	Cauchy-Binet formula 

	(Theorem) 
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matrix. Then the determinant of their product [image: image5.png]


can be written as a sum of products of minors of [image: image6.png]
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Basically, the sum is over the maximal ([image: image9.png]


-th order) minors of [image: image10.png]
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. See the entry on minors for notation. 
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, this formula reduces to the usual multiplicativity of determinants [image: image18.png]O] = |AB| = |A||B|



.

Proof. Since [image: image19.png]


, we can write its elements as [image: image20.png]€ij = i Gikbi;



. Then its determinant is 
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In both steps above, we have used the property that the determinant is multilinear in the colums of a matrix. 

Note that the terms in the last sum with any two [image: image25.png]


's the same will make the minor of [image: image26.png]
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's that differ only by a permutation, the minor of [image: image28.png]


will simply change sign according to the parity of the permutation. Hence the determinant of [image: image29.png]


can be rewritten as
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is the permutation group on [image: image33.png]


elements. But the last sum is none other than the determinant [image: image34.png]


. Hence we write 
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which is the Cauchy-Binet formula. [image: image36.png]






