P6(M)) = Hpiq—a(Pc(M))
which we call the G-string product.
Orbifold string coproduct: First, we note that the next diagram is a pullback
square

Po(M)e, X ey Pr(M) -2 Pon(M)
€c0 6%,60.9
M M x M

Then, we can consider the map
®: :Pgh(M) — (:PQ(M)E] XeoTh(M))TM

where (Pg(M)e, er‘Ph(M))TM denotes the Thom space of the pullback bundle
€* (TM), which is the normal bundle of ®.

o0
Then, we can consider the composition

Agn i HpiqralPan(M) =5 Hpgia ((Po(Me, X PriM) ™) 5 Hipsg(Pg(M) e, X ¢ Pr(M))

Hp1q(Pg(M) x Pr(M)) — GB Hi(Pg(M)) @ H;(Prn(M)).
i+j=p+dq
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Adding over all elements g € G we obtain the map
A:Hi(Pc(M)) = Hi(Pc(M)) @ Hi(Pc(M))

We will call A the G-string coproduct.

The unit: We consider the next diagram

M
PN
Pe(M)

where T : M — {pt}, the constant map and i. : M — P.(M) is defined by i.(y) = «:
I — M such that x(t) =y is the constant loop.

Then u: H, ({pt}) = k —5 H, (M) =5 H,(Pe(M)) — H,(Pg(M)).

{pt}

u:k — Hy(Pg(M)).

Note that since M — P.(M) has infinite codimension we cannot define a trace
map. This same feature is in the String Topology algebra.

Theorem 9.1. H,(Pg(M)) is a nearly G-Frobenius algebra.
Proof. We will check all the axioms.

1. Associativity of the product

g . g
() _h ghk
h ghk
k . k

(1) 2)
Remember that the product is defined from the next diagram

ngMG] Xeo fPhM
PM x PpM P gnM
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The associativity is encoded in the next two diagrams.

(1)
PyMe, X oo PrMe, X ¢, PkM

1xj *x 1

TQME;] Xeoﬂ)hM X (PkM ?ghMa Xeog)kM

/ %1

inM X ThM X kaM f])ghM X kaM (PghkM

\

(2)
PgMe, X eg PrMe, X ¢ PiM

jx1 T

inM X fPhMe] Xeo :PkM TQM(;] ><€0fPhkM

/ Tx*

inM X ThM X kaM ﬂ)gM X iPh_kM (PghkM

\

The first case involved the next constructions

(x x 1)*e5 (TM) — = = PgM¢, X ¢, PrMe, X ¢, PM

*X]l

e (TM) = — — — — - ~ P Mo, X e, PiM P M x PM
eool iel X €9
M-—————————— =M - M x M
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and

"
(€s0 X €00)*(TM) = = = PgMe, X ¢y PrMe, X ¢y PkM —= P M, X ¢y PhM x PLM
€m>X€m>l iemgxe1xeo

T™-=-—-———— — —— =M x M MxMxM
1xA

We note that (x x 1)* e’ (TM) = (€0 X €00)*(TM). Then F; = 0.

In the second diagram we have the next constructions

(T x *x)*eX (TM) — = = PgM¢, X ¢, PrMe, X ¢, PM

)
]X*l

e (TM) = — — — — - ~ P Mo, X ¢, PrcM P M x PraM
€a)l ie1xeo
™M--—--=-=-=-—-—-—-= =M A M x M
and

(€0 X €00)*(TM) — — = PgMe, X ey PrnMe, X ¢, PiM *jzhjgl\/l X PhMe, X ¢y PxM

€QJX€m)l i€1X€oX€x
™M-======= == M xM M x M x M
Ax1
Similarly as before, we note that (1 x x)*e’ (TM) = (€0 X €00)*(TM). Then

F, = 0. Therefore the product is associative.

2. Coassociativity of the coproduct

g g
h )
_ghk h
K [«
2)

(H (
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In the same way as the product, the coproduct is defined from the diagram
ngMa X e fPhM
TghM ngM X ‘.PhM

The diagrams that represent this property are
(1)

PeMe, X ¢, PhMe; X o PM

ghMe1 ><eogjkl\/[ P M€1 XQO?hM X ?kM

N TS

ghkM gh.M X ?kM ? M x ?hM X ?kM

(2)

?QMEI XecfphMe] XeofpkM

P Me] XeoiphkM :P M x ThMe:] XGO?kM

P graeM PM x PryM PyM x PpM x PM

In the first case we have the next constructions

(T xj) (€ X €0) N —— > ?QM€1 X ey PhM ¢, X ¢y PrxM

1le

(oo X €0) T — — — — = PgMe, X PrM x PM —2L P 1 M x P M
eooxeol l(e%,eog)xeo
m-———===== - - M x M MxMxM
Ax1



and

*x 1
(€0 X €0) N — — = PgMe; Xy PrMe; X ey PM —2> PgnMe, X ¢, PM
eooxeol l(el,eog)xeo

Ne — — — — — — — — =M x M M xMxM
Ax1

We note that (1 X j)*(€x X €0)*1N = (€x X €0)*N. Then F; =0.

The second diagram has the next constructions

(J X ])*(el X €oo)*T| - >:P9M€1 XEO:PH.M(—:] Xeog)kM

jx]l

(61 X €00) M — — — — = PgM X PpMg, xeoﬂ’kM%CPgM X PracM
G]XGOOJ/ lelx(%,eoh)
m-=-——-=-=-=-=--=--- M xM M x M xM
TxXA
and
Tx
(€1 X €00)™M— — >T9M€1 Xeo?hMa XEOTkM *X>{PgMe1 XeOThkM
e1><eool lelX(e%,eoh)
m----=----- M x M MxMxM
Ax1
In the same way as before, we note that (j X 1)*(€1 X €x0)* 1 = (€1 X €x0)* 1.
Then F» = 0.

3. Graded commutativity of the product

h g 208
L
g s

This property is represented by the next diagrams
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ThMQ Xeq ﬂj M

(jx"‘/\

PrM x PgM PgMe, X ey PM
/ NQ \
‘:PhM X ?QM ‘:P M x :PhM TghM
(2)
rth& Xe T M
PrM x PgM Pahg-1Me, X, PgM
1 \ / .

PuM x PgM g M xPgM PgnM

First, we need to check that the maps * o (g x 1) and * o To (-1 x 1) are
homotopic maps and the same for j o (1 x g ) and 1. In each case, we will
construct the homotopy. In the first case we define

H:1Ix (?hMQ X e fPQM) — :PghM

by

H(s, (v, B))(t) = otg(v) % B # ot ( <s —|—2t>

Note that H(0, (v, B))(t) = aglv) *B*op-1(y ( ) B(t) = (xo(x
1))y, B)(t), and H(T1, (v, B))(t) = og(v)*Bxop1(v) ( ) o1 (v)(t

(x o tlogp-1 x 1)) (v, B)(t).
In the second case the next map

_,(Q
I

F:Ix (PhMg, X, PgM) = PrM x PgM

178



is defined by

Fls, (1B ) = (¥(1) Bty 1 (8) (25 ))

Note that F(0, (v, B))(r,t) = (Y(T) B* -1(B) (%)) = (v(r), B(t)) = ily, B)(r, 1),
and F(1, (v, B))(1,t) = (v(r), B (%t)) = (v(r), ag-1(B)(t)) =jo(1x
~1)(y, B)(r, t).

Now, we can determine the Euler classes. In the first case we have

(€ 0TO (01 X 1))*(TM) = — = PrM¢, X ¢, PgM

To(0y, —1%1)

PgMe, X ¢, PhM ——= PgM x PM

€0 €1 X €

Mx M

and

€1 €1 X €7

M x M

We note that €1 = €o 0 To (041 X 1), then F; = 0.

For the second case

(€xo © (ch X ]))*(TM) - = >:PhM€1 X ey CPQM

To(otg x1)

P g1 Me XegPgM = Py 1M x PgM

€00 €1 X€p

™M-----—————- -M M x M




and
€1(TM) - — = PuM, X ¢, PgM ——> Py M x PyM

€1 €1 X€q

M x M

Similarly we note that €1 = €5 o (g x 1), then F, =0.

4. The action is an algebra homomorphism

This property is described by the next diagrams.
(1)

PrMe, X ¢, PiM

PN

?hM€1 X €0 :PkM :P]’LkM
fPhM X kaM fphkM :Pghkg” M
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?hMel Xeo f})kM

j g X Xg
U)hM X TkM nghg” M€1 X 50T9k9—1 M
1 ot X 0 / \
ﬂ)hM X :PkM {‘Pghg’1 M X ﬂ]gkg—1 M {‘Pgh.kgf1 M

In the first case is clearly that F; = 0 because the normal bundle is zero. Now
we study the second case. This is

(xg X ag) el (TM) — — — = = PrM¢, X ¢, PkM
g X 0t
Pang 1 Me; XeoParg 1M ——= P iMx P 1M
€00 e1%€o
™M--—-—--=-=-=-=--- > M A M x M
and

[SI%) €1 X €

M x M

Note that €% (TM) = (xg X 0tg)* €}

50

TM), then F» = 0.

5. Abrams condition
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(1) (2)

This property is modeled by the next diagrams
(1)

ngMq Xey Tth Xeo kaM

ix1 1xj
PoM x PpMe, X ¢, PkM PgMe, X ey PrM x PM
T 1% jx1 x1
PoM x PruM PoM x PpM x P M PnM x PM
(2)
PgMe, X o PrMe, X ¢o PkM
Txx 1
PgMe, X ¢y PracM PghMe, X e PM
j * * j

PgM x PruM PgucM PgnM x PrM
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The first case involves the following

((€co X €0) 0 (1 X§))*(TM) = = = PgMe¢, X &, PrhMe; X ¢, PiM
1xj
jx1

PgMe, X ¢y PhM x PIM ———= PgM x PrM x PrM

€co X €0 €1 X€p X€p

T™M=- - - ———— — — — — — M x M MxMxM
Ax1

and

(eoo X €0)*(TM) - = > T9M€1 XeoiPhMa Xeoj)kM ngM X ?hM X kaM
€oo X €9 €1 X €y X €p

™---————-———— >M x M MxMxM
Ax1

It is clear that (ex X €0)*(TM) = ((€x X €0) 0 (1 X j))*(TM), then F; =0.

In the second case we have

(€0 0 (¥ x 1))*(TM) = — = PgM¢, X ey PrMe, X ¢, PxM

*x 1
:PghM€1 X e ?kM * :PghkM
€oo €1 Xeogh
ya
T™M-=--—-—-———————— — =M M x M
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and

Tx*

(€1 X €00)*(TM) = = = PgMe, X ¢, PrM ¢, X ¢, PkM ——= PgM ¢, X ¢, PrckM

€1 X €co €1><€17><eoh

™M-=--——————— =M x M M xMxM
1xA

Finally (€1 X €5 )*(TM) = (€00 © (* x 1)*(TM), and then F, = 0.

= N
(1) (2)

Remember that the unit map is defined from the next diagram

M
SN
pt PM

where 1 : M — pt is the constant map, PoM = {ax : 1 - M : (1) =
x(0)} = LM, and i. : M — LM in the natural inclusion. Then u : H,(pt) —
H,(LM) = H,(PM) is the next composition map

. Unit axiom

H,(pt) -5 H,(M) 5 LML

The diagrams that represent the unit axiom are

/\
/\/\
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It is clear that F, = 0.
(1)

TXxicoe€q

PgMe, Xy PeM

PgM x {pt} PgM x PcM PgM

First, we note that the map 1\ is homotopic to the identity Id : PgM — PgM,
this is because

P:a— (ogic(a(1))) = axic(a(1)) ~ «.

Clearly the map ¢ is the identity map.
Now, we determine the class of the square.

1><€]

e (TM) - — = PgM —2E'P M x M

€]i lewd

™---->M——>MxM
(1Txer)*es (TM) - — = = =PgM
1l
PoMe, X eyPeM = PM x PM
ewl \Lelxeo
™M-------- - M ——MxM

In this case we note that €, o (1 x €7) = €7, this implies €](TM) = (1 x
€1)*e* (TM), and then F; = 0.

9]

7. Torus axiom
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. hgh1g1

-1

h gh1g4 (2)

The co-pairing map Og : k — H.(PgM) ® H.(Py -1 M) is defined as the com-
position of the unit and the coproduct as follows,

A
k 5 Ho(PeM) 25" H(PoM) @ H,(Py1 M),

Now, we describe this map.

s

PgMe, xeoT

/\/\

where the map ig: M9 — M is the inclusion, and fq : M9 — PgM¢, X ¢, Pg-1 M
is given by x — (&, &x) with ay the constant loop. The Quillen’s class of this
square is described as follows:

Viy — Mgcl_g> M

and
fe€5(V(ixag)) M9
fg
PgM, xeo‘Pg_1 M~ P.M
€9 leoXe]Z
V(Ixag) M 1 M xM
X 0tg
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Note that €g o fg(x) = x, this implies that €g o fg = ig and fgeg(Vi1xay)) =
iy (VUX%)). Therefore Fg is given by the next exact sequence

0 — vig — 15(V(1xa,)) — Fg — 0.

In the next step we determine the diagram associated to the first figure.

(M

fP oMe; X o P g, Prgh-1 Me, X o Pg-1 M
? Mx P,
N
+
Prgn 1M x Py 1M Prgh 14 1M

The class Fy is given by

19

Vig MO Mo
and
Jg.n€5 (TM) Moh
I
Prgn- 1 Me, X o Py 1M L= Py i M x P M
eml ie] xe
™ M M x M

A

Note that €s 0jgh(x) = €co(An(otx), %x) = X, then €y 0jgn = ign and we
have the next exact sequence

0— Vig | ign(TM) — F; — 0.
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The second diagram is the following

(2)
b f
?hMa Xeo?h M fPhMe] Xeotpg}r?gfl M
fPhM x P M
N\
l

‘PhM X Tgh Tg1 M Thg}r1 g! M

The class F, is associate to the next map

Vih (ig'h
i MoH Mh

in this case we have

Jg.n€ (TM) Mo
s
PrMe, X o Pan 14 1M ——= PrM x Py 15 1M
eml ie]
™ M M x M

A
As before there is the identity jzyhe(ﬁo('l'l\/l) = i’é,h('l'l\/l). Then

00— Vin ign(TM) — F2 — 0.

Applying the Quillen’s formulae we conclude

®«j!((atn x 1)j)s ® Hear! (1) = 1 (r1(1) N (e(ig ), (Fg)) U e(F1)))
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and
@5 (1 % ag)i)e ® liear! (1) = L (r1(1) N (e(ig(Fr)) U e(F2)))
To prove the axiom we need to check that

e(igh(Fg)) Ue(F1) = e(igh(Fn)) Ue(F2),

or equivalently
i (Fg) @ Fy = igh(Fn) @ Fa.

The bundles are the following:

. i (TM) L (TM)
Ey = iy (FgaF = & o =
S SO
i (TM i (TM
E, = imFeF = 2 o =
g,h 1g*h (V‘h ) ’vig,h
The information is represented in the next diagrams
S 9* .
1g)h(TM) g, h('Vlg ) Vig ”:\/l
N v A
Vlg e > M9hC > M o€ . M
lg,h g
and
* -h
lg,h(m) 19?;1('\/1}1) Vin ™
v N v v
iy > M9 hC - Mh— M
g h h

Using that all the maps are inclusions we have that i’g’h("ﬂ\/l) = TMJpmo.n and

13 h(Vig) = Viglman. On other hand, we observe that
T™|pon = ™9h g Vig @ Viglmon,
and
™| pmo.n = TMg‘hEBw;h @ Vi, Imon -
Then

Vg Vi h = Vih Vi h
lg,h@ 19|M9 lg,h@ 1h|M9

and in particular Eq = E,. This proves that e(Eq) = e(E;) and the torus axiom
is satisfied.

L
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9.2 Open-closed Orbifold String Topology

In the previous section we saw that the homology of the Loop Orbifold has the
structure of a G-topological field theory with positive boundary. Now we describe
the open part of this theory.

The category of branes is the following:

B ={X C M G-invariant submanifold with X i Y transverse for X # Y}

Now we consider the sets PxyM ={x : I —- M : «(0) € X, x(1) € Y}, for
X,Y € B. We define Homg(X,Y) = H,(Px yM). Note that G acts in H,(PxyM) as
follows

p: G HAut(H*(‘.PX‘YM))
g pg:Hi(PxyM) — Hi(PxyM)

&= o.g

where «.g(t) = «(t)g for t € L.

The product and coproduct are the same as the product and coproduct defined in
the open-closed string topology.

Now we describe the connection maps. For this we consider the next diagram

X
PXM
PoM PxxM

where fP>g<M ={a:T—->M: «(1) =«(0)g, x(0) € X].
First, we will prove that the map j; : H,(PgM) — H*(‘Jﬁg(M) exists. This is because
the next diagram is a pullback square.

j
PIM —— PgM

€0l lt—:oXE]

(id,g)

Clearly the map (id,g) : X = M x M is an embedding. Then, we can define the
map Lgx as the composition

H,(PgM) 25 HL(PXM) 5 H (PxxM).
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For the other map we consider the same diagram

X
PXM

N

fpx,xM

and we use the next pullback square

PXM —1> Px xM

eol leoX(—ﬁ

to define the map 19% as the composition
LOXH, (PxxM) —5 H,(PXM) 25 H,(PgM).

Theorem 9.2. The homology H.(Pg(M)), together with the graded vector spaces
Homg(X,Y) for all X,Y € B, becomes a G-OC-TFT with positive boundary.

Proof. We will check the open axioms.

1. The action respects the product

X X X
z X X Z X
z Y/_g\Y:Z ) Y
Y Y v

(1) 2)

The property is the following
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PxzvyM

PxzyM PxyM
e TN
PxzM x P M PxyM PxyM
(2)
PxzyM

szM X fpzyM :PXZY]\/l

1 Jxz Xjzy ixz
Pg X Pg
'szM X :szM

:szM X ?ZyM

In the first diagram is clear that F; = 0, this because the normal bundles are
zero. In the second diagram we have

PxyM

(pgoer) () — - - — - > PxzyM
]
PxzyM AR PxzM x PzyM
MNe — — — — — — — — -7 A M x M
and

€§ m - - - __ > PxzvyM 2 AN Pxz x PzyM

i e

M- ——————— -7 X M x M

We note, as before, that (pgoei1)*(n) =e

(n). Then F, =0.
2. The action respects the coproduct

ol— %



S

< N N X

©) @ Y
(1)
PxzyM
ixy x
[PXYM {PXZ\(M
foyM (nyM 'szM X :szM
(2)
PxzyM
/ \XZX%
PxzyM PxzM x PzyM
fpxyM fpsz X fpzyM .:PXZM X ':PZ\(M

In the second diagram it is clear that F, = 0. In the first diagram the calculus
as the following

(G% opg)(P) - -~ PxzyM

|

PxzvyM v, PxyM

€1 €1 X€1
2 pa 2



and

m
roj— %

(9) - -~ PrpyM s PiyM

€1 €1 X€1
ya 2 2

V- ->Z—>=MxM
Since pg is a isomorphism, then the next bundles are isomorphic,

€

rol— %

(8) = (€1 0 pg)(9)

hence F; = 0.

. The map 14 is an equivariant map

0 ] - (=)
g X g hgh

(1) (2)
Remember that the connection maps are defined using the next diagram
PXM
PgM PxxM

where PXM = {a: I — M : x(1) = x(0)g, «(0) € X}.
We defined 14 x by the composition

H.(PgM) 25 H.(PXM) 5 H. (PxxM)

The diagrams that model this properties are:
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PiM

PEM PyxM
fP fPX)(M ?XXM
(2)
TXM
/ngM Prgn M
:PQM :Phgh 1 M (J:)XXM

In the first case it is clear that F; = 0. This because the normal bundles are
zero. For the second case we have

(€O o O(,h)*(ﬁ) - = — > ﬂ)>g<M

hgh~
€0 \L l €0
$--—---- - X M

and _
epd) - - in(M s PgM

eol ieo

f-——->X———>M

The bundles ej(9) and (ep o an)*(9) are isomorphic because the action o, is
a diffemorphism. Then, in particular is F, = 0.
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4. The map (" is an equivariant map

DN (Z:HENBE(

The diagrams are the following

(M

(PX ; hg
T 1 th :P —1 th
:PxxM g ! th ?hM
(2)
—1 th
PxxM PEM
TxxM ﬂjxxM fPhM

For the first case, it is an easy consequence that F; = 0. This because the
normal bundles are zero.
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The second case involves the following diagrams

(00 atg)*(8) - = = PX 1, M

-

fpéM 41> TXXM

€ol leoxq

e5(d) - - =PX 1 M s PM

€oi lEOXE]

d-—-—-—-- >X1—>X><X
XCg—Thg

and

Note that the bundles €j(d) ~ (e 0 xg)*(d) since og is a diffeomorphism.
Then F» = 0.

5. The map 14 is a ring homomorphism

jny

(1) (2)

In this case the diagrams that model this property are the following

(1)
PiMe, X ¢, PAM
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in(ME] X e PRM

PEIM x PEM PxxxM

{PQM X (th (PxxM X TxxM ‘PxxM
For the first case we have

(€O © *)*(T]) - == :Pg(M(Z] Xeo(PEM

;

PXM P gnM
eO\L leoxa
nmn-------- > X M x M

and
esM) — — = PfMe, X 6, PEM 225 P M x ¢, PhM

€O\L l€0X€1

n------ > X M x M
Ixg

We note that €go * = €p, then ej(n) = (ep o *)*(n) and F; = 0.
The second case has the following diagrams

(e o) (TX) = — — — - = P¥Me, X ¢y PFM
PrxoxM h2X)2: PxxM x PxxM
e;l \L€1 X €p
>X--————-—==-=-- =X X X x X
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and

e (TX) - — — — - = PXM, X o PXM —— PXM x PpM
eool lel X €p
X--—-——-=-=-=-== =X A X x X

We note that €1 0% = €co, hence € (1) = (€1 o %)*(n) and F, =0.

6. G-twisted centrality condition

g X T)ZY X
" X Y X
T '
Y—v Y—v Y
(1) (2)
This condition is modeled by the next diagrams.
(1)
Tg(MQ X € fpxyM o
/ <
?>9(M X ?XyM ?xxyM AN

(2)

TgM X foyM

':PgM X fpxyM

%

:])X)(M X TxyM

TxyMe] X ?YM

€9 ©2
y/ xot’
PIM x PxyM PxyyM N\

b

TxyM X foyyM
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We first check that the spaces TéMel X ey PxyM and PxyMc, erfP\g(M are
homotopic. We define the maps as follow:

@ PiMe XeoPxyM  — PxyMe, X ¢, PYM

609

(o, B) — (BB * Pyt (&) % pg1(B))

1]) : fPXyM€1 X eo ?gM — :P)Q(Me] XeoTxyM
(v,0) > (pg(Y) % pg(d) *¥,7v)
'l.l)o(p((x, B) :ﬂ)(B»B*Pg% (cx)*pg*1 (B)) = (pg(ﬁ)*pg(g)*(x*ﬁ*g» [3) =~ (OC, B))
9oP(y,0) = @(pg(y)*xpg(8) ¥y, v) = (v, V¥V *0xpg1(Y)*pg-1(v)) = (v,8).
Then
Yo ~Id and @oPp~Id.

Now we check the external maps for the diagrams (1) and (2).

e 0200(x,B)=@20B,Brpg1(a)xpg1(B)) =PxBxpg1(x)spy1(p) =

x 3,
e ¢1(x, ) =axp.

o Dr09(x,B) =V2(B, Bxpg-1(c)xpg-1(B)) = (Brpg-1(x)xpg-1(B), pg(B)) ~
(e, B),

e Yo, B) = (o, B).

e ©10Y(v,8) = @1(pg(y) * pg(d) *¥,v) = pg(v) * pg(d) x ¥ *y =~y =8,

® @2(v,8) =y *8d.

e P1oY(v,8) = V1(pg(v)*pg(0)*¥,v) = (Pg(¥) *pg(d)xV,¥) == (8, pg(V)),
e U2(v,8) = (8, pg(v))

Finally we need to calculate the Euler class in each diagram. For the first case
we have

(€l (o} e) L)*(TX) - — >T§M€] Xeoﬂ)XYM

2

PxxyM D203 PxxM x PxyM
e;l la X €0
X =X A X x X



and
e (TX) = — = PXMe, X ¢o PxyM ——= PXM x PxyM

oo
eool ie]xeo

TX------- - X n X x X

We note that e} (TX) = (e% o x o t)*(TX). Then F; =0.

The second case has associated the next diagrams

(612 oxol)*TY) - — » PxyM, XeO?gM

J12 X323

PxrwM PxyM x PywM
e}i lq X €9
e —— -y _ Y x Y
and
€5 (TV) = = — — = PryMe, x o PYM ¥t o piyM
eool leoxﬂ
Ve e e e oo -y Y XY

A

As before the identity holds €% (TY) = (e1 o* o /)*(TY). Then F, = 0.

2
To finish the proof we only need to check that v, = 0. For this, we construct
the next homotopy:

H: Ix (PEMe, X, PxyM) — PxyMex ey PgM x 1
(S,(OC,B)) — (BaBS*pg*]((x)*pg*1(B))s)

where € : [ x PxyM — M is given by €(s, B) := B(s). The next pullback square
proves that W := PxyMeX e, PgM x 1 is an infinite manifold.

W = ‘nyMexeo?gM X I—>?XyM X ngM x I

eooxli lexeox1

M x 1 yeE MxMx1
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Similarly, the next pullback square

Zs = PxyMe, X ¢y PgM X {8} —— PxyMex ¢, PgM X 1

€s X{s}i iod

M x {s}¢ M x 1

proves that Zg is an inclusion of codimension one on W for all s.
Note that the homotopy H satisfies that

H(O, (o, B)) = (B, pg-1(e)) = (1 xpg-1)ot(e,B)

H(1, (0, B) = (B,B*pg (o) pgi1(B) = o(, B)

Then, in particular we have the next situation

(PZJ(MQ Xeo fpxyM ?g(Me] X e fpxyM
. . H
(]ng—l )o | diffemorphism > ()
Zo = TxyM(_;] Xep TgM Z] = TxyMe] Xeo TEM

Since V(1xp _,)or = 0 then v, =0 and e(vy) = 1.
g

7. Cardy condition

(1) (2)
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TXOYM
f g |
>N
X
PXM
PxxM PoM
(2)

92 "P\g(,XNl 2

/ \w‘m(jxj
// AN
/ PxyxM PryM N
y o(1><pg]o(j><j) / ii((Y \\
/ \
fPX)(M fpyxM X foyM ‘.PxxM

In this particular case, the maps are illustrated in Figure and they are
homotopic to the cobordism illustrated in Figure We will suppose that

X |\ x y
X l Y_X Y@ Y

Figure 29: The composition maps in the Cardy condition.

l vg 6)

Figure 30: The cobordisms associated to the compositions.

the intersection X N'Y is non-empty, this because if it is empty then the two
composition maps are zero. In the second cobordism the composition is zero
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by definition, and in the first this is because for an empty intersection the
composition of the umhker maps is zero since the tubular neighborhoods are
disjoint.

We prove that ‘PXOYM and fPY xM are homotopically equivalent spaces. First
we describe the maps between the spaces. Suppose that z € XNY, and if
we take M path-connected then for x € M there exists 1 : I — M such that
n(0) =z and n(1) =

. XNY X
e: PPM — PyyM
x — 00k O % O
v PXM — PXYM
b = M* Ok pg-1(T)

The composition maps are
Yo (o) =Plaxorso) =n*axa*okpg() =n*pg(n) =
@ (8) = @ * 8+ py 1 (7)) =M #8 % pg 1 (7) g 1 (1) #8 T #1 + 8+ pg 1 (1)

~M* 0 pgy (M) = 8.

The composition with the external maps is the following. First we note that the
maps f1: Py "M — PxxM, g1 : PF"YM < PyyM and g5 : ?;(YYM — PyxM
are natural inclusion maps. Finally, the map f; : T>9(,YM — PyyM is given by
falax B) = pg(B) * «. Then

6+i>n*6*pgf1(ﬁ)g%n*f)*pgfl(ﬁ)ﬁ‘s
§+2% 8
Vv . f _ _
S»Hn*é*pgq(n)n—1>n*6*pgf1(n):T]*CX*B*pgq(ﬂ)ﬁpg(ﬁ)*fx

6:oc*[3rf—2>pg(ﬁ)*oc

g1

X H— &
@ — 92 —
AH— Xk XXX H—— XK X* XX
1
XH— &

(0] _ f _
O 0% OC* 0t P00 0t) x X ~ &
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Now we need to determine the Euler class for this case. First, we calcule that
e(vy) = 0. Let be the homotopy

H: IxPIM — PhyxM x 1
(8,6) — (ns*é*pg*](m)as)

where ng : I — M is given by ns(t) =n((1 —s)t + s), then ns(0) = n(s) and
ns(1) =n(1). See Figure [31]

xg
Mg pg (ns)

z zg

Figure 31: The homotopy H.

Note that H(0,8) = (no * & * pg-1(7M0),0) = (M * & * pg1(N) = P(8), and
H(1,8) = (M1 * 8% pgy1(M7),1) =8 =1d(8). Then, we have the next situation

Id :2> P
Lo = ?;(,YM Z1 = in(”YM

For the space Zs := PjyxM x {s} = s x 8+ pg-1(Ms) : 0 € fP)giYM} X {s} C
W .= iPé)Y,XM xIT=Ms*d*pyg1(Ms): s €L} x I we have that Zs gives an
inclusion on W of codimension one. This is because the next diagram is a
pullback square:

Zs:= P yxM x {s} — ?émXM x 1

€00 X{s}l leoo x 1

Xx{sjrn—""">Xx1I
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Then Vi =VId = 0 and e(’\/w) =1.
Finally, we need to determine the Euler class of the following two diagrams.
The first diagram is

eh(vi,) — ng(”YM

|

j
PIM —— PM
€0 \L \LEO
Vip \& - M

©

and the second
ej(vi,) —= PXYM 2 PXM

eol )i(eo

Vi XNYC

|

If we suppose that X M Y then e(ej(vyi,)) = e(ej(vi,)), and Fy = 0.
In the second case we have

eV (1xag)) —= PryM —— PxyxM

€0l leoX€1

V(xag) X X x X

X o

and

feq (1X) —— X M

Nl= %

\Lf*o(pg x 1)oto(jxj)
{-PYXYM > TW(M X TxyM

€
%\L iaxeo

TX X 7y X x X

Note that f*e’ (TX) >~ €5(Vixa, ), this is because V(1. «,) = TX. Then F; =0.

2

L
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9.3 BYV-Structure

The Chas-Sullivan string product on H,(LM) was only part of a very interesting
structure unveiled in their work; for example Chas and Sullivan defined a degree one
map

A: Hyo (M) — H, (M)

given by
A(G) = p*(de & U)

where p: ST x LM — LM is the evaluation map and d6 is the fundamental class of
S1. One of the main theorems of [CS] is the following one

Theorem 9.3 (Chas-Sullivan [CS]). The triple
(H*(LM)v o, A)
is a Batalin-Vilkovisky algebra, namely

e (H, 4(LM),0) is a graded commutative algebra.
o A2=0.

o The bracket

{o, B} = (=1)¥A(co B) — (=1)¥A(x) 0 B — cxo A(B)

makes Hy_q(M) into a graded Gerstenhaber algebra (namely it is a Lie bracket
which is a derivation on each variable).

This establishes a striking relation between algebraic topology and recent findings
in quantum field theory and string theory [BVS85| [Get94].

Cohen and Jones [CJ02] discovered that a very rich part of this structure was
available at a more homotopy-theoretic level and reinterpreted the BV-algebra struc-
ture in terms of an action of the cactus operad on a certain prospectrum associated
to M. They showed moreover that the Chas-Sullivan string product was the natural
product in the Hochschild cohomology interpretation of the homology of the loop
space of M [Jon87]. Cohen and Godin [CG04| studied interactions with the study of
the homology of moduli spaces of Riemann surfaces, establishing a direct connection
to topological quantum field theories. Cohen and Godin used the concept of Sullivan
chord diagram in their work. Cohen, Jones and Yan [CJY04] provided more explicit
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calculations of the product by the careful use of the spectral sequence associated to
the fibration
M — LM — M

induced by the evaluation map. In particular they computed the Chas-Sullivan
product on the homology of the free loop space of spheres and complex projective
spaces.

In [LUXO0§| we generalize several of the fundamental results of string topology
by showing that they remain true if we replace the manifold M by an orientable
orbifold X = [M/G], where G is a finite group acting by orientation preserving
diffeomorphisms on M. More precisely the following theorem is the main result in
[LUXO0§| and can be seen as a generalization of Theorem to the orbifold context.

Theorem 9.4. Let X = [M/G] be an orientable orbifold, then
ALx = H.(L(M xg EG); Q)
has the structure of a Batalin-Vilkovisky algebra.
This BV-algebra can be identified in two extreme cases:

e When G = {1} and for arbitrary M then A coincides with the Chas-Sullivan
BV-algebra.

e When M = {mg} is a single point and for arbitrary finite G then Ay is
isomorphic to the center of the group algebra of G.

9.4 Examples

In this paragraph we illustrate how one computes the pair of pants product in
orbifold string topology.

Ezample 9.1. Let M be a smooth manifold and consider X = [M/{1}] (in other words
we consider the case when G = {1}). Then it is clear that P4(M) = Pg(M) = LM is
simple the free loop space and H, (LX) = H,(LM). By the work of Cohen and Jones
we recover the Chas-Sullivan BV-algebra in this case.

Ezample 9.2. Let G be a finite group and consider X = [¢/G] be the orbifold con-
sisting of a point M = e being acted by G. Sometimes this orbifold is denoted by
BG (not to be confused with BG the classifying space of G). Clearly every loop and
every path in this case is constant, namely the space P4(M) = %4 is a point, and so
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Pc(M) is in one-to-one correspondence with G. Therefore the category [Pg(M)/G]

is equivalent to the category [G/G] of G acting on G by conjugation, for we have
h(*g) = *hghf1 .

For each g € G the stabilizer of this action is the centralizer

C(g) ={h € Glhgh™' = g}.

Now, in the category [G/G] an object g € G is isomorphic to g’ € G if and only if
g and g’ are conjugate. Therefore we have the equivalence of categories

LX ~ [PG(M)/G] ~ [G/G] ~ [ Jixg/Clo)].
(9)

Here (g) runs through the conjugacy classes of elements in g € G. From this we can
conclude that the equivalence
LBX = BLX

becomes in this particular case (cf. [LU04b])
LBG ~ ]_[ BC(g)
(9)

This equation becomes at the level of homology with complex coefficients the center
of the group algebra
H.(LBG) = Z(C[G])

and in fact H,(LBG) is simply the Frobenius algebra of Dijkgraaf and Witten
[DW0).

The reader may be interested in comparing this result with that of [ACG™08].

Let X be a topological space endowed with the action of a connected Lie group
I'. Take G C T finite and consider the quotient X/G and the map 7 : X — X/G the
projection.

Lemma 9.5. The projection map induces an isomorphism
.t Ho(XQ) S Ha(X/G; Q).

Proof. Take g € G and its induced action g : X — X. We claim that g, : H.(X) —
H. (X) is the identity. Join the identity of I' with g with a path oy € T (i.e. & = 1idr
and a7 = g), hence & is a homotopy between the identity and g, therefore g, = id.
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Taking the averaging operator

5 H.(X

X (GZQ*X (=x)

and using that H,(X;Q)¢ = H,(X/G;Q) the isomorphism follows, for it is not hard
to check that m, = (x

L J

With the same hypothesis as before consider now the orbifold loops, namely
PgX ={f:[0,1] = X[f(0)g = f(1)}.

Lemma 9.6. There is a C(g)-equivariant homotopy equivalence between LX and
PgX.

Proof. Let ot :[0,1] — G be the map defined in Lemma . Consider the maps

p:PgX — LX and T:LX = PgX (40)
where
o f(2s) if 0<s<3
Plf)(s) = { f(Mogy | if 1<s<1
and
o 0(2s) if 0<s< %
T(o)(s) = { o(Nags 1 if 1<s<1

The composition poT: LX — LX is clearly homotopic to the identity. The same
holds for T o p. The maps p and T are trivially C(g)-equivariant.

L J
Corollary 9.7. The group structure of the loop homology of [X/G] can be seen as

LIX/GL;Q @H (LX;Q).
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Proof. Tt follows from the lemmas [9.5] and [9.6] and the fact that

H.(LIX/GJ; Q) = @5 H.(PgX/C(g); Q).
(9)

L J

Notation: Let X be an orbifold of dimension d. Let us denote the loop homology
of X by
HL, (X) := H*+d( LX; Q).

In this way the orbifold string product H,(X) is graded associative.

Ezample 9.3. The loop homology of the lens spaces Ly, ) = S™/Z, (0 odd, p > 0)
is

H*(L(n,p)) = H*(LL(n,p)) =Ala] ® Q[U,V]/(Vp _ -I)
with a € H_n(Lnp)), v € Ho(Linyp)) and u € Hyq(Ly p))-

Proof. As the action of Z, on S™ comes from the action of S! on S™ via the Hopf
fibration, we can use Corollary . Let g be a generator of Z, then

p—1
He (Linp)) = Ha(1S™/Zpl) = P Ha(Py S™™,
j=0

as graded vector spaces.

As H*(?ng“)ZO = H. (P4 S™) the string product o could be calculated from the
following commutative diagram

Ha(P g SN2 x Ho(P e S™ME —— 2 H, (P i ST

:i lx

Ha (P S™) x Ha(PgeS™) O H Py S™).

The map T : LS™ — P S™ defined in gives an isomorphism in homology, so
we can define the generators of the homology of P S™ via the map v and the loop
homology of the sphere, namely H,(S™) = H.(LS™) = Ala] ® Q[u] (see [CIY04]).
Denote then by O'L the generatqr of the group Hk+n(.in]-S“) agd using that (7)), is
j j j

an isomorphism one gets that Ol 1)ln = o (aub), 0')( =1 (u!) and o)y = O for

n—1)1
all other values of m.
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We claim now that
k j+k

) _
m T Gler‘

O'i o0
The identity follows from the fact that

. . . . ke
o0 0%, =7 (09) 0 T(0%,) = THH(0? 0 0%,) = TH¥(0?,,) = o},
where the second identity follows from the definition of the maps T and the third
identity follows from the algebraic structure of Ala] ® Q[u].

From this we can deduce that the map Tj. : Ho(LS™) — H. (P4 S™) maps o*% —

of o 02) where 03) is the n-simplex of paths that to every x in S™ assigns the path

that goes from x to xg’ through the S' action.

We are only left to prove that when j +k = p the formula G{ ook = G‘f - Dolds.

So, let :S™ — LS™ be the map that to a point x in the sphere associates the free
loop defined that starts and ends in x and travels in the direction of the S action.
Now define the map ¢ : LS™ — LS™ that takes a loop v to Yy o 3. The map ¢ is
homotopic to the identity because the cycle 3 is homotopic to the cycle of constant
loops over the sphere (one way to prove this uses the fact that the odd dimensional
spheres have two orthogonal never vanishing vector fields). Therefore we have that
TP LS™ — Pgp S™ = LS™ is homotopic to the identity.

We can conclude then that the elements a = ¢°,, v = 62) and u = G?L_] generate
the loop homology of L(,, ), and the only extra condition is that vP = 1. Therefore

H*(L(n,p)) = Ala] ® Qu,v]/(V? =1)
L J

Ezample 9.4. Take the orbifold defined by the action of Z, onto S2 given by rotation
of 27t/p radians with respect to the z-axis. Then the loop homology of [S?/ L) is

H..(S?/Zy]) = Albl @ Qla,v,yl/(a?, ab, av,yP — 1)

Proof. The action of Z, comes from the S! action on S? given by rotation about
the z-axis. therefore the calculation of the loop homology product follows the same
argument as in the Example To make the notation simpler we will work with
p =2 ( Zy=1{1,g}); the other cases are similar.

From [CJY04] we know that the loop homology of S? is given by

H.(S?) = Alb] ® Zla,v]/(a?, ab,2av) (41)
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with |b| = 1, |a| = —2, |v| = 2. Since T : £LS§2 — ?952 is a homotopy equivalence,
we will follow the argument of Example The only different argument is on the
behavior of the map ¢ := 12 : £LS? — L£S?%. In homology, ¢, maps a € Hy(LS?) to
oo B € Hy(LS?) where p € Ho(LS?) = Hy(S?) is the class of the map S — L£S?
that assigns to every point x the loop that starts at x and rotates around the z axis,
and o is the homology string product.

We claim that $ =1+ av in the notation of , (the proof of this fact will be
postponed to Lemma . As av is a torsion class, i.e. 2av = 0, then in rational
homology ¢. is the identity map. As in Example [9.3] we can add a new variable y
that behaves like a root of unity, and we conclude that

H*([SZ/ZZD — /\[b] & @[G,V»U]/(az» ab) aV»UZ - 1)
L J

Lemma 9.8. The homology class p € Hy(LS?) = Ho(S?) of the map S* — LS? that
to a point x assigns the loop that starts at x and winds around the sphere once by
the S' action, and the homology class 1+ av € Hy(LS?) = Hy(S?) as in , are
equal.

Proof. When we contract all the loops of 3 through the north pole we end up
with the homology class [S?] + &, where [S?] is the fundamental class of the sphere
(constant loops) and therefore the unit in 1 = [S%] € Hy(S?), and & is defined in
what follows. For 0 € S! and Ps the south pole, consider the map f: S' x ST — £5?
such that the function fg = f(-,0) : ST — £S2 is the loop of based loops that starts
at the constant loop in Ps and goes around the sphere (as a rubber band) at the
angle 0. The class fg.([S']) is the generator of Hy(£S?%), and the class f,([S' x S'])
is &. We claim that & = av.

We know that the homology spectral sequence of the Serre fibration QS? —
£S2 — S? has for E,-term

ED = Hp(S%) @ He(QS?)

with non trivial differential d?(u ® x2**1) = 21 @ xZ**2 where x € H;(QS?), 1 €
Ho(S?), 1o € Ho(QS?) and u € H,(S?) are generators respectively. Also we know
from [CJY04] that av = 1 ® x2.

Denote by TSZ - S2 the sphere bundle of the tangent bundle TSZ — S2. The
map 7 is an S'-fibration and a point in TS? consists of a pair (z,v) where z € §2
and v is a unit vector tangent to S% at z. For each point (z,v) we can define a map
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hizy): S! — £S? in the same way that the function fg was defined two paragraphs
above; namely, h(,,, is the loop of loops that starts with the constant loop at z and
sweeps the sphere as a rubber band, following the direction of the oriented maximum
circle tangent to the vector v. We can assemble all the functions h,,y by letting
(z,v) vary and we can obtain a function

P: ST x TS? = £§?2

such that P (@, (2,V)) = hiz) ().
The map 1 defines a map of Serre fibrations

ST x 1 —— (8?2 (42)

L,

. v
ST x TS2——£§2

L

SZ;SZ

that induces a map in spectral sequences. If € € Ho(S') @ Ho(S'), a € Hy(S") @
Ho(S"), b € Ho(S") @ H1(S1), ¢ € H1(S') @ H(S), are the generators in homology,
at the second term of the map of spectral sequences

Uyt Hp(82) @ Hq(ST x ST) — Hp(S?) @ Hg(QS?)
induces the following identities:
e P.(e) =1q,
e J,(b)=0and
e 1. (a) = x because the functions fg determine the generator x of Hq(QS?).

We also know that d%(u® a) = 2(1 ® ¢) because TSZ = SO(3) and its fundamental
group is Z;.
Therefore we have the following set of identities:
20®x?) = d*(u®x)
= d*(P.(u®a))
= P.(d*(u®a))
= P2(1®c)
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and this implies that P, (t® ¢) = t® x2. Since t® ¢ represents the class [S! x S'] we
can conclude that f,([S" x S') =P, (1®c) =1 ® x? = av.

L J
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10 Virtual Orbifold Cohomology

10.1 Virtual Cohomology as a TQFT+

Now we introduce a new structure which was defined in [LUX07] and further de-
veloped in [RUOS8, (GLS™07]. The virtual orbifold cohomology could be understood
as the algebraic information which can be obtained from the Orbifold String Topol-
ogy [LUXO08] if we restrict our attention only to constant loops. The virtual orbifold
cohomology will provide us with an important example of a nearly G-Frobenius
algebra.

This nearly Frobenius algebra generalizes two diferent families of nearly Frobe-
nius algebras. The first one is the Poincaré algebra of an oriented smooth manifold
M and the second one is the Frobenius algebra of the Dijkgraaf- Witten model asso-
ciated to a finite group G. We can relate these two structures through the diagram

GOM

7N

M G.

We will work as before with the global quotient orbifold [M/G], where M is a
smooth manifold and G is a finite group acting by diffeomorphisms on M.

Denote M9 :={x € M : xg = x} the set of fized points of g € G.
Definition 10.1. As graded groups we can define the G-virtual cohomology

H:, (M, G) := €D H* (MY C).
geG

*

The next diagram defines the virtual product in Hj; (M, G) in the following way:
take g,h € G and M9" := M9 N M" with inclusion maps

€9
M9 ~—— M9oh
>N
M" Mo

for o € H*(M9) and p € H*(M™") define the virtual product by

o x B = egha (egax - e, - Eufv(g, h))),
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where Eu(v(g, h)) is the Euler class of the excess bundle v(g, h) = STV el Tl\:lﬁr/‘%&hl -
M9 M9,

which is called the excess intersection class of the diagram

-I—M‘Mg,h <~ TMg|Mg,h

| T

MM g n <—— TMO,

In the Grothendieck group of vector bundles over M9" the class of the Excess
intersection bundle becomes

v(g,h) = TM|pa.r @ TMO S TMI po.n © TM Y pga0n.

This product becomes graded when we endow it with the degree shift

dimvirt(oc) = |0(‘ + COdR(Mg - M)

We have a natural action of the group G on HX. .(M;G)

virt

1

og s HY (MM — H* (M9 )

where this map is induced by the natural action Moha™' M" x — xg. Note that
Aglir(vo) = idp(mo)-

Now we define the virtual coproduct associated to the diagram

Mgh <egih Mg’h L M9
K
Mh
as follows: for o € H*(M9") define the coproduct of « in H*(M9) @ H*(M") by

Agﬂf(oc) = (egMen), (efn(x) - Eu(u(g, h)))

where ey X e}, denotes the map eg X ey, : MIh 5 M9 x M x — (x,x), and
u(g,h)=e (% + Wg’h) is the sum of the normal bundle of the embed-
M9

ding M9 — M restricted to M9 together with the tangent bundle of M9,
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Theorem 10.2. The graded groups Hj;..(M; G) endowed with virtual product and
the virtual coproducs is a nearly G-Frobenius algebra. We will call Hy;,.(M; G) the
virtual cohomology of [M/G].

Proof. We will make use of Proposition to prove the properties.

1. Associativity of the virtual product We have to prove that the virtual
product satisfies the property determined by the diagram:

g g
. ) _h ghk
() K
M )

The information associated to the diagram (1) is:

M9k
/ X\
MIh « MK M ohk
M9 x MM x Mk M9h x MKk M ghk

while the information associated to the diagram (2) is:

M9k
/ K
M9 x Mvk Mohk
M9 x MM x M¥ M9 x Mk Mohk

In order to prove (x* B) xy = a* (p x7vy) it is enough to show that the

Euler classes of the different intersection bundles behave well when restricted
to M9k,
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From diagram (1) we get the cohomology class

e3(Eu(v(gh, k)))Eu(Fy)ej(Eulv(g, h)) x 1)

h k
where Eu(F1) = Eu (i s ) Eu(v(gh, K)) = Fu (qrpmo o —— ),

TMI R X MK[ gk FTMIMER[ ok TMOR | gh i HTME[ gk

™|
and Eu(v(g,h)) =Eu (Wg‘Mg,hr%ah‘Mg’h>‘

Noting that e (Eu(v(g,h)) x 1) = Eu(v(g, h)[penx), then we see that the
cohomology class defined above is the Euler class of an element in K-theory of
MK which is

()+(gh, k)—(gh)—(k)+(gh)+{k)+(g, h, k)—(g, h)— (k) —(gh, k)+(1)+(g, h)—(g)—(h)

=(2) + (g9, h, k) — (g) — (h) — (k).
once we have denoted = (kq,k2,...) := ™M ’kz""|Mg,h,k.

From diagram (2) we get the cohomology class
es" (Eu(v(g, hk)))Eu(F2)e" (1 x Eu(v(g, h)))

hk
TMI XM Gk
TMIXMMK[ i HTME KRy

™
and Eu(v(g,hk)) = Eu (WQ‘MW o).

So, we get that this cohomology class is the Euler class of the bundle that in
K-theory becomes

where Eu(Fy) = Fu  Eu(v(h,k)) = Eu M ,
( ) ( )

TMM e HTME Lk

(1)+(g, hk)—(g)—(hk)+(g)+(hk)+(g, h, k) —(g)—(h, k)—(g, k) +(T)+(h, k)—(h) — (k)

= (2) + (g, h, k) — (g) — (h) — (k).
Since the elements in K-theory associated to both diagrams (1) and (2) agree,

we get the the desired equality:

e5(Eu(v(gh, k)))Eu(Fy)ej(Eu(v(g, h))x1) = e (Eu(v(g, hk)))Eu(F2)er"(1xEu(v(g, h))).

. Coassociativity of the virtual coproduct

The outline of the proof will follow the same steps as the one before. An
equivalence between two surfaces will determine the property to show, and this
property boils down to show that two cohomology classes match. The coho-
mology classes to compare are highlated by e, and the equality of these classes
is shown by comparing the elements in K-theory that define these classes.
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g
ghk - h _ . .
~ ghk h
k . k
(1 (2)

(1)
Mg,h,k
/ X\
ey xxihk y W
M ahk M9 x MMk M9 x MM x Mk

e e7(Eu(u(g, hk)))Eu(Fq)e3(1 x Eu(u(h, k)))

TMI x MK ™, .
where Eu(F1) = Eu (s i )» B9, 1K) = Bu (et + TMok),
™
and Eu(u(h, k) = Eu (ﬁ;:k + mhvk).

If we realize the calculations in K-theory, then
(1)+(h, k)= (hk)+(T)—(ghk)+(g, hk)+(g)+(hk)+(g, h, k)—(g, k) —(g)—(h, k)

(2)
MoK
% K
Mohk MM 5 Mk
Mohk MM x Mk M9 x MM x Mk

e e (Eu(p(gh, k)))Eu(F2)es (Eu(u(g, h)) x 1)
. TMOM X M¥ | g ok - LLLUNTRY hk
where Eu(F2) = Eu ( gy i )» Euli(g, 1)) = Eu (e + TMOE ),
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TMlMgh,k
TMIRK] L gh K

and Eu(v(gh,k)) = Eu (
In K-theory

+ TMgh»k) .

(1)+(g, h)—(gh)+(1)+(gh, k)—(ghk)+(gh)+(k)+(g, h, k)—(gh, k)—(g, h)— (k)

3. The action is an algebra homomorphism

(1)
Moha ' ,gkg™!
/ \Klgkgl
Mohkg ™!
ehy \ / \
n o Mk Mohkg™!
T™ME X
— Moho—1.gkg
e Eu(Fy) =Eu TV ] S TMetke | ] 1
mMohg™',gkg™ mMohg™ 1 gkg™

™
and Eu(v(h,k)) = Eu (Wthh‘k'%;kth‘k )

Then in K-theory the calculations are

(1) + (k) — (h) — (k) + (hk) + (ghg ', gkg ') — (h, k) — (ghkg ")

= (1) = () = (k) = (h, k).
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Moho ' gk
y/ \
Mg« MOk ! Mohg ' gkg !
y \ eghgy W
MM x Mk M9ha ' « Mok Mohkg
T™MONe T Tmeke T
° EU(FZ) =Eu TMoha 1« TMokg ™! 17’\\/:39}1997]’995)71
x lmoho—1,0kg—1F ' | MMIhg 1, gkg™
™

mghg— ! gkg~!
TMoho ! TMoko~!
[ph,x + [mh Kk

and Eu(v(ghg™' gkg™')) = Eu (
Then in K-theory
(1) +(ghg~",gkg™") — (ghg™") — (gkg™") + (ghg !, gkg~") + (ghg~")
+(gkg™") — (ghg ") — (gkg ") — (ghg ', gkg ")
= (1) = (h) — (k) = (h, k).
. Graded commutativity of the product
ghg'

hE i h_(]:

(2)
Moho 19 — Moh
/V
Moo x M
og X1 \ €gng—1%€g
1
MM x M9 MOhI™" x M9 I\l
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e Eu(v(ghg™', g))Eu(F)1

™RSS MO| B B
where Eu(F,) = Eu (TMgh91»9|Mg,h+TM9thg‘ nglMg,h> =Eu(0)=1.
In K-theory

(1) +(g,h) — (ghg™") — (g).
(1)

Mohg g — pmoh
€g Xen 1
M9 x M Moh
T 1 €g Xen €gh
MM x M9 M9 x M Moah
e Eu(v(g,h))Eu(Fq)1
h

where Eu(F;) = Eu M9 X MP g0, ) — Eu(0) =1.

TMQXMh|Mg h+TM9, h‘Mg h
In K-theory

(1) +{g,h) —(g) — (h).

Then ag(B) * ot = ig ! <Eu(v(g,h))5ah(fr*([3 x oc))) if and only if

(h) = (ghg ™).

This is true because the bundles TM9|p40,n and T™Moho ' |pmo.h are isomorphic.
Now we need to understand T (f x o).

Let be T: M9 x MM — MM x M9 the transposition, and 77 : M9 x MM — M9,
i M9 x MP— MMl M x M9 — M, ) M x M9 — M9, Hence

TP x ) =1°

(77" (B))T* (1% () = (7)) (B) (7ehT) (o)
= 15(B)7 (o) = (—1)Pl7s (a)7e5(B)
=(— 1)“"”[3loc><[3

Then ag(B) % & = (—1)/¥Bl 41 (Eu( (9,1))8% (e [3)) (—1)olBlo 4 .
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5. Abrams condition

gh g ghk gh

hk hk k "
hk
(1) @) A
Remember that if « € H*(M9") then
Ag]‘f(oc) = (egMen), (efn(a) - Eu(u(g,h)))

where Eu(p(g,h)) = Eu <%§:h n wg»h>.
(2)

M9k
/ X
ghk gh,k

M9 x MMk Mhk MM x MKk

e e5(Eu(u(gh, k)))Eu(F1)ej(Eu(v(g, hk))),

TMOMK| ok
where Eu(F;) = Eu MY 2
( 1) Wg'thMg,h,k+1Mgh’k‘Mg,h‘k

Then (1) +(gh, k) — (ghk) +(ghk) -+ (g, h, k) — (g, hk) — (gh, k) + (1) + (g, hk) —
(9) — (hk) = (2) + (9,1, k) — (g) — (hk).

(1)
M9 hk
M9 x MMk MO Mk
/y W y egh X1
M9 x MMk M9 x MM x M¥* MM x MKk
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e e; (Eu(v(g,h)) x 1)Eu(F2)er*(1 x Eu(u(h, k))),

TMI XM MK o hox
M9
where Eu(F2) = Eu TMI X MIKRT g ok FTMO P ME[ s )

Then (1) + (g, h) — {(g) — (h) + (g) + () + (k) + (g, k (9)—(h,k)—(g,h) —
(k) + (1) + (h, k) — (hk) = (2) + (9, h, k) — (hk) — <>
(3)
/Mghk\
/Mgm]Xth\ /XW%\
M9 x MMk gh x MM x Mhk MM x Mk

e ¢;*(1 x Eu(v(h~T hk)))Eu(F3)e; *(Eu(p(gh,h™ 1)) x 1),

B T™ER M XMPKR| ok
Where Eu(F3) — Eu (Wgh'h1 XMh'k‘Mg,h,k +TMgh'><Mh71 ‘hklMg,h,k
Then (1)+(h~", hk) — (R~ 1) — (k) +(gh) + (R 1)+ (k) +(g, h, k) —(gh,h 1) —
(hk) — (gh) — (h~T, k) + (1) + (gh,h 1) — (g) = (2) + (g, h, k) — (hk) — (g).
If we compare the three cases we have that the Abrams condition is satisfied.

6. Torus axiom
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/\

Mhoh™ L
(ot x1)o ehgh 1Xe Chgh—1g—1
eg Xe ,]

M9 x M9~ Mheh g™
e e3(Eu(v(hgh™, 9‘1))Eu(F1)e’{(Eu(u(9, g ),

™ x M9~ \ _
where Eu(F;) = Eu ™o T :+Tth’:fg1h =T h) and Eu(u(g,g7')) =

M9, M9,

W\Mg g1 1
Eu ™y +TM99 " | = Eu(TMY). Then
M9,9

(1)+(hgh™!, g7 ) —(hgh ) —(g ™" +(g)+(g")+(g,h)—(g,9 " )—(hgh™', g ")+(g,g "
= (1) +{g,h) — (hgh ") + (g).

(2)
Mhh* thh” -1
Chnh—1 ChX€gn—1g-1 Chgh—Tg—1
ehxeh,1

M MM x MM Mhoh To !
« &' (Bu(v(h,gh g ")) Eu(Fo)ey (Eu(n(h, 1)),

- T™MP MM g IO
where Eu(Fy) = Eu<TMhh N Ve _]|Mgh) and Eu(p(h,h™")) =

Ew(TMM). Then

(N4, gh g™ —(h)—(gh g )+ () +(h~")+(g, ) —(h,h ") —(h, gh g ")+ (h, h )
= (1) +(g,h) — (gh™'g™") + (h).

Using that (g) = (hgh™') we finish the proof.
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L J

Definition 10.3. We define the orbifold virtual cohomology as the G-invariant part
of H. . (M;G). It is denoted by H?. . ([M/G]) = H%. . (M;G)C.

virt virt virt

Corollary 10.4. The orbifold virtual cohomology HY; . (IM/G]) is a nearly Frobenius
algebra.

Let us explicitely calculate an example:

Example 10.1. Consider the symmetric product of two copies of CP™, that is,
consider M = CP™ x CP™ and G = &3 acting on M permuting the coordinates. As
an algebra

H (CP™ x CP™, 65 Z) = Zlx,y, ul/(x™ 1 y™ ! u? — (m+ 1)x™y™ u(x — y))

where x andy are the generators of H*(CP™ x CP™ Z) labeled with 1 € S5, and u is
a generator of HO((CP™ x CP™)%, Z) with label the non trivial transposition T € ;.
The coalgebra structure is determined by the coproduct of the unit

Ag(1) =) Yoy™, Aw(l) = (m+ 1™ @ (x™u)].
j=1

If m =1 we have that
Hf,irt((CP1 x CP' 6272) = Z[x,y,u]/(xz,yz,uz — 2xy, u(x —y))
and therefore the &,-invariant subalgebra becomes
H ((CPY2/G5LR) = Rliw, ul/(w?, u?, u? — 4w?)

where 2w = x +y and the coalgebra structure is determined by

AM=Teaw+w®1+2wu® wu.

Further examples can be seen in [RUOQS].

10.2 Open-closed Virtual Cohomology

Similarly as in the case of orbifold string topology, where we saw that it has the
structure of a G-topological field theory with positive boundary, we will extend the
virtual theory to an open-closed theory. The open part is the following: Let be
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B = {X C M: G-invariant} such that, if X, Y € B then TX|xny)s = TY|(xqvys for all
g € G. We define Homg(X,Y) = H*(XNY), for X,Y € B.

Now we consider the diagram

XNYNnz

7 iX
(igy xiyz oA iz

(XNY)x(YN2Z) XNz
where i>Z<Y :XNYNZ <= XNY is the inclusion map.

We define the product n;((Z H*(XNY)@H*(YNZ) - H*(XNZ) by

n¥le® B) = Xz, (Exval(ify x ) 0 A) (@ )

Fayz = e ( TY|xvnz )
T(XNY)Ixavnz + T(Y N Z)Ixavnz

In a similar way, we define the coproduct A;((Z H*(XNZ) - H*(XNY)®H*(YNZ)
by

with

Ay = (i x ¥7) 0 4), (EX Y, 205 (7))

TMIxvnz >
E(X,Y,Z)=e .
( ) (TYXmYmZ + T(XN Z)Ixvnz

The next step consists in defining the connection maps. For this we consider the

next diagram
X9
X M9

Then we define 14 x : H*(M9) — H*(X) as follows

where

lvg,X(‘X) = jg* (e(Eg)IE(o‘))

where Eg = m?\fi%\f% In the same way, the map 19X : H*(X) — H*(M9) is
defined by

Lg’X(B) = ig* (e(Fg)JE(B))
with Fg = TX9.
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Theorem 10.5. The virtual cohomology together with the category B as the D-
branes is a G-OC-TFT with positive boundary.

Proof. The proof follows the same lines as the one of the open part in the String
Topology case. Simply note that the the closed and open theories associated to
the Virtual product are obtained by looking at the theory that the String Topology
G-OC-TFT with positive boundary induce on constant paths. We leave the details
to the interested reader.

L J

Proposition 10.6. There exist a natural open-closed TEFT morphism between the
open-closed Virtual orbifold cohomology and the open closed orbifold string topology
induced by the inclusion of constant paths on all paths.

Proof. We see the correspondence between the products. For this we consider the
commutative diagram

€g X en
M9 x Mh<=——— M9h moh

il il (g,id)l
A

M x M M M x M

A
€1><€0T €00T

TgM X fPhM <—) TgMe] X eo fPhM<L> nghM

egh

€0 gXxe€]
Zz

We consider the maps in homology:
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(€0g X €%)*(9,id)*egm ((eg x en)*(x® B) Ne(v(g,h)))
= (e0g x 1) Asi. ((eg x en)*(x ® B) Ne(v(g, 1))

= (eog x €1)"Au(A%Lu(o x B))

@ (€5, (A*1 (o x B)) Ne(F))

(€3
@ ((Aeoo) i (ax B)Ne(F))
(

®. (((e1 x €0)j) Le(x x B) Ne(F))

=@, (j*((e1 x €0)*ix)(ax x B) Ne(F)) .

To conclude the proof it is easy to observe that e(F) = 0, where F is the excess
bundle of
PeMe; X ¢o PRME—> P 1M

€ogxe
A

M Mx M

L

Notice that that fixing the closed string sector (commutative Frobenius algebra)
of the theory the resulting extension into an open-closed theory is not rigid:

Proposition 10.7. Let (Hjlrt(M;G),’B) be the open closed virtual cohomology of

IM/G]. If we change the correction clases of the open wvirtual coproduct and the
closed map by

E(X,Y,Z2) = (TM+T(XNYNZ)—T(XNZ)+ eTY)Ixvnz

and
F; = (TXg + €TX)|x9

we have a one parameter family of open closed TFT with positive boundary, where
e e C.
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11 Chen-Ruan Cohomology and K-theory

11.1 Chern-Ruan K-theory

Stringy K-theory for compact complex orbifolds was introduced independently in
[JKKO07] and [ARZ07] as the K-theoretic analogue of Chen-Ruan Cohomology; both,
the Chen-Ruan cohomology and the Stringy K-theory provide examples of Frobenius
algebras. In this section we put forward an extension of these two Frobenius algebras
to the context of G-Frobenius algebras.

Let M be a smooth possibly non-compact manifold, or in the algebraic case a
quasi-projective variety, endowed with a holomorphic action of a finite group G. For
each g € G we denote as in the previous sections the fixed locus of g in M by M9,

and we let
IcM):=][M9xgcMxG
geG

where [[g(M)/G] denotes the inertia orbifold of the global quotient [M/G] where
the action is given by

IG(M) xG—oG
((x,9),h) = (xh,h'gh).

The space Ig(M) has a canonical G-equivariant involution o : Ig(M) — Ig(M)
which maps M9 to M9 ' via

o:(x,9)— (x,97).

Definition 11.1. We define the Chen-Ruan K-theory KX(M, G) of M, as a G-graded
G-complex vector space, to be the complexified K-theory of the inertia orbifold, i.e.

K(M,G) = P Kq(M) = P K(M?),

geG geG
where K(Mg) = K*(M9) ®z C.

Note that the G-action on X(M, G) is induced by the map

—1
xg: M9hg — MhP

X —  Xg
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that is, for Fy, € K(Mh)

GxX(M,G) — %(M,G)
(9.9%)  —  og(Tn)

where o : K(Mh) — K(Mghgil).

The product structure for the Stringy K-theory is defined via the pull-push for-
malism as it was done for the virtual cohomology. The obstruction bundle that
appears in the formula of the product is a version of an ”equivariant holomor-
phic excess intersection bundle” which was constructed in [CR04al; Chen and Ruan
noted that the cohomology of the Inertia orbifold could be endowed with a product
structure if one restricts the Quantum cohomology product on the orbifold to the
information provided by constant maps from orbifold Riemann spheres.

In [JKKO7] a simple procedure to construct the obstruction bundle was devel-
oped. We will follow this setup.

Definition 11.2. Define 8 in K(M, G) to be such that for any g € G, its restriction
8y in K(M9) is given by

r—1 K
8g = 8mo = @ ;Wg,k)
k=0
where 1 is the order of g, and Wy is the eigenbundle of W := TM|pmo where g acts
with eigenvalue (¥ = exp(27ki/r).

Remark 11.3 ([JKKOT7]). The G-equivariant involution o : M9 — M9 yields a G-
equivariant isomorphism o* : W 1 — W for all g € G. If g acts by multiplication
by ¢¥, then g~ acts by (" ¥, so we have

*
Wy 10 =Wqpo

and
*
o qu k= Wg,r—k

for all k € {1,...,7r— 1}. Consequently, the induced map o* : K(ng) — K(Xg)
satisfies
8g@0"851 =Ny, (43)

since the normal bundle, Ng, of M9 in M satisfies the equation Ng = W36 W o.

For any two elements g,h € G we let M9 =M9IN M™,
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Definition 11.4. Define the element R(g,h) in KO(Mg’h) by

R(g,h) = (TMg’he TM & 84 @ 81 @ s(th) Ivto.n
(TMOM & TMI"® g ® S © 8(gn)) Imon

Note that if we define the bundles in rational K-theory

r—1

= = r—k
8g 1= 8mo = @ — Wak,
k=1

we have that 84 @ gg = Ng and moreover we could define the bundle

R(g,h) = (Wg’h@TNHMg,h @gg@gh@g(gh)4)|mg.h

Let us see that

Lemma 11.5. There is an isomorphism of bundles
— h —1
Ngn=R(g,h) ®R(g,h) &N, & NP, @ NI

where Ngi o, denotes the normal bundle of the embbeding TM91:92 — TM9 and
Ny, .9, denotes the normal bundle of the embbeding TM 9192 — TM.

Proof. Let us check the formula for the case on which g and h commute, the general
case is similar. Denote g1 = g, go = h and g3 = (gh)~'. Since we can simmultane-
ously daigonalize the action let us assume that we can split the bundle Ny, 4, into
line bundles Ng, g, = @, W1 where gj acts on Wy with eigenvalue e2m(95) with
0<r(g;) <T.

Divide the line bundles W} into three groups

oh:= P wm

UXj_y m(g)=2}

@?’h = @ Wy

(UX 3 ri(g)=1, Vi (g;)#0}

0= P W,

{UX5_y rulg)=1, 3j,ri(g;)=0}
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we have Ngp = Og‘h@ O?’h @ Og‘h. Moreover, it is easy to see that

09" =R(g,h)
09" =R(g,h)

-1
03" =N N e NEY

We use R(g, h) to define the product in fK(M, G) as follows. Denote by
eg: MO 5 M9, et MO 5 MM et MO 5 MO
the canonical inclusions.

Definition 11.6. Given g,h € G and elements 4 € X(M9) and F}, € K(MM), we
define the string product of ¥4 and 3y, in KMo ¢ UC(M, G) to be

Fg* T = (egn)«(e§Fq ® e Tn @ A_1(R(g,h)))
and the product is extended linearly to every element in JC(M, G).

Note that R(g,h) is a bona-fide complex bundle over M9" and therefore its
Euler class A_; (fR(g, h)) is K-theory is well defined.

Definition 11.7. Define the element R'(g, h) in K°(M9") by
R'(g,h) == <1M oMM e Mo MM S 8,0 8 @ Sgh) Moo -

Note also that R’(g,h) is a bundle over M9" and we will use it to define the
coproduct in JC(M, G) as follows.

Definition 11.8. Given g,h € G and an element Fg, € K(M9M), we define the
string coproduct of Fgn in K(M9) ® K (M) to be

AL Tgn) = (egMen), (ejn(Fan) ®A_1(R'(g,h)))

where ey X ey, denotes the map eqg X ey, : MIPh 5 M9 x MM x — (x,x). If gh =k
then the total coproduct of Fy is Ay (Fy) = Zgh:k Aﬁ‘h(ffk).

Theorem 11.9. iK(M, G) 18 a nearly G-Frobenius algebra.
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Proof. Coassociativity

g g
gh ghk h
ghk =
h hik
k k
(1) (2)
(1)
Mg,h‘k
(p/// \
Mok MO x MK
Mohk MM x Mk M9 x MM x Mk

Let E(g,h,k) be the excess intersection bundle of the square in the diagram (1),
that is

E(g, h, k) =TMM 0.0k & TM | ppo.ne @ TMIR G TMINK L0 © TMOP L onk © TMF o on i

=TM M\ 1ok @ TMOE S TMINK e © TMON g k.

fR/(g,h) = TMg’h|Mg,h,k@TMg|Mg,h,k@TMgh‘Mg,h,k@Sg‘Mg,h,k@Sh—] |Mg‘h,k98(gh)71 \Mg,h,k.
IR’(gh, k) = _]—Mgh’khv[g,h‘k @Tngh|Mg,h,k @TMghk|Mg‘h,k@Sgh|Mg,h‘k@Skq |Mg,h‘k68(ghk)f1 |Mg,h,k.
The addition of these terms is

TMPMEETMI g0,k O TM o n k O TM O™ 10 11 O8 I pgo ke DS -1 [pg ek DS vk O8 gy~ o
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M ghk M9 x Mhk M9 x MM x Mk

E'(g, 1, K)=TMponi ® TMM™ e @ TMOTE S TMOW o ke © TMI oo © TMN g
:th‘mg,h.k ) M9k © Tl\/[g’hk|Mg,h,k © TNlh’k|Mg,h,k.

R'(h, k) = TMh’k|Mg,h,k@TMh|Mg,h,k@Tth|Mg,h,k@8h|Mg,h,k B8 1IMonx @S(hk)q IMo. k-

R'(g,hk) = -]—Mg’hk|Mg,h,k@—lMg‘Mg,h,k@'lMghk|ngh,k@Sg|Mg‘h,k@8(hk)f1 |Mg,h,k@8(ghk)f1 IMo. k-
Then, the addition is

TMg‘h’k@TMh|M9,h,k@W9|Mg‘h,k@mghk‘mg,h‘k SEINIVERSAGI |Mgvhvkeggh\/lg'h'keg(ghk)f1 Ivo 1k
If we compare the two expression we only need to check that

Shq |Mg‘h,k © TM|Mg‘h,k = @TMh‘Mg,h‘k © Sh‘Mg,h‘k
or equivalently

Shfl |Mg,h,k S5, 8h|Mg,h,k D _rMh|Mg‘h,k = TM|Mg,h,k

and this is a consequence of 81,-1|pa .k ® Shipmenk = Np, the normal bundle of M™
in M.

Abrams condition
gh
ghk

K @
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MOk

h « Mk M9 x MMk
h x MK M9 x MM x Mk M9 x Mk

E(g,h,k)=(TM9 & TM" & TM* & TMO™k 6 TMO" & TM* 6 TM9 © TM™) |5,
:TMh|Mg,h,k ® TMg’h’k © TMg’h|Mg,h,k S T]\/lh’k|Mg,h,k.
fR’(g,h) = Wg’h|Mg,h,k@TMg|Mg,h,k@—|Mgh\Mg,h,k@sg\Mg,h,k@Shq |Mg,h,k68(gh)71 ‘Mg,h‘k.
R(h, k) = -[-Mh’k‘Mg,h,k o TNHMg,h,k &>, Sh|Mg,h,k ) Sk|Mg,h,k D S(hk)” |Mg,h,k.

Then the sum of these three formal bundles is

hk h
TMO M STMI |\ ok OTM O ‘Mg,h,k@Sg|Mg,h‘k68(gh)71|Mg‘h,k@8k|Mg,h‘k@S(hk)f1 | Mo 1k

(2)
Mg,h,k
Mgh/ \\Ag hk
\Mghk/ M9 x th

E'(g,h, k) = TMghk|Mg,h,k ® TMIPR e © TMOIYK g e © TMOTH g nk

R(gh, k) = Tl\/lgh‘k|Mg,h,k S TMIpo.nx @D Sghlmonk & Sklmonk 8 (ghiy-1Imonk-

R'(g,hk) = TI\/lg’hk|Mg,h,k STMI|\pg,hm @TMghk|M9»h’k@89|Mg,h,k ®S(hk)—‘ I Mo 1k Gs(ghk]” IMo k-

Then the sum of these three formal bundles is

Wg’h’k@mg|Mg,h,k O TM|pmo.nx @89|Mg,h,k @Sgh|Mg,h,k D Skl pmo.nx @S(hk)” IMo.hk
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To get en equality of the tow terms, we are left with checking that
W\Mg,h,k e TMgh|Mg,h,k = Sgh|Mg,h,k D S(gh)*1 ‘Mg,h,k,

but this is true because both sides are the restrictions of the normal bundle of the
inclusion M9 — M.

Associativity
g g
gh h ghk
hk =
h g
k k hk
(D (2)
(1)
Mg,h,k
hx MK Mohk
M9 x MM x Mk h x MK Mgk

E(g,h, k) = Wgh|Mg,h,k@TNl |Mg,h,k@Wg’h’k@mg‘h\Mg,h‘k@Wgh’k|Mg,h,k@—]Mk‘Mg,h,k.
R(g,h) =
R(gh, k) = TMgh‘k|Mg,h‘k © TM|pmo.nx D Sgh‘Mg,h‘k ® Sxlpmo.nx B S(ghk)*‘ IMok -

Then the sum of these three formal bundles is

g\Mg,h,k O] Sh\Mg,h,k O] S(gh)q |Mg,h,k.

TM 9ok o TM|Mg,h,k D SglMg‘h,k D Sthg‘h,k D Sk‘Mg,h,k © 8(ghk)*1 |Mg,h‘k.

(2)

Mg,hk
M9 x Mk Mok
M9 x MI x Mk M9 x Mk Mok



E'(g,h,k) = TM9peh e TM™ 10 i GTM O RSTM I 4 1k O TM M 4o k O TMO T g e

R(h, k) = —rMh’k‘Mg,h,k o TNHMg,h,k &>, Sh|Mg,h,k ) Sk|Mg,h,k D S(hk)*1 |Mg,h,k.

R(g,hk) = TMg’hk|Mg,h,k © TNUMg,h,k D 89|Mg,h,k D Shk|Mg,h,k D S(ghk)*‘ |Mg,h,k.

Then the sum of these three formal bundles is

TMOME & TM e ni ® Sglpa.nk @ Shlmonk @ Sklponi & 8 (ghik)~1 Imo k-

Therefore the two expressions agree.

The action is an algebra homomorphism

il
al

—1

E(g) h) k) = Tth|M9hg—1 ,okg~! @TMghg_] ,9kg

R, k) =TMMN Lot ok

(2)
Mohg ' ,gkg !
MOho " « MIke ! Mohg ' .ghg™!
h x MK MIhe! « MIke! MOPkg
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hkg~!
Mghg—ygkg—l@TMg 9

=1 @TM|Mgh9*] ,gkg~! €BSH|]\/[9ht_f1 ,gkg~! @Sk‘Mghg*] ,gkg~! @S(hk)*

|M9h9_1»9k9

—1.

1|Mgh9*

T,gkg—

1.



E'(g,h,k) = (TM"9 ' aTMIk0 ' 5TMIN9 ' o TM9k9 ' g TMIN 1ok gTppohe ' oka™ 'y

R(ghg ™', gkg ™) = (TMM 19K STMBS 158 g1 DS ghieg-!

Pairing equal terms we get the desired equality
E(g,h, k) @ R(h,k) =E'(g,h, k) & R(ghg ', gkg ).

Graded commutativity of the product

h g h dghg
S@Wf%
g
el @
(1)
/Mg’h\
MM x M9 M9 x M Moh

E(g,h) = TM9|M9yh @ Wh|M9»h ¥ TMg'h‘Mg,h © TM9|M9.h S/ Wh‘Mg,h © ™M,
R(g,h) = TMO™ S TMIpgo.n ® Sglpon @ Shlmton ® 8ghy-1lmon-

(2)
= Moho g
Moha ! M Mo-ohg™!
ANSVE Mohg ! M9

E'(g,h) = TMQ“Q” o B TME o ETME N 10 n STM NS \Mg,h@mglw,h@ﬂwghg” 9,
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*])|Mgh9*1‘9k9*1'

Mghg

=T, gkg—

1.



1

R(g,ghg ") = TM2IM " & TMpan & S g1 Imon @ Sglmen © 8 (gny-1 Imoon-

Pairing equal terms we get theequality

E(g,h) ® R(g,h) =E'(g,h) ® R(g,ghg ).

0‘h
hgh ¢! hf'h !
‘lﬂll

It suffices to prove that maps associated to the next two diagrams coincide.

N

—1

M99~ Mhoh .9

SOON TN

1

M9 x M9~ Mhah g™’

N

MM h! MM gh1g™!

SN TN

>< Mh’ thh’ g!

Torus axiom

]—'I

Fort the diagram (1) we have the formal bundles

E(9, 1) = TMOpon @TME on STMO9 g 0 TMP 19 [0 1@ TMO g0,
_ 1

:R/(g, g 1) = TM.g’g ‘Mg,h @-I-Mgh\/lg,h @ TM.|Mg,h @ 89|Mg,h @ 89|Mg,h @ Se|Mg,h

_ _ -1 41
R(hgh ‘,g 1):—”\/[]'19}1 9 |Mg,h@m|Mg,h@8hgh—1|Mg,h@sg—1|Mg,h@8(hghflgfl)71|Mg,h,
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and their sum becomes
TMOYom © TMIpan @ S(ngh-1g-1)-1Imon © Selpmonn-
For the diagram (2) we have the formal bundles
E(g,h) = TMMppon @ TM™ [pgon @ TMIN g 0 TMMIN 1971 o TM

_ —1
R,(h,h 1) = TMMP |Mg‘h © —[Mh‘Mg,h © TM|Mg,h O 8h|Mg,h D Sh_|Mg,h © Se|Mg,h

1,41

:R(h, gh,i] 97]) = TMh’g]’f 9 |Mg,h @TM|Mg‘h@8h|Mg,h@Sgh—l gfl |Mg,h @S(hgh*] gfl )—1 |Mg,h

whose sum becomes
h
-]-Mg |Mg,h @ -I-M‘Mg,h @ Se|Mg,h @ S(hgh*‘ g—l )—1 |Mg,h,

which is equal to the sum associated to diagram (1).

We have just proved that K (M, G) is a nearly G-Frobenius algebra. Let us see
now what happens in the case that M is compact.

L J

Theorem 11.10. Whenever M is compact then IK(M, G) is a G-Frobenius algebra,
where € : fK(M,G) — C maps F = &1 Tk to p«(F1) where py : K(M) — K(pt) = Z
1s the push-forward in K-theory of the map p : M — pt.

Proof. The manifold M is a complex manifold, therefore itself and all its subman-
ifolds of fixed points are oriented in K-theory. Define the inner product (,) on
K(M, G) by setting

(F,G) == ¢e(F*9).

We will just prove that (,) is non degenerate since all the other properties will follow
from its definition.

Consider a bundle 4 € K(MY) and take its Poincaré dual bundle G4 = PD(Jy)
in K(M9); this bundle exists since the K-theory of the complex manifold satisfies
Poincaré duality. So we have that (p9).(Fg®3Gg) = 1 where (p9), is the pushforward
of the map p9 : M9 — pt.
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Take the bundle 0*(G4) in K(Mgf]) and calculate

<3rg» G*(Sg)> = 5(9:9 * 0*(99))
:p*((eg)*(gg(ggg))
= (pg)*(?g & 99)
=1

where we have used that R(g,g~") = 0 and that (p9), = (p o €g)s =Px 0 (eg)s. We
have then that (,) is non-degenerate and therefore fK(M, G) becomes a G-Frobenius
algebra.

L J

Remark 11.11. The G-invariant Frobenius algebra K (M, G)G is usually called the
“Stringy K-theory” of the complex orbifold [M/G], see [JKKO07, [ARZ07, BUQOI].

11.2 Further Stringy Ring Structures in K-theory

The stringy K-theory modules fK(M, G) could be endowed with other ring structures
using the pull-push formalism provided we are given complex vector bundles

Dg,h — Mg’h

over the fixed point sets of every pair of elements g,h € G, such that they satisfy
two conditions:

e Equivariantness: For every k € G, we have that o} Dygi—1 g1 = Dgn where
-1 -1 .
ot MO — MK gkkTThk 49 the map o (x) = xk.

e Compatibility: For all triples of elements g, h,k € G the bundles satitisfy the
equation

D g hIN®D gh kINBE(MIM, MO MINK) = D 1y [NED NG E (MM, MOk MIVK)

for N := M 9"k and E(S;S1,S,) denoting the excess intersection bundle of the
inclusions S; — S and Sy, — S which can be taken to be

E(S;51,52) =TS|lve TS1v o TS2lv & TV

whenever V = §7 N S, is a manifold.
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If we denote by D = {Dgn}gn the collection of these bundles, then the K-theory
module UC(M, G) could be endowed with the ring structure:

Definition 11.12. Given g,h € G and elements F4 € K(M9) and Fp, € K(M"),
we define the D-string product of g4 and J}, in KMo ¢ IK(M, G) to be

Fg*D Tn = (egn)s(gTg @ ey ITn® A 1(Dg q,))

and the product is extended linearly to every element in K (M, G ) . The compatibility
condition defined above implies that the product *p is associative. Denote this ring
by

iK(M, G;7\,1D).

Lemma 11.13. If M is compact and the bundles Dy g1 = 0 for all g € G, then
the inner product

(F,9)p =p«(F*p 9)

18 mongenerate.
Therefore X (M, G;A_1D) together with (,)p is a G-Frobenius algebra.

Proof. The proof is the same as the one in Theorem [11.10

11.2.1 Virtual K-theory
The bundles
v(g,h) = TM|po.n @ TMOM S TMY 100 © TM Y ppon

introduced in Chapter [10[to define the Virtual cohomology satisfy the compatibility
and the equivariantness conditions. Therefore they define a ring structure in K-
theory:

Definition 11.14. The Virtual K-theory of the G-manifold M is the G-graded G-
vector space
KM, G;A_1(v))

endowed with the ring structure defined by the bundles v = {v(g, h)}g n.
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The same proofs of chapter hold for the Virtual K-theory since all of them
are done at the level of bundles. Therefore we can indtroduce the virtual coproduct
at the level of K-theory as the map

ASNT) = (egWen), (e5n(F) @ A1 (1lg,h))

where 7 € K(MY), eg X ey, denotes the map egXey, : MO 5 M9 x MM x — (x,x),

and
”VHMQ,h

h) =e| =" o TMo"
u(g,h) e<17\/[9h|Mg,h@ )

is the sum of the normal bundle of the embedding M9 — M restricted to M9"
together with the tangent bundle of M9™,

Theorem 11.15. The graded ring KX(M, G;A_1(Vv)) together with the virtual coprod-
uct is a nearly G-Frobenius algebra.

11.2.2 New Structures From Old Ones

We will show in what follows two ways to modify a given nearly G-Frobenius alge-
bra structure on the K-theory UC(M, G), one by acting on the coefficients C of the
complexified K-theory, and another by acting on the K-theory elements by tensoring
with line bundles. Let us start with line bundles

e Recall that the automorphism group of the K-theory K(X) is isomorphic to the
Picard group of line bundles Pic(X). Any line bundle L — X over X defines an

automorphism K(X) 5 K(X), E — L ® E. With this in mind, let us consider line
bundles Ly — M9 satisfying the equivariant condition under conjugation defined
above, and the compatibility

LgnINn ® LgniIn = Lgnidn @ LixIn
with N := M9hk: denote L = {Lg,hlg,n and the compatibility condition
(0L)ghk = LN @ Lgnin @ Ly nkIn @ LgnIn = 1.

If we are given vector bundles D = {Dgn}gh, we can define a new ring structure
by defining the product to be

Fg*b Fni= (egn)«(ehFg ® e Fn ®A_1(Dg, g,) ® Lgn).

Denote this ring structure by fK(M, GiA_1D® L) and call it the L-twisted structure
of the stringy product of D.
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Lemma 11.16. If M is compact, the bundles Dy 1 = 0 for all g € G and line
bundles L = {Lg n}gn with SL =1, then the inner product

(F,9)E =p(Fx59)

18 nongenerate. Therefore fK(M, GA 1 D® L) together with <,)]'5 1s a G-Frobenius
algebra.

Proof. Following the notation of Theorem we see that

(F9,0%(Gg) @ L g 1) = e(Fg*p 0(S))
=(P):(Fg®Gg@ L} ;1 ®Lgg1)
1.

Therefore {, )k is nondegenerate.

L J

e We could also act with automorphisms of the coefficients. If we choose elements
Tgh € C* such that

-1 1
(0T) gk = Thk(Tghk) Tghk(Tgn) =1

i.e. Tis a 2-cocyle of G with coefficients in C*, T € Z?(G,C*), then we can define
a a new ring structure by defining the product to be

ForD Fni=Tgnlegn)«(e5Fg @ enFn®@A_1(Dg, q,))-

Denote this ring structure by iK(M, GiA_1D® T) and call it the t-twisted structure
of the stringy product of D.

e Putting together the action of the line bundle L ={Lg}4 1 and the action on the
coefficients T = {Tg)h}g’h, we can define a new ring structure to be

L * *
Stg *g® ) I = Tg)h(egh)* (egf}'g & eh’fh R A (D a1 ’92) ® I—g,h)

and we will denote it by iK(M, GA_D®(tT® L)).
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11.2.3 Isomorphic Stringy Ring Structures

Given two ring structures defined by the stringy products through the bundles D
and D’ of equal rank (twisted or untwisted by line bundles), we say that the two
rings JC(M, G; ?\,1D) and iK(M, G;A_1D’ ) are isomorphic provided we can find line
bundles L5 — M9 and complex numbers o4 € C*, equivariant with respect to the
conjugation action, such that

OgOh

A1(Dgn) @ Lg® Ln® Ly =A-1(Dgy)
Ggh

If such equation is satisfied, it is easy to check that the map
K (M, G;A D) 5 % (M, G;A D)
Fg € KIM?) = 04(Fg® Lg) € K(M?)

gives the desired isomorphism.

For example, if we define the line bundles Ly — M9 to be
Lgh:i=Lglpmon @ Lnlpon @ Lzh\mg»h)
i.e. L =0KL, then there is an isomorphism of rings

®L: K (M, G;A_1D) — K (M, G;A_1D @ 8L)

In particular we can say that whenever the line bundles L4y — M9 satisfy the
equation
Lglmon @ Lrlpmoen = Lgnlpmon,

namely that 0L = 1, then the map Fy — F3&® Ly produces an automorphism of the
ring JC(M, G;7\,1D).

If we think in cohomological terms, we have that we obtain new ring structures
provided we have line bundles L = {Lg n}q n satisfying L =1 where

(0L) g nk == Lgnin ® Lgn kN @ Lg nidn @ Ly xIn

for N := M9k and two of these ring structures defined by L and L’ are isomorphic
provided there exists line bundles £ = {Lg}4 such that L =L’ @ L¥, i.e.

Lg|Mg,h & Lh‘Mg,h ® LZ]’\JMQ‘}L - Lth ® Lé,h'
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Denoting this group by H?(M/G, Pic(_)S), since it is the second cohomology group
of the complex

Pic(M)C 2 Pic(IgM)S 2 Pic((16)2M)€ % Pic((1g)*M)C...

where (Ig)"M = | [M919" € M x G™, Pic denotes the Picard group of line bun-
dles, the G invariant part denotes that we only consider line bundles with the equiv-
ariant condition, and the differential is the one that was defined above, then from a
given ring structure defined by the line bundles D, we can obtain |H%(M/G, Pic(_)6)]
non-isomorphic Stringy ring structures through tensor product of Line bundles.

The same argument applied to the action on coefficients tells us that we get
|[H?(G,C*)| as many non-isomorphic String ring structures once we start from a
fixed one. We will see in Section that the procedure to act with a 2-cocycle
T is equivalent to tensoring the nearly G-Frobenius algebra structure with the G-
Frobenius algebra structure obtained from a discrete torsion.

Finally note that the group H'(M/G, Pic(_)€) is the group of line bundle auto-
morphisms of the Stringy K-theories IK(M, G;A_q D), and that H'(G,C*) = Hom(G, C*)
is the group of coefficient automorphisms of the Stringy K-theories iK(M, G;?\,1D).

11.2.4 Relation among the Different Definitions of Stringy K-theory

In this work we have followed the approach described in [ARZ07] and [BUQ9| to
define the K-theoretical version of the Chen-Ruan cohomology. There is another
approach of the Stringy product taken in [JKKO7] in order to deal with smooth
projective algebraic orbifolds. In [JKKO07| the ring structure in fK(M, G), whenever
M is a smooth projective algebraic variety and G is a finite group acting on M, is
defined using the duals of the bundles R(g, h) defined previously. This is the case
because the defining property of the push-forward maps that are used in [JKKO7]
contain the dual of the normal bundle, i.e. for the embedding of complex manifolds
i: M’ - M with normal bundle N — M’, the pushforward map in algebraic
geometry as defined in [FL85| satisfies

L,F = F @ A (N*).

The reason for this choice is simple. For non smooth algebraic varieties the tangent
bundle may not exist, whereas the cotangent bundle always does. So the pushforward
map is defined through the conormal bundle, and not using the normal bundle.

In algebraic topology the push-forward map is defined using the Thom class, and
in this case the defining formula is

1,7 = F@A_q(N).
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Note that we have used different notation for the two push-forwards. The algebro-
geometrical one will be with an exclamation sign, meanwhile the topological one will
be denoted with an asterisque.

Fortunately, both push-forwards are related by the multiplication of a line bun-
dle. Note that for a line bundle L we have that

Aq(L)=C—-L=-L®(C—L*)=-LaA_4(L")
and therefore this implies that
A1(N) = (—1*AN @ A 4N~

where k is the rank of the bundle N and AN is the line bundle of top degree,
also known as the determinant line bundle of N. Therefore we have that the two
pushforward maps relate by the formula

P1L,.F = (—1)*AN @ (i*1,F).
In [JKKO7] the Stringy product is defined by the formula
Foxkk Fn = (egn)i(eyFq ® e Fn @ A_1(R(g,h)"))

where the push-forward is the algebro-geometric one. This formula is equivalent in
topological terms to

. h
Fg ik Fr = (egn)s (65T ® €5Fn @ A_1(R(g,h)*) ® (—1) M NarI Ator (NI )

where N§ %, is the normal bundle of the embedding M91:92 — M9192; the formula
can be rewriten as

. h * %
ForickFn = (egn)« (€5Fo@erFn@A_1(R(g, h))@(—1) HMROMENG L) AP (R(g 1)) BAP(NIR)").
Note that the line bundles
Lon = AP (R(g,h))" @ AP(NGT)*

satisfy the compatibility conditions, i.e. 8L = 1: for g,h,k € G. Sicne we already
know that restricting each bundle to M9™¥ and denoting Rgn = R(g,h), we have

Rgn ® Rgnx ® E(MIT, MO MINK) = R 1y @ Ry @ E(ME, MWK MK
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which implies

Rgn @ Rgnx @ TMIN S TMO o TM MK ¢ TM Ok =~
Rk ® Rnx @ TMMSTMIMKE © TMVK) @ TMO K

and changing TM 9K by TM 9" in each side and reorganizing we get

(Rgn @ TM S TMIM @ (Rgp e @ TMI™ © TM IR =
(R @ TMO™ 0 TMIK) @ (R @ TM™ © TMF)

which implies
(Rgn @& NI & (Rgnse © NIK) = (Rg e © NIK) © (R @ NRK).

Dualizing and applying to both sides of the previous equation AP, we obtain the
desired equation 6L = 1.

The equation 6L =T also implies that the coefficients

Tgn = (—1 dim(R(g,RJENGT)
satisfy the cocycle condition 6t =1.

In general there might not exist line bundles L = {Lg4}4 and coefficients o =
{og}g such that 8L = L and 80 = T, and this would mean that the Chen-Ruan K-
theoretical product * defined at the begining of the chapter, and the product xjxk
defined in [JKKO07] and explained above might in general endow the vector spaces
fK(M, G) with non-isomorphic ring structures. Summarizing:

Proposition 11.17. If there exists virtual line bundles L = {Lg4}g and coefficients
o ={0g4lg

(50) g n(82) g = (—1)HMHOMENGTI AL (R( g, 1)) 0 AP(NIR)*,

then oL : (fK(M, G),x) — (IK(M, G), *jkk) induces an isomorphism of G-Frobenius
algebras between the Chen-Ruan K-theory and the Stringy K-theory of [JKKO07|.

A famous example satisfying the hypothesis of the previous proposition is the

symmetric product of even dimensional smooth projective varieties with trivial
canonical divisor. Let us be more explicit:
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Proposition 11.18. Consider the symmetric product orbifold [X™/&y], where L is
a smooth projective algebraic variety of even dimension with trivial canonical class
(or compact complex manifold with trivial cohomological Euler class) then the Chen-
Ruan K-theory (fK(Z”, Gn), *) is isomorphic Stringy K-theory (fK()__.“, Sn), *jxk) of
JJKKO07].

Proof. The proposition follows from explicit calculations done in [Uri05] where it is
shown that the obstruction bundles R(g, h) are isomorphic to a direct sum of copies
of the tangent bundle TZ; the explicit description of the bundle R(g, h) is carried
out in section and the relevant equation is . Then, since we know that X
has trivial canonical class we get AY°PTEZ = 1 and therefore AP (iR(g, h))* =1; and
since dim(TL) is even we conclude that

(_] )dim(mg'hJ/\tOpngh =1.

Moreover, since the normal bundles Ng};L are also isomorphic to a direct sum of
copies of TX, then
. h
(—1)EmNg I AtePN IR = 1,

Therefore the identity map of vector spaces
K(E™ Sn) 15 K (2, &)
induces an isomorphism of &,-Frobenius algebras

(K(Z™, &), ¥) — (K(Z™, &), *jkk)-

11.3 Chen-Ruan Cohomology

Definition 11.19. For [M/G] a complex orbifold we define the Chen-Ruan cohomol-
ogy Her(M, G) of M, as a G-graded G-complex vector space, to be the cohomology
with complex coefficients of the inertia orbifold, i.e.

Her(M, G) := @ H* (MY C).
geG

We bring the bundles R(g, h) used to define the Chen-Ruan product in K-theory,
in order to define the Chen-Ruan product in HgR(M, G). For g,h € G, o« € H*(M9)
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and p € H*(M"), we define the Chen-Ruan product of o and B in H*(M9)
HER(M, G) to be

x*CR B = egns (€5 - e - Eu(R(g,h)))
and the product is extended linearly to all of H:x(M, G); here Eu(R(g, h)) denotes
the Euler class of the bundle R(g, h).

The coproduct is also defined with the help of the bundles R’(g, h) used in the
Chen-Ruan K-theory. For g,h € G and an element yg4i € H*(M9"), we define the
Chen Ruan coproduct of ygn in H*(M9) @ H*(M") to be

A% (vgn) = (eg M en), (egn(vgn) - Eu(R'(g,h)))

where ey X ey, denotes the map eq M ep : MOM — M9 x MM x — (x,x). If gh =k

then the total coproduct of vy is Acr(vk) = Zgh:k A%h(yk).

Theorem 11.20. (HCR(M,G),*CR,ACR) is a nearly G-Frobenius algebra. More-
over, if M is compact, then (HCR(M, G),*CR,ACR) 1s a G-Frobenius algebra.

Proof. This theorem follows from the proofs of Theorems and [11.10
L J

The invariant Frobenius algebra (HCR( M, G), *CR, ACR) G was the algebraic struc-
ture associated to complex orbifolds originally defined by Chen and Ruan in [CR04a].

Note that if we have bundles D = {Dgn}gn satisfying the equivariant and the
compatibility condition defined at the begining of section then we can define
an associative ring structure in H*(M, G) by the formula

x*D B = egh«(€fo- e - Eu(Dgn)).
Let us denote this ring structure on H*(M, G) by H*(M, G, Eu(D)).
11.4 Chen-Ruan K-theory (Cohomology) of the Cotangent Bundle
and its Relation with Virtual K-theory (Cohomology)

Let [M/G] be a complex orbifold and consider [T*M/G] the complex orbifold that
the induced action of G on the cotangent bundle defines. For Ay : TwsM — TgmM
the induced action on the tangent bundle given by the element g € G, then the
induced action on the cotangent bundle that preserves the covariance is given by
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A79 : ThM — T, M, where as complex matrices Aig = (Ag)*1 is the conjugate
matrix.

Since the zero section inclusion j : M — T*M induces an isomorphism of modules
i K (T*M, G) = K(M, G),

then we would like to find out whether the isomorphism j* is compatible with the
ring structures that can be endowed on each side: the Chen-Ruan product on the
left hand side and the Virtual product on the right hand side.

The first step in order to find the explicit relation between the Chen-Ruan K-
theory of the cotangent orbifold and the Virtal K-theory of the orbifold is to the ring
structure that the Chen-Ruan product induce on iK(M, G) via the isomorphism j*.
Let us do this first.

If we denote by R(T*M, g, h) the obstruction bundle that the Chen-Ruan product
defines on K (T*M, G) for the pair of elements g,h € G, then from the proof of
Lemma, we deduce that

R(T*M, g, W)l = R(g,h) & R(g, h)* = 09" @ (097"

where we recall that R(g, h) is equal to R(g, h) but with the conjugate action of g, h
and gh.

Now what we need to calculate is the obstruction bundle in X (M, G) that the
Chen-Ruan ring structure on K (T*M, G) induces. The extra information that we
need to add is the excess intersection formula for the inclusions

T*MOM —=T*M "

]

Mg,h - - Mgh
which becomes a K-theory class on K(M9") equal to
E(T*M" T*MI" MM = T*MI" o T*M O,

Therefore the obstruction class on fK(M, G) defined by the Chen-Ruan product
on iK(T*M, G) becomes

Kgh = R(g,h) & R(g,h)* T*MM o T*MoN
=R(g,h) ®R(g,h)* & (NI})*
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as an element in K(M91-92),

Since we have the following set of equalities
R(g,h) @ R(g,h) @ NI} =TM e TMOM e (NS, @ NI, @ NI @ (NI})
=TM & TM9" e TM? & TMM
=v(g,h)

where v(g,h) = TM @ TM9"STM 95 TMM is the obstruction bundle for the Virtual
ring structure in K-theory; then we have the equation

A1(kgn) = (—1)FMROGMIALPR (g h)* @ (—1)dim(N33‘h>/\t°P(Ngf;)* ®A-1(v(g,h))

which relates the Euler class in K-theory of kg1 with the Euler class in K-theory of
v(g,h).

The previous equation permit us to compare the ring structure TK(M, G A, (K))
induced by the Chen-Ruan ring structure on the cotangent orbifold, and the ring
structure iK(M, G;A_q (v)) defined by the virtual product.

Proposition 11.21. Consider the cocycle of line bundles L = {Lgn}gn with
Lon = APR(g, )" ® A'P(NGH),
and the 2-cocycle of coefficients T ={Tgnlgn with

Ton = (—1 jdim(R(g,eNGT)

if there exist line bundles L = {Lg}g and coefficients 0 ={0g4}g such that 5o @ dL =
T® L, then the Chen-Ruan product on the K-theory of the cotangent orbifold is
isomorphic to the Virtual product on the K-theory of the orbifold

(0@ L) 0j*: K(T*M, G;A 1 (R(T*M))) = K (M, G;A_1(v)).

Corollary 11.22. Let £ be an even dimensional smooth projective algebraic variety
with trivial canonical class, or a compact even dimensional compler manifold with
trivial determinant line bundle. Then the Chen-Ruan K-theory of the cotangent
bundle of the symmetric product T*(X™)/ Gy, is isomorphic to the virtual K-theory of
the symmetric product ™/G&y via the map j*,

i K (THE™), S A1 (R(T*E))) 5 K(ZSmA_1(v)).
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Proof. The top Chern class of the normal bundles Ng?1 and the bundles R(g, h) are
zero since these bundles can be built out of direct sums of the bundle TZ. Moreover,
since X is even dimensional, then the bundles Ng}f1 and R(g, h) are all of even rank.
Therefore in this case we have ’

A_1(kgn) =A_1(v(g,h))
and the isomorphism follows.

L J

When comparing the Chen-Ruan cohomology ring of the cotangent orbifold and
the Virtual cohomology ring of the orbifold itself, we can get a sharper result. The
reason for this to happen is the following: for a complex vector bundle E — X over
a manifold X the complex dual E* and E are in general not isomorphic as complex
bundles. Nevertheless, after picking a metric on the bundle E one can show that E
and E* become isomorphic as R-bundles and their Euler classes are related by the
equation

Eu(E) = (—1)4me(BIEy(EY)

since ¢1(L) = —c1(L*) where L is a complex line bundle over E.

Therefore we have that for the obstruction classes k and v we obtain
. 4 h
Eu(kgn) = (-1 FMRONENG IR (v(g, h)).

Theorem 11.23. For an even dimensional complex orbifold [M/G] such that all
the fized point sets M9 are even dimensional, then the Chen-Ruan cohomology of
the cotangent orbifold is isomorphic to the virtual cohomology of the orbifold

i  HEg(T*M, G) S HE (M, G).

virt

Proof. In this case all the bundles R(g,h) and N SI}L are of even dimension as complex
bundles, and therefore their cohomological Euler classes are equal to the ones of their
duals, therefore

Eu(kgn) = Eu(v(g, h));

this implies that the identity map
H* (M, G, Eu(k)) -5 H*(M, G, Eu(v)) = H3,, (M, G)

is an isomorphism of rings.
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Since the map j* : H*(T*M, G; Eu(R)) 5 H*(M, G; Eu(k)) induce the isomor-
phism of rings, then

i" tHER(T*M, G) = HY(T*M, G, Eu(R)) S H*(M, G, Eu(p))

and the theorem follows.

In particular we have:

Corollary 11.24. Let £ be an even dimensional smooth projective algebraic variety,
or a compact even dimensional complexr manifold. Then the Chen-Ruan cohomology
of the cotangent bundle of the symmetric product T*(Z™)/ &y is isomorphic to the
Virtual cohomology of the symmetric product X™/&y, via the map j*,

i HA(TH(Z™), Sy EW(R(TL))) = H (D6 n; Eul(v)).

With the use of Chern character maps that will be developed in the next section,
we will see that Corollary will imply the equivalent isomorphism but at the
level of the K-theories. In particular it will permit us to remove the condition of the
triviality on the canonical class from Corollary but the isomorphism will not
be a priori obtained by the methods outlined in section [11.2.3]

11.5 Chern Characters

Let us suppose we have bundles D = {Dg n}qn satisfying the equivariantness and
compatibility condition described in section We show in this section sufficient
conditions under which there exists a calibrated Chern character map from the
stringy K-theory fK(M, G;)\,1(D)) and the stringy cohomology H*(M,G;Eu(D))
which is furthermore an isomorphism of rings.

The sufficient conditions are the following: Existence of elements €4 € KO(M9) @y
Q such that € = {€4}4 is equivariant with respect to the G-action, and moreover the
following equation

Dg,h S5 TMgh|Mg‘h S T™MOM = 6;89 ¥ Sﬁgh © e;hggh

holds in K(M9™) for all g,h € G.

But in order to define the calibrated Chern character map we will recall some
properties of the Thom isomorphism in K-theory and in cohomology and their rela-
tion with the Chern character (see [ASGS8, section 2]).
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Let X be a manifold and V a complex vector bundle over X. The Chern character
of V is the cohomology class in X defined by the expresion

ch(V) =) e

where the x; denote the Chern roots of the bundle V. Denoting by
¢ K*(X) = K*(V)

Y HY(X,Q) = H*(V,Q)

the Thom isomorphisms in K-theory and in cohomology respectively, then for any
u € K*(X) one has

ch(d(u)) =P(ch(u) - u(V))

where the cohomology class w(V) is defined as

u(v) ::Hl—e"i.

Xi

Moreover, the class p(V) is multiplicative, i.e. w(V @ F) = u(V) - u(F) and measures
the difference of the Chern character of the Euler class in K-theory with the one in
cohomology, namely

chA_1(V) =eu(V) - u(V).

The inverse p~ ' is what is usually called the Thom class of V.

For an inclusion of manifolds i : X — Y with normal bundle V and pushforward
maps

1t K*(X) = K*(Y)
L HY(X,Q) — H*(Y,Q)
then one has the equality

ch(isu) =iy (ch(w) - p(V)) (44)

where in this case the cohomology class (V) has support on the normal bundle of
X.
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Definition 11.25. For & = {4} where &4 € KO(M9) @7 Q and € is equivariant
with respect to the G-action, we can define the E-calibrated Chern character map

Che : X(M, G) — H*(M, G)
Fg € K(IM9) = ch(Fg)u(€g) € H (M)
The calibrated Chern character map is a G-equivariant isomorphism of G-graded
vector spaces since the Chern character is an isomorphism and the classes u(€y) are

invertible. We claim that the calibrated Chern character map becomes an isomor-
phism of rings if the conditions explained above hold.

Theorem 11.26. Consider bundles D = {Dgnjgn and & = {Egy}g satisfying the
equivariantness condition, an where D satisfy the compatibility condition described
in section[11.9. Assume furthermore that

Dgn® MM yon © TMOM = 58 @ e},E1 © €51 Egn

holds in K(M9M) for all g, h € G. Then the &-calibrated Chern character map

Che : X(M, G;A_1(D)) — H*(M, G; Eu(D))

18 an isomorphism of rings.

Proof. Take F € K*(M9) and H € K*(M") and consider the following set of equali-
ties:
Che(FrpH) = ch(Fxp H)u(Egn)
= ch(egn (egF @ eEH®A_1(Dgn))) n(€gn)
— egn.(€3eh(T) €heh(30) EulDg ) w(Dgn (MM ysn & TME™) (€ gh)
— egns(€4ch(F) efch(H) Eu(Dgn) w(Dgp)
RITM M o © TMOM) efn(Egn))
— egn. (€4ch(F) efch(H) Eu(Dgpn) e5uleq) efnlén))
e ( el

ghx (€

5Che(F) ef,Che(H) Eu(Dg,h)>
= Chg(\rf) *D Chg(j‘f).

where in the third line we used formula , the fourth line follows from the prop-
erties of the pushforward and the fifth line is obtained by using the hypothesis of
the Theorem once the map W is applied.
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Chen-Ruan and Virtual K-theory are both endowed with calibrated Chern char-
acter isomorphisms. Let us see how.
11.5.1 Chen-Ruan’s Calibrated Chern Character

Take the bundles 8 = {84} 4 defined in Definition and note that by Definition
we have that 8 satisfies the hypothesis of Theorem [11.26| with respect to the bundles
R = {R(g,h)}gn which define the Chen-Ruan product in K-theory. Therefore we
have

Theorem 11.27. The S-calibrated Chern character induces an isomorphism of G-
Frobenius algebras

Chg: K(M, G;A_1(R)) — H*(M, G; Eu(R))

between the Chen-Ruan K-theory and the Chen-Ruan cohomology.

11.5.2 Virtual’s Calibrated Chern Character

Take the bundles N = {Ng}q where Ng is the normal bundle of the embedding
M9 — M. Then we have that

v(g,h) & TM M on © TMOT = TM|pgen @ TMOM S TM O o0 © TMM pen @ TM I o0 © TMOT
= T™M|pon © TMI 100 © TMMj0n & TMOY 1.0

- Ng‘Mg,h S5 N9|Mg,h S Ngh|M9»h

which implies that the hypothesis of Theorem [11.26] ais satisfied with respect to the
clases v = {v(g, h)}gn which define the virtual products. Therefore

Theorem 11.28. The N-calibrated Chern character induces an isomorphism of
nearly G-Frobenius algebras

Cha: K(M, G;A_1(v)) — H* (M, G; Eu(v))
between the Virtual K-theory and the Virtual cohomology.

We can now use calibrated Chern character isomorphisms for Virtual and Chen-
Ruan K-theory, together with Theorem [11.23|in order to obtain the following result:
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Theorem 11.29. For an even dimensional complex orbifold [M/G] such that all
the fized point sets M9 are even dimensional, then the Chen-Ruan K-theory of the
cotangent orbifold is isomorphic to the virtual K-theory of the orbifold

K(T*M, G;A-1(R)) — K(M, GA-1(v))
through the composition of the isomorphisms

% -1
K(TM, GA_1(R)) ¥ Hag(TM, G) 5 HE (M, G) X 50(M, G Ay (v).

virt
In particular we obtain an improvement of Corollary [11.22

Corollary 11.30. Let L be an even dimensional smooth projective algebraic variety,
or a compact even dimensional compler manifold. Then the Chen-Ruan K-theory
of the cotangent bundle of the symmetric product T*(X™)/&y, is isomorphic to the
virtual K-theory of the symmetric product X™/&y via the composition

(Cha) " 0% 0 Chg : K(THE™), S A 4 (R(T*E))) S K(2SmA_1(v)).

We do not know whether the isomorphism of Theorem [11.29] might be obtained
via tensorization with line bundles. A quick look at the composition of maps
(Chy) ™! 0 j* o Chg might lead one to think that this is not true in general; we
do not know and we leave this question open.

Remark 11.31. Proposition [I1.21] is the correct statement that replaces Theorem
5.4 of [GLS™07] which has a mistake. Nevertheless, Theorem 5.4 of |[GLST07| was
correct at least for the cases specified by Corollary In view of Theorem
we see that in order to avoid problems with signs we impose the hypothesis of
Theorem for Theorem 6.5 of [GLS™07| to be correct. We thanks Tyler Jarvis

for spotting the error.

Corollary 11.32. In either one of the following cases the hypothesis of theorem
are satisfied:

e X = [M/G] is hyperkahler (e.g. M hyperkahler and G acting by hyperkahler
isomorphisms.)

e X =Y xY for a complex orbifold Y.
o X =TY for a complex orbifold Y.
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and hence we have in those cases:
"t HE(T'M, G) S HE (M, G),

and ~
K(T*M, G;A_1(R)) — K(M, G;A_q(v))

Remark 11.33. Let sg be the Chen-Ruan degree shifting number for a component of
[(T*X) and o4 the virtual degree shifting number for I{X). Then it is a fun exercise
to show that

Sg = O0g.

Therefore the isomorphism of theorem [I1.23] is a graded isomorphism. For more
on gradings we refer the reader to [Hepl0]. For related work we refer the reader
to [EJK12bl [EJK10, [EJK12a] where there is alternative approaches to some very
related results.

Remark 11.34. For ordinary manifolds Viterbo [Vit99], Salamon-Weber [SW06] and
Abbondandolo-Schwarz [AS06] have constructed isomorphisms between a particular
flavor of the Floer homology of the cotangent bundle T*M and the ordinary homology

of the free loop space
HF,(T*M) ~ H,(LM).

Abbondandolo and Schwarz have proved that the pair of pants product in Floer
cohomology of the cotangent corresponds to a product in the homology of the loop
space, defined via Morse theory, which Antonio Ramirez and Ralph Cohen [CV]
proved is the Chas-Sullivan product. One of the main conjectures in the field states
that the symplectic field theory on the left-hand side corresponds to the string
topology on the right-hand side. Here we should also mention that for a wide class
of manifolds it has been shown that Floer cohomology is isomorphic to Quantum
cohomology [PSS96].

The results of this chapter and more specifically Theorem [L1.23| are in line with
those conjectures.

It is routinary to generalize these results to non-global orbifolds.
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12 Gerbes over Orbifolds and Discrete Torsion

12.1 Gerbes
12.1.1 Gerbes on Smooth Manifolds

We will start by explaining a well known example arising in electromagnetism as a
motivation for the theory of gerbes. We will consider our space-time as canonically
split as follows

M*=R*=R3 x R = {(x1,%x2,x3:t): x € R3 t € R}.
We will consider a collection of differential forms as follows

e The electric field E € QT(R3).
e The magnetic field B € Q?(R3).
e The electric current Jg € Q?(R3).

e The electric charge density pg € Q3(R3).

We will assume that these differential forms depend on t (so to be fair E: R —
Q'(R3), etc.).
We will define the intensity of the electromagnetic field by

F=B—dtAE e Q*M)
and the compactly supported electric current by
jE = pe — dt AJe € Q3(M).
We are ready to write the Maxwell equations. They are
dF =0, d*xF=jg.

They are partial differential equations where the unknowns are the 3 + 3 time-
dependent components of the electric and the magnetic field.

If we would like them to look more symmetric we would need to introduce “mag-
netic monopoles”, namely a compactly supported 3-form for the magnetic charge

density
jB € QM)
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and rewrite the equations as
dF =jg, d*xF=jg.

Now we let Ny = R3 x {t} be a space-like slice. Then the instantaneous total
electric magnetic charges are respectively

JjE and J]’B.
Nt Nt

But we prefer to consider the charges as elements in cohomology, namely
Qt = [elnJ € HINY)

and
Q% = [jpIng € H3(NY).

Now, quantum mechanics predicts that the charges above are quantized by the
so-called Dirac quantization condition, namely QE is in the image of the homomor-
phism

H2(N, Z) — H3(NgR).

We can give a geometric interpretation to this quantization condition. For this
purpose we must introduce the concept of (abelian) gauge field.

Definition 12.1. Let M be a manifold. A U(1)-gauge field on M consists of a line
bundle with a connection on M, to wit

i) A good Leray atlas U = {Ui}; of M.

ii) Smooth transition maps gi: Uy := Uy N Uj; — U(1). (These are the gluing
maps that define the line bundle).

iii) A collection (Aj); of 1-forms A; € Q'(U;) that together are referred to as the
field potential.

iv) These forms must satisfy the following equations:

a) gy is a cocycle (i.e. gijgjk = gik on Uyk)
b) dA; = dAj on U.ij =U;n u)'.
C) A]-—Aiz—v—1g;).]dgﬁ.
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v) The 2-form w = F = dA € Q%(M) is called the curvature of the connection
A.

It is an immediate consequence of the definition that the Bianchi identity is
satisfied, that is:
dF =0

and therefore we have a de Rham cohomology class —[F] € H%(M, R).

We can use the fact that gy is a cocycle and consider its Cech cohomology class
[g] € H'(M, U(1)) where U(1) is considered as a sheaf over M. The exponential
sequence of sheaves

0—>Z—>Rexp(—z>m’)U(1) — 1

immediately implies an isomorphism

H'(M, U(1)) = H3(M, Z)

The class of [g] in H2(M, Z) is called the Chern class c1(L) of L.

It is a theorem of Weil [Wei52] that —[F] is the image of the Chern class cq(L)
under the map H3(M,Z) — H?(M,R). The Chern class completely determines the
isomorphism type of the line bundle L, but does not determine the isomorphism
class of the connection.

We say that a line bundle with connection is flat if its curvature vanishes. We
have therefore that if a line bundle with connection is flat then its Chern class is a
torsion class.

To solve the Maxwell equations is therefore equivalent to finding a line bundle
with connection that in addition satisfies the field equation d * F = jg. Let us for a
moment consider the equation in the vacuum, namely consider the case of the field
equation of the form d x F = 0. We can write a rather elegant variational problem
that solves the Maxwell equations in the vacuum (we learned this formulation from
Dan Freed). Moreover, we can do so in a manner that exhibits fully the magnetic-
electric duality of the problem. Let A’ be a second connection so that F/ = xF. The
electromagnetic Lagrangian is

LA, A/) = J <1|F2 + lF’2> av
M

Clearly the equations in the vacuum are the Euler-Lagrange equation for L(A, A’),
namely 0L = 0.
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To add charges to the previous Lagrangian we consider a electrically charged
particle whose worldline is a mapping v from a compact one-dimensional manifold
to M. We consider the charge as an element q € H°(y,Z) = {q|lq: v — Z}. To
identify this with the charge as an element in HE(M,Z) we us the Gysin map in
cohomology

iy: HO(y,Z) — H3(M, Z)

given by the Thom-Pontrjagin collapse map and the Thom isomorphism. We can
write the new Lagrangian that includes charges

1 1 1
L:J (|B|2+|B’|2> dV+iJ —gA
M\ 4 4 v2

Several remarks are in order.

e We have switched notations. We call B what we used to call F. This is
unfortunate but matches better the rest of the discussion.

e It is no longer true that dB = 0 (that is after all the whole point). In fact B
is no longer a global form.

e Likewise A is not a global form an actually only exp <i fy qA) is well defined.
Nevertheless the Lagrangian does define the correct Euler-Lagrange equations.

This situation is no longer a form of a line bundle with a connection. In spite of
this, there is a geometric interpretation of the previous situation. This can be seen
as a motivation for the introduction of the concept of gerbe (cf. [Hit01]). (For more
details on the physics see [FHO0, Fre00].)

Definition 12.2. Let M be a manifold. A gerbe with connection on M is given
by the following data:

i) A good Leray atlas U = {U;}; of M.

ii) Smooth maps giji: Uik — U(1).

1v

)
)
iii) A collection (Aj;) of 1-forms Ay € Q1(U1j).
) A collection Bj of 2-forms By € Q?(U;)

)

v) These forms must satisfy the following equations:
a) Jijk is a cocycle (i.e. gijkggfgiklg;]gl = 1)
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b) Ay + Aj— A = —vV—Tdlog gijk
C) B]’ — Bi = dAij

vi) The global 3-form w = dB € Q3(M) is called the curvature of the gerbe with
connection (g, A, B).

The class [gii] € H(M,U(1)) = H3(M,Z) (where the isomorphism is induced
by the exponential sequence of sheaves) is called the Dizmier-Douady class of the
gerbe and is denoted by dd(g). Just as before the class [w] € H3(M, R) in de Rham
cohomology is the real image of the Dixmier-Douady class dd(g) € H3(M, Z).

Gerbes on M are classified up to isomorphism by their Dixmier-Douady class
dd(g) € H3(M,Z). This again ignores the connection altogether. In any case we
have the following fact.

Proposition 12.3. An isomorphism class of a gerbe on M is the same as an iso-
morphism class of an infinite-dimensional Hilbert projective bundle on M.

Proof. We will use Kuiper’s theorem that states that the group U(H) of unitary
operators in a Hilbert space H is contractible, and therefore one has

P(C®) ~ K(Z,2) ~ BU(1) ~ U(H)/U(1) = PU(K).

This fact immediately implies K(Z,3) ~ BPU(K). Hence the class dd(g) € H3(X,Z) =
[X,K(Z,3)] = [X,BPU(XH)] produces a Hilbert projective bundle E.

L J

In fact more is true. The collection of all gerbes in M form a group under tensor
product since U(1) is abelian (multiplication of the cocycles), and so do the set of
all Hilbert projective bundles. One can prove that these two groups are isomorphic.

A gerbe with connection is said to be flat if its curvature vanishes. Notice the
following consequence of this fact,

Proposition 12.4. A gerbe with connection is flat if and only if dd(g) is a torsion
class in cohomology. This is the case if and only if the projective bundle E is finite
dimensional.

Proof. This is true because of a result of Serre [DK70] valid for any CW-complex
M. It states that if a class o« € H3(M,Z) is a torsion element then there exists a
principal bundle Z — M with structure group PU(n) so that when seen as an element
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B € IM,BPU()] — [M,BPU] = [M,BBU(1)] = [M,BK(Z,2)] = [M,K(Z,3)] =
H3(M,Z) then « = B. In other words, the image of [M,BPU(n)] — H3(M,Z) is
exactly the subgroup of torsion elements that are killed by multiplication by m.

L J

We refer the reader to the paper [CM] for gerbes from the point of view of bundle
gerbes.

12.1.2 Gerbes over Orbifolds

In this section we discuss definitions and result first introduced in [LUO04al.

Ezample 12.1. Let us recast the definition of gerbe over a manifold (M, U), with
Leray groupoid My. Notice than in this case

o (My)o=T1[; Ui
o (My)r=TIu; Uy
o (My)za= [T Wik

and so on.

To have a gerbe over an orbifold is the same as to have a map g : (My)2, — U(1)
satisfying the cocycle condition. The data defining a gerbe with connection are in
addition forms A € Q'((My)1) and B € Q?((My)o, satisfying the equations of
definition [12.2]

Definition 12.5. A gerbe (with band U(1)) over an orbifold is a pair (G, g) where
G is a groupoid representing the orbifold and g is a 2-cocycle g: G, — U(1). A gerbe
with connection consists of a 1-form A € Q'(G1), a 2-form B € Q?(Gp) satisfying:

e t*B —s*B = dA and
o TA + A —m*A = —/—Tg~'dg

The G-invariant 3-form w = dB € Q3(Gy) is called the curvature of the gerbe with
connection (g, A, B). Here by G-invariant we mean that s*w = t*w.

The following theorem of [LU04a] describes the basic classification of gerbes over
orbifold (without a connection).
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Theorem 12.6. The following holds.

e FEvery gerbe on an orbifold has a representative of the form (G, g) where G is
a Leray groupoid.

e We define the characteristic class £(g) of g to be the class in H3(BG,Z) ~
H3(G,Z) ~ H3(G,U(1)) induced by the Cech cocycle g € C*(G,U(1)). Then

isomorphism classes of gerbes over the orbifold G are in one to one correspon-
dence with H3(BG, Z) via the class £(g).

To classify gerbes with connection (g, A, B) up to isomorphism we need to intro-
duce a new type of cohomology. We define now the so-called Beilinson-Deligne
cohomology of G. We will be expository at this point and refer the reader to
ILU02al, LUO6al for full details.

A G-sheaf is a sheaf over G on which G acts continuously. Let AE denote the
G-sheaf of differential p-forms and Zg the constant Z valued G sheaf with Z¢g — A%
the natural inclusion of constant into smooth functions.

Let’s denote by C*(G; U(1)(q)) the total complex

G U(1)(a) = C1(G;U(T) (@) = CHGU(T) (a)f = -

induced by the double complex

(45)
o ) )
MG, U(1)g) — 4% p(Gy, AL) & n o ——1(Gy, A8
o ) )
M(Gr, Ug) %o (G, AL) &> —A1(Gy, AT
) ) )

—v—1dlog
_—

M(Go, U(1)¢) M(Go,AL) S —1(Gp, AT

with (8 + (—1)'d) as coboundary operator, where the &’s are the maps induced by
the simplicial structure of the nerve of the category G and F(Gi,AE) stands for

the global sections of the sheaf that induces AjG over Gi (see [LUOGa]). Then the
Beilinson-Deligne cohomology is defined as as follows:

H™(G,Z(q)) = H™ (G, U(1)(q)) := H™ 'C(G;U(1)(a)).
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It is proved in [LUO2a] that H™(G,Z(q)) only depends on the orbifold and not
on the particular groupoid used to represent it, therefore we write H™(X,Z(q)) :=
H™(G,Z(q)) . In the same paper the notation H™(G, Z(q)) (given by a refined version
of the exponential sequence of sheaves for complexes of sheaves) is explained.

We have the following.

Proposition 12.7. For G a Leray description of a smooth étale groupoid, a gerbe
with connection is a 2-cocycle of the complex C(G, U(1)(3)), that is, a triple (h, A, B)
with B € T(Go, AZ), A € T(Gy,AL) and h € T(Gz,U(1)¢) that satisfies 5B = dA,
A = —/—1dlogh and dh = 1.

Definition 12.8. An n-gerbe with connective structure over G is an (n+ 1)-cocycle
of C™*1(G,U(1)(n +2)). Their isomorphism classes are classified by

H™ (G, U(1)(n+2)) = HY (G, Z(n + 2)).

The following theorems were proved in [LU02al, [LUO06a].
Proposition 12.9.

HP~1(G,U(1)) =HP(G,Z) forp>n
HP—1(G,U(1)) forp<mn

HP(G, Z(n)) = HP=1(G, U(1)(n)) = {

where U(1) stands for the sheaf of U(1) wvalued functions.

We have argued in [LUO2a] that a B-field in the physics terminology for type II
orbifold superstring theories is the same as a gerbe with connection on the orbifold.

The following theorem generalizes a result of Brylinski that he proved in the case
of a smooth manifold M [Bry93].

Theorem 12.10. We have the following classifications.

e The group of isomorphism classes of line orbibundles with connection on G is
isomorphic to H*(M, Z(2)).

e The group of isomorphism classes of gerbes with connection on G is isomorphic

to H3(M, Z(3)).

Remark 12.11. Tt is quite interesting to point out that if [g, A, B] is the BD-class of
(g,A,B) then w = dB is completely determined by [g, A, B]. We call the 3-from w
the curvature of the class [g, A, B]. An analogous definition can be made for n-gerbes
yielding a (n + 2)-form w.
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A discrete torsion on an orbifold X = [M/G] is a 2-cocycle 8: G x G — U(1) in
the bar group cohomology complex of G [VW95] (cf. [Sha02]).

Proposition 12.12. [LU02d] For a global orbifold [M/G] the map 6 — (6,0,0)
injects the group of discrete torsions of an orbifold into the group of flat gerbes
(=flat B-fields). In fact the induced map in cohomology H3(G,Z) — H3(X,Z(3))
18 injective.

Remark 12.13. Let us remark that the gerbes coming from discrete torsion do not
amount to all the flat gerbes. Consider the case in which G = {1} and H%(M, U(1)) #
0, then there is no discrete torsion but there are non trivial flat gerbes.

12.1.3 Holonomy

To warm up consider a line bundle with connection (L, g, A) over a manifold (M, U).
Classically the holonomy of (L,g,A) determines for every path y: [0,T] — M a
linear mapping

hol(tg,4) ()t Ly0) — Ly(m)

that composes well with path concatenation. On a chart y: [0,T] — V € R™ of M
where L =V x C we can write such a map simply as an element in U(1) by

hol( g.a)(Y) =exp <27TiJ A) .
Y

This formula is enough to completely define the holonomy for manifolds in general
in view of the following.

Proposition 12.14. Let 8°(M) be the 0-th Segal category of M having

e Objects: The points m € M.

o Arrows: Paths v:[0,T] — M with composition given by concatenation of
paths.

Then the holonomy of a line bundle with connection defines a functor
hol(g a): 8°(M) — Vector Spaces; (C)

from 8°(M) to the category of 1-dimensional vector spaces with linear isomorphisms.
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Notice that we can restrict our attention to the closed paths (automorphisms of
8%(M)) to obtain a function on the loop space LM of M

hol‘(’g’A): LM — U(1)
We consider this function as an element hol° ) € HO(LM, u()).

Definition 12.15. The transgression map HZ(M;Z) — H'(LM; Z) is defined as the
following composition. Let
S'x LM — M

be the evaluation map sending (z,v) — v(z). We can use this map together with
the Kiinneth theorem and the fact that H'(S":Z) = Z to get

HA(M:Z) — H3(ST x LM Z) = H2(LM;Z) & (H'(LM: Z) @ H'(S": Z))

S HALMZ) ® HY (LM Z) — HY (LM Z) = HO(LM; U(1))

(where the next to last map is projection into the second component, and the last
is induced by the exponential sequence).

Proposition 12.16. The element holc(’g)A) e HO(LM, U(1)) is the image of c1(g) €

H2(M, Z) under the transgression map.

This implies that hol°g A) depends only on the Chern class (namely on the iso-
morphism class of (L, g) and not on the specific connection A. So the functor hol(4 )
contains more information that hol (9.A)"

Ezample 12.2. Suppose that w = dA = 0, so the line bundle L is flat. Then cq(g) isa
torsion class. In this case the holonomy induces a homomorphism p: 7t;(M) — U(1)
that determines the functor hol(g4 o) up to natural transformation.

Let us consider consider the holonomy as a map
hol{;, Ay Z1(M) — U(1),
where Z1(M) are the closed smooth 1-chains on M. We define x to be

A 5
=— log hol~.
X o 08h0

If we consider the curvature of L as a 2-form w on M we have obtained a pair (x, w)
with
X: Z1(M) — R/Z
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and
x(0c) J w mod Z

(&4
whenever ¢ is a smooth 2-chain (the pair (X, w) is called a differential character).

Following Cheeger-Simons [CS85] we will denote by ﬂgs(M) the group of such
differential characters of M.

If we substitute the line bundle by a (q—2)-gerbe with connection. The holonomy
becomes now a homomorphism Z41(M) — U(1), then we can define in general
R&(M).

The following theorem [Bry93, BCM™02| relates the CS-cohomology to the BD-
cohomology of a manifold M:

Theorem 12.17.
HI(M;Z(q)) = A% (M),

Actually the holonomy of a gerbe can also be seen as a functor.
Theorem 12.18. Let 8'(M) be the 1-st Segal category of M having
o Objects: Mapsy:S']]...][S' — M.

o Arrows: Maps X: F — M from 2-dimensional compact manifolds F to M
forming cobordisms between two objects, with composition given by concatena-
tion of surfaces.

Then the holonomy of a gerbe with connection (g, A, B) defines a functor
hol(g A B): 81(M) — Vector Spaces;(C)

from 81(M) to the category of 1-dimensional vector spaces with linear isomorphisms.
Such a functor is called a string connection.

For instance, in the picture below we have four maps yi: S' — M (i =1,2) and
a map X: F - M from a 2-dimensional manifold F into M. Such a configuration
would produce a linear isomorphism

holgag)(Z): Ly, ® Ly, — Ly, ® Ly,.

Where L is a line bundle on LM defined by the functor. The reader may imagine
that these are two strings evolving and interacting in M if she prefers to do so.
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V1 Y3

Yy 14

(46)

Now consider in general an orbifold X. We will describe now the results of
[LU02Db, [LU06al [LTUO6DL, LU| that refine the previous results to the case of orbifolds.

Recall that we have defined an infinite dimensional orbifold, the loop orbifold LX
associated to X by giving an explicit groupoid representation of it that we call the
loop groupoid. Let I" be a finite group.

As we have studied before an orbifold loop on X = [M/G] will consist of a map
¢: Q — M of a I'principal bundle Q over the circle S' together with a homomor-
phism ¢4 : ' — G such that ¢ is ¢py-equivariant. Let us denote this space of orbifold
loops (¢, px) by LIM/G]. It has a natural action of the group G as follows. For
h € Glet := ¢-h where P(x) := p(x)h and P4 (1) = hqcb#(”r)h, then{: Q - M
and is Py equivariant. We have called the (infinite dimensional) orbifold given by
the groupoid LX the loop orbifold in section 7.2.

We need to consider the equivalent definition for a morphism from a Riemann
surface with boundary to the orbifold [M/T]. This will consist of a map @ : P —
M of a T-principal bundle P over an oriented Riemann surface L (I" finite) and a
homomorphism ®y: " — G such that @ is ®4-equivariant. Note that there is a
natural action of the group G on @. It is defined in the same way as for the loop
orbifold.

To define string connections in the case of orbifolds we must deal in one way
or the other with 2-categories. Roughly speaking we define 8'(X) as a 2-category
where the objects are orbifold loops (¢, ¢y ), the arrows are orbifold surface maps
as above. Then the boundary 0P of P will consist of p incoming orbifold loops
Yi: Qi = M 1 <1 <p with the induced orientation, and q outgoing ones v;: 6]- —
M, p+1 <j < p+q with the opposite orientation so that 0P = | |; Q;U |_|j Qj. Here
the Qi’s and the Qj’s are '-principal bundles over the circle. The 2-morphism of the

273



2-category are given by the natural action of G on the orbifold surface maps. We
will define an orbifold string connection for X = [M/G] to be a 2-functor 8'(X) —
Vector Spaces;(C), namely a G-equivariant ordinary functor.

In [LUOGa] we prove the following refined version of the transgression (for a
general orbifold G).

Theorem 12.19. There is a natural holonomy homomorphism
2: C*(G,U(1)(3)) — C'(LG, U(1)(2))

from the group of gerbes with connection over the orbifold G to the group of line bun-
dles with connection over the loop groupoid. Moreover this holonomy map commutes
with the coboundary operator and therefore induces a map in orbifold Beilinson-
Deligne cohomology

H3(G; Z(3)) — H2(G; Z(2)).

In fact we give a proof for the corresponding statement in n-gerbes. So given a
gerbe L = (g, A, B) we obtain a line orbibundle E over the loop orbifold LX.

We remind the reader of two basic facts

Definition 12.20. The inertia groupoid I(G) is defined by:

e Objects I1(G)o: Elements v € Gy such that s(v) = t(v).

e Morphisms I(G)q: For v,w € I(G)o an arrow v — w is an element « € G; such

that v-ax = o -w

K\O/-‘O(\Oh*]
K# S 1 Y

Theorem 12.21. The fized suborbifold of LG under the natural S'-action (rotating
the loops) is
1(6) = (LG)*

The following definition is due to Ruan [Rua02al [PRY08, Rua03]. He used this
definition to obtain a twisted version of the Chen-Ruan cohomology [CR04b] that
has revived the interest in the theory of orbifolds in the last few years.

Definition 12.22. An inner local system is a flat line bundle L over the inertia
groupoid I(G) such that:

e [ is trivial once restricted to e(Go) C I(G)7 (i.e. Lle(g,) = 1) and
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e i*L =L wherei:I(G) — I(G) is the inverse map (i.e. (i(v, ) = (« va, ™ 1)).
Theorem 12.23. The restriction of the holonomy of a gerbe with connection over
I(G) (that is a line bundle with connection over LG) is an inner local system on 1(G).

In the case in which we have a Lie group acting with finite stabilizers these
line bundles are the coefficients Freed-Hopkins-Teleman [FHTO08] used to twist the
cohomology of the twisted sectors in order to get a Chern character isomorphism
with the twisted K-theory of the orbifold. We have used gerbes in [LU04a] to obtain
twisted versions of K-theory that act as recipients of the charges of D-branes in
string theory [Wit0I] generalizing the work of Adem and Ruan [ARO03].

Returning to the subject of string connections we have the following result.

Theorem 12.24. Take a global gerbe & with connection over X = [M/G] and let E
be the line bundle with connection induced by it via transgression. Then & permits
to define a string connection hol extending the line bundle E of the loop groupoid

LX.

The analogous result for a general orbifold is more subtle and we refer the reader
to [LU] for details. There we use this theorem to generalize the results of Freed and
Witten [FW99] on anomaly cancellation in string theory to the orbifold case.

To conclude let us mention that building on an idea of Hopkins and Singer [HS05]
we have defined orbifold Chern-Simons cohomology. The main difficulty here is to
make sense of what an orbifold differential character should be [LUOGb]. We make
a definition in such a way that we can prove the following result (see [LUOGD])

Theorem 12.25. The orbifold Beilinson-Deligne cohomology and the orbifold Cheeger-
Sitmons cohomology are canonically isomorphic.

12.2 Discrete Torsion
12.2.1 Geometric Interpretation of Discrete Torsion

Recall that a discrete torsion o can be interpreted as a flat gerbe on BG := [¢/G]
by Proposition Let us consider the meaning of theorem for the orbifold
X =BG = [¢/G] taking the place of M.

Observe that a map £ : F — BG is the same as a pair of a principal G-bundle
P over F together with an equivariant map P — e (cf. Example . We can of
course forget the map P — e and we lose nothing.
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Therefore the 1-st Segal category 8'(BG) of BG is the category 2Cobg whose
objects are circles provided with a principal G-bundles and whose morphisms are
surfaces F together with a principal G-bundle on them (cf. Definition [8.1])

From Theorem [12.18 and Proposition [12.12| we conclude that for every « we
obtain a holonomy functor:

holy: 8'(BG) = 2Cobg — Vector Spaces; (C).

To wit, this gives us a G-TQFT for every . Invoking the fact that it is the same
to have a G-TQFT as it is to have a G-Frobenius algebra this procedure produces a
G-Frobenius algebra for every «.

All this can be translated to pure algebra and we do so in the next paragraphs.

12.2.2 Algebraic Interpretation of Discrete Torsion

Discrete torsion can be interpreted as be a normalized co-cycle «x : G x G — C*
with values in C*. This means that for all triples in G we have
x(h, k)ee(g, hk)

da(g, h, k) = =1,
9,k = g g, k)

which is equivalent to
o(h,k)x(g, hk) = «(g,h)x(gh, k),
and moreover that

x(g,1)=1=«(1,9).

Define the G-Frobenius algebra Cy[G] = @geG(Cg of elements in C labeled by
elements in G, with the following structural operations on generators

e Product
My(g,h) =g -« h:= (g, h)gh

e Coproduct

Ao(h) =) algk, k) Mgk @k
keG

=) alk,k g kek g
keG

276



e Automorphism p*: G — Aut(Cy[G]) which is generated by

0((9,}1) —1

*h)=—2""__gh
Pg(h) (ghgT,9)7 "

for any g,h € G.

Proposition 12.26. Let ¢ : G x G — C* be a normalized cocycle. Then the
vector space Cy[G] endowed with the structural operations My, Ay, p* becomes a
G-Frobenius algebra.

Proof. e Associativity:

e Coassociativity: on the one side we have

(1®A)Aa(g) = (1©A) ) algk,k gk k™!

keG
= Y algk,k ) ek LU Tgkek T
k,leG
=Y algk ) Tk, 1) gk e ke U
k,leG
= ) alk ' kg) (kg ) kT @ kgl@ 1
k,leG

and on the other we have

(Ax®1)Ax(g) = (Aa®1) ) (gl 1 )gle 1!
keG

=) algl,U D) Tk kg) Tk T @ kgl 1
k1leG

Since do(k~ 1, kgl,17") = 1 we therefore we have
a(kgl, L ek kg) = (k™ kgl ex(gl, 1),
The coassociativity follows.

e Unit
g«l=a(g,1)g=9g=a(l,9)g=1-«9

277



e Counit

(¢ @ NAxlg) = D xlgk,k e(gk)k ' = «x(1,9)g =g
keG

(1®@)Axlg) =) k', kg)o(kg)k ' =a(g,1)g =g
keG

e Frobenius identities

«lg-ah) = Zoc g,h)a(ghk, k") Tghk @ k!
keG

(Ma®1)o(1®AL)(g@h) = ) alhkk ") 'a(g,hk)ghk @ k'
keG

and d«(g,hk, k') =1 then
a(hk,k"a(g,h) = a(g, hk)a(ghk, k)

(1®@mao(Ac@N(g@h) =) algk,k ) Ta(k ' higk@k 'h
keG
=) alghk,k ") Ta(k Th ! h)jghk @ k™'
keG

and da(ghk,k "Th™' h) =1 then
x(k Th™', h)a(ghk, k™) = a(ghk,k"h (g, h)

e Twisted commutattivity of the product :

g-«h=0a(g,h)gh = (ghg™" ‘o g) = pg(h) ‘w g

oc(ghg 9)
e The map p* being a homomorphism: we have on the one hand

«(g,h) x(g,h) a(k,ghg™")
_] pk(ghg ]): _] 1.1
o(ghg—', g) a(ghg~' g) a(kghg— k=1 k)

and on the other

kghg*]k*1

prlpg(h)) =

o(kg, h)
@ h —
Pio(M) a(kghg—Tk~T,kg)

kghg k.
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Now, note that

«(g,h)  alk,ghg™") alkghg k™' kg
x(ghg~1,g) a(kghg— k=T k) x(kg, h)
a(k, g)

a(k, gh)

o(k, gh)

a(kghg™', g)
x(kghg~1, g)

So(kghg 'k k, g) ko)

= da(k, g, h) (d(k,ghg™',g))"

=1
The map p* being an algebra map: on the one hand we have

a(k, gh) _
pilg - h) = (g, M)pf(gh) = g, h)— =255 —kghk !

(kghk—1 k)
and on the other

o(k, g) ok, h)
(kgk—T,k) a(khk T, k)

pR(9) “a pR() = at(kgk ™", khk™!)— kghk™".

A simple calculation shows that

«(g,h) a(k,gh) (kg™ k) a(khk ' k)
a(kgk— " khk—1) o(kghk— 1 k) «(k,qg) a(k,h)
=da(k,g,h) - (ax(kgk™ k,h)) " sax(kgk™' khk™' k)
=1

Torus axiom: we have to prove
Moo (Ph® D(AalDlagea, ) =Moo (1@ pg)(Ax(llaza, 1)
On the one hand we get
Mo (o ® 1) (Aalrgen, )

=mgo (pr®1) (oc(g,g‘1)“9 ® 9‘1)

11 o(h,g) _ _
=My <cx(g,9 h ]7a(hgh,],h)h9h 'eg ‘)
-1 -1
_ «(hgh™,g7)  afh,g) M. gl

x(g,97")  «(hgh™1 h)
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and on the other

meo (1® pg)(Aoc(])‘Aht@Ah,] )
—mao (1@ pg) (x(h,h ) Thah)

_ —1\—1 (X(g)h_” 1 .1

_m“<(x(h’h " Agh g T gy E O >
—1,-1 -1

_«fh,gh™g7) «(g,h™) M, g

a(h,h")  «(gh~'g7",g)
since we have the identity

a(hgh™' g7")  «(h,g) x(h,h™")  afgh™'g™', g)

x(g,97")  alhgh=' h) x(h,gh~Tg~") «(g,h~")
B da(hg,h~ ' h)
~ da(gh~T, g7, g)da(h, gh~T, g~ ")dx(h, g, h~ )
— 1

it follows that the torus axiom is satisfied.

12.2.3 The Tensor Product of nearly G-Frobenius Algebras

Given two G-nearly Frobenius algebras (/l, «, AA) and (B, B,AB) we can define a
new G-nearly Frobenius algebra (G,y,A) by

e - EBQEGGQ
where Cg = Ay ® By for all g € G.
The homomorphism v : G — Aut(C) is defined by

'Yg:O(.g®[?)g: eh:Ah®Bh — ‘Aghg_] ®thg—1 :eghg—1
Xh®Yh — og(xh) @ Bglyn)

for all g € G.
The coproduct Agy : Cgh — Cg ® Cy, is defined by

Agn=(1®T@1)0 (Agr® Agy).

These structural maps satisfy the next conditions:
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1. ’Yg‘@g = Id@g .

'Yg|€g = (‘Xg ® Bg)‘Ag®Bg = 0‘9|Ag ® Bg‘Bg = Id.Ag ®Ing = Ideg-

2. The product is twisted commutative, i.e. uv = yg(v)u, for all u € €4 and
v € Ch.

Let u=x1®y1 € Cg=Ag®Bgand v=x, ®y2 € Ch = An @ By:

uv = (Xl ®U1)(X2®y2) = X1X2®Y1Yy2
= xg(x2)x1 @ Bg(u2)yr = (otg(x2) @ Bgly2)) (x1 @ yn)
= vg(x2®y2)(x1 QY1) = vgvu

3. The family of coproducts verify that the diagrams

Mg hk Mgh,k
Cy® Crxy ———— Cgnk Cgh ® Cx ————— Cgnk

1®Ah,kl \LAgh,k Ag,h®1l iAg‘hk

G’g®6h® Cy Ggh® Cx €g®€h®8k Y €g®ehk

my h®1

commute.
Remember that the coproducts A% and AP verify this property.

Aghx 0 Mgk ((xg ®Yg) ® (Xnk ® Yni))

= Aghk(XgXhk ® UgYnk)

= (1®1®1) (A (Xgxnk) ® Aghk(ygyhk))

= (1e7@1) (Mg e 1) (xo® Aubuw)) © (M5 @ 1) (v © ARk (um) )

=(1®1t® 1)( mip@lemy, ®1) (xg ® Al (xhi) ®Yg® Aﬁk(yhk)>
(m
=

demd @1 o(181218181) (xg®Ug ® Ank(Xhk ® Yn))
mgh®1) o (1®Ank) ((xg®Yg) ® (Xnk ® Ynk))

The other case is similar.

4. The last condition is that the diagram

- 1
C = Ce Frun? Ch ® Cy—1 P Ch® Gghq g
U’l lmh’ghl g1
Ge eg ® e ehgh*1 ® 6971 ehgh*] gfl

9,971 h gh~T,g!
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commutes.

AL 1®

My gh—1g-1
TS TP ag(147) & B(137) 0 g (1) 12, (137)
on the other hand

A»,] @1
]|u—>]A®],B|L>‘]:’|4ag®‘I1Bv9®1?79@128»9|L

Tﬂ-h —1.g—
an(17°) @ Br(17°9) © 130 130 o, (1599)1349 @ By (17°9)139

using that A“gqh and Agh satisfy this property we have that
Ah AR A,g\ 14,
170 (1271) = an (1779) 15
and
B,h Bh) _ B, B,
13 59(12 )— Bh(]l 9)12 .
Then the diagram commutes.

12.2.4 Twisting G-TQFTs by Discrete Torsion

To end this chapter we merely point out that given a nearly Frobenius algebra A and
a discrete torsion & : G X G — C* we can define the a-twisted Frobenius algebra
A% by using the definition of the previous paragraph:

A% :=A ® Cy[Gl.

This procedure allows us to twist any G-TQFT+ by a discrete torsion «.
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13 Symmetric Products

The (naive) symmetric product of a space X is often defined as the topological space
X"/Gh=Xx-xX/Gn.
We find that it is better to study instead the orbispace
X"/Gn] =X x - x X/Gnl

and we call it the symmetric product of X.

In this chapter we study the basic properties of the string topology of the sym-
metric product [X™/&], and also we give a description of the Virtual cohomology
and of the Chen-Ruan cohomology associated to it.

13.1 Poincaré Polynomials

Let X be a topological space, we will denote by ¢(X,y) its Poincaré polynomial
=Y b(X)y'
i

where b(X) is the i-th Betti number of X.
Macdonald [Mac62] proved the formula:

0 (1 4 qu2it! bit+1(X)
Z () Xn/Gny = Hl ( v A)b Xy
n=0 H"L (1 - qul) 2t
Setting the variable y = —1 we get the famous formula for the Euler characteristic

of the symmetric product:

0]

> x(XY/Gn)g™ = (1—q) X,

n=0

The previous formulee are valid for topological spaces whose cohomology HY(X, R)
is finitely generated for each i > 0, and there is no restriction on the homological
dimension of X.
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13.1.1 Equivariant Euler Characteristic

There is a similar formula associated to the equivariant Euler characteristic xg, of
the symmetric product, which is defined using the G -equivariant K-theory of X™
by the following expression,

X&. (X™) == Rank K& _(X™) — Rank Kg, (X™)

and can also be calculated using generating functions by the following formula

D xe XMa"=]] (1 — q")ﬂdX) : (47)
n=0

i>0

This last equation is obtained by using a formula due to Segal [Seg68b] that
allows to calculate the torsion free part of K(Y) (where G acts on Y and G is a
finite group) by localizing on the prime ideals of R(G), the representation ring of G;
namely

Ks(V)@C=PxK(y)9ecC
(9)

where (g) runs over the conjugacy classes of elements in G, Y9 are the fixed point
loci of g and C(g) is the centralizer of g in G.

For the symmetric group G4, its conjugacy classes are in one-to-one correspon-
dence with partitions of n. Given T € &y we will write } ;jn; = n to denote the
partition corresponding to its cojugacy class. Here n; stands for the number of
cycles of size j that appear in the T. Then we have that the fixed point set (X™)"
is isomorphic to XZi™ and C(t) = H]- Gy, X (Z/j)™. As the cylic groups Z/j act

trivially in K*(Xzi ") the following decomposition holds

Ks, (XM eC=@PKr(xm)Wec= P &K (XY™ a@cC.
(1) Y jny=n
Since the equivariant Euler characteristic can also be obtained via the Orbifold

Cohomology, we postpone the proof of Formula to the following section.

13.1.2 Orbifold Cohomology

For an orbifold [Y/G] its orbifold cohomology is H* . ([Y/G]) := H*(Y, G)S, and there-

orb
fore HY ([Y/G]) = @(g]H*(Yg)C(g) where (g) runs over the conjugacy classes and
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C(g) is the centralizer of g in G. By the chern character isomorphism we have then
K5(Y) @ C = HE  ([V/G)).

We can define the Poincaré orbifold polynomial ¢ o ([Y/Gl,y) = 5 bt orp([Y/G] Nyt
where the orbifold Betti number b . ([Y/G]) is the rank of ngb( [Y/G])).

orb

For the symmetric product we get that
(X6 = P @H(XM)® (48)
2 in=n j

and calculating the orbifold Poincaré polynomial one gets

D Porn(XV/Gnlyla™ = > q™ | > J[eXV/6w,v) (49)

n=0 n=0 > jny=n j

[e¢]

= 2 | 2 TIeXM/&w,u)a)™ (50)

n=0 \} jnj=n j

= 1] (Z cb(xn/en,y)q"“) (51)

i>0 \n=0
H _|_ q y21+1 bt (X) )
- ]._£ q]yh)bh( ) (5 )
j>

that when y = —1, yields the formula (47 . ) for the equivariant Euler characteristic.

Again, for the previous formule to be valid one only needs that the cohomology
of X is finitely generated at each degree.

13.1.3 Loop Orbifold of the Symmetric Product

For an orbifold [Y/G] the loop orbifold L[Y/G] has been defined in [LU02b, LUXOS]
and for the case of a global quotient it has a very simple description: L[Y/G] =
[PGY/G] where PgY = UgegPgY x {g} with PgY = {f: [0,1] — Y[f(0)g = f(1)} and
the G action is given by
G x UgegPgY x{g} — UgegPqY x {g}
(h,(f,g)) = (f-hh 'gh)
with f-h(t) := f(t)h. The loop orbifold has another presentation (Morita equivalent)
given by
LIY/G] = | |[PgY/Clg)]
(g)
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where C(g) acts on PgY in the natural way. It is a theorem proved in [LUXOS]
that BL[Y/G] ~ LB[Y/G], i.e. the geometrical realization of the loop orbifold is
homotopically equivalent to the free loop space of the geometrical realization of the
orbifold, which in terms of the Borel construction states:

| | (PgY xc(q) EClg)) ~ Maps(S',Y x ¢ EG).
(9)

For the case of the symmetric product, one gets

LIX™/&n] = |@X"/C()].
(1)

But there is a better presentation of this orbifold, namely, .

Lemma 13.1. The orbifold [P-X™/C(7)] is isomorphic to 1_[]-[(LX)“0'/65le X (Z/5)™]
where the action of Z/j is given by rotation by the angles 2rtk/j on LX, the free loop
space of X.

Proof. When (1) is represented by the product T} sty T;...’l’;z
cycles, with T;‘ the i-th cycle of size j, and ) _jnj =n, then

of disjoint

)

TLj
PX"=T]]] (PT}X" = [(@eX)
j oi=1

where oj is the cycle (1,2,...,j). Now, the space fPUij consists of j-tuples f =
(f1,...,f;5) of paths fi: [0,1] — X such that f(0)o; = (1), i.e. fi(0) = ij(i)(l),
which imply that the paths f; could be concatenated into a loop f which belongs to
LX. The map P, X — LX, f — f is clearly a homeomorphism.

We have then,

[PX"/C(0)] = | JUPe XY /Sy x (Z/5)M] = [ JULX)™S /Gny x (Z/5)™]
j j

where the action of Z/j on an element f = (fy,...,f;) € Pg; X is generated by the
action of 03, namely f- o5 = (fj, f1,...,fj—1). As f;(0) = f1(1), then the cyclic action
rotates the loop f by an angle of 27t/j.

L
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Since the action of Z/j in LX factors through the rotation action of the circle S’
in LX, then the action of the group Z/j is trivial in H*(£X), therefore

Corollary 13.2.

so(LXY/6n]) = PH (XM = P []H(LX)Y)®
(1)

2 jn=n j

At this point we can see some similarities between the loop orbifold of the sym-
metric product of X, and the inertia orbifold of the symmetric product of LX, namely
that their rational cohomologies agree even though the orbifolds cannot be isomor-
phic

Proposition 13.3. The orbifolds LIX"/G&n] and I[(LX)"/G] cannot be naturally
isomorphic unless m =1, but their cohomologies with real coefficients agree.

Proof. By formula we have

soLX)e) = @ [TH (ex)™

Z )n) =n j

which is isomorphic by the previous corollary to H*(L[X™/G]).

But the orbifolds L[X"/&,] and I[(LX)"/&,] cannot be naturally isomorphic
because the actions of the cyclic groups Z/j are different. On the one hand, for
LIX™/Gn], we just argued that the action of the cyclic groups are by rotation on £LX
(coming from the action of oj into Py, X)), and on the other, for I[(LX)™/G], the
action of the cyclic groups are trivial, because the copies of LX come from the fixed
point loci of the group action generated by the cycle oj into (LX), Therefore on the
one hand one has the orbifold [£LX/(Z/j)] with the rotation action, and in the other
one has the orbifold [LX/(Z/j)] with the trivial action. These orbifolds cannot be
naturally isomorphic. In the case that n =1 both orbifolds are the same.

Let us see the case when X = S' and n = 2. Then L[(S")2/6,] = [(£S")%/6,] U
[LS1/(Z/2)] where the action of Z/2 in the second component is by rotation, and
I[(LS1)2/6,] = [(£S1)2/6,] U [LS!/Z/2] where the action of Z/2 is the trivial one.
As LS ~ 7 x S it is easy to see that in the first case the geometrical realization
of [£S1/(Z/2)] is homotopically equivalent to (Z x S') LI (Z x S' x RP®) and in the
second case is just Z x S x RP>.

L J

Using the previous result and formula , we get
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Corollary 13.4. Let X be such that H(LX;R) is finitely generated. Then

o0 2i+1 b21+‘(LX)
n [L:( + q y

Zod) X"/ 6nl 1_10: q)yll)b21 (LX)

n= j>

where biy(LX) is the i-th Betti number of LX. And via the chern character map we
get
K, (LX)™) @ C = H*(LIX"/&n]).

Remark 13.5. The fact that the cohomologies of I[LX™/&,] and L[X™/&,,] agree is
a feature of the symmetric product. In general, for any orbifold [Y/G], the coho-
mologies of I[LY/G] and L[Y/G] do not have to agree. Take for example the Z/2
action on S? by rotating 7 radians along the z-axis. I[£S?/Z/2] = [LS?/Z/2] U
[L(S?)%/7/2] where & generates the group Z/2, and therefore £(S%)% is the set of
two points, the north and the south pole. Hence H*(I[£S?/Z/2];R) = H*(LS%:R) &
R®2, On the other hand L[S%/Z/2] = [£S%/Z/2] U [T‘ESZ/Z/Z] with cohomology
H*(L[S?/Z/2];R) = H*(LS%R) @ H*(LS%R) (this is shown in the examples of
[LUXO08)).

13.2 String Topology for the Symmetric Product

In this section we will study the ring structure of of the String Topology H.(Pg, M™, G4)
as it was defined in Chapter [9] and we will show that it induces a ring structure in
the homology

(M, 8y) = @ Ho(M™)T

in such a way that H.(M™, &y,) becomes a sub ring of H,(Pg, M™, Gy).
Let us start by showing the previous statement for M itself

Lemma 13.6. The natural inclusion i : M — LM of constant loops and the eval-
uation at 0, ev : LM — M induce ring maps in homology i, : Hi(M) — H,(LM)
and ev, : Hy(LM) — H, (M) such that ev, o i, = id, in paticular as i, is injective,
H. (M) can be seen as a subring of H,(LM).

Proof. One just need to check that the following diagram is commutative

LM xpm LM —— LM x LM

7
i( ieVoo ixi‘\ evxev
N diag

M— M x M.
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This induces the following diagram relating the Thom-Pontryagin construction of
the top row with the bottom row (recall that the normal bundle of the diagonal
inclusion is isomorphic to the tangent bundle, and the subindex 0 means that we
are taking everything ouside the zero section)

LM x LM —— (evi TM, (evi, TM)o)
ixi/ evxev 1-7 \Lev
\ \

M x M (TM, TM,)

that at the level of homology gives

H, (6M x LM) — H, (evi, TM, (ev’, TM),) H. 4(LM)

i*><i*< lev*xev* lev* i*< lev*

H.(M x M) H..(TM, TMo) — H.—a(M)

where d = dim(M). Then one has that i, and ev, are ring homomorphism, and as
evoi=1id then i, is injective

L J

For the case of orbifold of the symmetric product, the String Topology had a
similar setup. Since the following diagram is a pull-back square

PM™Y xog PeM™ —— P M™ x PcM™

l €Voo l evy Xevy

M M™ x M™,

one can do the Thom-Pontryagin construction, defining a homomorphism
H, (PeM™ x PeM™) — Hyng(PreM™)

where the map H,(P-M™ xg PcM™) — H,(PcM™) is induced by the natural
concatenation of paths ® : PtM™; xg PeM™ — P oM™

Then we have a product

Hp(:PTMn) X Hq(fpcMn) — Hp+q7nd({PToMn)
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that is graded (shifted by —nd) associative, and thus defines a product in
H* (?Gn Mn» 6“)

which is what we have called the Strin Topology product.
By taking the &4, invariant part

(He(Pe,M™, &))" = H, (LIM™/G))

we have a ring structure on the homology of the loop orbifold of the symmetric
product.

Now let us study what is the behavior of the evaluation and inclusion of constant
maps. So consider the following commutative diagram

P .MM & oM
it T /
(M™)*
where {7 is the Inclusion of fixed point set, i* is the inclusion of constant loops, and

ev is the evaluation at 0, we have the following

Lemma 13.7. The image in homology of ev, is equal to the image in homology of
fr.
Proof. Restricting the previous diagram to one of the cycles o of size 1 that defines

T, the diagram becomes

ev

PML = LM Mt
iGT /
(MY)° =M

where ¢ becomes the diagonal inclusion M — M! and the evaluation map ev takes

a loop o : S — M and maps it to ev(a) = (x(0), oc(zT"), .. .,oc(z(l_lnn)). Defining
the homotopy evt(x) = (oc(O),oc(z%t), .. .,W(M)) one sees that ev! = ev and
ev® are homotopic, and as ev®(«) = f9(x(0)), the lemma follows.

L J
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Since the inclusion maps f* induce injective homomorphisms 7 : H,((M™)T) —
H,(M™), we define the groups HI(M™) := image(f]) C H,(M™) and therefore we
get

Ho(P-M™) 2 HI(M™)

il =

H.((M™)7)
So we can define a ring structure in H,(M™, &) in the following way

o HY(M™) x HE(M™) — H™._ (M"Y

*—nd
(o, ) = xef

where
xe B = ev, ((igo (f;f)%c) - (ifo (ff)*‘ﬁ))

and - is the product structure of String Topology. Using the isomorphisms f; we
define the ring structure in H,(M™, &) that we will also denote by e.

Then we have the compatibility of all the products

HL((MM)T) x HL((M™)9) = HL(PaM™) x H, (PgM™) = HE(M™) x HI(M™)

1T X190

i. J/ l.
1TO
.L*

H.(M™)™) H. (PrgM™) ——=——— HI*(M™)

so we can conclude

Proposition 13.8. The homology H.(M™, &) becomes a &n-graded ring. More-
over, the inclusion of constant loops i : (M™)T — P.M™ and the evaluation maps
induce ring homomorphisms that makes the following diagram commute

H* (:PGn Mna 6“)

H.(M"™, Gn) (D HI(M™) x {1})

Remark 13.9. The inclusion of the inertia orbifold into the loop orbifold, in general
does not induce an injective homomorphism in homology. Take the example of
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remark namely the action of Z/2 in S? by rotation along the z-axis. If the
generator of Z/2 is &, then the fixed point set (S%)& consist of two points, the north
and the south pole. The inclusion of the inertia orbifold into the loop orbifold is
then (S?2)& — PS?, where PeS? = {f : [0,1] — S?[f(0)& = f(1)}. It is clear that
iPaSZ ~ £,S? which is connected, then the homomorphism H, ((52)%) — H*('J)(ESZ) is
not injective.

Remark 13.10. We have seen how to define a ring structure in the homology of
I[[M™/&,] using the structure of the homology of the loop orbifold. It is easy to see
that the homology product we have defined boils down to intersection of cycles in
M™. Namely, for cycles in (M™)T and (M™)° (say « € HI(M™) and 3 € HZ(M™)),
their transversal intersection in M™ is a cycle in (M™){%:9) (xNP € HRO 4(M™)), and
therefore could be pushforwarded to a cycle in (M™)™ (axNp € HI® ;(M™)). The
associativity follows directly from the fact that transversal intersection is associative
in homology.

13.3 The Virtual Intersection Product

We would like to compare the product structure that we have defined in the previous
section to the Virtual product of Chapter

In the symmetric product, it is easy to see that the Virtual product x defined in
the cohomology of the inertia orbifold is just the Poincaré dual of the product e in
homology we defined previously. Using the isomorphisms f} : H,((M™)T) = HI(M™)
we get the following commutative diagram:

H;(Mn) X Hg(Mn Pl%_ldl(‘) ((M™)7) x Hd\O((U))\—q((Mn)o)
/ ex (Jues (1)
HAO(T)+dlO((o)

/ : Ip-a( (M)

y UEU(ve, o) «
Hgqu 4(M™) PD Hdn+dlo((1,0))l-p—a( (M) T0)
Iinclusion Crox
H;cj—q na(M™) D Hdn+dlO({to))l—p— a((M™)To)

where the horizontal maps are Poincaré duality maps, d = dimg(M), O(H) is the
set of orbits of the action of H C &, on {1,2,...,n} and |O(H)]| is its cardinality.
The commutativity of the diagram permit us to conclude
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Proposition 13.11. The Poincaré duality maps induce an isomorphism of rings

v (Mn> 6“_) = (H*(Mn) 61’1.))*) — (H*(Mn) 61’1)».) .

virt

Therefore the Virtual cohomology ring is isomorphic to a subring of the String Topol-
09y Ting
; (Mn) Gn) C H*(?Gn Mn» 6n)-

virt

The same theorems are valid also in K-theory, the proofs are the same.

13.4 Chen-Ruan Cohomology

In this chapter we will study the obstruction bundle R(t, o) (see Definition as-
sociated to the Chen-Ruan product in the particular case of the symmetric product,
and we will show a simple description of this bundle. This description is the key

ingredient needed in Section to prove Proposition [11.18] and Corollary [11.22
Let us start with some notation.

For two elements 1,0 € &, let O(t,0) = {1, ..., [} be the set of orbits of the
action of the group generated by T and o on {1,2,...,n}. Let ny = [I| and without
loss of generality assume that the orbit I consists of the numbers

=+ +nig+Tn+-+nia+2,.,, 4+ +ngl

Denote by T; and o the elements in &,,, which encode the restricted action of T and
o on the set orbit I}; in particular we have that (To); = Ti0; and the action of the
group (Ti, 0y) is transitive on Tj.

If we denote by R(ti, 01) the obstrcution bundle of the action of T; and o; on

M™ then we have that .

R(T,0) = H R(Ti, 01).

i=1
Since tha action of (ti, 07) on [} is transitive, we have that Aj(M) = (M™ )™
where A; : M — M™ is the diagonal inclusion. By Definition we have that
R(Ti, 04) = (TAI(M) oTM™ & STi ©® 80‘1 ® S(Tioq)*]) |A1(M)

where we have that TM™ |5 (m) = niTA{(M) and by a simple linear algebra a we
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get

(ni — 0(Ti)[) TA(M)

(ni —10(01)[)TA{(M)

(ni —[0(Ti07)[) TA{(M)
where O(T;) denotes the set of orbits of the action of T; on I}; and hence

R(Ti,01) = 5 (2—2ny +ny — [O(14)| + 1y — |O(0y)| + Ny — [O(Ti07)]) TA{(M)

—_ N =

= 5 (2+ 1 —[0(11)] = [O(01)| — [O(Ti0%)]) TA(M).

N

Denoting the natural number
1
g(ti, 01) = 5 (2 + i — [O(11)] — [0(0)] — [O(Ti09)])

we have then that the Euler class of the obstruction bundle R(ty, o) is a multiple
of the Euler class of the manifold M = A;(M), i.e.

Eu(R(Ti, 07)) = Eu(Ai(M))9m00)
and therefore if g(Ti, 0y) > 1 then we get that Eu(R(ti, o)) = 0.
The total obstruction bundle is then equal to

k
R(t,0) = [ ] (TAi(M))Polwo0 (53)

i=1

and its Euler class becomes

k
Eu(R(t,0)) = [ [ Eu(as(m))ermo,
i=1

This explicit description of the obstruction bundle was the key fact that led Uribe
[Uri05] and Fantechi and Gottsche [FGO03] to prove independently the following result
that we quote:
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Theorem 13.12. Let X be a smooth projective surface with trivial canonical divisor.
Then there is an isomorphism of graded rings between the orbfiodl Chen-Ruan co-
homology of the symmetric product [X™/G&y] and the cohomology of the n-th Hilbert
scheme L™ of the surface X:

(Her(Z™, 60))° = HH (2, ©).

This result led Ruan to state what is known as the Crepant Resolution Conjecture
which basically states that the Chen-Ruan orbifold cohomology of a Gorenstein
orbifold is isomorphic to a semiclassical limit of the quantum cohomology of a crepant
resolution of the underlying quotient variety (see the original conjecture in [Rua06]).
This dovetails nicely with the discussion of the McKay correspondence of Appendix
L9

295



14 Final Comments

To end the book we merely point towards further reading that you may find inter-
esting.

The interested reader should first look at the excellent book [ALRO7] where she
will find a complementary point of view on the theory of orbifolds.

The name Calabi-Yau category can be better understood by noticing that given
a Calabi-Yau manifold its B-model is a 2-dimensional open-closed TQFT. We refer
the reader to [CW10] for details. From this fact we conjecture that for a non-compact
Calabi-Yau orbifold we should obtain a nearly G-Frobenius structure as we defined
it in this book. This would be a sort of generalized Serre duality for non-compact
orbifolds. We will return to this issue elsewhere.

In this book we only considered the connected component of the moduli spaces of
curves, but the full cohomology of the moduli space can be made to act on the state
spaces of the theories described, for a first approximation to this we recommend
[GodO1].

This points towards the fact that to have a fuller picture in string theory we
must work at the level of chains rather than at the homological level that we have
worked at in this book. For the concept of a Calabi-Yau category at the level of
chains see [Cos(07]. For string topology at the level of chains see [BCT09].

Throughout this book we worked over a field k usually the rational, real or
complex numbers. But orbifold string topology can be done over the integers, see
ABU12).

For generalizations of the structures developed here to the case in which G is
a Lie group see [GWI12D] for extensions of Chen-Ruan theory and [BGNXO07] for
extensions of string topology. Also [FHLT(09] is very interesting. It is reasonable to
conjecture that a version of the relation between virtual cohomology (ghost string
topology) and Chen-Ruan theory of the cotangent bundle will still hold when the
groups are no longer finite.

For some interesting explicit calculations see [GW12a], [GS08], [Pod03],[Pod02],
and [CHOG|, [Per07], [Jia07], [JKO2].

For the crepant resolution conjecture of Ruan see [RuaOl], [CRO7], [BGO6],
[CCITO7], [Coal9], BMPQ9], [BG0OI], and [Ito94].

The McKay correspondence has a truly vast literature, for example: [Rei02],
[BKRO1],[BD96], [Kal02], [Kos84], [DL02a], [LP04], [AP01], [BLO5] and [INOQ].

The classification of topological field theories has been developed in [Bae(l],
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[BD95], [GMTW09] and [Lur09].

Finally for conformal field theories from the point of view described in this book

look at the classic [Seg02].
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15 Appendix: Categories and Functors

15.1 Categories

Category theory was discover by Eilenberg and MacLane in the 50’s [ML98|] and
ever since has pervaded all fields of mathematics.

You may want to think of the category of sets as you read the following definition.
The objects of the category of sets are all sets and the arrows are all mappings
between them. You may also want to think of an object as a sort of dot and an
arrow as something with a direction joining the dots.

Definition 15.1. A category consists of:

e A class Obj(C), that we will denote by Cq, of objects of C.

A class Arr(@), that we will denote by €4, of arrows of €. For each pair of
objects a and b the class of all arrows from a to b is denoted by C(a,b).

e Two assignments se,te : Arr(€) — Obj(€) called source and target respec-
tively.

e Unit. An assignment ue : Obj(€) — Arr(€) such that:

se(ue(a)) = te(ue(a)) = q,

for every a € Obj(C).

e Composition Law. For each triple a, b and ¢ of objects of € an assignment
Mabe) : Cla,b) x C(b,c) — C(a,c), where its image on (&, ) € €(a,b) x
C(b, ¢) well be denoted by B o «, satisfying the following properties:

1. For every a € Obj(C)
se(uc(a)) = te(ue(a)) = q,
Obj(C) —= Arr(C)
Arr(€) —= 9bj(C)

in other words the source and target of ue(a) = a for every a.
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2. Associativity. For all o, 3,y € Arr(€) it holds that co(Boy) = (xof) oy,
formally for every elements a,b, ¢, d fixed in Obj(C) we have

M(qc.d) © (Mabe) X Ideea) = Mab,a)Ideab) X Mpb.e.a)),

b,e xIde(c,a)

C(a,b) x C(b,¢) x C(c, d) Y e(a,c) x €(c, d)

\Lm(a.c,d]

C(a,d)

Ide(a,b)me,c,dJ/

C(a,b) x C(b,d)

M(a,b,d)

3. Unity. For every a,b € Obj(€) and « € C(a,b) ax = ue(b)oax = xoue(a)
holds, formally

Mqbb)(ue(b)) =mgqp)(uelal, o) = .

Ezample 15.1. Let us define Sets the category with objects the class of all spaces
(proper class) and arrows the class of function of sets. The unity of this category
assigns to each set X the usual identity function of sets over X and the function me
the composition of functions, when it is defined.

Ezxample 15.2. The category Ab the subclass of Sets whose objects are all abelian
groups and arrows the class of morphism of groups with the same unity and rule of
composition as Sets. In he same manner are defined the categories Mod, Ring,
Groups, etc.

Ezample 15.3. The category Top of topological spaces and continuous functions.

Ezample 15.4. Let us consider the category Corr of correspondences [CV] whose
objects are topological spaces and whose arrows (from X to Y) are diagrams of
continuous mappings of the form

VA
N
X Y
for Z some topological space. We define the composition of arrows by
XEVEYVovEwdzy=x&udz
where U is defined as the fiber product

U=VxyW={{v,w)pV)=vWw).
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Observe that the ordinary category of topological spaces can be embedded as a
subcategory of Corr since a continuous map f: X — Y can be interpreted as the
correspondence

X &G Y,
where G¢ = {(x, y)ly = f(x)} is the graph of f. This is functorial for we have

Sf Xy Gh = Ghot-

Unfortunately homology is not a functor from Corr to graded abelian groups.

Nevertheless suppose that we have a correspondence X < Z . Y where
e X, Y and Z are manifolds (possibly infinite dimensional).

e « is a regular embedding of finite codimension d.

In this case we say that X & Z %Y is a smooth correspondence of degree —d. In
any case using the Gysin map we can produce the composition

H.(X) S Hea(Z) 55 Hea(Y)
which is the induced homomorphism of degree —d in homology.

Definition 15.2. A Groupoid is a category in which each arrow has an inverse,
namely for each pair a,b € ObjC and each « € C(a,b) there exist an arrow o' €
C(b,a) in such a way that « ' ox = u(a) y «o « ' = u(b). In this case we will
denote by i: C(a,b) — C(b, a) the map that assigns to each arrows its inverse.

Ezxample 15.5. Let G be a group acting on a set M. Let G x M be the groupoid
whose objects are the set M, and arrows g : x — y such that y = gx, this set can be
seen as the set G x M. Here the composition is defined of natural manner gg’: x — z
where g’ : x — y and g :y — z. For each object x the unit map associates the unit
e of G. The structure maps are defined in the obvious way as s : G x M — M the
projection and t: G x M — M the action.

15.2 Natural Transformations as Homotopies.

Definition 15.3. A (covariant) functor F from € to B is an assignment so that to
every object a € Obj(C) associates an object F(a) € Obj(B) and to every arrow
o € Arr(C), a: a — b associates an arrow F(a) € Arr(B), F(x): Fla) — f(b),
sending identities to identities and satisfying:

Floxo ) = F(a) o F(B).
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The category Top of topological spaces with continuous mappings has an in-
teresting additional structure. Homotopies of smooth mappings. This endows
Top(X,Y) with the structure of a category. We will call a category with this addi-
tional structure a bicategory.

The category Cat of all categories is also a bicategory. Let us define the homo-
topies between functors. Let F and D functors from € to B, a homotopy of functors
is a functor H: € x J — B where J is a category with two objects and one arrow
going between them, and the restrictions of H to the two copies of € above, coincide
with F and D respectively. The reader can verify that to have a homotopy between
functors is the same as having a natural transformation.

Definition 15.4. A natural transformation of functors is a map @ : Cp — Bj in
such a way that

e For every a € Gy, @(a) € B(F(a),D(a)), and

e For each « € C(a,b)
D(b)oF(x) =D(ex) o D(a)
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16 Appendix: Monoidal Categories

16.1 Definitions

Definition 16.1. A monoidal category (or tensor category) consists of the follow-
ing data: a category €, a covariant functor ® : € x € — €, called the monoidal
product(or tensor product), an object u € Ob(C), called the unit and natural iso-
morphisms

° Oéx,y,ZZX®(y®z)—>(x®y)®27
® Al u®Xx — X,
® DxIXQU —X,

called associativity, left unit and right unit. This natural isomorphisms satisfy the
following axioms:

YW,

x®(Y®Wwez) ey @ (wez 22 {(xey) ow) ®z

hg)o(y,w,zl T“x,y,w@)]
x® ((yow)®z) — x®(yow)®z
O ,u,y
X® (u®vy) (x®@u)®y
m A
XQy

for x,y,w,z € Ob(C€), and also
AL=pPp:u®@U — U

A monoidal category is called strict monoidal category if the morphisms «, A, p are
the identity morphisms.

16.2 Monoidal Functors

Definition 16.2. Let (€, ®) and (D, ®) be monoidal categories. A monoidal functor
is a functor F: € — D together with natural isomorphisms
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o &Ly Fx)®@Fly) — Fx®y)

e &p:up — Flup)
which satisfy the following commutative diagrams:

F(x) @ (Fly) ® F(z) 25 Fix) @ Fly ® 2) —> F(x ® (y ® 2))

| |

(F(x) @ F(y) @ F(z) ;> F((x @ y) @ Flz) > F((x @ y) 9 2)

u® F(x *>Fu®x)
F(x) ®u—>F —>Fx®u)

\/

A monoidal functor is called stric monoidal functor if & and &g are the identity
morphisms.

Remark 16.3. For any monoidal functors F: € — D and G : D — €&. Let
(&,&0) and (&', &p) the natural isomorphisms of F and G, respectively. The natural
isomorphisms (&£”, &) for the composition Fo G : € — € are defined by

GoF(x)®GoFly) = G(F(x) @ Fly)) S5 GoFlix 2 y)

\/

E//

Ug *E‘L G(up) G*(EQ)G o Flue)

E’(l)l
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Ezxample 16.1. The most important ones are

(Set, x,{*}), the category of sets with the cross product.
(Set, L, 0), the category of sets with the disjoint union.

(Vecty, ®,k), the category of vector spaces with the tensor product overk.
(Top, x, *), the category of topological spaces with the cross product.
(Ab,®,7Z), the category of abelian groups with the usual tensor product over Z.
(nCob, LI, 0), the category of n-cobordisms with the disjoint union.

16.3 Monoidal Natural Transformations

Definition 16.4. A natural transformation o : F — F’ between two monoidal
functors is called a monoidal natural transformation if the diagrams

F(x) @ Fly) —— F(x ® y)

g@al l“

Fi0) @ Fly) —=Flx@y)

commute.

Let € and D monoidal categories. A monoidal functor F: € — D is called a
monoidal equivalence if there exists a monoidal functor G : D — € and monoidal
natural isomorphisms @ : GoF=lpand P:Fo G = 1.

16.4 Braided Monoidal Categories

A braided monoidal category consists of a monoidal category M together with a
braiding, which is defined by a family of isomorphims

Oxy ! X®Y — Yy x.
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They are natural for x and y in M, and satisfy for the unit u the commutative
diagram

X®u ux

Moreover the maps o0y, together with the associativity & make commutative the
following hexagonal diagrams:

xQY)®z——>2Q (x®Y)

/

x® (Y ®z) (z®x)®y

1®0 o1

xR (z®vy)

(x®2z)

®
<

x®(Y®z) —F—=(y®z)@x

®
Q
8

(x®vy) y®(z@x)

o®1 1®c

(Yex)®z Yo (x®z).

—1

16.5 Symmetric Monoidal Categories

A symmetric monoidal category is a monoidal category with a braiding, which sat-
isfies the identity
Oyx 0 Oxy = 1.
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Proposition 16.5. For M a symmetric monoidal category we have the identity

1

(T®o)oocoax ' =aooo(l®o).

Proof.
R
. ° ..
067] 0(7]
P )
1@& %1
T«
then
oco=(0®1l)oxoo-(c®1)-«,
= o' (o®1)-0=0-(0®1)-q
=(1®0c)oooa'=aooo(1®o0)
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17 Appendix: Classifying Spaces

Let G be a topological group. The classifying space of G is defined as the unique
(up to homotopy) space BG so that the set Bung(Y) of isomorphism classes of G-
principal bundles on Y is in one-to-one correspondence

Bung(Y) = [Y,BG],

where [Y, Z] denotes the set of continuous maps Y — Z modulo homotopies. This is
of course closely related to the orbifold BG := [e/G]. Recall that whenever Y is a
manifold we have that

C*®(Y,BG) ={P — Y: Pis a G — principal bundle},

namely C*® (Y, BG) is the groupoid of principal G-bundles on Y. Notice that C* (Y, BG)
is a discrete groupoid, not merely a set (cf. Example[7.18]). Notice that

[Y,BG] = Bung(Y) ={P — Y: P is a G — principal bundle}/iso = C*(Y,BG)/hom.

From this we can clearly see that BG carries strictly less information that BG which
sometimes is good and sometimes is bad. Morally speaking BG (which is defined
only up to homotopy) is the homotopy type of BG.

There is various ways of understanding the space BG, the most common one is
to construct a space EG that is a contractible space with a free action of G. Then
one can define BG := EG/G. This is unique up to homotopy and has the desired
properties [Ste99]. The space BG thus defined classifies bundles up to isomorphism.
The quotient map EG — BG is called the universal G-principal bundle. The reason
is that for any G-principal bundle P — Y there is a map (unique up to homotopy)
f:Y — BG so that P = f*EG.

Ezample 17.1. Consider the group G = Z;. The infinite dimensional sphere S*
is contractible and has a free action of Z; given by the antipodal map x — —x.
Therefore we can take EZ, := S and then

BZ, = $®°/Z, = RP™.

In other words: the classifying space of Z; is the infinite dimensional real projective
space. The space RP* can be interpreted as the space of real lines 1 in R*® passing
through the origin. There is a canonical universal bundle ' — RP* called the
tautological bundle. 1t is called tautological because the fiber over 1 € RP® is [1 = 1.
To have a double cover over Y is the same as to have a real line bundle over Y, for by
taking the sphere bundle of unit vectors of a line bundle we obtain a double cover.
So RP* classifies both double covers and real line bundles.
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Ezample 17.2. Consider the circle group G = S' of complex numbers of modulus 1.
The infinite even dimensional sphere S® C C* is contractible and has a free action
of ST given by the map x — zx. Therefore we can take ES' := $* and then

BS' =5*/S! = CP>.

In other words: the classifying space of S! is the infinite dimensional complex pro-
jective space. The space CP*™ can be interpreted as the space of complex lines 1
in C* passing through the origin. There is a canonical universal bundle ' — CP*
called the tautological bundle. It is called tautological because the fiber over the
complex line 1 € CP*® is Il = 1. To have a circle bundle over Y is the same as to
have a complex line bundle over Y, for by taking the sphere bundle of unit vectors
of a line bundle we obtain a circle bundle. So CP* classifies both circle bundles and
complex line bundles.

Example 17.3. Consider the group G = U(n) of unitary n x n matrices. By consid-
ering EU(n) to be the space of orthonormal frames on C* it is proved that BU(n)
is the grassmannian of n-dimensional complex subspaces of C*

Ezxample 17.4. Consider any finite group G. Notice that by Cayley’s theorem G can
be though of as a group of permutations, and this in turn realizes G as a subgroup
of Uy. The classifying space of BG can then be constructed by the space of frames
in infinite dimensional space modulo the appropriate permutations.

While the geometric constructions of BG are quite useful to study more structural
properties of BG a combinatorial approach is very convenient.

Recall that a group G can be thought of as a category with one object e and as
many morphisms ¢ : ¢ — e as elements of G. Composition of morphisms is given by
group multiplication.

Definition 17.1. A (semi-)simplicial set (resp. group, space, scheme) Xo is a se-
quence of sets {Xnjnen (resp. groups, spaces, schemes) together with maps

XoSXisX2s5 - SXns -
O0i: Xin = Xine1,  $5: X — Xing1,  0<1,j <m.
called boundary and degeneracy maps, satisfying
aiaj = aj,1ai if i< ]
S$iS§ = S$541S4i if i< ]
$j—1 0; ifi<j
0is; = 1 ifi=j,j+1
Sjai,] ifi>j+1
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The nerve of a category (following Segal [Seg68al) is a semi-simplicial set NC
where the objects of € are the vertices, the morphisms the 1-simplices, the triangular
commutative diagrams the 2-simplices, and so on.

We can consider small categories C that are topological categories in Segal’s sense.
What this means is that both the set of objects and the set of morphisms are topo-
logical spaces and all the structural maps that define the category are continuous.

We can define the boundary maps 9; : X™ — X1 by:

(v2,---,Yn) ifi=0
ai(’Y1)“')’Y“): (‘Yl)"')m(‘Yi?yi+]))“')Yﬂ) if]gign_]
(Y1, Yn-1) ifi=n

and the degeneracy maps by

sj(vu-..,vn)—{ (e(s(y1)), v, .-, vn) for j =0

N ('Yb--~)Yj)e(t(Yj)))Yj+1)---»Yn) fOl“JZ]

We will write A™ to denote the standard n-simplex in R™. Let &;: A™ 1 — A™
be the linear embedding of A™! into A™ as the i-th face, and let 0j: AT 5 AT
be the linear projection of A™! onto its j-th face.

Definition 17.2. The geometric realization |X,| of the simplicial object X, is the
space
(z,0i(x)) ~ (8i(z),x)
o= () ] 2200
L (2,500)) ~ (05(2), x)
Notice that the topologies of X;; are relevant to this definition.

The simplicial object NC determines € and its topological realization is called
BC, the classifying space of the category.

Observe that B is actually a functor
B: Cat — hTop,

where hTop is the category of topological spaces modulo homotopy. It sends cat-
egories to spaces, functors to continuous maps, and natural transformations to ho-
motopies. It also satisfies the less evident property

B(€ x D) =BE€ x BD.
For a nice proof of this we refer the reader to [Dri04, Bes03, [Crh01]. Also look at

the classical reference [May93].
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Example 17.5. Consider a finite group G. This produces a category Cg with one
object e and arrows g: ¢ — e. So we have that X is a one element set, X; = G is the
set of arrows, X = G x G is the set of commutative triangles with edges (g, h, gh)
(completely determined by the pair (g, h), and so on. Therefore X} = G*. It turns
out that

BG ~ BCg = X,

Computing the cellular homology of BG given by this model one recovers the alge-
braic definition of group cohomology. We refer the readers to Segal’s paper for a
very elegant proof [Seg68al.

Ezample 17.6. Let G be a group acting on a set M. Let Cgxm be the category
(groupoid) whose objects are the set M, and arrows g : x — y such that y = gx,
this set can be seen as the set G x M. Here the composition is defined of natural
manner gg’ : x — z where g’ : x =y and g : y — z. We have in this case:

BCaum = (M x EG)/G = M xg EG,

called the Borel construction or homotopy quotient of the group action. See [Seg68a].

Ezample 17.7. Let M be a smooth manifold. Consider an atlas U = (Uj)ier. To
have a pair (M, U) is the same thing as to have a small topological category My
defined as follows.

e Objects: Pairs (m, 1) so that m € U;. We endow the space of objects with the

topology
ITu
i

e Arrows: Triples (m,1,j) so that m € U; N U; = Uj;. An arrow acts according

to the following diagram.

. (x,19) .
(x,1) =" (%7).

e The composition of arrows is given by
(x,1,j) o (x,j,k) = (x,1,k)

The topology of the space of arrows in this case is

[Tus
(1)
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The category M is actually a groupoid, in fact
(X»i)j) © (X»j)i) = (Xvi)i) = Id(x,i]'

The classifying space can be computed in this case to be homotopy equivalent
to the original manifold:
BM ~ M.

See [Segb8al, Section 4].
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18 Appendix: K-theory

18.1 Basic Concepts

Ordinary cohomology satisfies a collection of axioms known as the Eilenberg-Steenrod
axioms. We define an extraordinary cohomology theory to be an integer indexed
sequence of contravariant functors h' that take a pair of spaces (X,A) and de-
liver a sequence of abelian groups h(X, A), together with a natural transformation
§: Wi 1(A) — hi(X, A) satisfying:

e Homotopy invariance: Homotopic maps f, g: (X,A) — (Y,B), f ~ g induce the
same map after applying the functor h', to wit f* = g*: h*(Y,B) — h'(X, A).

o Ezcision: Whenever the closure of U is contained in the interior of A then the
inclusion map j: (X—U, A—U) — (X, A) induces an isomorphism j*: h(X,A) =
h{(X—-U,A—U).

o Additivity: If X = [ T; X; then h¥(X) = @’ hi(X;).

e Eracness: Given inclusionsi: A — X and j : X — (X, A) we get the long exact
sequence - - - — W T(A) Bhk(X, A) 5 hE(X) B hkA) = -

Surprisingly such a theory is entirely determined by the value of the functor
evaluated at a point h*(e) called the coefficient group. For ordinary cohomology
H*(e) =Z.

For excellent accounts of K-theory we refer the reader to [Ati89, [Kar(8§].

Let X be a compact topological space. We denote by Vect(X) the category of all
complex vector bundles on X, and by Z[Vect(X)] the free abelian group generated
by the objects of Vect(X). Write N to denote the subgroup of Z[Vect(X)] generated
by all those elements of the form

[E] + [F] — ([E] & [F]),
then we can define the K-group of X as
K(X) := Z[Vect(X)]/N.

We can endow K(X) naturally with the structure of a ring by defining the product
as the pull-back under the diagonal map of the exterior tensor product of bundles
on X x X.
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The group K(X) satisfies the universal property for abelian homomorphisms
Z[Vect(X)] — G, namely every such homomorphism factorizes through the canonical
homomorphism Z[Vect(X)] — K(X). From this it is an easy exercise to show that
every element of K(X) can be written in the form

[E] — [F],

for vector bundles E,F over X. This is used throughout this book.

Using partitions of unity we can show that every bundle E can be realized as a
sub-bundle of a trivial bundle (of large dimension M). We write M - € to denote
such trivial bundle over X. By using the Gram-Schmidt process we can construct
then a complementary bundle E+ so that E@ E+ = M- €, hence we can improve the
previous statement to say that every element in K(X) can be written in the form

[E] — M- [€],

for some bundle E and some integer M.

We define the reduced K-ring by making K(X) to be the kernel of the map K(X) —
K(e). In turn we define )
K(X,Y) :== K(X/Y),

and

KX, Y) := K(ZYX/Y)),

where I is the reduced suspension L(X) := S' A X. Using this definitions Atiyah
and Hirzebruch proved that K*(X,Y) defines an extraordinary cohomology theory
[AH59, [AH61].

Ordinary cohomology and K-theory do not coincide, and the coefficient group of
K-theory is computed by the ring homomorphisms established by the Bott period-

icity theorem:
K™ (o) = Z[B].

The Bott periodicity theorem implies that K-theory is Z; graded and periodic:

K*H2(X) ~ K*(X).

There is a very convenient isomorphism between K(X) ® Q and H*(X, Q) given
by the Chern character
ch: K(X) ® Q — H*(X,Q),

and completely determined by the requirement that ch(L) = e* for line bundles,
where x := c¢1(L) denotes the first Chern class. This completely determines the
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Chern character because of the splitting principle. The splitting principle states
that whenever we have a bundle E — X we can find a space Y and amapp:Y — X
so that p*(E) is a direct sum of line bundles p*(E) = L1 & --- ® Ly over Y, and
p* is injective in cohomology. This allows us to pretend that every bundle in the
sum of line bundles in calculations. Such calculations are performed in the variables
X1, ..., Xk, where x; := c¢1(L;) are known as the Chern roots of E.

There is analogous concepts in K-theory of most concepts in cohomology. In par-

ticular one has the K-theoretic Euler class. This can be defined as follows. Consider
the homomorphism A¢: K(X) — K(X)[[t]] given by the generating series

M(E) =) [AREILN,

k>0

satisfying
A(E D F) = Ac(BE)A(F).

Then we define the K-theoretic Euler class by defining it on generators of Z[Vect(X)]
by evaluation at t = —1:

A(E) =) (—DMARE]L

k

That this is the Euler class can be justified by noticing that ch(A_1(E)) = e(E)-u(E)
where e(E) is the cohomological Euler class and w(E) is invertible in cohomology.
Whenever we use the letter e for other purposes in our calculations we denote the
cohomological Euler class by Eu(E) := e(E).

Ezample 18.1. Let us take a bundle E and add a trivial bundle or rank M to obtain
E® Me. Then A_1(E® Me) = A_1(E)A_1(Me). And we compute:

Aa(Me) =) (=1)FAKMe)] = Z(—nk(M) [e] = (=) +DMe=0-e=0,

k
k Kk

and hence A_1(E ® Me) = 0. Using the Chern character we conclude immediately
that e(E @ Me) = 0.

Let us mention the Brown representability theorem. Is states that for every
reduced cohomology functor h there is sequence of spaces P™ such that we have a
natural isomorphism h*(X) ~ [X, P¥]. Here [X, P] is the set of homotopy classes of
maps X — P. Moreover the spaces P™ are not quite independent but they form
what is known as an Q-prespectrum. What this means is that the spaces P™ come
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equipped with homotopy equivalences qn : P* ~ QP™! where QP is the space of
based loops S' — P on P.

For ordinary cohomology the spaces P™ = K(Z,n) are known as the Eilenberg-
McLane spaces.

For K-theory the space Z x BU in the zeroth space of its associated spectrum,
thus determining the whole spectrum. Here BU is the classifying space of the infinite
unitary group U = lim U(n).

This extends the definition of K(X) := [X,Z x BU] to non-compact spaces X.

A remarkable fact relating K-theory and functional analysis is the fact that the
space F of Fredholm operators on a separable Hilbert space H satisfies the following

homotopy equivalence:
F ~7 x BU.

This is the starting point for index theory.

For excellent accounts of K-theory we refer the reader to [Ati89, [Kar(§].

18.2 Orbifold K-Theory

In their seminal paper [DHVWSG], Dixon, Harvey, Vafa, and Witten defined the
orbifold Euler characteristic of an orbifold X = [M/G] by the formula

xor(X) = = 3 x(Mom), (54)
G 2
gh=hg

where (g, h) runs through all the pairs of commuting elements of G and M9™ is
the set of points in M that are fixed both by g and by h. They obtained this
formula by considering a supersymmetric string sigma model on the target space
M/G and noting that in the known case in which G = {1} the Euler characteristic
of X = M is a limiting case (over the worldsheet metric) of the partition function
on the 2-dimensional torus.

In essentially every interesting example, the stringy orbifold Fuler characteris-
tic Xorb(X) is not equal to the ordinary Euler characteristic of the quotient space
x(X). More interestingly, Xxorb(X) is truly independent of the particular groupoid
representation, namely if X = [M/G] = [N/H] then it does not matter which rep-
resentation one uses to compute Xorp(X). In other words, this is a truly physical
quantity independent of the choice of coordinates. This last remark, which can be
readily verified by the reader, is quite telling, since a priori the sigma model depends
on the particular groupoid representation. But as the theory is indeed physical, the
final partition function is independent of the choice of coordinates.
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Moreover, since the partition function of the theory is physical, one may expect a
stronger sort of invariance. Should there be a well-behaved (smooth) resolution of X
defining the same quantum theory, then one should have that the Euler characteristic
of the resolution is the same as that of the original orbifold. Here we are shifting
our point of view, thinking of an orbifold as the quotient space with a mild type
of singularities. It is a remarkable fact in algebraic geometry [Car57] that in good
cases, remembering X plus some additional algebraic data (for example the structure
sheaf), one can recover X. This point of view has proved extremely fruitful as we
shall see. In any case, it often happens that there are resolutions of X, the crepant
resolutions, for which the quantum theory is the same as that for X. We will come
back to this later.

There is, of course, a far more classical interpretation of the Euler characteristic,
the topological interpretation. The classical interpretation of the Euler characteris-
tic in terms of triangulations tells us that the Euler characteristic is the alternating
sum of the Betti numbers, namely, the ranks of the cohomologies of the space in
question. Thus, a natural question is whether there is a cohomology theory for an
orbifold that is physical and that simultaneously produces the appropriate Euler
characteristic of Formula . One is first tempted to consider equivariant coho-
mology Hi (M) = H*(M x gEG) but unfortunately the relation between cohomology
and Euler characteristic breaks down, for the expression is not recovered.

Considering the orbifold X = [*/G] consisting of a finite group acting on a single
point gives us a clue into the right answer. In this case, Xorb([*/G]) becomes the
number of pairs of commuting elements in G divided by |G|. An amusing exercise in
finite group theory readily shows that this is the same as the number of conjugacy
classes of elements in G. Given a finite group there are two basic quantities that
we can consider, its group cohomology H*(BG) and its representation ring R(G).
While equivariant cohomology is akin to group cohomology, it is equivariant K-theory
Kg(M) that is intimately related to representation theory. For a start, Kg(*) =
R(G).

As a first test, we consider an orbifold X = [M/G] = [N/H] and see whether the
theory is invariant under the representation. This is not too hard (see for example
ILUO4al, [ARO3]), and hence it fully deserves the name of orbifold K-theory and can
unambiguously be written as Korp(X) = Kg(M) = Ky(M).

The second test is to see whether we can recover Formula (b4). That this is
possible was first observed by Atiyah and Segal [AS89]. The idea is to use the Segal
character of an equivariant vector bundle. Let us remember that the basic cocycles
of equivariant K-theory are G-equivariant vector bundles [Ati67], namely bundles
p: E — M over the G-manifold M with a G-action by bundle automorphisms on
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all of E that extends the action on M (considered as the zero section) and that is
fiberwise linear. Should there be a fixed point m € M, then Ep :=p~'(m) becomes
a representation of G; in particular, if the space M is a point then a G-equivariant
vector bundle over M is the same as a representation of G (by choosing a basis we
get a matrix for every g € G).

The (Segal) character of an equivariant vector bundle is an isomorphism [Seg,
Moe(2] of the form

Ke(M)® C — PKM9) @ g, (55)
(9)

where the sum is over all conjugacy classes (g) of elements g € G.

The character isomorphism is explicitly given by the expression

KeM)@C — KM9C9 g

E®@1 — char(E)(g) =) (Elmo)c® (.
¢

Here the sum is over all roots of unity (, the symbol ( ); denotes the (-eigenspace
of g, and finally M9 is the subspace of fixed point under g of M. We call this
isomorphism the Segal localization formula (for it localizes equivariant K-theory to
ordinary K-theory of the fixed point sets). Clearly, in the case in which M is a point,
this recovers the usual theory of characters for the finite-dimensional representations
of a finite group. Remarkably enough this is indeed related to the localization of
equivariant K-theory as an R(G)-module with respect to prime ideals [Seg68b].

From Segal’s isomorphism (55) we conclude immediately that [AS89 BC88, [Uri]
1
rankKG(M) —rankKg(M) = 3 x(M?/Clg)) = 1= 3 x(M®") = xor(X).
(9) gh=hg
Here we have applied the algebraic equality
xoro(X) =) x(M9/C(g)),
(g)

which follows by an inclusion-exclusion argument [HH90]; in the next section we talk
about a geometric explanation for this algebraic fact.

For now let us mention that the theory described in this section can be gener-
alized to orbifolds that are not necessarily global quotients [LUO04a, [AR03]. This is
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done as follows. We will denote by Xy and X; the set of objects and morphism of
our orbifold groupoid respectively, and the structure maps by

1 S
X7 e xs X7 == Xy ——= X3 —=% Xo — X1,
t

where Xj ¢ Xs X1 is the subspace of X; x X7 such that whenever (o, ) € X7 ¢ Xs X1
then the target of o equals the source f3; s and t are the source and the target maps
on morphisms, m is the composition arrows, i gives us the inverse morphism, and e
assigns the identity arrow to every object.

We define a vector orbibundle over X to be a pair (E,T) where E is an ordinary

vector bundle over Xp and T: s*E 3 t*Eis an isomorphism of vector bundles over
Xj.

The set of isomorphism classes of such orbibundles is denoted by Orbvect(X)
and its Grothendieck group by K°, (X) [LU04a].

orb
This coincides with equivariant K-theory if the orbifold happens to be of the
form [M/G].
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19 Appendix: The McKay Correspondence

In this appendix we will assume that the reader is comfortable with the language of
algebraic geometry. Let us consider a classical example. Let G be a finite subgroup of
SL,(C); then X = C?/G is called a Kleinian quotient singularity; see [Slo80, DLHSTI)
for more details and historical discussion. In the second half of the 19th century,
Klein classified the possible groups G as either cyclic, dihedral or binary dihedral
and gave equations for these singularities in C3. Let us consider the simplest case
in which G = Z/r7Z. We can realize X as a subvariety of C3 by

X:z'=xy
or, in parametric form,
x=u’"
y=v' (56)
z=uv

as the image of a map C? — C3 by G-invariant polynomials. We can resolve the
singularity very easily in this case by taking (r — 1)-blow ups to obtain

Y -5 x
where the exceptional divisor is
¢ (0)=EjUEU - UE,4

whose incidence graph is A;_1.
On the other hand, G clearly has r — 1 nontrivial irreducible representations.

The McKay correspondence establishes (among other things) a one-to-one corre-
spondence between the number of components of the exceptional divisor in a minimal
resolution of the singularity and the number of nontrivial irreducible representations
of G. Notice that in our example this is equivalent to the statement that the orbifold
Euler characteristic of X is the same as the ordinary Fuler characteristic of Y. So
one may expect that some functional integral argument may be provided to prove
the McKay correspondence.

There is in fact a rigorous version of the functional integration method in alge-
braic geometry discovered by Kontsevich [Kon| and known as motivic integration.
We now briefly outline the construction of this method.

Given a smooth complex variety Y, one can define its arc space JY. This is a
scheme whose C-points are arcs y: Spec(C[[t]]) — Y. The scheme JY is obtained as
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the inverse limit of the jet schemes JmY, whose C-points are jets ym: Spec(C[t]/(t™H1)) —
Y. The morphisms J,Y — JY, for 0 < m < p < oo, are given by truncation. For
any effective divisor D C Y, one can define an order function

ordp : JY = Z>o U{oo},

which to each arc vy associates its order of contact ordp(y) along D. The idea is
then to “integrate these functions,” in some reasonable sense. But first one needs
to introduce the algebra of measurable sets and the measure. The first is easily
defined as the algebra generated by cylinder sets in JY, namely, inverse images of
constructible sets on finite levels J,,,Y. The measure will then take values in the
so-called motivic ring.

The motivic ring is constructed as follows: we fix a complex variety X and assume
that Y is an X-variety (that is, a complex algebraic variety of finite type over X). Let
Ko(Vary) be the ring generated by X-isomorphism classes of X-varieties subjected
to the relation

{Vi={VAW}+{W}

whenever W is a closed variety of a X-variety V. The product is defined by
{VI-{W}={V xxW].

The zero of this ring is {@}, and the identity is {X}. We let
Mx = Ko(Varx)[Ly '],

where Lx is the class of the affine line over X. Finally the motivic ring is the
completion J\//E\X of Mx under a certain natural dimension filtration [Loo02) [DL02b!
DFLNUOT].

Via composition, every subvariety of the jet schemes of Y can be viewed as an
X-variety. Thus, one can define the motivic measure of a cylinder C C JY by fixing
a large enough integer m such that C is the inverse image of a constructible set
Cm € JmY and then setting

M(C) = {Cm} - L™ ™Y € Mx.

Then, by suitable stratification, one defines the motivic integral

J LiordD du e ﬁ[x.
JY
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For instance, if D = ) ajDj is a simple normal crossing divisor and we define

?:ﬂDj\UDi»

j€] iZ]
then one has
d
J =Y R ]
JY JCI ie] I—

The power of this theory is a change of variable formula; this allows us to reduce
to computing integrals for divisors with simple normal crossings (hence apply the
above formula) by replacing any effective divisor D on Y by D’ = Ky/ y+¢*D, where
g:Y' — Y is a simple normal crossing resolution of the pair (Y, D). The theory can
be also extended to singular varieties (under suitable conditions): in this case the
measure itself needs to be opportunely “twisted” to make the change of variable
formula work. The resulting measure is called Gorenstein measure and denoted by
l‘LGor‘

We can now review the motivic McKay correspondence [DLO2b| [Loo02, Rei02].
To give a formulation of this correspondence that better fits with the localization
principle of this book, we need to further quotient the ring Ko(Varx) by identifying
X-varieties that become isomorphic after some étale base change X; — Xx C X of
each piece Xy of a suitable stratification X = | | Xy of X. We obtain in this way a new
ring: Ko(Varx)®t. This leads to the definition of a different motivic ring, which we
denote by ﬁ[;" (the reader will notice that, if X is a point, then we are not changing
anything).

Let X = [M/G], where M is a quasiprojective variety and G is a finite group, let
X = M/G, and assume that X is Gorenstein. We can find a resolution of singularities
Y — X with relative canonical divisor Ky/x having simple normal crossings. Write
Ky/x = >_a;D;. Then the McKay correspondence is given by the identity

Y on[]-2+— a]H — =Y (M9/ClgNLY'? in M, (57)

JCI JGI (9)

where the sum in the left side runs over conjugacy classes (g) in G and w(g) are
integers depending on the local action of g on the normal bundle of M9 in M.

For instance, by noticing that the Euler characteristic defines a ring homomor-

phism

et

x: Ko(Varx) — Z,
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it is easy to see that Formula implies the classical McKay correspondenceﬁ
which in particular says that the orbifold Euler characteristic is equal to the ordinary
Euler characteristic of the resolution if the latter is crepant.

The proof of Formula breaks into three parts. By the change of variable
formula, one has

L-—1
0 Gor __ 2 ) I I .
JIX Lxdl»l or _ {DI} W 1m ﬁ[x.

Jel €]

Then, by an accurate study of lifts of the arcs of X to arcs on M, one proves that
J L3ducor =3 (x" Y L¥™ in Fix.
X MM

Here the first sum runs over conjugacy classes (H) of subgroups of G, X" C X is
the image of the set of points on M whose stabilizer is H, and the last sum is taken
over conjugacy classes in H. The above identity is the core of the proof. Finally,
one shows that

S Y L™ = 3 (Mo/CloLR i i
(H) (h) (9)

Here is where we need to pass to the ring ﬁ[fg‘ This last part can be easily verified
using certain properties of Deligne-Mumford stacks (see [DFLNUQ07]). In general,
if we do not perform the additional localization in the relative motivic ring, but
instead work with the ring JV[X, we do not expect the last identity to hold.

These results have been extended to general (not necessarily global quotient)
orbifolds independently by Yasuda [Yas04] and by Lupercio-Poddar [LP04].

In [DFLNUOQ7], we used a natural homomorphism from Ko(Varx) to the ring of
constructible functions F(X) on X to associate to any motivic integral an element in
F(X)q, that is, a rational-valued constructible function on X. In fact, one observes
that this construction factors through Ko(VaTX)etH The result is the following
localization formula for constructible functions:

(flpg )« Tpg

Mol n > (mg)eIme sl in FIX), (58)
JCI

(9)

3Here we are referring only to the counting statement, and not that we recover the full incidence
graph of ¢~ (0) from the representation theory of G, as the classical correspondence establishes.

“In particular, this tells us that the identification performed to define ﬁ[ff does not trivialize
the ring too much, as we can still recover all the information in F(X).
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where g : M9/C(g) — X is the morphism naturally induced by the quotient map
n: M — X [DELNUOQ7, Theorem 6.1].

Motivic integration was used in [DEFLNUQOT] to define the stringy Chern class
Cstr(X) of X. In the case at hand, we use the MacPherson transformation [Mac74]
to deduce from the following localization formula for the stringy Chern class of
a quotient [DELNUOQT, Theorem 6.3]:

csr(X) = Y (7g)ucsm(M9/C(g))  in AL(X),
(9)

where cgy(M9/C(g)) is the Chern-Schwartz-MacPherson class of M9/C(g) [Mac74].
This generalizes and implies Batyrev’s formula for the Euler characteristic [Bat99].
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20 Appendix: Orbifold Index Theory

20.1 Orbifolding Atiyah-Singer

Suppose that we have a compact symplectic 2Zm-dimensional manifold N with sym-
plectic form w and that H: N — R is the Hamiltonian function of a Hamiltonian
circle action. Let Fy be the critical manifolds of H (namely the fixed points of the
action) with critical values Hy. The Liouville volume form on N is w™/m!. The
Duistermaat-Heckman formula reads [AB84, [DHS&2]

m w

J ehHw _ Z e’hH(XJ e
- )

N m! x Fua Eoc

where E4 is the equivariant Euler class of the normal bundle of Fy in N. If h is
taken as purely imaginary, the integral over N is oscillatory, the submanifolds F
are the stationary points of H, and the right-hand side of this formula is given by
stationary phase approximation.

Witten [Ati85] had the idea of using the Duistermaat-Heckman formula in the
case N = LM, the free loop space of a manifold M, with Hamiltonian

1

Hiv) = 3§, y'(0Rat

In this case Atiyah defines a symplectic form on LM whenever M is compact
and orientable. Then he goes on to show that when M is a Spin manifold, LM
is orientable. Moreover, he shows that the left-hand side of the corresponding
Duistermaat-Heckman formula is the heat kernel expression for the index of the
Dirac operator while the right-hand side is the ﬂ—genus, thus giving the Atiyah-
Singer index theorem.

We do the same now for the loop groupoid. In order to simplify the calculation,
we will consider the case of a global quotient X = [M/G], but everything that we
will say generalizes to general (non—global-quotient) orbifolds. We will suppose thus
that M is a compact, even-dimensional spin manifold such that for every g € G the
map g : M — M given by the action is a spin-structure-preserving isometry. We
will argue that applying stationary phase approximation to the integra]ﬂ

J e E@UTr ST(Ty) — Tr S™(Ty) 1 Db (59)
Pg

°In [Ati8H) it is explained how to make sense of this integral.
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one obtains

S‘pin(M, 9) = ind—g(D-’_) = tr(9|kerD+) - tr(9|cokeTD4r )a

the value of the g-index of the Dirac operator D" over M. Here E is the energy of
the path (Hamiltonian)

27
E(¢) = J (1)t

0

D¢ denotes the formal part of the Weiner measure on Py, Ty, is the tangent space
at ¢ € Py, and ST, S denote the two half-spin representations of Spin(2m) (2m =
dim M).

The real numbers act on Py by shifting the path

PgxR — Py
(f,s) — fs:R—M
fs(t) :=f(t—s)

and the fixed point set of this action on Py consists of the constant maps to M9
(the fixed point set of the action of g in M), that is,

(Pg)* = M.

Applying the stationary phase approximation (see [Ati85, Formula 2.2]) to the
integral , we get

@y TL(tmy — o) — JMQ IT;(tm; — iag)’ (60)

where the energy of the constant paths is zero, the m; are rotation numbers normal
to M9, and the «; are the Chern roots, so that the total Chern class of the normal
bundle N to M9 is given by
[T+ o).
j
20.1.1 The Normal Bundle

For f € Py, the tangent space T¢ at f can be seen as the space of maps

0:R— f"TM
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such that o(t)dgg) = o(27 + t), so for the constant map at x € MY, its tangent
space is equal to the space of maps

c:R—>TM

with o(t)dgx = o(2w + t).

We can split the vector space T,M into subspaces N(60) that consist of 2-dimensional
spaces on which dgy rotates every vector by 0 (see [LM89]):

TM =N(0) & O N(6).
0

It is clear that the number of @ is finite, that we could choose them in the intervalf]
0 < 0 < m, and that N(0) = T,M9.

The constant functions
{o0:R— TuM? = N(0) | o is constant} C TPy

give the directions along M 9. We are interested in finding a description of the normal
directions of M9 in T, P.

Let 25(0) := dimgN(0) and, for L = 1,...,s(0), let N{(0) be the 2-dimensional
subspaces fixed by dgy through the rotation of 8. Then any o € T,P4 can be seen
as

G:ZG? with o : R — Ny(8).
1,0

Let Ny(0)€ be the complexification Ny(0) ® C. Then
N =LiaL,

where Ly is a complex line bundle, the action of dgx on Ly is by multiplication by
e and L is the conjugate bundle of Ly (see [LM89, p. 226]). The map

o¥ 1 R — Ny(6) € Ny(8)€
can be seen in Ly @ L via a Fourier expansion as

. .. 0
o B ax eltkeltﬁ 0
of(t)=)_ < b > < 0 oitkg—it (61)

keZ

5For simplicity we will assume that the eigenvalue 7t is not included, in order to avoid the use of
Pontrjagin classes. The result still holds with 7t as rotation number.
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with ax € L, by € Ly, ax = a_x and by =b_y (the last two equations hold because
> axe™® and 3, bye't® are real for all t; in particular ag, by € R).

Then the tangent bundle to TPy can be decomposed as an infinite direct sum
M@ (M) @ (M), @ ---

with
(TME)p = (N(0)%)n @ EDIN(O)%)n
0

where the circle acts in each (N(0)€),, by rotation number n. The coefficients
(ay, by) of the Fourier expansion of take values in (N(8)%)y for k > 0, (ap, bo) €
N(G), and (ak,bk) = (H,a) for k < 0.

As TM = N(0) & @PgN(0) and N(0) = T, M9 represent the directions along
M9, the normal bundle to M9 in Py can be represented as

{NO @ (N0} o @ {NE) @ (NO)) & (N©))2 8- .

0
Let the Chern class of N(8) be
s(0)
[T +ud,
k=1
so its g-Chern character is
s(0) s(0)
e .
chg(N(0)) = 3~ ch(Nk(0))x(g) = Y e¥i+1?,
k=1 k=1

then the g-Chern class of the complexification of N(0) is

s(0)

[T0+vR+i0)(1 —yp —i0).
k=1

If we let xi denote the Chern classes of M9, then the denominator in with

t = 1 becomes

s(0) s(0) 0

[TIT(»*+3) TT{ TTwe +i0 [T (p*+ Wi +i0)) ¢,

ji=1 p=1 0 k=1 p=1
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which is formally

s(0) 00 . 0 .
5> | sinh(7rx;) smh(ﬂ(yk +10))
j=1 p=1 T[Xj 0 k W(U]% + le)

Replacing the infinite product of the p? by its renormalized factor 27, we get
2 sinh(7tx;
| L (%)) T {stinh(vr(yi + iG))} ,
j X 0 k
which is the same as

inh(x;/2 inh((yy +16)/2
IE XJ%/)H{HS ((yr/?)/)} (62
j k

0

provided we interpret H _,tas %0 where {(s) is the Riemann zeta function. As

¢(0) = ;, in each component we get a factor of t which cancels with the factor
t~! that arises from replacing x; by x;/t and y?( + 10 by (y]e( +10)/t. Our use of
the stationary phase approximation is independent of t, and setting t = 27t we get

formula .

In the notation of [LM89] p. 267] formula is equivalent to

—1
(A(Mg) HA(N(G))) ,
0

which after replacing it in the denominator of and integrating over M9 matches
the formula for Spin(M, g) [LM89, Th. 14.11]:

Spin(M, g) = (—=1)"9A(M9) {HA } 9],

We conclude that after applying the stationary phase approximation to , we
obtain the g-index of the Dirac operator.

Proposition 20.1. The path integral
J e RPNy ST(Ty) — Tr S (Tp)}ddp = Spin(M, g)
TQ

equals indg(D™), the g-index of the Dirac operator over M.
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20.1.2 The G-index and Kawasaki’s Formula

The G-index of the Dirac operator is an element of R(G), the representation ring of
G. Using localization, its dimension is equal to

indg(D") = |G| Zlnd (D) = €] Z Spin(M, g).
geG

But instead of summing over all the elements g in G, we could sum over the conju-
gacy classes of G. It is clear that Spin(M, g) = Spin(M,h~'gh). The size of the

conjugacy class (g) of g is % where C(g) is the centralizer of G, that is, the set

of elements which commute with g (equivalently, the fixed point set of the action of
G in g via conjugation). Thus, we obtain

:
indg(D") =) mspm(M,g).
@ 9

We would like to derive a formula that depends on the twisted sectors (inertia
groupoid) of the orbifold X = [M/G], and this clearly matches our previous descrip-
tion. In [LUO2D] it was argued that the fixed point set of the action of R in the loop
groupoid LX was precisely I(X) the inertia groupoid of X; then, applying stationary
phase approximation to

J e Ty SH(Ty) — Tr S™(Ty)1 Do,
LX

which can be rewritten as

ZIC(]Q)IJ e T ST(T,) — Tr S™(Ty)} Do,

we get the G-index of the Dirac operator,

. (—1)% o N
indg(D") =) AMIYTTAMN(®
™ IC(9g)] JMQ

0

Which can be shown to coincide with the formula given by Kawasaki [Kaw81l, p.
139] for the index theorem for V-manifolds. Thus, the localization principle applies
in this case.
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20.2 The Elliptic Genus

We move on now to localizing functional integrals in the double loopspace L2M =
LLM = Maps(T, Maps(T, M)) = Maps(T?, M), where T = S! and T2 is the 2-torus.
By performing the corresponding functional integral over L?M, we should obtain
the index of the dirac operator over LM considered by Witten in [Wit88] and known
as the elliptic genus [Seg88b]. This has been verified by Ando and Morava [AMO01].
We want to perform the calculation in the orbifold case (cf. [AFQT]).

Let the groupoid X be [M/G], and let the torus T be represented by the groupoid
[R?/Z & Z]. The double loop groupoid L*X is the category with smooth functors
T — X as objects and natural transformations between functors as morphisms.

A morphism in L?X can be seen as

RZ2x (Z®Z) — MxG

U u
R? — M,

that is, as a map F: R* — M together with a homomorphism H: Z & Z — G such
that F is equivariant with respect to H. This is equivalent to choosing a pair of
commuting elements g,h € G such that F(1,0) = F(0,0)g, F(0,1) = F(0,0)h and in
general F(n, m) = F(0,0)g™h™.

"D

The group R? acts naturally by translations on the double loop groupoid. This
action factors through R?/{|G|Z & |G|Z} because every orbifold loop can be closed in
M/G.

The fixed points under the action of R? are the constant double loops; they are
uniquely determined by a choice of a point in M and two commuting elements in G.

The groupoid of ghost double loops is the groupoid whose objects is the set of
functors
Funct([+/Z @ Z],[M/G])

330



and whose morphisms are natural transformations (i.e., it is a groupoid [(Funct([*/Z®
Z],IM/G]))/G] with G acting by conjugation on the functors).

Here we will apply the stationary phase approximation formula to the double
loop groupoid, which we have shown above to be endowed with an action of the
torus.

We will use an alternative description of the double loop groupoid. Its elements
will be smooth maps

$: 0,112 = M

together with commuting elements g, h € G such that ¢(1,0) = $(0,0)g, ¢(0,1) =
$(0,0)h. Call this set L<zg h>M and take

2L — 2
LM = | ] L7gmM.
{l9.h)€ G?|gh=hg)

The natural action of conjugation by elements in G gives us the description: L2X =
[(L2M)/G].

We consider the functional of double loops

- de o, dd o :
(@)= | G RIS a

we will apply stationary phase approximation a la Witten-Atiyah to the Feynman
integral

J e_w{(d’)Dd).
L2X

We need to find the equivariant normal bundle on L%X to the fixed points of the
action of R?, namely the ghost double loops.

For commuting g,h € G, take the part of the groupoid of ghost double loops
parameterized by M{9™ | the fixed point set of the group generated by g and h. Call
t: M{@M <y M the inclusion, and suppose the the orbifold X is a complex orbifold
(the pullback bundle t*TM can be locally simultaneously diagonalized with respect
to the actions of g and h). Then one can write the total Chern class of *TM as
Hj(] +%;) such that the line bundle x; comes provided with the action of the group
(g, h) parameterized by the irreducible representation A;.

We are using the following fact about equivariant complex K-theory. If a group
" acts trivially on a space Y, then

Kr(Y) = K*(Y) @ R(I"),
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that is, the equivariant K-theory of Y is isomorphic to the ordinary K-theory of Y
tensored with the representation ring of I'. Then the equivariant Chern character
associated to the (g, h) equivariant line bundle x; is chigny(xj) = €9 ® X»;, where
e is the Chern character of the line bundle and X 18 the character of the A;
representation. As we have simultaneously diagonalized the actions of g and h, the
character of an irreducible representation is determined by a root of unity associated
to each g and h. So let 0j: (g,h) — [0,1) be such that xy (g) = e2795(9); then one

can consider (14 x;j + 27io;) as the Chern class of the equivariant bundle x;.
The equivariant Euler class of the normal bundle of the embedding of ghost
double loops
(g,h) 2
M — LignM

is then

H al H H (% + 1P + kg + 05(g)p + 05(h)q) p,

. Xj .
{jloj (g)=03 (h)=0} i (kl)ez?

where p and § are formal variables that keep track of the fractional periods of each
of the circles of the torus.

Applying the fixed point formula (3.2.1) of Ando-Morava [AMO1], one obtains

nghM Mo . 1

{loj (g)=03 (h)=0} i (k,Dez?

Rearranging the expression in the second parenthesis by factoring kg and keeping
the 1 fixed, the second parenthesis becomes:

~ . : 20\ !
H (H 2a2> ( X +1p + Uj(g)ﬁ-i-o‘j(h)a)n <] _ +1ﬁ+0;f29a)2ﬁ+01(h)a) )) .

leZ \k>0 k>0

Renormalization (see [Ati85, [AMOI]) gives

H Zaz 27-[

k>0

1 P
H <1 Cx+lp+ G;fzga)zﬁ + Gj(h)ﬁ)z> . q :

270 i (%(X) +1p + o5(g)p + Gj(h)a)> '

k>0
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2
Replacing the variable § by its holonomy 27i, our push forward pL<9vh> M(1 ) becomes

1

M9 2
b X . ;
H ) HHsmh 3 (x5 +19 + 05(g)p + 2mio;(h))

{iloj (g)=05 (h)=0} i ez

pairing the hyperbolic sines of | and —1 one gets that
(xj + 1P + 05(g)p + 2mioj(h)) (x; — 1P + 03(g)p + 2mioj(h))

2sinh > 2sinh — > =
1—e ™9 (g)p—27tioy (h)—1p eX +0j (g)p+2mic; (h)—1p _ 1
o3 (x+0j (9)p+27tio; (W) o3P o5 (x5 405 (9)p+2mioy (h)) g —5P
As a result,

2
pSlam™M(1) = pMY IIT o~

2
1:1 sinh § (x; + 05(g)p + 27ioj(h)) H (1 — e™59 (9)Pp—27io; (W)=1P) (] _ gx;+0j (g)P+27ic; (h)

1>0

:pM<9'h> H X; (—eﬁ)%x

{iloj (g)=0; (h)=0}

—xj—0j (g)p—27ticj (h))

(

ez

1]:)[' (] — e 0 (g)p—2mic; (h)f(lf”ﬁ)(] — eXto; (g)p+2mic (h)flﬁ)
> 7)

Making the change of variables p = e P, assuming that the first Chern class of M
satisfies ¢1(M) =0, i.e. H]- e¥ =1, and integrating over M{9"  we have that

clim(M)+i7TI age(g) _
D< 12 2 ) mriage( {H{]‘G) )_O}XJ}

H1>o,j (1 _p1—1+0j(9)e xj—2mio (W) (1 — p- 0']( )e><q+2mcr](h))

p oM7) = miom],

Adding all the fixed point data and averaging, one gets the orbifold elliptic genus:

Eu—orb( [M/G]) =
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GEmM) g mea))
i D< 2 2 >e iage( ){H{j\aj(g):aj(h]:o}xj}
Gl &= Tlieo; (1 —pt1toi(gle—2mioi (W) (7 — pl=oj(9)ex;+2mic; (h)
gh=hg :

M i,

This coincides with the constant term in the y-expansion of the formula of
Borisov-Libgober [BL03, [DMVV97, [DLMO02] except for a renormalization factor.

One could use a device like that of Hirzebruch [HBJ92] to recover the full formula.
In any case the localization principle holds in this case.
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21 Appendix: Loop Groups and nearly Frobenius alge-
bras

Let us start by some general abstract considerations concerning nearly Frobenius
algebras useful from the point of view of Morse theory.

Proposition 21.1. Let A be a Frobenius algebra with trace © and let A be its natural
nearly Frobenius structure. Let {ei} be a basis for A and {ei#} be its dual basis with
respect to 0. If the structure constants of A are

Ale;) = Z Aijkej & ef,
1k
then
Aijk = 9(efejek).

Proof. By looking at the picture:

ef

(63)
we compute:

e(efe]—ek) =0R(Meam(IeA® 1(efejek))) =

6®9(m®m(z ANre@eley)) = 6®9(Z ?\juefq@efek) = Z )\jue(efﬁel)e(efek) = Aijk.
Lr

1r 1r

L J

From this we conclude that the structural coefficients of A serve as substitutes
in TQFT+ of 3-point functions in TQFT.

The theory of loop groups [PS86] provides some highly non-trivial examples of
nearly Frobenius algebras using infinite dimensional Morse theory. In that theory
infinite dimensional manifolds with natural Morse functions naturally appear. These
are not arbitrary manifolds but rather they posses what G. Segal calls a polarisation
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of the tangent bundle inducing a semi-infinite structure on their topology. We shall
not go too far afield by simply stating three results from [GLU12].

Let us start by describing two semi-infinite dimensional manifolds that appear
in [PS86], [CLS99] and [GOOI].

The first one is Gr™ the Grassmannian model for the loop group QSU,, defined
in pages 125 and 127 of [PS86]. Roughly speaking if we consider the Hilbert space
H=HM = 12(ST,C") of vector valued functions f(z) € C™. We must consider the
natural polarisation

H=H,®&H_
defined by
feH; & f(z) = ZAka,
k>0
and

feH &flz) =) A",
k<0

Then by definition a subspace W of H is an element of Gr(™ if and only if:

The orthogonal projection pry : W — Hy is Fredholm,

the orthogonal projection pr— : W — H_ if Hilbert-Schmidt,

for some k we have zKH, C W C z7*H .,

and finally zW C W.
In page 118 of [PS86] it is proved that there is an energy functional
€:Gr™ S R,

which is a Palais-Smale Morse Function on Gr(™. The stable and unstable cell
decompositions for this Morse function are called the Bruhat and Birkhoff cell de-
compositions of Gr™. Every Bruhat cell C; is finite dimensional and their closures
e; = C; form a basis for the homology H,(Gr™). Dually every Birkhoff cell X is

finite co-dimensional and their closures ef = J; form a basis for the cohomology of

H*(Gr(™). We have that e; and e]# are either disjoint or they intersect transversally

and in fact
=5

e;N e’ = 0ij.
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Notice that if there was a trace 8 (Poincaré duality) in H, (Gr(™) with its natural
intersection product we would have

Blei-ej-eff) = (ei-ejlell) =eineynel.

The infinite dimensionality of Gr(™ implies that there is no such 0 for there is no
Poincaré duality. Nevertheless we can define

7\ijk =eiNeN ef,

and
Alei) = Z(ei Ne;N ef)ei ® ef,
1,j,k

and we can prove [GLU12] that:

Theorem 21.2. The homology of the loop group Hy(QSUy) = H,(Gr™) has a
natural structure of nearly Frobenius algebra.

There is a closely related space FL™ called the periodic Flag manifold (page 145
of [PS86]). An element of FL™ is a sequence of subspaces {WyJx so that

e cach Wy belongs to Gr(H™),

o Wi1 C Wy, and dim(Wy/ W) =1,

o zWy =Wy in.

Using the same methods and the results of |[GOO01] we get [GLU12|:

Theorem 21.3. The cohomology H*(FL™) of the periodic flag manifold and the
quantum cohomology QH# (FLOW) have natural structures of nearly Frobenius alge-
bras.
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22 Appendix: The Calculus of Obstruction Classes

In this appendix we develop the technical machinery of obstruction classes for our
computations of virtual fundamental classes. For now on we shall assume that all
the manifolds are almost complex manifolds, this is not essential but rather allows
us to forget the signs in the calculations.

Let Y, Z be closed submanifolds of X which intersect cleanly, that is, W = YNZ
is a submanifold of X and at each point x of W the tangent space of W at x is
the intersection of the tangent spaces of Y and Z. Let F be the excess bundle
of the intersection, i.e., the vector bundle over W which is the quotient of the
tangent bundle of X by the sum of the tangent bundles of Y and Z restricted to W.
Sometimes F is called an obstruction bundle. Thus F = 0 if and only if Y and Z
intersect transversally. If the relevant inclusion maps are denoted

then F fits into an exact sequence
0— vy —j*vi— F—0

where v; denotes the normal bundle of the embedding i.

We call this square a Quillen square. We have the following result by Quillen
[Qui7I]:

Proposition 22.1. If z € H*(Z), then
i*1.(z) = i(e(F) -§™*(2))

in H*T(Y), where a is the rank of vi.

This result also holds in K-theory:

Proposition 22.2. If ( € K*(Z), then
"L (0) = 1A(F)-§(0)

m K*(Y).
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In this appendix we work in cohomology and leave the corresponding results in
K-theory to the interested reader. The proofs are formal and are the same.

Proposition 22.3. For the diagram

classes e, € H*(Bi) and ep, € H*(Dy), let be ¢ = xieq, P = di&; and
eg,,D; = &i(ep,)e(Fi)ei(es;)

where e(Fy) is the excess intersection class of the Quillen square. If €B;,,D;,
€B,,Di, then for z € H*(A) we have the identity

Oy, ! (eDiﬂ/; (Bh! (6811 o, (Z)))> = &y, ! (eDiz”Yfz ([312! (6812 OCTZ(Z)»)

Proof. We use the projection formula f!(x)y = f!(xf*(y)). Then the Quillen formula
is
bi! (ep,vi (Bi! (e, xi(2)))) = 8i! (ep, &i! (e(Fi)ei (es, i (2))))
= 8i! (ep, &i! (e(Fi)ei (e, ) @™ (2)))
= 8i!&i! (&i (ep,e(Fi)eilen, ) 0™ (2)))
= V! (& (ep,)e(Fi)eiles, ) @™ (2))

22.1 Homological formulae

In this section we describe the analogous result to that of the last section, but
this time in homology. Let us start by recalling the definition of the umkehr map in
homology.

Let f: A — X be an inclusion such that there is a tubular neighborhood around
A isomorphic to a bundle over A. The umkehr map f, is defined by the next steps
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Step 1: We consider the projection map

X

T X > o0———
X —mn¢(A)
where 1y is the tubular neighborhood of f.

Step 2: We use the exponential function (E(e), Eo(e)) — (ns,ns—A) C (X, X—A) and
by excision we have the next isomorphisms

H, (X, X —A) = H.(E(e), Eo(e)) = H.(E, Eo)

then

H,(X/(X — A)) = H,(E/Eo) 2" H, _(A)

Finally, the next diagram gives the umkehr map

H, (X) "% HL(X/(X — A)) —= = HL(E/Eq) O 1, (A)

\—/

f)

Lemma 22.4. Leti: Z — X an inclusion of manifolds with k = dim X—dim Z. Then,
for z € Hy(Z)
ie(z) = e(vi) Nz,

where vi is the normal bundle of the inclusion 1i.

Proof.

In homology is




Note that we can give another expression for 7, (Th Ns.(z)), that is
T (ThNs«(z)) = ms.(s*(Th) Nz) = (mos).(e(vi) Nz) = (Id)«(e(vi) Nz) = e(vi) Nz,
where e(vi) = s*(Th) because in cohomology the umkehr map is

Lt HY(Z) — B H (v, vo) —— HH(X)

> ThUag— T (ThUx)

Then 1*(T*®@ (1)) = i*i.(1) = e(vy),
(To1)*(®(1)) = s*(@(1)) = s*(Th).
Finally we obtain that ili.(z) = e(v{) Nz, for z € H,(Z).

by Quillen’s result. In the other hand, i*(T*®(1)) =

L J

Proposition 22.5. Let Y, Z be closed submanifolds of X which intersect cleanly and
W =YNZis a submanifold of X such that at each point of W the tangent space of
W at x is the intersection of the tangent spaces of Y and Z.

wW——>z (64)

S

Y——X
)

and z € Hy(Z), then
jli(z) = iL(e(F) Nj'l(2)
where

0 — vy —j *vi— F—0

18 an exact sequence.

Proof. We can replace X by a tubular neighborhood of W. Thus we may suppose
that is of the form

wW———F,

q l

EzﬁEl@Ez@F

where E; is a complex vector bundle over W with zero section j’, E; is a complex
vector bundle with zero section i/, and i and j are the obvious inclusions. Let
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lc:Ee oD E1®Ey, e=1,2and k: E1 D E, — E; D Ey d F be the inclusion map.
Hence

MHe(z) = olklkiig4(2) = 1isl(e(vy) Nigk(z)) Dby the lemma [22.4
= Dlin{felvidnz) = 1ij'l(ijelvi) Nz) by Claim 1
= ij'l(m*(e(F)) N z) by Claim 2
= i(e(F)Nj'l(z)) by Claim 3

e Claim 1: We consider the next commutative diagram

WLEZ

A

E1?E1@E27E1@E2@F

j
Then 1,!17, = 1i.j’!. To prove this we check that the next diagrams commute

in homology.

T M

Ey
E] E] 71‘]]., W
i il i/l
E18E; ~ _ Bk
Bob—xEonm, — 5w OB25—~E

The first commutes by definition of the maps, and the second commutes by
the following:

Let x € H, (Efgn,,), then 72, (Thy Nl (X)) = 72 L (1* (Tha)x) = i/717.(1*(Thg )N
)

x) = .71, (Thy Nx).

Finally, if x € Hy(Eq): 72, (Tho NT24114(x)) = 72, (Tha NleT14(x))

= 2. L (U (Th2) N T14(x)) = 1i71.(Thy NT14(x)). Then, 12!i.(x) = 1j"!(x).

e Claim 2: The bundles 1j(vi) and 7*(F) coincide, in particular ij(e(vy)) =
7 (e(F)).
To prove this, we consider the pullback square

F
-

7 (F) ——
i
E

1 >
7T
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where 7(F) = {(x,z) € E1 x F: 7(x) = nte(z)} = E1 @ F bundle over E;.
Hence it is enough to prove ij(vy) = E; @ F. First we note that the next
diagram commutes

j

EioF Vi

™ T

E14H>E1€BE2

where kK : E1®Ey 2 E1 D E2®F, my : By @ F — E; is the projection and
j:E1 @ F — v is given by j(x,y) = (x,0,y) € V.

This square commutes by 17 o 71(x,y) = 11(x) = (x,0) and 7 0 j(x,y) =
e (x,0,y) = (x,0).

To finish we need to check that E; & F is the pullback square of the maps

Vi

lm

E17E1@Ez

Let Z be a manifold such that

Z
g
N EroF— v
"k
F_] E] @Ez

meog =17 0f. We define h:Z — E; ®F by h(z) = (f(z), 13 0 g(2)).

Note that 71 0 g(z) = (f(z),0) since o g =1ij0f. Then joh(z) =j(f(z),m30
g9(z)) = (f(2),0,m3 0 g(z)) = (m(g(z)z),m3(9(z))) = g(z), and 7t1(h(z))
mi(f(z,m3(g(2)))) = f(z).

e Claim 3: For ¢ € H*(W) and z € H,(Eq) then j’!(7* (@) Nz) = ¢ Nj’l(z).
This is an immediately consequence of the definition of the umkehr map, that

.. E P
is: 3/ : W — Ej and Eq —5 E]_lnj, —W.

7T
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Then

enij'l(z) = © Np«(ThNt.(z)) = P«(p*(@) N ThNti(2))
P«(ThNt(tp* (@) Nz)) = p«(ThNTe (" (@) Nz))
= ' (@ ) z)

Proposition 22.6. For the diagram

with classes ep, € H,(Bi) and ep, € H.(Di), let @i = aieq, Vi = 01&; such that
(@1)! = (@2)! and (V1) = (P2)«. Let

ei = &illep,)(e(Fi) Neiles,))

where e(Fy) is the excess intersection class of the Quillen square. If e1 = ey, then
for z € Hy(A) we have the identity

01+ (ep; V1! (B1s (e, 1!(2)))) = 024 (ep, V2! (B2« (eB, x2!(2))))

Proof. We use the Quillen’s formula and the projection formula: f,(x)y = f.(xf!(y)),
then

81« (ep; v1! (B1« (eB; c1!(2)))) = (ep, &1« (e(F1) N eql(ep, a1l(2))))
= 01:&1x (&14(epy ) (e(Fr) Meql(en, aq!(2))))
= (1)« (&1l(ep, )(e(F1) Nerl(es, ))@1!(z))
= (P2)« (&1!(ep,)(e(F2) Nezl(es,))@2!(z))
= 02. (ep, V2! (B2« (eB, x2!(2))))
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Corollary 22.7. The next diagrams, i =0, 1.

Y

E

where the squares are Quillen’s squares, i.e. the intersection of By and Dy is clean
and the spaces Z1 and Zy are homotopically equivalents,

1

—_—
Z1 Z>
f2

N

commutes up to homotopy. Then, if f5(e(ve, ®F1)) = e(

such that

F2)7 fO?" AS H*(A) we h(l’l}e

d1. 0v1l o Bre o x1l(z) = 020 0y2!l 0 B2y 0 p!(2).

Proof.

d14 0v1lo Brs 0 oq!(z) = 01.&14 (e(Fq) Nerl(aq!(z))) property of Quillen
=1, (e(F1) N @1!(2)) by 81&1 ~ Py, 1061 = @1
= P2.f14 (e(F1) Nf1lea!(2)) by by ~Poofy, @1 >~ @r0f;
= P2, f1. (f1f3e(F1) N f1le2!(z)) by faofy ~1

=P (f1.(f5(e(F1)) N fil(@2!(2)))) by the projection formula
=2, (f3(e(F1)) N frfil(e2!(2)))
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Now we need to understand the map f, o f! : H,(B) — H.(A) — H,(B), where
f: A — B. First we consider the next Quillen’s diagram.

AVA\Q}LA
N

For Quillen’s property we have flf,(z) = e(vf) Nz, where z € H,(A) and vy is the
normal bundle of the map f: A — B.

filf1fo(z) = f1l(2) by f1.f2. = 1d,
e(ve, ) Nfa(z) =f1l(z) using that f1!f1.(z) =zNe(vy,),
frle(ve ) Nfal(z)) = fr.f1l(2) composition with i,
f1.(f1f5(e(ve, ) Nfalz)) = f1.f1!(2) using that 315 = Id,
f3(e(ve ) Nfrfa(z) = f1.f1!(2) by the projection formula,
f5(e(ve)) Nz = fr.fi!(z) using that fq,f2, =1d.

Then f1.f1!(z) = f5(e(ve,)) Nz, for all z € Hy(B).

Finally, returning to the calculations, we have

Yo, (f3(e(F1)) N frufil(92!(2))) = b (fae(F1)) N fale(ve ) N @2l(z)
=2, ((f3(e(F1)) U fa(e(ve,))) N @2!(2)
=2 (f3(e(F1) Ue(ve)) N @2l(z))
= P2 (f3(e(ve, & F1)) N @2l(z))

—_ o~~~ —

*
2le
f
*
2
*
2

Since f3(e(v¢, ® F1)) = e(F2) then

Y2i (@2!(z) Nfh(e(ve F1))) = bax (02!(z) Ne(F2)) = 82. 0 v2! 0 B2s 0 ax!(2).
In particular we have the next result.
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Corollary 22.8. In the hypothesis of the last corollary, if Z1 and Z, are diffeo-
morphic spaces, where f1: Zy — Zy is the diffeomorphism between them, then the
identity e(F1) = e(F2), implies

d1. 0v1l o Brs 0o x1l(z) = 020 0y2!l 0 B2y 0 03!(2).

Proof. This is because if f is a diffeomorphism then v¢ = 0.

L

Theorem 22.9. Let f,g : A — X be cofibration maps, and H : A x I — X an
homotopy between them, i.e H(x,0) = f(x) and H(x,1) = g(x) for x € A. Then

fi =g : Hy(X) — Hy(A)

Proof. Note that (X,f(A)) and (X, g(A)) are good pairs, f(A) — X and g(A) — X
are cofibrations. Then the homotopy

H - f(A) x T — X
given by H'(f(x),t) = H(x, t) extends to X such that
H'lnexey =g

and
Hlaxoy =1, Hlaxm =9
Set by f':==H’(—,0) and g’ := H/(—,1).

Let o« € Hy(X) with o« = f%k(ﬁ) +7v, where B € Cx(nyf), vy € Cx(X—A) and
f4 is the map induced in the chain complexes. This is posible by the using of the

barycentric subdivision Cx(n¢ + (X — A)) = Cx(X). Since we have the Quillen

diagram
nf
2
nf ns
x /
X
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then f/f.(B) = Be(vye).
Finally
filo) = f(fL(B) +v) = Belve) +1(v)

where we note that f{(y) =0 because v € Cx(X —A). Then f{(x) = B e(ve).

In other hand, using the homotopy H’ : X x I — X we can find a new representant
of acin Cy(ng + (X — g(A))) of the form gj(B’) +v’ with B’ € Cx(ng) and v’ €
Cx(X—g(A)). Then

91(g.(B)+v) =9i9i(B") + 9i(v') = 9/9L(B') = B elvg) = Belve).

Therefore f|(«) = g{(«), and in particular f|(«) = gi(«x).
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