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APORTACIONES MATEMÁTICAS

Comunicaciones 42 (2011) 49–78

A BASIC INTRODUCTION TO 2-DIMENSIONAL TOPOLOGICAL FIELD
THEORIES

ANA GONZALEZ, ERNESTO LUPERCIO, CARLOS SEGOVIA AND MIGUEL
XICOTENCATL

ABSTRACT. In this expository paper we introduce the basic notions related
to 2-dimensional topological field theories and Frobenius algebras provid-
ing a sketch of the proof of the famous folk theorem that relates them. The
paper is very elementary and self-contained. This paper is dedicated to
Escuela Superior de Física y Matemáticas del IPN, México on its 50th
birthday.

1. INTRODUCTION

The purpose of this note is to give a brief introduction to the definition of a topo-
logical quantum field theory (TFT) in geometry and topology. The subject has a long
and very interesting history in physics before it entered the mathematician’s language,
where it was incepted primarily though the influence of E. Witten [20]. It was he who
proved that the concept was very fruitful to study a host of mathematical phenomena
in geometry and topology, specifically giving remarkable applications to knot theory.

Let us start by describing briefly what is usually meant by a quantum field theory in
physics. We start by a space-time M which is a given smooth manifold of dimension
n + 1. We are also given for every manifold M (with boundary) a space of fields
F(M). For every x ∈ M we have (complex valued) local observables of the form
Ox : F(M) −→ C, so that Ox(φ) ∈ C for every field φ ∈ F(M). The notation
Ox(φ) is meant to signify that its value depends on φx, the germ of φ around x.
The most important part of the structure is a probability measure µ on F(M) called
the Feynman measure. All the physics of a quantum system is then contained in the
expectation values 〈Ox〉, and the correlation values 〈O(1)

x1 O
(2)
x2 O

(3)
x3 · · ·O

(k)
xk 〉.

In a great majority of examples we have that

µ = e−iS(φ)Dφ,
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50 A. GONZALEZ, E. LUPERCIO, C. SEGOVIA AND M. XICOTENCATL

where the action S : F(M)→ R if of the form

S(φ) =
∫
M

L(φ,Dφ)dx,

where L : TM → R is called the Lagrangian of the theory.
Following Atiyah [20] and Segal [18], [19] we will extract an algebraic gadget out

of this picture. To do this notice that whenever we cut up a manifold M into two
submanifolds M1 and M2 with common boundary X as in the picture:

We can use the fact that S(φ) = S(φ1) + S(φ2) where φi is the restriction of φ to
Mi, and roughly write:

ZM =
∫
F(M)

e−iS(φ)Dφ =
∫
F(X)

Z1(ψ)Z2(ψ)Dψ,

where

Zi(ψ) =
∫
φi∈F(Mi), φi|X=ψ

e−iS(φi)Dφi.

Let us denote by HX := Maps(F(X),C). Clearly HX has the structure of a vector
space, and we have that since Zi : F(X) → C, then Zi = ZMi ∈ HX for a n +
1 dimensional manifold Mi with boundary X . In other words, whenever a n + 1
dimensional manifold N has as its boundary a n dimensional manifold X we set:

ZN (ψ) =
∫
φi∈F(N), φi|X=ψ

e−iS(φi)Dφi.
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A BASIC INTRODUCTION TO 2-DIMENSIONAL TOPOLOGICAL FIELD 51

Obtaining in this manner a vector

ZN ∈ HX .

In this way a quantum field theory (of dimension n + 1) provides us with an as-
signment X 7→ HX of a vector space for every n-dimensional manifold, and a vector
N 7→ ZN whenever a n+ 1 dimensional manifold has boundary ∂N = X .

We can do a little better. Suppose now that we think of the manifold as having an
initial boundary ∂0N = X0 and a final boundary ∂1 = X1:

Let HXi := Maps(F(Xi),C). Then we can write a linear operator of the form:

ZN : HX0 −→ HX1 ,

by the formula:

(ZN (Ψ))(ψ1) =
∫
F(X0)

K(ψ1, ψ0)Ψ(ψ0)Dψ0,
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where the kernel K is given by

K(φ1, φ2) =
∫
φ∈F(N), φ|Xi

=ψi

e−iS(φ)Dφ.

We should also note that (formally at least) since HX := Maps(F(X),C), then
we have that

HX1
‘
X2 := Maps(F(X1

∐
X2),C)

= Maps(F(X1),C)×Maps(F(X2),C) = HX1 ×HX2 .

If as in the picture above X0 (resp. X1) can be written as the disjoint union of its
connected components X01

∐
X02 (resp. X11

∐
X12

∐
X13,) then the map

ZN : HX01 ×HX02 −→ HX11 ×HX12 ×HX13 ,

is actually a map

ZN : HX01 ⊗HX02 −→ HX11 ⊗HX12 ⊗HX13 ,

for the required multilinearity conditions are easy to verify.
Also easy to verify is that whenever we glue two cobordisms N = N0 ∪ N1 as

depicted below:

we have that
ZN = ZN1 ◦ ZN0 .

What is quite surprising at first is that for ma ny examples, roughly speaking, the
assignments

X 7→ HX , N 7→ ZN ,

for all X and for all N , contain all the information of the field theory, namely we
can recover all correlations from those mappings. For topological field theories and
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2-dimensional conformal field theories this is the case. This is great news for math-
ematicians since the purported measure on the space of fields F(M) often does not
exists. Nevertheless the assignments do exist and provide a mathematical definition
for the field theories in question.

When the assignment N 7→ ZN depends on the metric of N we refer to the theory
as an Euclidean field theory, when it depends only on the conformal structure we call
it a conformal field theory, and when it only depends on the topology of N we call it
a topological field theory. In the last case the correlations will be independent of the
metric.

2. TOPOLOGICAL FIELD THEORIES IN DIMENSION 1+1.

Michael Atiyah in [2] and [3] defined nD-Topological Field Theory (nD-TFT) ZA,
using the following data:

1. A vector space ZA(Σ) associated to each (n − 1)-dimensional closed
manifold Σ.

2. A vector ZA(M) ∈ ZA(∂M) associated to each oriented n-dimensional man-
ifold M with boundary ∂M .

3. An isomorphism Z(f) : Z(Σ1) → Z(Σ2), where f : Σ1 → Σ2 is an orienta-
tion preserving diffeomorphism.

This data is subject to the following axioms:

(i) ZA is functorial with respect to orientation-preserving diffeomorphisms of Σ
and M .

(ii) ZA is involutory, i.e. ZA(Σ∗) = ZA(Σ)∗ where Σ∗ is Σ with opposite orien-
tation and ZA(Σ)∗ is the dual vector space of ZA(Σ).

(iii) ZA is multiplicative

ZA(Σ1 t Σ2) = ZA(Σ1)⊗ ZA(Σ2).

(iv) ZA(∅) = k, where ∅ is interpreted as the empty (n − 1)-dimensional closed
manifold.

(v) ZA(∅) = 1, where ∅ is interpreted as the empty n-dimensional manifold.
(vi) If f : Σ1 → Σ2 is an orientation-preserving diffeomorphism, then Z(f) :

Z(Σ1)→ Z(Σ2) is an isomorphism.

These axioms are meant to be understood as follows. The functoriality axiom
means first that an orientation-preserving diffeomorphism f : Σ → Σ′ induces an
isomorphism ZA(f) : ZA(Σ) → ZA(Σ′) and that ZA(gf) = ZA(g) ZA(f) for g :
Σ′ → Σ′′. Also if f extends to an orientation-preserving diffeomorphism M → M ′,
with ∂M = Σ and ∂M ′ = Σ′, then ZA(f) takes the element ZA(M) to ZA(M ′).
The multiplicative axiom is clear. Moreover if ∂M1 = Σ1 t Σ∗3, ∂M2 = Σ3 t Σ2
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and M = M1 tΣ3 M2 is the manifold obtained by gluing together the common Σ3-
component:

Then we require:
ZA(M) = 〈ZA(M1),ZA(M2)〉

where 〈 , 〉 denotes the natural pairing from the duality map,

ZA(Σ1)⊗ ZA(Σ3)∗ ⊗ ZA(Σ3)⊗ ZA(Σ2)→ ZA(Σ1)⊗ ZA(Σ2)

defined by a⊗ϕ⊗ b⊗ c 7−→ ϕ(b)a⊗ c. This is a very powerful axiom which implies
that ZA(M) can be computed (in many different ways) by “cutting M in half” along
Σ3.

3. CATEGORICAL DEFINITION OF A TQFT.

The first step is to define an appropiate category of cobordisms that permits us to
give a functorial definition of a nD-TFT.

Definition 3.1. Let Σ0 and Σ1 two compact, connected, oriented (n− 1)-manifolds,
we say that they are cobordant if there is a n-manifold M , with boundary Σ∗1 tΣ2, in
this case we say that M is a n-cobordism of Σ1 to Σ2.

If we fix a positive integer n, we can construct a category nC̃ob where the objects
are the closed smooth (n − 1)-dimensional manifolds, and the morphisms are the
oriented smooth n-dimensional manifolds(n-cobordism). We need to address whether
the composition of two cobordisms of the same dimension is a smooth manifold. Up
to a smoothing process the answer is yes (see [11]). Let be nCob′ = nC̃ob/ ∼ where
∼ is the relation of diffeomorphism equivalence. Let Σ be a closed submanifold of
M of codimension 1. We assume that both are oriented. At a point x ∈ Σ, let
[v1, . . . , vn−1] be a positive basis for TxΣ. A vector w ∈ TxM is called a positive
normal if [v1, . . . , vn−1, w] is a positive basis for TxM . Now suppose Σ is a connected
component of the boundary of M with an specific orientation; then it makes sense to
ask whether the positive normal w points inward or it points outward as compared
to M . Locally the situation is the following, a vector in Rn either points inward or
outward with respect to the half-space Hn (Hn = {(x1, ..., xn) ∈ Rn : xn ≥ 0)}).
If a positive normal points inward we call Σ an in-boundary, and if it points outward
we call it an out-boundary. To see that this makes sense we have to check that this
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does not depend on the choice of positive normal (or the choice of the point x ∈ Σ).
If some positive normal points inward, it is easy to verify that every other positive
normal at any other point y ∈ Σ points inward as well. This follows from the fact
that the normal bundle is a trivial line bundle on Σ. This in turn is a consequence of
the assumption that both M and Σ are orientable (see Hirsch [10], theorem 4.4.2.).
Thus the boundary of a manifold M is the union of various in-boundaries and out-
boundaries. The in-boundary of M may be empty, and the out-boundary may also be
empty. Note that if we reverse the orientation of both M and its boundary Σ, then the
notion of what is in-boundary or out-boundary remains the same. We will denote by
nCob the category nCob′ where every object is given an orientation (therefore any
cobordism has a direction).

In the next definition we will assume that the reader is familiar with the concept of
monoidal category, if this is not the case we refer the reader to the Appendix.

Definition 3.2. An n-dimensional topological field theory is a symmetric monoidal
functor ZC , from (nCob,t,∅,T ) to (Vectk,⊗,k,σ).

Proposition 3.3. Atiyah’s definition and the categorical definition of TFT coincide.

Proof. Suppose ZA is a TFT in the sense of Atiyah, then for M an oriented n-dimen-
sional manifold, the next isomorphism gives the correspondence

(1)
Ψ ZA(Σ1)∗ ⊗ ZA(Σ2) ∼−→ Hom(ZA(Σ1),ZA(Σ2))

ZA(M) 7−→ ZC(M)

where ∂M = Σ∗1 t Σ2. Set ZC(M) := ZA(M), if we identify the image of the
idempotent element ZA(Σ × I) with the identity 1ZA(Σ), then we get a functor ZC :
nCob → Vectk. This functor is well defined by the functorial and multiplicative
axioms. Moreover, the monoidal structure is given by t → ⊗ and it is symmetrical
since ZC(TΣ,Σ′) = σZC(Σ),ZC(Σ′).

Conversely, given a symmetrical monoidal functor ZC : nCob → Vectk, if Σ
is a closed (n − 1)-dimensional smooth manifold, set ZA(Σ) := ZC(Σ). For M a
n-dimensional oriented smooth manifold we take

ZA(M) = ZC(M ′)(1) ∈ ZC(ΣIn)∗ ⊗ ZC(ΣOut),

where M ′ is M reversing the orientation to the in-boundary. By hypothesis, we have
ZC(∅) = k. Moreover, the functor ZC is multiplicative and it is independent of the
cut by the correspondence 1. As consequence, the axioms (iii) and (iv) are satisfied.
Clearly ZA(∅) = 1̂⊗ 1. Axiom (v) follows from Ψ(ZA(∅)) = Ψ(1̂⊗ 1) = k. Axiom
(i) is satisfied because ZC factors through differential homotopy classes. Axiom (ii) is
proposition 3.5. �
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Corollary 3.4. For a Topological Field Theory Z of any dimension and Σ an object
in nCob, the image of Σ under Z is a finite dimensional vector space.

Proof. Let
〈 , 〉Σ : Z(Σ)⊗ Z(Σ∗) −→ k

and
θΣ : k −→ Z(Σ∗)⊗ Z(Σ)

the maps associated to and respectively. Since Z is a TFT, then the next
diagram

Z(Σ)

'
��

(Z(Σ)⊗ Z(Σ)∗)⊗ Z(Σ)
〈,〉Σ⊗idZ(Σ) // k⊗ Z(Σ)

'
��

Z(Σ)⊗ k
1Z(Σ)⊗θΣ // Z(Σ)⊗ (Z(Σ∗)⊗ Z(Σ))

'

OO

Z(Σ)

is the identity map. Graphically

then we have (〈 , 〉Σ ⊗ 1Z(Σ)) ◦ (1Z(Σ) ⊗ θΣ) = 1Z(Σ). For θΣ(1) =
∑
vj ⊗ wj and

a ∈ Z(Σ) then we have:

a
∼−→ a⊗ 1 = (〈 , 〉Σ ⊗ 1Z(Σ)) ◦ (1Z(Σ) ⊗ θΣ)(a⊗ 1)

= (〈 , 〉Σ ⊗ 1Z(Σ))(
∑

a⊗ vj ⊗ wj)

=
∑
〈a, vj〉Σ ⊗ wj

∼−→
∑
〈a, vj〉Σwj .

Therefore a =
∑
〈a, vj〉Σwj , and consequently {wj} generates Z(Σ), but since k

is at least a division ring, we can extract a basis from the generating set. Now since
every division ring has the property of invariance of dimension then Z(Σ) is finitely
generated with n = rank(A) ≤ | {wj} |. �

The simplicity of the definition may be misleading, it is remarkable how much
information a TFT encodes. For example the fact that the theory only depends on the
topology implies that to the cobordisms
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we associate the same linear transformation, which is the identity. In the literature this
equivalences are called the zig-zag identities. This simple fact implies that for any
n-dimensional TFT vector space associated to every object of nCob is a Frobenius
algebra, see the definition below. The next proposition proves that there exists a non-
degenerate pairing, which consequently entails the construction of the product and the
unit for the vector space.

Proposition 3.5. Let Z be an n-dimensional TFT, and Σ an n-dimensional oriented
closed smooth manifold, then Z(Σ) is equipped with a nondegenerate pairing and
Z(Σ∗) ' Z(Σ)∗.

Proof. Similarly to 3.4 we have that the next diagrams

Z(Σ)

'
��

(Z(Σ)⊗ Z(Σ∗))⊗ Z(Σ)
〈,〉Σ⊗1Z(Σ) // k⊗ Z(Σ)

'
��

Z(Σ)⊗ k
1Z(Σ)⊗θΣ // Z(Σ)⊗ (Z(Σ∗)⊗ Z(Σ))

'

OO

Z(Σ)

and

k⊗ Z(Σ∗)
θΣ⊗1Z(Σ∗) // (Z(Σ∗)⊗ Z(Σ))⊗ Z(Σ∗)

'
��

Z(Σ∗)

Z(Σ∗)

'

OO

Z(Σ∗)⊗ (Z(Σ)⊗ Z(Σ∗))
1Z(Σ∗)⊗〈,〉Σ // Z(Σ∗)⊗ k

'

OO

are the identity maps of Z(Σ) and Z(Σ∗) respectively, i.e.

1Z(Σ) = (〈 , 〉Σ ⊗ 1Z(Σ)) ◦ (1Z(Σ) ⊗ θΣ)

and
1Z(Σ) = (1Z(Σ∗) ⊗ 〈 , 〉Σ) ◦ (θΣ ⊗ 1Z(Σ∗))

An easy algebraic exercise proves that 〈 , 〉Σ is a nondegenerate pairing and that the
map

λleft : Z(Σ∗) −→ Z(Σ)∗

y 7−→ 〈x, y〉Σ
is an isomorphism (hint:use that Z(Σ) and Z(Σ∗) are finitely generated). �

4. FROBENIUS ALGEBRAS

4.1. Definitions. The concept of a Frobenius algebra is quite important for topologi-
cal field theories, so we will review the basic definition. We start by giving a serie of
equivalent definitions of Frobenius algebras.
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Definition 4.1. A Frobenius algebra is a k-algebra A whit a non-degenerate bilinear
form 〈 , 〉 : A⊗A → k which is associative, in the sense 〈ab, c〉 = 〈a, bc〉.

Definition 4.2. A Frobenius algebra is a k-algebra A with a linear function ε : A →
k called counit, such that the ker(ε) do not have non trivial ideals.

Definition 4.3. A Frobenius algebra is a k-algebraAwith anA-module isomorphism
λ : A → A∗, where the dual spaceA∗ is anA-module with the action a·ϕ = ϕ◦m(a),
where m : A → End(A) is the multiplication by a ∈ A.

The proof of this fact is as follows. Given 〈 , 〉 : A⊗A → k we define ε : A → k
by ε(a) = 〈1A, a〉. If we have ε : A → k we define λ : A → A∗ by λ(a)(b) = ε(ab)
and finally, given λ : A → A∗ let 〈a, b〉 = λ(1A)(ab).

The next theorem is due to Lowell Abrams [1] and Aaron D. Lauda in [14]. They
give two additional definitions of a Frobenius algebra.

Theorem 4.4. A commutative algebra A of finite dimension with product m : A ⊗
A → A and unit u : k→ A is a Frobenius algebra if and only if it satisfies one of the
next conditions

i) (Abrams) There is a coproduct δ : A → A ⊗ A, with a counit ε : A → k
satisfying the Frobenius identities which define a coalgebra structure on A.
Explicitly the following diagrams commute:
• The coalgebra axioms

A δ //

δ

��

A⊗A

δ⊗1

��
A⊗A

1⊗δ
// A⊗A⊗A

A⊗ k A⊗A
1⊗εoo ε⊗1 // k⊗A

A

∼=

::uuuuuuuuuuu
∼=

ddIIIIIIIIIII
δ

OO

• The Frobenius identities

A⊗A m //

1⊗δ

��

A

δ

��

A⊗A m //

δ⊗1

��

A

δ

��
A⊗A⊗A

m⊗1
// A⊗A A⊗A⊗A

1⊗m
// A⊗A
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ii) (Lauda) There exists a co-pairing θ : k → A ⊗ A that equips A with two
equivalent coproducts and units. This is to say, the following diagrams com-
mute:

A
1⊗θ //

θ⊗1

��
δ

''OOOOOOOOOOOOOO A⊗A⊗A

m⊗1

��

k θ //

θ

��
u

$$IIIIIIIIIIIII A⊗A

ε⊗1

��
A⊗A⊗A

1⊗m
// A⊗A A⊗A

1⊗ε
// A

Proof. i) We define the coproduct as follows

A δ //

λ

��

A⊗A

A∗
m∗
// A∗ ⊗A∗

λ−1⊗λ−1

OO

that is δ := (λ−1 ⊗ λ−1) ◦m∗λ.
Using that m is a commutative and an associative map we have that δ is a
cocommutative and a coassociative map. We need to check that δ is an A-
module morphism, for this we construct the next map

m : A −→ End(A) ∼= A⊗A∗
a 7−→ a· 7→ a

∑
i ei ⊗ e∗i

where {e1, . . . , en} is a basis of A and {e∗1, . . . , e∗n} is the dual basis.
It is easy to prove that the next diagrams commute.

A λ //

δ

��

A∗

m∗

��

λ−1
// A

m

��

A

δ

��

m

%%JJJJJJJJJJJJ

A⊗A
λ−1⊗λ−1

// A∗ ⊗A∗
λ⊗1∗

// A⊗A∗ A⊗A A⊗A∗
1⊗λ−1
oo

We consider the next diagram.
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Note that ?>=<89:;2 and ?>=<89:;5 commute by definition of m, ?>=<89:;3 and ?>=<89:;4 clearly
commute. The external diagram commute because

Then the diagram ?>=<89:;1 commutes and δ is a morphism of A-modules.

Reciprocally, we define 〈 , 〉 : A ⊗ A → k by 〈 , 〉 = ε ◦ m. Using that
m and ε are linear maps we have that 〈 , 〉 is also linear. The associativity is
a consequence of the associativity of the product. Finally, to prove that the
pairing is non-degenerate, we use that the next diagram commute since δ is a
A-module morphism.

A⊗A⊗A
1⊗m

&&LLLLLLLLLLLL

k⊗A
u⊗1 // A⊗A

m

&&MMMMMMMMMMMMM

δ⊗1

88rrrrrrrrrrrr
A⊗A

1⊗ε // A⊗ k

A
δ

88qqqqqqqqqqqqq

The top composition gives

1⊗ x 7→ 1A ⊗ x 7→ (
∑
j

uj ⊗ ej)⊗ x 7→
∑
j

uj ⊗ ejx 7→
∑
j

〈ej , x〉uj ⊗ 1.
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and the under composition gives

1⊗ x 7→ 1A ⊗ x 7→ x 7→ δ(x) 7→ (1⊗ ε)δ(x) = x⊗ 1

Then x =
∑
j〈ej , x〉uj , therefore {uj} is a basis of A. In particular if we

take x = ui we have 〈ej , ui〉 = δij .

Now we take ki such that 〈
∑
i kiei, x〉 = 0 for all x ∈ A. If x = uj we have∑

i ki〈ei, uj〉 = 0, then ki = 0 for all i = 1, . . . n. Therefore
∑
i kiei = 0

and the pairing 〈 , 〉 is non-degenerate.
ii) It is easy to see that this condition is equivalent to the Abrams condition.

Given the coproduct δ we define θ : k→ A⊗A by θ = δ ◦u. We deduce the
commutativity of the diagrams using theA-module properties. If we consider
the co-pairing θ : k→ A⊗A we define δ : A → A⊗A as follows

δ = (1⊗m) ◦ (θ ⊗ 1) = (m⊗ 1) ◦ (1⊗ θ)
�

Definition 4.5. A Frobenius algebraA is called a symmetric Frobenius algebra if one
(and hence all) of the following equivalent conditions holds.

(i) The Frobenius form ε : A → k is central; this means that ε(ab) = ε(ba) for
all a, b ∈ A.

(ii) The pairing 〈 , 〉 is symmetric (i.e. 〈a, b〉 = 〈b, a〉 for all a, b ∈ A).
(iii) The left A-isomorphism A ∼→ A∗ is also right A-linear.
(iv) The right A-isomorphism A ∼→ A∗ is also left A-linear.

Definition 4.6. A Frobenius algebra homomorphism φ : (A, ε) −→ (A′, ε′) between
two Frobenius algebras is an algebra homomorphism which is at the same time a
coalgebra homomorphism. In particular it preserves the Frobenius form, in the sense
that ε = φε′.

Let FAk denote the category of Frobenius algebras, and let cFAk denote the full
subcategory of all commutative Frobenius algebras.

Lemma 4.7. If a k-algebra homomorphism φ between two Frobenius algebras (A, ε)
and (A′, ε′) is compatible with the forms in the sence that the diagram

A
φ //

ε
��???????? A′

ε′��~~~~~~~~

k
commutes, then φ is injective.

Proof. The kernel of φ is an ideal and it is clearly contained in ker(ε). But ker(ε)
contains no nontrivial ideals, so ker(φ) = 0 and thus φ is injective. �
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Lemma 4.8. A Frobenius algebra homomorphism φ : A → A′ is always invertible.
In other worlds, the category FAk is a groupoid and so is cFAk.

Proof. Since φ is comultiplicative and respects the counits ε and ε′ (as well as the units
η and η′), the dual map φ∗ : A′∗ → A∗ is multiplicative and respects the units and
counits. But then the preceding lemma applies and shows that φ∗ is injective. SinceA
is a finite-dimensional vector space this implies that φ is surjective. We already know
it is injective, hence it is invertible. �

In this section we will present a collection of examples of Frobenius algebras. A
good reference for this is [11]. The principal example is the Poincaré algebra, it is the
principal motivation for the definition presented in the next section, this is because if
we consider M a manifold not necessarily compact we do not necessarily have the
trace but all the other structures are preserved.

4.2. The trivial Frobenius algebra. Let A = k, and ε : A → k be the identity map
of k. Clearly there are no ideals in the kernel of this map, so we have a Frobenius
algebra.

4.3. Concrete example. The field of complex number C is a Frobenius algebra over
R: an obvious Frobenius form is taking the real part

C→ R
a+ ib 7→ a.

4.4. Skew-fields. LetA be a skew-field (also called division algebra) of finite dimen-
sion over k. Since just like a field, a skew-field has no nontrivial left ideals (or right
ideals), any nonzero linear form A → k will make A into a Frobenius algebra over k,
for example the quaternions H form a Frobenius algebra over R.

4.5. Matrix algebras. LetA be the space Matn(k) of all n×n matrices over k, this
is a Frobenius algebra with the usual trace map

Tr : Matn(k)→ k

(aij) 7→
∑
i

aii

To see that the bilinear pairing resulting from Tr is nondegenerate, take the linear
basis of Matn(k) consisting of Eij with only one nonzero entry eij = 1. Clearly
Eji is the dual basis element to Eij under this pairing. Note that this is a symmetric
Frobenius algebra since two matrix products AB and BA have the same trace. If
we twist the Frobenius form by multiplication with a noncentral invertible matrix we
obtain a nonsymmetric Frobenius algebra.
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As a concrete example, consider Mat2(R) =
{(

a b

c d

)
: a, b, c, d ∈ R

}
with the

usual trace map
Tr : Map2(R) −→ R(

a b

c d

)
7−→ a+ d

Now twist and take as Frobenius form the composition

Mat2(R) −→ Mat2(R) Tr−→ R(
a b

c d

)
7−→

(
a b

c d

)(
0 1
1 0

)
7−→ b+ c

This composition is not a central function, for example if we take A =
(

1 0
0 2

)
and

B =
(

1 1
0 0

)
then AB =

(
1 1
0 0

)
and BA =

(
1 2
0 0

)
and finally the map gives, in

the first case 1 and in the second 2.

4.6. Finite group algebras. Let G = {e, g1, . . . , gn} be a finite group, the group
algebra C[G] is defined as the set of formal linear combinations

∑n
i=0 cigi, where

ci ∈ C, with multiplication given by the multiplication of G. It can be made into a
Frobenius algebra by taking the Frobenius form to be the functional

ε : CG −→ C
e 7−→ 1
gi 7−→ 0 for i 6= 0.

Indeed, the corresponding pairing g⊗h 7→ ε(gh) is nondegenerate since g⊗h 7→ 1
if and only if h = g−1.

4.7. The ring of group characters. Assume the group field is k = C. Let G be a
finite group of order n. A class function on G is a function G→ C which is constant
on each conjugacy class; the class functions form a ring denoted R(G). In particular,
the characters (traces of representations) are class functions, and in fact every class
function is a linear combination of characters. There is a bilinear pairing on R(G)
defined by

〈φ, ψ〉 :=
1
n

∑
t∈G

φ(t)ψ(t−1).

The characters form an orthonormal basis ofR(G)with respect to this bilinear pairing,
so in particular the pairing is nondegenerate and provides a Frobenius algebra structure
on R(G).
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4.8. The Poincaré Algebra. Let beM an oriented, compact, connected smooth man-
ifold of dimension n.

M
δ //

δ

��

M ×M

1×δ
��

M ×M
δ×1
// M ×M ×M

We have that:

(∆× 1)∗(1×∆)! = ∆!∆∗,

where δ∗ : H∗(M) ⊗ H∗(M) = H∗(M ×M) → H∗(M) is the map induced by the
diagonal map in cohomology, and δ! : H∗(M)→ H∗(M)⊗H∗(M) is the gysin map
of the diagonal map. Therefore

(δ∗ ⊗ 1)(1⊗ δ!) = δ!δ∗.

Then A := H∗(M) is an algebra with a coproduct, that is a module homomorphism.
In the particular case that M is a compact, connected, oriented manifold of finite
dimension we can define a counit map ε : H∗(M)→ k by

ε(ϕ) = ϕ([M ]),

where [M ] is the fundamental class of M in homology. This map induce the pairing

〈 , 〉 : H∗(M)⊗H∗(M)→ k

defined by 〈ϕ,ψ〉 = ε(ϕ ^ ψ) = (ϕ ^ ψ)([M ]) = ϕ([M ] _ ψ). Remember that
we have the next isomorphism induced by Poincaré duality

Φ : Hn−k(M) h→ Homk(Hn−k(M),k) D
∗

→ Homk(Hk(M),k)

where h is the map induced by the evaluation of cochains on chains, and D∗ is the
dual of Poincaré duality. Then Φ(ϕ)(ψ) = ϕ([M ] _ ψ), this proves that the pairing
is nondegenerate.

5. (1 + 1)-DIMENSIONAL TQFTS AS FROBENIUS ALGEBRAS.

Theorem 5.1. (Folklore) There is a canonical equivalence of categories

2D-TFTk ' cFAk

where cFAk is the category of commutative Frobenius algebras.
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Proof. We follow Moore-Segal [15] for this. It is easy to see that a 2-TFT determines
a Frobenius algebra. This is the vector space A associated to the circle. The next
cobordisms induce a product m : A⊗A → A and a unid u : k→ A.

The next pictures imply respectively the properties of associativity, commutativity,
unit and non-degeneracy.
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We need to prove that when we have a commutative Frobenius algebra we can
assign a well defined functor from 2 Cob to Vectk, for this first we note that the cat-
egory is generated under composition and disjoint unions by the next five elementary
cobordisms,

For the matter of argumentation fix a 2-dimensional cobordism Σ.
It is not hard to associate a linear operator to a pair consisting of a cobordism

together with a decomposition on the previous five elementary building blocks. The
problem is to show that he operator is independent of the chosen decomposition.

The basic idea of the proof is analogous to the proof of the Poincaré-Hopf theorem,
where one embeds the discrete space of triangulations on the continuous space of
vector fields on a manifold and maving around in the space of vector fields one proves
that the Euler characteristic does not depend on the triangulation. Now we will embed
the discrete space of possible decompositions of Σ into the continous space of Morse
functions on Σ

Given a Morse function f : Σ→ R on a 2-dimensional cobordism (with the bound-
aries attaining constant values corresponding to the max and the min of the function
f , and all critical points of Morse type and taking different values) we must associate
a decomposition of Σ. This is easily achieved by cutting up sigma along f−1(t) for
one choice of t between any two consecutive critical values of f .

Moreover every decomposition in elementary cobordisms can be achieved by a
Morse function of this sort. The construction of a well defined functor is possible
because there is a path in the space of Morse functions that joins any pair of Morse
functions associated to a specific cobordism. According to Cerf’s theory [4], two
Morse functions can always be connected by a good path in which every element is a
Morse function except for a finite set which belongs to one of the two following cases:

1. The function has one degenerate critical point where in local coordinates
(x, y) it has the form ±x2 + y3.

2. Only two critical values of Morse type coincide.

It is understood that in any of the two cases the remaining critical values are dif-
ferent (for the case 1, they are even different to the degenerate critical point) and of
Morse type. The invariance of the operator associated to Σ in the first case is implied
by the unit and counit axioms, for the second case we must use the identity for the
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Euler number

χ =
∑

(−1)λcλ

with cλ the number of critical points of index λ of its Morse function. Since every
elementary cobordism has at most a critical point of index 0, 1 or 2; then for the case
χ = 2 the cobordism corresponding to the two critical values has Euler number −2, 0
or 2. When χ = 0 or 2 the only relevant possibilities are the cylinder and the sphere
while for χ = −2 it is just a torus with two holes or the sphere with four holes. In the
case (1, 1, 1) (one entry, genus one and one exit) there is nothing to check, because,
though a torus with two holes can be cut into two pair of pants by many different
isotopy classes of cuts, there is only one possible composite cobordism, and we have
only one possible composite map

A → A⊗A → A.

Note that the coproduct is just

A

λ

��

δ // A⊗A

A∗
m∗
// A∗ ⊗A∗

λ−1⊗λ−1

OO

where λ is the corresponding Frobenius isomorphism between A and its dual. For a
commutative algebra is easy to prove that

∆(a) =
∑

aei ⊗ e#
i =

∑
ei ⊗ e#

i a

with {ei} a basis forA and # denotes the dual. For the sphere with four holes when we
have (3, 0, 1) and (1, 0, 3) these cases are covered by the associativity of the product
and coassociative of the coproduct respectively. Finally for (2, 0, 2) it is enough to
prove that it is well defined for all the possible pants decomposition; it is known
that for a compact surface (m, g, n) (meaning m input circles, genus g and n output
circles,) every pair-of-pants decomposition has 3g − 3 +m+ n simple closed curves
which cut the surface in 2g − 2 + m + n pairs of pants, hence for this case we have
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only a curve dividing in two pair of pants and then the only possibilities are

but this is clearly Abrams’ condition 4.4. �

6. CONSTRUCTION OF THEORIES

A very important problem in mathematics is the rigorous construction of field the-
ories.

The basic example is afforded to us by Poincaré duality. This model written
(HM , ZM )1+1

∼= (AM , θM ) depends only of a fixed oriented compact closed smooth
manifold M and lives in dimension 1 + 1. Let Maps�(Y,M) be the space of constant
maps from Y to M . Clearly if Y is connected (and non-empty), Maps�(Y,M) ∼= M

and in fact this last homeomorphism is given by the map

evy : Maps�(Y,M)→M

that evaluates at y∈Y . ForZ⊂Y we will write evZ : Maps�(Y,M)→Maps�(Z,M)
to be the restriction map defined by evZ(f) = f |Z .

In this theory the fields are

F(Y ) = Maps�(Y,M),

namely the moduli space of constant maps from Y toM . We consider Y to be (1+1)-
dimensional. Notice that

Maps�(Y,M) = M ×M × · · · ×M

where the product contains as many copies of M as connected components has Y .
Consider now the situation in which Y = P a 2-dimensional pair-of-pants (a 2-sphere
with three small discs removed) with two incoming boundary components and one
outgoing, and M is an oriented compact closed smooth manifold. Let a,b and c be
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three boundary components P each one diffeomorphic to S1.

F(Y )
π1

$$IIIIIIIII
π0

zzuuuuuuuuu

F(∂0Y ) F(∂1Y )

that is to say
(2)

Maps�(P,M)
eva×evb

ttiiiiiiiiiiiiiiii
evc

((QQQQQQQQQQQQ

Maps�(S1,M)×Maps�(S1,M) Maps�(S1,M)

which becomes thus
M

=

  BBBBBBBB
4

zzvvvvvvvvv

M ×M M

and indeed, since that is a smooth correspondence of degree −d we have that

4! = evc ◦ (eva × evb)! : H∗(M)⊗H∗(M)→ H∗−d(M)

is the induced homomorphism of degree −d in homology. Namely, the Feynman
evolution for a pair of pants in this field theory is simply the intersection product in
homology.

We could have used the space 8 consisting of the wedge of two copies of S1 instead
of P (they are after all homotopy equivalent, we can define evc by choosing a quotient
map c → 8 identifying two points of c). Notice that by using pairs-of-pants we can
recover any compact oriented 2-dimensional cobordism Y which is not boundaryless.
In fact by using correspondences we can recover ΨM

Y for all Y that has at least one
outgoing boundary component. In a sense correspondences encode a big portion of
Poincaré duality this way, the so-called positive boundary sector of the TQFT.

For this model we have,
• AM = H(•) = H∗(M) (the homology of M which is graded).
• The mapping associated to the pair of pants

(3) AM ⊗AM → AM

is the intersection product on the homology of the manifold (and is of degree
−d).
• The trace is defined as θM : AM = H∗(M) → H∗(•) ∼= C. The nondegen-

eracy of the trace is a consequence of Poincaré duality.
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It may be instructive to see how the Pontrjagin-Thom construction and the Thom
isomorphism can be used to induce the map 3. That basic idea is to use the diagonal
map

4 : M →M ×M.

m 7→ (m,m)

The product on AM is precisely the Gysin map 4! which can be defined using inte-
gration over the fiber, or as follows. It is not hard to verify that the normal bundle ν of
M = 4(M) in M ×M is isomorphic to the tangent bundle TM of M . Let us write
Mε a small neighborhood of M in M ×M , and MTM the Thom space on TM . Then
we have a natural map

M ×M −→M ×M/(M ×M −Mε) = MTM

which by the use of the Thom isomorphism induces

4! : H∗(M)⊗H∗(M) −→ H∗−d(M)

as desired.

Example 6.1. This is a famous example due to Chas and Sullivan [5]. Following
Cohen and Jones [7] we do something rather drastic now and let the maps roam free,
namely we write the correspondence 2 but with the whole mapping spaces rather than
just the constant maps.

which is a degree −d smooth correspondence. We must replace the pair of pants
P for the figure eight space 8 in order to ensure that Maps(8,M)→ LM ×LM is a
finite codimension embedding. This in turns implies the existence of the Gysin map

(eva × evb)! : H∗(LM × LM)→ H∗−d(Maps(8,M)).

The induced map in homology

• : H∗(LM)⊗H∗(LM)→ H∗−d(LM)

is called the Chas-Sullivan product on the homology of the free loop space of M .
From the functoriality of correspondences it isn’t hard to verify that the product is
associative.

Chas and Sullivan proved more, by defining a degree one map ∆: H∗(LM) →
H∗+1(LM) given by ∆(σ) = ρ∗(θ⊗σ) where ρ : S1×LM → LM is the evaluation
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map and θ is the generator ofH1(S1,Z), they proved that (H∗(M), •,∆) is a Batalin-
Vilkovisky algebra, namely

• (H∗−d(M), •) is a graded commutative algebra.
• ∆2 = 0
• The bracket {α, β} = (−1)|α|∆(α•β)−(−1)|α|∆(α)•β−α•∆(β) makes
H∗−d(M) into a graded Gerstenhaber algebra (namely it is a Lie bracket
which is a derivation on each variable).

This statement amounts essentially to the construction of ΨLMY for all positive bound-
ary genus zero (1 + 1)-dimensional cobordisms Y due to a theorem of Getzler (cf.
[9]). The case of positive genus has been studied by Cohen and Godin [6].

Example 6.2. The Gromov-Witten invariants introduced by Ruan in [17] can be
understood in terms of a field theory [16]. Now we consider a Riemmann surface
Y = Σg of genus g with k marked points. These marked points will take the place of
∂0Y and for simplicity we will not consider outgoing boundary for now.

In this (1+1)-dimensional quantum field theory we start by considering a fixed sym-
plectic manifold (M,ω). The space of fields is given (roughly speaking) by the space
of J-holomorphic maps on the class β ∈ H2(M),

F(Y ) =MΣ = Holβ(Σ,M) = {f ∈ Hol(Σ,M)|f∗[Σ] = β},

If we denote by evi : MΣ → M the evaluation map at ai ∈ Σ, then we have the
correspondence diagram

MΣ

×ievixxqqqqqqqqqqq

$$JJJJJJJJJ

Mk = F(qiai) F(∅) = •
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Given k cohomology classes u1, . . . , uk ∈ H∗(M) we can let them evolve according
to Feynman’s pull-push formalism to obtain the corresponding Gromov-Witten invari-
ant

Φg,β,k(u1, . . . , uk) =
∫
MΣ

ev∗1u1 ∧ . . . ∧ ev∗kuk

Here we should mention two important technical points regarding the moduli space
MΣ. Firstly Kontsevich [13] discovered that the most convenient space for defining
this field theory is the moduli space of stable maps (where at most ordinary double
points are allowed, and with finite automorphism groups). The moduli space turns out
to be an orbifold, not a manifold. We will return to the definition of an orbifold later.

Secondly, the moduli space does not quite have a fundamental class (that we re-
quire to do the integration). The problem is that roughly speakingM is given as the
intersection of two submanifolds (equations) N1 and N2 of a larger manifold V (tak-
ing only two is possible by using the diagonal map trick, namely N1 ∩ . . . ∩ Nr =
(N1×· · ·×Nr)∩4(V r)). Often this intersection is not transversal. Therefore rather
than a tangent we have a virtual tangent bundle (in K-theory)

[TM]virt = [TN1]|M + [TN2]|M − [TV ]|M

whose orientation (in cohomology, K-theory, complex cobordism) is called the virtual
fundamental class [M]virt. The corrected formula for the Gromov-Witten invariants
is then

Φg,β,k(u1, . . . , uk) =
∫

[MΣ]virt
ev∗1u1 ∧ . . . ∧ ev∗kuk.

Example 6.3. Floer theory is also a quantum field theory. Now we consider Y = Σg,k
to be a genus g Riemann surface with k small discs removed.
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The fields are again holomorphic mappings F(Y ) =MΣ.

MΣ

×ievizzttttttttt

''OOOOOOOOOOO

F(∅) = • (LM)k = F(∂1Σ)

In this case rather than simply considering the homology of LM we consider its
semi-infinite (co)homology. This means that we consider the homology of cycles that
are half-dimensional inLM . The semi-infinite (co)homologyHsi

∗ (LM) is also known
as the Floer (co)homology HF∗(M).

Finally we mention that a very important generalizations of the topics described
here can be found in [12], [15], [8]. We refer the reader to those excellent papers to
learn more about them.

7. APPENDIX: MONOIDAL CATEGORIES.

Definition 7.1. A monoidal category (or tensor category) consists of the following
data: a category C , a covariant functor ⊗ : C × C −→ C , called the monoidal prod-
uct(or tensor product), an object u ∈ Ob(C ), called the unit and natural isomorphisms

• αx,y,z : x⊗ (y ⊗ z) −→ (x⊗ y)⊗ z,
• λx : u⊗ x −→ x,
• ρx : x⊗ u −→ x,

called associativity, left unit and right unit. This natural isomorphisms satisfy the
following axioms:

x⊗ (y ⊗ (w ⊗ z))
αx,y,w⊗z//

1⊗αy,w,z

��

(x⊗ y)⊗ (w ⊗ z)
αx⊗y,w,z// ((x⊗ y)⊗ w)⊗ z

x⊗ ((y ⊗ w)⊗ z)
αx,y⊗w,z

// (x⊗ (y ⊗ w))⊗ z

αx,y,w⊗1

OO

x⊗ (u⊗ y)
αx,u,y //

1⊗λy &&LLLLLLLLLL
(x⊗ u)⊗ y

ρx⊗1xxrrrrrrrrrr

x⊗ y
for x, y, w, z ∈ Ob(C ), and also

λu = ρu : u⊗ u −→ u.

A monoidal category is called strict monoidal category, if the morphisms α, λ, ρ are
the identity morphisms.
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7.1. Monoidal Functors.

Definition 7.2. Let (C ,⊗) and (D ,⊗) be monoidal categories. A monoidal functor
is a functor F : C −→ C together with natural isomorphisms

• ξx,y : F (x)⊗ F (y) −→ F (x⊗ y)
• ξ0 : uD −→ F (uD)

which satisfy the following commutative diagrams:

F (x)⊗ (F (y)⊗ F (z))

α

��

1⊗ξ // F (x)⊗ F (y ⊗ z)
ξ // F (x⊗ (y ⊗ z))

F (α)

��
(F (x)⊗ F (y))⊗ F (z)

ξ⊗1
// F ((x⊗ y)⊗ F (z)

ξ
// F ((x⊗ y)⊗ z)

u⊗ F (x)
ξ0⊗1//

λ ''NNNNNNNNNNN
F (u)⊗ F (x)

ξ // F (u⊗ x)

F (λ)wwppppppppppp

F (x)

F (x)⊗ u
1⊗ξ0//

ρ
''NNNNNNNNNNN

F (x)⊗ F (u)
ξ // F (x⊗ u)

F (ρ)wwppppppppppp

F (x)

A monoidal functor is called stric monoidal functor if ξ and ξ0 are the identity mor-
phisms.

In all that follows we will further assume that the topological cylinder Σ0 := S1 ×
[0, 1] seen as a cobordism between a circle and itself gets assigned the identity map by
the functor, namely ZC(Σ0) = id.

Remark 7.3. For any monoidal functors F : C −→ D and G : D −→ E . Let
(ξ, ξ0) and (ξ′, ξ′0) the natural isomorphisms of F and G, respectively. The natural
isomorphisms (ξ′′, ξ′′0 ) for the composition F ◦G : C −→ E are defined by

G ◦ F (x)⊗G ◦ F (y)
ξ′ //

ξ′′

33
G(F (x)⊗ F (y))

G(ξ) // G ◦ F (x⊗ y)

uE
ξ′0 //

ξ′′0

66
G(uD)

G(ξ0)// G ◦ F (uC )
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Example 7.4. The most important ones are

(Set,×, {∗}), the category of sets with the cross product.
(Set,t, ∅), the category of sets with the disjoint union.

(Vectk,⊗,k), the category of vector spaces with the tensor product over k.
(Top,×, ∗), the category of topological spaces with the cross product.
(Ab,⊗,Z), the category of abelian groups with the usual tensor product over Z.

(nCob,t, ∅), the category of n-cobordisms whit the disjoint union.

7.2. Monoidal Natural Transformations.

Definition 7.5. A natural transformation σ : F −→ F ′ between two monoidal func-
tors is called a monoidal natural transformation if the diagrams

F (x)⊗ F (y)
ξ //

σ⊗σ
��

F (x⊗ y)

σ

��
F ′(x)⊗ F ′(y)

ξ
// F ′(x⊗ y)

u
ξ0 //

ξ′0 !!BBBBBBBBB F (u)

σ

��
F ′(u)

commute.
Let C and D monoidal categories. A monoidal functor F : C −→ D is called a

monoidal equivalence if there exists a monoidal functor G : D −→ C and monoidal
natural isomorphisms ϕ : G ◦ F ∼= 1C and ψ : F ◦G ∼= 1D .

7.3. Braided Monoidal Categories. A braided monoidal category consists of a mon-
oidal category M together with a braiding, which is defined by a family of isomor-
phims

ςx,y : x⊗ y −→ y ⊗ x.

They are natural for x and y in M , and satisfy for the unit u the commutative diagram

x⊗ u ς //

ρ
""FFFFFFFF u⊗ x

λ||xxxxxxxx

x,
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Moreover the maps ςx,y , together with the associativity α make commutative the fol-
lowing hexagonal diagrams:

(x⊗ y)⊗ z ς //

α−1

}}|||||||||||||||||
z ⊗ (x⊗ y)

α

!!CCCCCCCCCCCCCCCCC

x⊗ (y ⊗ z)

1⊗ς

!!BBBBBBBBBBBBBBBBB
(z ⊗ x)⊗ y

ς⊗1

}}{{{{{{{{{{{{{{{{{

x⊗ (z ⊗ y)
α

// (x⊗ z)⊗ y,

x⊗ (y ⊗ z) ς //

α

}}|||||||||||||||||
(y ⊗ z)⊗ x

α−1

!!CCCCCCCCCCCCCCCCC

(x⊗ y)⊗ z

ς⊗1

!!BBBBBBBBBBBBBBBBB
y ⊗ (z ⊗ x)

1⊗ς

}}{{{{{{{{{{{{{{{{{

(y ⊗ x)⊗ z
α−1

// y ⊗ (x⊗ z).

7.4. Symmetric Monoidal Categories. A symmetric monoidal category is a mono-
idal category with a braiding, which satisfies the identity

ςy,x ◦ ςx,y = 1.

Proposition 7.6. For M a symmetric monoidal category we have the identity

(1⊗ ς) ◦ ς ◦ α−1 = α ◦ ς ◦ (1⊗ ς).
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Proof.

· α //

ς

���������������
·

ς⊗1

��/
////////////

·

α−1

��/
//////////// ·

α−1

���������������

ς // ·

α

��0
000000000000

·
1⊗ς

// ·

1⊗ς

��/
//////////// ·

ς⊗1

���������������

·
α

// · ,

then

ς = (ς ⊗ 1) ◦ α ◦ ς · (ς ⊗ 1) · α,(4)

⇒ α−1 · (ς ⊗ 1) · ς = ς · (ς ⊗ 1) · α,(5)

⇒(1⊗ ς) ◦ ς ◦ α−1 = α ◦ ς ◦ (1⊗ ς).(6)

�
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