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Elements of noncoperative game theory

Our analysis is restricted to finite games in normal form

� A set of index I = {1, ..., n} represents the set of players.

� For each i ∈ I, Si = {1, ...,mi} her finite set of pure strategies.

� A vector of pure strategies s = (s1, ..., sn), si ∈ Si, is a pure

strategy profile.

� The set of the pure strategy profiles is S = ×iSi.

� The payoff function πi : S → R is defined by the list

{πi(s) : s ∈ S} , ∀ i ∈ I.

� For any strategy profile s ∈ S, πi(s) ∈ R is the associate payoff

to player i.

� The payoff profile π : S → Rn is given by the vectorial field

π(s) = (π1(s), ..., πn(s)).
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The normal form game is summarized a triplet G = (I, S, π). In the

special case of when there are only two players:

Si = {si1, ..., siki
} , i = 1, 2

One may write the payoffs π1 and π2 in a tabular form as two

m1 ×m2 matrices A = (ahk) and B = (bhk))

Where π1(s1h, s2k) = ahk and π2(s1h, s2k) = bhk.

� Each row in both matrices corresponds to a pure strategy for

player 1, and each column to a pure strategy of player 2.

A =


a11 · · · a1k2

...
...

...

ak11 · · · ak1k2

 B =


b11 · · · b1k2

...
...

...

bk11 · · · bk1k2

 .

(1)

3



'

&

$

%

Example 1 The Prisoner’s Dilemma Game

A =

 2 5

1 4

 B =

 2 1

5 4

 . (2)

� Strategies: Si = {don′t confess, confess} , i = 1, 2.

� Payoffs: In years of prison.

� Rows the strategies of 1, Columns those of 2, payoffs for each

at the intersection of the respective matrices To confess is

better for both players but....
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Alternatively:

C1 C2

F1 2, 2 5, 1

F2 1, 5 4, 4

Where S1 = {F1, F2} and S2 = {C1, C2}

ahk = π1(Fh, Ck), h, k ∈ {1, 2}
bhk = π2(Fh, Ck), h, k ∈ {1, 2}

s∗ = (F2, C2) = (confess, confess).

π(s∗) = π1(F2, C2) = π2(F2, C2) = (4, 4).
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Mixed strategies

A mixed strategy for player i ∈ I is a probability distribution over

the set of pure strategies, Si = (si1, ..., sini). It can be represented

by a vector

xi = (xi1, ..., xini
) ∈ ∆i,

where

∆i =

{
xi ∈ ℜni : 0 ≤ xih ≤ 1 ∀ h = 1, ..., ni, and

h∑
i=1

xih = 1

}
.

The set C(xi) = {h ∈ Si : xih > 0} is called the support of xi.

A strategic profile ia a vector of mixed strategies one for each

player x = (x1, ..., xn) ∈ ∆ = ×n
i=1∆i
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Notation The vertices or corner of this simplex are

e1i = (1, 0, ...0), ...., ej = (0, ..., 1, ...0), ....., eni = (0, 0, ..., 1).

Hence, a pure strategy is a concentred distribution of probabilities.

� Every mixed strategy xi ∈ ∆i is a convex combination of this

unit vectors:

xi =

ni∑
h=1

xihe
h
i .

� A mixed strategies profile is a vector x = (x1, ..., xn) where

xi ∈ ∆i. The mixed strategies space is ∆ = ×i∈I∆i.
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Notation

� Let y = (y1, ..yi−1, yi, yi+1, .., yn) ∈ ℜn. We represent by

y−i = (y1, ..yi−1, yi+1, .., yn) ∈ ℜn−1 the vector of ℜn−1 whose

coordinates, with the exception of the i− th that was

eliminated, are equal to those of y.

� Let y = (y1, ..., yi, ..., yn) ∈ ∆ be a mixed strategies profile. We

write (xi, y−i) for the strategy profile in which player i ∈ I

plays strategy xi ∈ ∆i and all others according to the profile

y ∈ ∆.

� We say that a strategy xi is completely mixed if C(xi) = Si.

8



'

&

$

%

In normal form games players make their choices independiently of

each other.

� Let I = {1, 2, ..., n} be the set of players. and let

Si = (si1, ...., sini) the set of pure strategies, and suppose that

players are playing x = (x1, ...., xn) ∈ ∆, then

� the probability that s = (s1k1
, .....snkn

) ∈ S = ×n
i=1Si and

kj ∈ {1, ..., nj} , j = 1, ..., n occurs if

x = (x1, ...xn) ∈ ∆ = ×n
i=1∆i is played is given by x : S → ℜ

given by

x(s) = x1(s1k1)x2(s2k2)....xn(snkn) = Πn
i=1xi(siki).

� Where x(s) = Πn
i=1xi(ski

) is the product of probabilities

assigned by each player’s mixed strategy xi ∈ ∆i to play his

pure strategy si ∈ S.
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Payoff functions

The payoff for the player i ∈ I is a function ui : ∆ → ℜ deifined by

the expected value

ui(x) =
∑
s∈S

x(s)πi(s)

Where s ∈ S and x(s) = Πn
i=1xi(ski

)

The payoff ui(x) is a linear function of each player mixed strategy:

to see this suppose that player j is playing his pure strategy sj = k

this is equivalent to play the mixed strategy ekj and the payoff that

player i obtain when j uses her k − th pure strategy is: ui(e
k
j , x−j).

Hence for any x = (xi, x−i) ∈ ∆i ×∆−i

ui(xi, x−i) =

ni∑
k=1

xikui(e
k
i , x−i).
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The combined function u : ∆ → Rn defined by

u(x) = (u1(x), ..., un(x))

is the combined payoff function of the game.

The mixed extension of a game G = ((I, S, π) is given by

Γ = (I,∆, u).

Consider a two players game with the payoff matrices A and B. For

a mixed strategy x1 ∈ ∆1 and x2 ∈ ∆2 we have:

u1(x1, x2) =
∑m1

h=1

∑m2

k=1 x1hahkx2k = x1Ax2

and

u2(x1, x2) =
∑m1

h=1

∑m2

k=1 x1hbhkx2k = x1Bx2 = x2B
Tx1.

(3)
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Example 2 Consider de Prisoner’s dilemma again.

� The combined mixed strategy payoff; u : ∆ → R2

� The mixed strategies are

x1 = (x11, x12) ∈ ∆1;x2 = (x21, x22) ∈ ∆2.

� The profile of pure strategies (c, c) = (e21, e
2
2)

� u1(x) = x1Ax2 = (2x21 + 5x22)x11 + (1x21 + 4x22)x12

� u2(x) = x1Bx2 = (2x11 + 5x12)x21 + (1x11 + 4x12)x22.

� Note that u1(e
1
1, x2) = (2x21 + 5x22), u1(e

2
1, x2) = (1x21 + 4x22)

� and that u2(x1, e
1
2) = (2x11 + 5x12), u2(x1, e

2
2) = (1x11 + 4x12).

� So, u1(x1, x2) = u1(e
1
1, x2)x11 + u1(e

2
2, x2)x12

� and u2(x1, x2) = u2(x1, e
1
2)x21 + u2(x1, e

2
2)x22
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Dominance relations

Definition 1 We say that the strategy yi ∈ ∆i weakly dominates

xi ∈ ∆i if ui(yi, z−i) ≥ ui(xi, z−i) for all z−i ∈ ∆−i with strict

inequality for some z−i ∈ ∆−i.

A strategy xi is undominated if no such strategy yi exists.

Definition 2 We say that the strategy yi ∈ ∆1 strictly dominates

xi ∈ ∆i if ui(yi, z−i) > ui(xi, z−i) for all z−i ∈ ∆−i.

Definition 3 A strategy xi ∈ ∆i is dominated if for all z ∈ ∆

there exists yi ∈ ∆i such that ui(yi, z−i) ≥ ui(xi, z−i), and there

exists wi ∈ ∆i : ui(wi, α−i) > ui(xi, α−i) for some α−i ∈ ∆−i.

Definition 4 A strategy xi ∈ ∆i is strictly dominated if for all

z ∈ ∆ there exists yi ∈ ∆i such that ui(yi, z−i) > ui(xi, z−i).

A strategy x is weakly dominated if some other strategy exists that

weakly dominates x.
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The following example illustrates the possibility that a pure

strategy is strictly dominated by a mixed strategy without being

dominated by any pure strategy:

Example 3 Consider the two-players game with payoff matrix:

A =


3 0

0 3

1 1


Player I has three pure strategies.
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� Her third pure strategy e31 is not weakly dominated by any of

the other two pure stratey.

� However, she always obtain a higher payoff by randomizing

uniformly over othe pure strategies.

� Formally, let y1 = ( 12 ,
1
2 , 0) we have

1 = u1(e
3
1, z2) < u1(y1, z2) =

3
2 for all z2 ∈ ∆2 So y1 strictly

dominates x− 1.
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A rational player does not play strictly dominated strategy.

� Pure strategies strictly dominated can be deleted from a game

without affecting the outcome.

� The process of to delete strictly dominate pure strategies can

be iteratively repeated.

Best replies or best responses

Definition 5 A pure best reply for player i to a strategy profile

y ∈ ∆ is a pure strategy si ∈ Si such that there is no other pure

strategy available to the player given her a higher payoff against y

βi(y) =
{
h ∈ Si : ui(e

h
i , y−i) ≥ ui(e

k
i , y−i) ∀k ∈ Si

}
. (4)

Then βi is a correspondence: βi : ∆ → Si.
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Since every mixed strategy is a convex combination of pure

strategy it follows that for each xi = (xi1, ..., xini) ∈ ∆i :

ui(e
h
i , y−i) ≥

ni∑
k=1

ui(e
k
i , y−i)xik = ui(xi, y−i).

Hence,

βi(y) =
{
h ∈ Si : ui(e

h
i , y−i) ≥ ui(xi, y−i) ∀xi ∈ ∆i

}
. (5)

Definition 6 A mixed best reply for a player i against y ∈ Θ is a

mixed strategy xi ∈ ∆i such that there is no other mixed strategy

available to the player given her a higher payoff against y

β̄i(y) = {xi ∈ ∆i : ui(xi, y−i) ≥ ui(zi, y−i) ∀zi ∈ ∆i} . (6)

Hence, β̄i is a correspondence β̄i : ∆ → ∆i.
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� The subset β̄i(y) is always a non empty, closed and convex set

of ∆i.

� Note that if xi is a best reply for i against y then

ui(e
h
i , y−i) = ui(e

k
i , y−i) ∀h, k ∈ C(xi).

The combined pure best reply is a correspondence β : ∆ → S

defined by β(y) = ×n
i=1βi(y).

The combined mixed best reply is a correspondence β̄ : ∆ → ∆

defined by β̄(y) = ×n
i=1β̄i(y).

Proposition 1 A pure strategy of a player in a finite strategic

game is never a best response if and only if, it is strictly dominate.

Proof: Osborne-Rubinstein.
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Nash equilibrium

In terms o best reply: a strategy profile x ∈ ∆ is a Nash

equilibrium if it is a best reply against to itself, or equivalently if it

is a fixed point of the correspondence β̄ :

Definition 7 x ∈ ∆ is Nash equilibrium if x ∈ β̄(x).

It follows than every pure strategy si in the support of each

component xi of a Nash equilibrium, is a best reply against x : i.e.

if x is a Nash equilibrium and si ∈ C(xi) then si ∈ βi(x).

Definition 8 A Nash equilibrium x ∈ ∆ is called strict if

β̄(x) = {x}.

While a Nash equilibrium requires that no unilateral deviation

should be profitable, strict NE, requires that all such deviations be

costly.

19



'

&

$

%

In the prisoner’s dilemma, (to confess, to confess) is a NE, this

can be represented by the mixed strategy: ((0, 1), (0, 1))

Example 4 Matching pennies

H T

H +1,−1 −1,+1

T −1,+1 +1,−1

This game has not a NE in pure strategies.

� How to find a NE in mixed strategies?

� We solve the equations system:

π1(F1, σ
∗
2) = π1(F2, σ

∗
2)

π2(σ
∗
1 , C1) = π2(σ

∗
1 , C2)
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From the first equation we obtain σ∗
2 and from the first one σ∗

1 .

In this case

π1(F1, σ
∗
2) = 1σ∗

21 − 1σ∗
22 and π1(F2, σ

∗
2) = −1σ∗

21 + 1σ∗
22.

π1(F1, σ
∗
2) = π1(F2, σ

∗
2)

it follows, σ∗
2 = ( 12 ,

1
2 ). Analogously for player 2 : σ∗

1 = ( 12 ,
1
2 )

This means that each player uses in equilibrium a mixed strategy

σi if and only if the expected value

Ei[sh/σ−i] = ... = Ei[sk/σ−i]

for each pure strategy sh, ..., sk ∈ C(σi).
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Note that:

� A Nash equilibrium is never a strictly dominated strategy,

however it can be weakly dominated.

� Every strict Nash equilibrium is a pure strategy profile.

Since if a NE involve a randomization, then there exist at least

to strategy with the same maximal payoff.

For instance: Let x∗ = (x∗
1, x

∗
2) be a NE, where

x∗
1 = (x∗

11, x
∗
12) >> 0 then

{(s1, x∗
2), (s2, x

∗
2), (x

∗
1, x

∗
2)} ∈ B1(x

∗)×B2(x
∗) = B(x∗).

� The existence of Nash equilibrium was first established by Nash

in 1950.
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Theorem 1 (Nash’s theorem) For any finite game the set of

Nash equilibria ∆NE ̸= ∅.

Proof: The set ∆ is nonempty, convex and compact, and so the

subset β(y) ∈ ∆.

By standard arguments (continuity and concavity of ui) it can be

verified that β is convex and upper hemi-continuous

correspondence.

By Kakutani’s fixed point theorem, there exist some y ∈ βy.
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Refinements of Nash Equilbrium

Since 1970 there has been a flurry of refinements of the Nash

Equilibrium concept. Each refinement being motivated by the

desire to get rid of certain implausible or fragile Nash equilibrium.

The most well-known noncooperative refinement is that of

trembling hand perfection

Let the game G = {I, S, µ} where µ is an error function that to

each player i an pure strategy h ∈ Si assign a number µih ∈ (0, 1)

the probability that the strategy will played by mistake where∑
: hµih < 1. Such funtion µ defines for each player i ∈ I the

subset

∆i = {x ∈ ∆i : xih ≥ µih} ⊂ int(∆i)

of mixed strategies that the player can implement, given the error

probabilities.
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We define the perturbed game

G(µ) = {I,∆(µ), µ} .

By standard arguments we can prove that every perturbed game

G(µ) has a nonempty set ∆NE(µ) of Nash equilibria.

When µ → 0 G(µ) → G the original game.

Definition 9 x ∈ ∆NE perfect if, for some sequence {G(µt)}µt→0

of perturbed games there exist profiles xt ∈ ∆(µt) such that xt → x.
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In particular, every interior Nash equilbrium is perfect.

Proposition 2 For any finite game ∆PE ̸= ∅.

Proof: For any sequence {G(µt)}µt→0 let xt ∈ ∆NE(µt) for each t.

Since xt is a sequence in ∆ a compact set it has a convergente

subsequece {ys}s with limit in x∗ ∈ ∆ For each s,G(µs) is

accompanying perturbed game. By standar continuity arguments

x∗ ∈ ∆NE and is perfect, because ys → x∗.
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Symmetric two players games

The subclass of symmetric two-players games, provides the basic

setting for much of the evolutionary game theory.

Definition 10 A game G = (I, S, π) is a symmetric two players

game if: I = {1, 2}, S1 = S2, π1(s1, s2) = π2(s2, s1) for all

(s1, s2) ∈ S.

� This is equivalent with de requirement B = AT

� It follows that ∆1 = ∆2 = ∆

� NOTATION; ∆×∆ = Θ.

Example The prisoner dilemma is a symmetric two players

game.
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� If player 1 plays x and player 2 plays y player 1 gets the same

result as player 2 when player 2 is the one who plays x and

player 1 plays y. That is, u1(x, y) = u2(y, x) because

� since A = BT ⇔ aij = bji for al x ∈ ∆1 and y ∈ ∆2 we have

that

u1(x, y) = xAy = xBT y = yBx = u2(y, x)

� Let (x, y) ∈ Θ then we have that

x ∈ B1(y) if and only if x ∈ B2(y).

Because,

u1(x, y) ≥ u1(z, y) ∀z ∈ ∆1 ⇔ u2(y, x) ≥ u2(y, z) ∀z ∈ ∆2.
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Symmetric Nash Equilibrium

In the context of symmetric games we introduce the notation

Θ = ∆×∆.

� A pair (x, y) ∈ Θ is a NE, if and only if x ∈ β(y) and y ∈ β(x)

� A NE (x, y) is symmetric if and only if x = y

We symbolize the set of symmetric NE, by

ΘNE = {x ∈ ∆ : (x, x) is a NE}

Theorem 2 For any symmetric two-player game: ΘNE ̸= ∅.
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H D

H (v − c)/2, (v − c)/2 v, 0

D 0, v v/2, v/2

Nash equilibria:

� If v < c i.e: the cost of fight exceeds the value of a victory,

there are two Nash equilibrium in pure strategies

NE1 = (H,D) = (e11, e
2
2), NE2 = (D,H) = (e21, e

1
2)

and the SNE = (x, x) where x = (v/c, 1− v/c)

� If v > c the game has a unique Nash equilibrium

NE = (H,H) = (e11, e
1
2).
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A classification of symmetric 2 × 2 games

Each symmetric 2× 2 game is represented by the matrix of payoff:

A =

 a11 a12

a21 a22

 .

The following linear transformations in the payoff of a game, do

not change the characteristic of the Nash equilibria set.

Substracting a21 from column 1 and a12 from column 2, we obtain

the equivalent (from the point of view of the NE) matrix

A′ =

 a11 − a21 0

0 a22 − a12

 .

This new matrix is a symmetric matrix, a it will be represented by:
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A′ =

 a1 0

0 a2

 .

Where a1 = a11 − a21 and a2 = a22 − a12.

It follows that any symmetric 2 × 2 game can, after normalization

identified with a point a = (a1, a2) ∈ ℜ2 in the plain.

From the point of view of the characteristics of the Nash

equilibrium, there exists three different categories depending on the

signals of a1 and a2.
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� Category I a1 > 0; a2 < 0 or a1 < 0; a2 > 0. There is only one

Nash equilibria, in pure strategy. The prototype is the prisoner

dilemma’s game.

� Category II a1 > 0, a2 > 0. There are two Nash equilibrium in

pure strategies (e11, e
1
2) and (e21, e

2
2) and the mixed symmetric

equilibrium (x, x) where x = ( a2

a1+a2
, a1

a1+a2
). The prototype is

the coordination game.

� Category III a1 < 0, a2 < 0. There are two Nash equilibrium in

pure strategies (e11, e
2
2) and (e21, e

1
2) and the mixed symmetric

equilibrium (x, x) where x = ( a2

a1+a2
, a1

a1+a2
). The prototype is

the howk-dove game.
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Evolutionary game theory

So far we have considered two players (populations) games in the

framework of classical game theory.

The solution for this type of game (the Nash equilibrium) was

based in:

� Each player is rational in the sense that:

� uses a best response to the strategy chosen by the other so,

� neither would change what they are doing.

Now, we give an alternative interpretation for the Nash equilibria

(x∗, x∗), by placing the game in a population context.
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Evolutionary game theory considers a population of decision makers

An strategy x = (x1, .., xk) represents:

� the percentage of individuals adopting one of the possible k

strategies

� or the percentage of times that the typical individual uses each

possible strategy.

In biology: this behaviour is genetically programmed, and the

payoff is identified with the expected number of offspring.

In economics: individuals that play a game many times can

consciously switch strategies (by learning or imitation).
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Definition 11 � Consider an infinite population of individuals

that can use some set of pure strategies S. A mixed strategy is a

vector x that gives the probability x(s) with which strategy

s ∈ S is played in the population.

� A strategic profile is a vector of distributions of probabilities

over the set of available behavior or pure strategies, one for

each population involved in the game.
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Example 5 Consider a population of individuals that can use two

set of pure strategies S1 and S2.

� A mixed strategy xi = (xi1, ..., xiki) followed by the population

i = 1, 2 corresponds to a probability distribution over the set of

possible behaviors (pure strategies) for the individuals of the

i− th population. Equivalently:

– The probability of finding in the population i an individual

following the behavior or the pure strategy sij (i.e,: a

j−strategist) is equal to xij .

– The typical individual in the population i follows the mixed

strategy xi.

� A strategic profile is a set of distributions one for each

population. x = (x1, x2).
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From a modelling view point we distinguish between two types of

population games:

� Games against the field (or nature). These games have the

following characteristics:

– A population of identical individuals must choose their

behavior in a gives set of strategies to face a no specific

opponent, the nature or the field.

– The returns that each individual in the population receives,

after playing the game, depends on their own strategic

choice. (or behavior)

– Generally, the behavior of the player (individually) has no

influence on the field Then the field plays the same game

against all participants. This also guarantees that all the

individuals are playing against the field separately.
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� Pairwise contest game. Describes a situation in which two

individuals are chosen randomly from two different antagonistic

populations whose members choose their behavior in respective

sets of well-defined strategies.

� The payoff of each individual in the pair chosen depends on the

strategy followed by each one.

We will start considering a pairwise contest game.
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A pairwise contest game

Let G a two-player normal form game.

� Let S = (s1, ..., sn1
) an S′ = (s′1, ..., s

′
n2
) denote a finite set of

pure strategies for a game G

� Let ∆S and ∆S′ denote the set of probability distributions on

S and S′ respectively.

� Payoffs are specified by the function π : ∆S ×∆S′ → R2.

Definition 12 A pairwise contest game, describes a situation in

which, a given individual i ∈ P1 playing a mixed strategy σi ∈ ∆S

against an opponent j ∈ P2 that is randomly select (by Nature)

according with the probability σ′
j ∈ ∆S′. The payoff depends just on

what both individuals do.

ui(σ, σ
′) =

∑
s∈S

∑
s′∈S′

σ(s)σ′(s′)ui(s, s
′); i ∈ {1, 2}.
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The probability of obtaining (ui(s, s
′)) is p(s, s′) = σ(s)σ′(s′).

So the payoffs u(σ, σ′) = (u1(σ, σ
′), u2(σ, σ

′)) associate with the

profile of mixed strategies (σ, σ′) are the expected values over the

set of possible matches.

Two different ways of thinking about this model:

1. σ = (σ1, ..., σni), i = 1, 2 is a mixed strategy followed by a

typical individual from the population, i.e; a distribution of

probabilities over the set of available behavior for individuals of

the i− th population. Or equivalentley

2. σ = (σ1, ..., σni
), i = 1, 2 is a probability distribution of the

i− th population over the set of possible disease behaviors,

that is, the percentage of individuals of each type who follow a

certain disease behavior. And therefore the probability of

randomly choosing a sj strategist in the population.
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Evolutionarily games theory in a classical form

The most common setting in which to discuss evolutionary games

is in the framework of

a two-player (one-population) symmetric game:

� Let S = (s1, ..., sn) denotes a finite set of pure strategies for a

game G or possible behaviors of individuals in the population.

� Two players are playing G, each one must make a choice from S

� Let ∆ =
{
σ ∈ ℜn

+ :
∑n

j=1 σj

}
where σj denotes the probability

that a player in the population follows the strategy sj . Or

equivalently,the probability to match with an individual

following the j−th behavior.

� The payoff associated with each s ∈ S is specified by the

function u : (S ×∆S) → ℜ defined by E(s/σ ∈ ∆S) = u(s, σ).
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Evolutionarily stable strategies in symmetric games is one of the

main concepts in evolutionary games theory. It represents a

population playing against itself. Payoffs are the numbers of

offprints according with the strategy followed by each individual

and the strategy followed by the opponent.

Suppose that a small group of mutant appears in a large

population of individuals all of whom are programmed to paly the

same (mixed or pure) incumbent strategy x ∈ ∆.

� The mutants all are programmed to play y ∈ ∆.

� The share of mutants is ϵ ∈ (0, 1).

� The distribution of the postentry population is

w = ϵy + (1− ϵ)x.

� Pairs of individuals in this bimorphic population are repeatedly

drawn at randon to play the game. Every individual is drawn

with the same probability.
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� The probability that the opponent plays y is ϵ and (1− ϵ) is

the probability that the opponent plays x.

� The payoff of the incumbent strategy is u(x, ϵy + (1− ϵ)x) and

the payoff of the mutant strategist is u(y, ϵy + (1− ϵ)x).

� The distribution of the postentry population is

w = ϵy + (1− ϵ)x.
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Biological intuition suggest that evolutionary forces select against

the mutant strategy if and only in

u(x, ϵy + (1− ϵ)x)) > u(y, ϵy + (1− ϵ)x).

A strategy x ∈ ∆ is said to be evolutionarily stable if the above

inequality holds for any mutant strategy y ̸= x granted the

population share of mutant is sufficiently small (Maynar Smith and

Price 1973).

Definition 13 x ∈ ∆ is an evolutionary stable strategy (ESS) if

for every y ̸= x there exists some ϵ̄y such that the inequality

u(x, ϵyy + (1− ϵy)x) > u(y, ϵyy + (1− ϵy)x)

holds for all ϵy ∈ (0, ϵ̄y).
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An alternative framework

Equivalently, in a population made up of individuals who act

according to a single predetermined plan (a mixed strategy) a

percentage of individuals start acting following a new plan

The new mixed strategy is

wϵ = (1− ϵ)x+ ϵy.

Example 6 Consider a game with S = (s1, s2) and x = ( 12 ,
1
2 ).

Suppose that a mutant strategy is y = ( 34 ,
1
4 ). Then:

wϵ = (1− ϵ)x+ ϵy = (1− ϵ)( 12 ,
1
2 ) + ϵ( 34 ,

1
4 ) = ( 12 + ϵ

4 ,
1
2 − ϵ

4 ).
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An alternative definition of ESS for a one population game

Definition 14 A strategy σ∗ is evolutionarily stable strategy if the

following two conditions are verified:

u(σ∗, σ∗) ≥ u(σ, σ∗) ∀ σ ̸= σ∗

u(σ∗, σ∗) = u(σ, σ∗) ⇒ u(σ∗, σ) > u(σ, σ).

This is the original definition of M. Smith and Price (1973)

This definition has the advantage of making clear that ESS is a

refinement of the N.E. concept:

� The first requirement is the condition of N.E. for (σ∗, σ∗)

� The second is a requirement of stability. Ensures that σ∗ have

a better performance than a mutant behavior, in a population

composed by σ∗ strategist and a few σ.
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We will show that both definitions are equivalent:

Theorem 3 An strategy x is ESS in a pairwise contest game, if

and only if ∀y ̸= x either:

1. u(x, x) > u(y, x) for all y ̸= x, or

2. if there exist some y ∈ ∆ : u(x, x) = u(y, x) then

u(x, y) > u(y, y).

Corollary 1 In a pairwise contest population game

∆ESS =
{
x ∈ ∆NE : u(y, y) < u(x, y) ∀y ∈ β(x), y ̸= x

}
.

This means that if x is ESS, and y ̸= x even when y ∈ β(x) we have

that y ̸∈ β(y).
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Proof of the theorem: Suppose that x is an ESS, then

u(x,wϵ) > u(y, wϵ) where wϵ = (1− ϵ)x+ ϵy). (7)

In the pairwise contest game, using the bilinearity of u this

condition can rewritten as:

(1− ϵ)u(x, x) + ϵu(x, y) > (1− ϵ)u(y, x) + ϵu(y, y),

for all 0 ≤ ϵ < ϵ̄y. The inequality follows if and only if:

� u(x, x) > u(y, x) and ϵ ≤ ϵ̄y or

� u(x, x) = u(y, x) and u(x, y) > u(y, y).•
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An equivalent and useful definition of ESS is as follows: Let

f : [0, 1]×∆ → ℜ be defined by

f(ϵ, y) = u(x− y, x) + ϵu(x− y, y − x).

Then x ∈ ESS if and only if for any y ̸= x there exists

ϵ̄y : 0 < f(ϵ, y) for all 0 < ϵ < ϵ̄y.
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Uniform Invasion Barriers

Recall that if x ∈ ESS, then for each mutation y ̸= x there exist an

ϵy > 0 such that x resists the “infection” by y if it comes in smaller

dose that ϵy > 0. That is, if x is an ESS it continues being the

strategy that shows the best performance even after the mutation.

For example, the population distribution x ensures a greater

number of descendants than if it mutates to z = x(1− ϵy) + yϵy.

� We are interested in knowing if there is a uniform barrier, that

is, if there is some ϵ > 0 that is a barrage for any mutation
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Definition 15 x ∈ ∆ has a uniform invasion barrier if there is

ϵ̄ ∈ (0, 1) such that

u(x, ϵy + (1− ϵ)x) > u(y, ϵy + (1− ϵ)x)

is verified for all y ̸= x and for all ϵ ∈ (0, ϵ̄).

So, x has uniform invasion barrier if and only if for alll y ̸= x

f(ϵ, y) = u(x− y, x) + ϵu(x− y, y − x) > 0

for a sufficiently small ϵ.
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Theorem 4 x is ESS if and only if x has a uniform invasion

barrier.

The if part follows immediately from the definition of ESS choosing

ϵ̄y = ϵ̄.

For the only if part: Consider the affine function

f(·, y) : [0, 1]×∆ → ℜ defined by

f(ϵ, y) = u(x− y, x) + ϵu(x− y, y − x).

So, if x ∈ ∆ESS for each y ̸= x ∈ ∆ there is 0 < ϵy such that

0 < f(ϵ, y) for all 0 < ϵ ≤ ϵy.
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Consider now the function: b : Zx → [0, 1] defined by

b(y) = sup{δ ∈ [0, 1] : f(ϵ, y) > 0, ∀ ϵ ∈ (0, δ)}.

Where

Zx = {z ∈ ∆ : zi = 0, for some i ∈ C(x)}

Note that if z ∈ Zx then ∥z − x∥ ≥ d = minz∈Zx
d(z, x) > 0. d is

reached because, Zx is a compact set and x ̸∈ Zx.
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� Fix y ∈ Zx and consider f(·, y) : [[0, 1] → ℜ since x ∈ ESS then

there is at most one ϵ : f(ϵ, y) = 0, because

– Since x ∈ ESS then the vertical intercept of the affine

function u(x− y, x) ≥ 0.

– if u(x− y, y − x), the slope of the affine function, is

* positive then, f(ϵ, y) > 0 for all ϵ > 0.

* negative then, there exists at most only one 0 ≤ ϵ = ϵ0

such that f(ϵ0, y) = 0.

� If ϵ0 ∈ (0, 1) then u(x− y, y − x) ̸= 0 and

b(y) = ϵ0 = u(x− y, x)/u(x− y, x− y).

� Otherwise b(y) = 1.

� if u(x− y, x) = 0 then the slope u(x− y, y − x) > 0 and

f(ϵ, y) > 0 for all y ∈ ∆.
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� It is straightforward to see that b(y) is a continuous function.

� Since b(y) > 0 for all z ∈ Zx and Zx is compact subset of ∆

and there is no {yn}n∈N ∈ Zx such that yn → x then

miny∈Zx
b(y) > 0.

� Now, for all y ∈ ∆, y ̸= x there exist some z ∈ Zx and

λ ∈ (0, 1] such that y = λz + (1− λ)x.

� Note that f(ϵ, y) =

= u(x− y, x) + ϵu(x− y, y − x) = u(x− y, x+ ϵ(y − x)) =

= u(x− y, x(1− ϵ) + ϵ(λz + (1− λ)x) =

= u(x− y, x(1− λϵ) + ϵλz) =

= λu(x− z, x) + λ2ϵu(x− z, z − x) = λf(λϵ, z)

� It follows that b(y) = min {b(z), 1} > 0.•
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It is important to note that this characterization does no imply

that ESS is necessarily resistent against simultaneous multiple

mutations.

Definition 16 (Local superiority) x ∈ ∆ is locally superior if it

has a neighborhood U such that u(x, y) > u(y, y) for all y ̸= x in U.

Proposition 3 x ∈ ESS if and only if is locally superior.

� For the part if Let Ux ⊂ Rk such that u(x, y) > u(y, y) for all

y ̸= x ∈ Ux ∩∆.

– For any z ̸= x ∈ ∆ there exists ϵ̄z ∈ (0, 1) such that for all

ϵ ∈ (0, ϵ̄z), w = ϵz + (1− ϵ)x ∈ Ux.

– By hypothesis u(x,w) > u(w,w). Bilinearity of u gives:

u(w,w) = ϵu(z, w) + (1− ϵ)u(x,w).

– It follows that u(x,w) > u(w,w) ↔ u(x,w)− u(z, w) > 0.

Hence x ∈ ESS.
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� Part only if: Since x ∈ ∆ESS , then for the previous theorem,

there is an uniform invasion barrier 0 < ϵ̄.

– For some z ∈ Zx, and ϵ ∈ (0, ϵ̄] let

V = {y ∈ ∆ : y = ϵz + (1− ϵ)x} .

– Since Zx is closed and not containing x, there exist Ux ⊆ Rk

such that U ∩∆ ⊂ V.

– Let y ̸= x ∈ U ∩∆. Then y ∈ V is the post entry population

and since x ∈ ESS we have that: u(x, y) > u(z, y).

– Multiplying both terms by ϵ > 0 and adding (1− ϵ)u(x, y)

to both terms of the inequality it follows that

u(y, y) < u(x, y).•
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Structure of the ∆ESS

The concept of ESS is a refinement of the concept of NE. because if

x ∈ ∆ESS then:

1. x ∈ ∆NE (the first order condition) and

2. if u(y, x) = u(x, x) then u(y, y) < u(x, y), (the stability

condition).

The following corollary holds:

Corollary 2 If (x∗, x∗) is a strict NE then (x∗, x∗) is ESS.

(x∗, x∗) is an strict NE if and only of x∗ is the only best response

against x∗
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Note that the support of one ESS, cannot contain the support of

any other symmetric NE.

Suppose that x ∈ ∆ESS and C(y) ⊂ C(x) for some y ̸= x

� Then u(y, x) = u(x, x).

� Since x ∈ ∆ESS then, condition (2) implies u(y, y) < u(x, y).

� Hence y ̸∈ ∆NE .
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The following proposition holds:

Proposition 4 If x ∈ ∆ESS and C(y) ⊂ C(x) for some strategy

y ̸= x the y ̸∈ ∆NE .

In particular if an ESS is interior then is the unique ESS.

Proposition 5 If x ∈ ∆ is weakly dominated, the x ̸∈ ∆ESS .

Proof: Suppose that x ∈ ∆NE is weakly dominated by y ∈ ∆.

� This means that y ∈ β(x), then u(y, x) = u(x, x).

� By the weak dominance u(y, y) ≥ u(x, y); x fails the second

order condition.
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Symmetric 2× 2 games. After normalization the payoffs matrices of

such games have the forms:

A =

 a1 0

0 a2


1. Category I and IV (A prisoner’s dilemma variety) a1 and a2

are of opposite sign. There is only one N.E., symmetric and

strict, so is an ESS:

� ∆ESS = ∆NE = {e2}, if a1 < 0 and

� ∆ESS = ∆NE = {e1}, if a2 < 0.
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2. Category II (A coordination game variety) a1 > 0, a2 > 0.

There are three Nash equilibria ∆NE = {e1, e2, x} where

x = λe1 + (1− λ)e2 and 0 < λ = a2

a1+a2
< 1.

– e1 and e2 are strict NE then they are ESS.

– x is not ESS, because for instance, u(x, x) = u(e1, x) but

u(e1, e1) = a1 > λa1 = u(x, e1).

3. Category III (A howk-dove variety) a1 < 0, a2 < 0.

– Two strict asymmetric NE. and

– one symmetric NE x = λe1 + (1− λ)e2 for λ = a2

a1+a2
.

– Is an ESS, because

u(x, y) = λa1y1+(1−λ)a2y2 = a1a1

a1+a2
> u(y, y) = a1y

2
1+a2y

2
2 .
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Unfortunatelly, not all game have an ESS.

Example 7 Rock-Scissors-Paper The children simultaneously

make shape of on of the items withe their hand:

� Rock (R) beat Scissors (S).

� Scissors (S) beat Paper (P).

� Paper (P) beat Scissors (S).

� if both players choose the same item, then is a drawn.

R S P

R 0, 0 1,−1 −1, 1

S −1, 1 0, 0 1,−1

P 1,−1 −1, 1 0, 0
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� This two players game has a unique Nash E. (σ∗, σ∗)

with σ = ( 13 ,
1
3 ,

1
3 ).

� But this is not ESS because:

� u(σ∗, σ∗) = u(σ∗, R) = 0

� and: u(σ∗, R) = u(R,R).

However, we have the following theorem:

Theorem 5 All generic, (a ̸= c and b ̸= d ) symmetric pairwise,

contest game have an ESS.

Proof: By reduction of each game to the respective canonical form.
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The Replicator dynamics

We consider a large but finite population of individuals, called

replicators, who use a pre-programmed strategy, and passes this

behaviour to their descendents in a symmetric two-player game.

� Let S = (s1, ..., sk) be a finite set of different strategies.

� Let ni be the number of individuals using si then the total

population size is: N =
∑k

i=1 ni.

� The proportion of individual using si is xi =
ni

N .

� The population state is x = (x1, ..., xk).

� Let β and δ be backgrounds per capita, birth and death rates.

These are independent of the game.

� The rate of change β − δ is modified by the payoff for using si,

so the rate of change of the number of individuals using si is:

ṅi = (β − δ + π(si, x))ni.
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The rate of change of the total population size is:

Ṅ =
∑k

i=1 ṅi =
∑k

i=1[(β − δ) + π(si, x)]ni =

= (β − δ)N +N
∑k

i=1 π(si, x)xi = (β − δ + π(x, x))N,

where π(x, x) =
∑k

i=1 π(si, x)xi.

� Thus the population grows or decline exponentially. This may

be non realistic, but we can improve the model by letting, β

and δ depend on N.

� Note that π(si, x) depends only on the proportions xi and not

in the actual number ni.

� From a game-theoretic point of view we are more interested in

how the proportion of each type change over time.
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Now ṅi = Nẋi + xiṄ so:

Nẋi = ṅi − xiṄ =

= (β − δ + π(ei, x))Nxi − xi((β − δ + π(x, x))N.

Canceling and dividing by N, we have:

ẋi = (π(si, x)− π(x, x))xi. (8)

Recall that

� π(ei, x) = eiAx is the expected value of an i− th strategist who

faces a population that is distributed according to x

� So, π(x, x) = xAx is the expected return of a population

following the distribution (or mixed strategy) x.

� We have that π(ei, x)− π(x, x) = π(ei − x, x)
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In other words: The proportion of individuals using strategy si

increase (decreases) if its payoff is bigger (smaller) than the

average payoff of the population.

Once the initial conditions for the system (8, there is a unique

solution for this system, which we will denote by ξ(t, t0, x0) for all

t ∈ ℜ+ and such that ξ(t0, t0, x0) = x0.

The equation

d

dt

[
xi

xj

]
= [π(ei, x)− π(ej , x)]

xi

xj
= π(ei − ej , x)

xi

xj

measures the growth rate of one type of behavior over another over

time.
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Definition 17 A fixed point or stationary state, of the replicator

dynamics is a state satisfying ẋi = 0 ∀i.

A fixed point, describe a population that are no longer evolving.

That is a solution of the dynamical system x(t) = x∗∀t.

The following proposition holds:

Proposition 6 If x∗ is an interior fixed point, ie., x∗
i > 0 ∀ (all

strategy is present in the population) of the replicator dynamics

then x∗ ∈ ∆NE .

Proof: Note that if x∗ >> 0 then, ẋ = 0 if and only if

π(ei, x∗) = π(x∗, x∗). Hence all pure strategy must earn the same

payoff therefore (x∗, x∗) is a NE.•
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Example 8 Consider a game with S = {E,F} and payoffs:

π(E,E) = 1, π(E,F ) = 1, π(F,E) = 2, π(F, F ) = 0.

So π(E, x) = x1 + x2; π(F, x) = 2xi so, it follows

π(x, x) = x1(x1 + x2) + x2(2x1) = x2
1 + 3x1x2

The replicator dynamics is:

ẋ1 = x1[x1 + x2 − (x2
1 + 3x1x2)]

ẋ2 = x2[2x1 − (x2
1 + 3x1x2)].

So, fixed points are: (0, 1); (1, 0); ( 12 ,
1
2 ).

71



'

&

$

%

Definition 18 Let ξ(·, t0) : ℜ → ℜn be the solution of the

differential equations system ẋi = f(x1, x2, .., xn), i = 1, ..., n.

Then, an invariant set (or manifold) for the differential equations

system is a connected subset M ⊂ Rn : if ξ(t0, t0) = x0 ∈ M then

x(t, t0) ∈ M for all t ≥ t0.

Claim: The simplex Sn is an invariant set for the replicator

dynamics,

Sn =

{
(x1, ..., xn) ∈ Rn : 0 ≤ xi ≤ 1 ∀i, and

n∑
i=1

xi = 1

}
.
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Proof of the claim: Let us define A(t) =
∑n

i=1 xi(t) and t0 such

that A(t0) =
∑n

i=1 xi(t0) = 1. Then

Ȧ(t) =

˙n∑
i=1

xi(t) =
n∑

i=1

ẋi(t) =
n∑

i=1

xi(π(ei, x)− π(x, x)) = 0.

(Note that π(x, x) =
∑n

i=1 xiπ(ei, x) and that
∑n

i=1 xi = 1) and

never turn xi negative, because xi = 0 ⇒ ẋi = 0.
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� A population state is formally identical with a mixed strategy

and fixed an initial state x0 de evolution of the population is

given by the solution x(t, t0) of the replicator dynamical

system.

Two strategy pairwise contests.

Consider a pairwise contest game that only have two pure

strategies: S = {s1, s2}, let x = (x1, x2), and x2 = 1− x1, then

ẋ2 = −ẋ1.

So, writing x = (x1, 1− x1) it is enough to consider a single

differential equation:

ẋ1 = (π(e1, x)− π(x, x))x1 0 ≤ x1 ≤ 1.
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Taking into account that π(x, x) = x1π(e
1, x) + (1− x1)π(e

2
1, x).

from the fact that the simplex is an invariant manifold in the

replicator’s dynamics, it follows the equivalent differential equation:

ẋ1 = x1(1− x1)(π(e
1, x)− π(e2, x)).
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Theorem 6 Let S = {s1, s2}, and let (x∗, x∗) be a symmetric Nash

equilibrium, then x∗ = (x∗
1, x

∗
2) is a fixed point of the replicator

dynamics, ẋ1 = x1(1− x1)(π(e
1, x)− π(e2, x)).

Proof:

1. If σ∗ = (x∗
1, (1− x∗

1)) is a pure strategy then x∗
1 = 0 or x∗

1 = 1,

in either case ẋ1 = 0.

2. If σ∗ is a mixed strategy then π(e1, σ∗) = π(e2, σ∗)

consequently ẋ1 = 0.•

Note: This theorem is also valid for games with a finite set of

strategies, because if x∗ ∈ ∆NE , then for all i = 1m, , , .n we have

that π(ei, x) = π(x, x) ∀si ∈ C(x∗).
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In a symmetric game, a strategy i ∈ K is strictly dominate by

y ∈ ∆ if for all x ∈ ∆ u(ei, x) < u(y, x).

Theorem 7 Granted that all pure strategies are initially present

then, if a pure strategy i is strictly dominated, then

ξ(t, x0)t→∞ → 0 for any x0 ∈ int(∆).

Proof: Suppose that i ∈ K is srictly dominated by y ∈ ∆ and let

ϵ = minx∈∆ u(y − ei, x). By continuity of u and compactness of ∆

ϵ > 0.

Define the function vi : int(∆) → ℜ by

vi(x) = log xi −
K∑
j=1

yj log xj .
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The derivative along any interior solution path ξ(t, t0x0)

v̇(ξ(t, t0, x0)) =
ẋi

xi
−

K∑
j=1

yj ẋj

xj
= u(ei − y, x) ≤ −ϵ < 0.

Hence v(ξ(t, t0, x0)) decreases toward −∞ as t → ∞. By definition

of vi tis implies that ξi(t, t0, x0) → 0.

This theorem may rephrase as saying that evolution selects against

irrational behaviour.
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Proposition 7 If a pure strategy i is iteratively strictly dominate

then ξi(t, t0, x0)t→∞ → 0 for all x0 ∈ int(∆).

Definition 19 A fixed point of a dynamical system, is said to be

asymptotically stable if any small deviations from this state are

eliminated by the dynamics when t → ∞.

79



'

&

$

%

Example 9 Prisoner’s dilemma The pure strategies are {C,D} (to

cooperate or to defect) the payoffs are:

π(e1, e1) = π(C,C) = 3, π(e1, e2) = π(C,D) = 0,

π(e2, e1) = π(D,C) = 5, π(e2, e2) = π(D,D) = 1,

then

π(C, x) = 3x1 + 0(1− x1) = 3x1

π(D,x) = 5x1 + 1(1− x1) = 1 + 4x1.

ẋ1 = x1(1− x1)(π(C, x)− π(D,x)) =

= x1(1− x1)(3x1 − (1 + 4x1)) = −x1(1− x1)(1 + x1).

The fixed points are x1 = 1 or x1 = 0.
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The unique Nash equilibrium is to defect (to play D) i.e., x∗
1 = 0.

From the sign of ẋ1 it follows that any population that is not at a

fixed point of the dynamics, will evolve to the fixed point that

correspond to a Nash equilibrium. Then, it is asymptotically stable.
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Symmetric 2× 2 games Let

A =

 a b

c d


be the payoff matrix of a symmetric 2 × 2 game.

Note that the replicator dynamic is invariant under the

transformation

Ā = A−

 c b

c b

 =

 a1 0

0 a2

 .

Consider a1a2 ̸= 0. So, after this transformation it follows that the

replicator dynamics becomes:

ẋ1 = [a1x1 − a2x2]x1x2.
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1. Category I and IV These are the cases where: a1a2 < 0.

� If a1 < 0 and a2 > 0 x1 → 0 from any initial value x0.

� If a1 > 0 and a2 < 0 x1 → 1 from any initial value x0.

2. Category II and III. These are the cases where: a1a2 > 0. The

growth rate change sign when a1x1 = a2x2. This occurs when

x1 = λ = a2

a1+a2
, 0 < λ < 1.

– If a1 > 0 and a2 > 0. Then

x1 decrease toward 0, from any initial value x01 < λ and

x1 increase toward 1 from any initial value x01 > λ.

– If a1 < 0 and a2 < 0. Then

x1 increases x1 → λ, from any initial value x01 < λ and

x1 decreases x1 → λ, from any initial value x01 > λ.
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Linearization and asymptotic stability

A fixed point x∗ of a dynamical system ẋ = ϕ(x), is called

hyperbolic if the jacobian of the vector field system evaluated at x∗

has no eigenvalues with zero real part.

The following theorem justifies the use of the linearization

approach, to discovering the properties of fixed point in a

dynamical system in most cases.

Theorem 8 (Hartman-Grobman) If a fixed point x∗ is hyperbolic

the the topology of the fixed point in the full nonlinear system is the

same as the topology of the fixed point in the linearized system.

ẋ = ϕ′(x∗)(x− x∗).
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Consider a pairwise contest game with two pure strategies A and B

and the following payoffs:

π(A,A) = 3, π(B,B) = 1, π(A,B) = π(B,A) = 0.

� This is a coordination game.

� It have two pure strategy strict Nash equilibria (A,A) and

(B,B).

� The mixed strategy σ = ( 14 ,
3
4 ) is a NE but it is not an ESS.

� Let x1 be the proportion of individuals using A and taking

account that x2 = (1− x1) the replicator dynamics is given by:

ẋ1 = x1(1− x1)(π(A, x)− π(B, x)) = −x1(1− x1)(1− 4x1).

� The fixed points are: x∗
1 = 0, x∗

1 = 1 and x∗
1 = 1

4 .
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Consider a population near x∗
1 = 0. Let x(0) = x0 = (x10, x20) be a

perturbed state where x10 = ϵ0, ϵ0 > 0.

� Then, we have to solve:

ẋ1 = −x1(1− x1)(1− 4x1)

with the initial condition x10 = ϵ0.

� The derivative of the vectorial field in this case is

ϕ′
1(x) = −1 + 10x− 12x2.

� Then x∗ = 0 ⇒ ϕ(x∗) = −1. So we have to analyze the stability

of the equilibrium of the linear equation:

ẋ1 = −x1 ⇒ ξ1(t, x0) = (x∗
1 + ϵ0)e

−t.

� Then ξ1(t, x0) → 0 and the fixed point ξ(x∗, t) = x∗ = (0, 1) is

asymptotically stable
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Consider a initial population state near x∗
1 = 1. Let

x10 = 1− ϵ0, ϵ0 > 0 be the initial state at t = 0.

� Following the linearization procedure we find that:

ẋ1 = −3(x1 − 1) with the initial condition x1(0) = x10.

� Which has the solution: ξ1(t, x0) = (1− ϵ0)e
−3t + 1.

� Then ξ1(t, x0) → 1 and the solution ξ(t, x∗) = (1, 0) ∀t > 0 is

asymptotically stable.

Finally: Consider a population near x∗ = ( 14 ,
3
4 ). Let

x10 = 1
4 + ϵ0, ϵ0 > 0 be the initial state.

� Then we have: ẋ1 = 1
16 (x1 − 1

4 ) the solution of the linear

approximation is ξ1(t, x10) = x10e
1
16 t + 1

4 → ∞.

� So the solution ξ(t, x∗) = ( 14 ,
3
4 ) ∀t > 0 is not an asymptotically

stable fixed point.
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Note that the stability is given by the sign of the derivative in the

fixed point x∗.

Theorem 9 For any two strategy pairwise contest game, a strategy

is an ESS if and only if the corresponding fixed point in the

replicator dynamics is asymptotically stable.

Proof: We uses the canonical form for the replicator dynamic:

ẋ1 = x1(1− x1)(π(a1, x)− π(a2, x)).

� We know that every ESS is asymptotically stable.

� Reciprocally: The fixed point for the canonical form are:

x∗
1 = 0, x∗

1 = 1, x∗
1 =

a2
a1 + a2

they correspond to the following fixed points for the system:

(0, 1), (1, 0) and (
a2

a1 + a2
,

a1
a1 + a2

), 0 <
ai

a1 + a2
< 1, i = 1, 2.
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The associated vector field is

ϕ(x1) = [a1x1 − a2(1− x1)]x1(1− x1).

hSo, the linear approximation for the canonical form is

ẋ1 = ϕ′(x∗
1)(x1 − x∗

1)

where

ϕ′(x1) = (a1 + a2)x1(1− x1) + [(a1 + a2)x1 − a2](1− 2x1).

The corresponding linear approximations are:

1. If x∗
1 = 0 ⇒ ẋ1 = −a2x1.

2. If x∗
1 = 1 ⇒ ẋ1 = −a1(x1 − 1).

3. If x∗
1 = a2

a1+a2
⇒ ẋ1 = a1a2

a1+a2
(x1 − a1

a1+a2
).

It follows that:

89



'

&

$

%

1. (0, 1) is asymptotically stable if and only if a2 > 0.

In this case (0, 1) is an ESS corresponding to category I if

a1 < 0 and a2 > 0 or category III a1 > 0, and a2 > 0.

2. (1, 0) is asymptotically stable if and only if a1 > 0.

In this case (1, 0) is an ESS corresponding to category I if

a1 > 0, and a2 < 0 or category III a1 > 0, and a2 > 0.

3. ( a2

a1+a2
, a1

a1+a2
) is asymptotically stable if and only if

a1a2 > 0 and a1 + a2 < 0.

(It is easy to see that the case where a1 + a2 > 0 and a1a2 > 0

does not need to be considered).

In this case ( a2

a1+a2
, a1

a1+a2
) is an ESS corresponding to category

II where a1 < 0, a2 < 0.•
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Conclusions

These conclusions are general for symmetric games, but until now

they have symmetrical two strategies games.

� Let F be the set of fixed points for the replicator dynamics.

� Let A be the set of asymptotically stable fixed points.

� Let N be the set of symmetric Nash equilibrium.

� Let E be the set ESS.

Then for any two strategies, pairwise contest games the following

relationship between a strategy σ∗ an the corresponding population

state x∗ hold:

1. σ∗ ∈ E ⇔ x∗ ∈ A

2. x∗ ∈ A ⇒ σ∗ ∈ N , (this relation follows from the first

equivalence, because x∗ ∈ E ⇒ σ∗ ∈ N .)

3. σ∗ ∈ N ⇒ x∗ ∈ F
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Games with more than two strategies

If the number of strategies is n we have n differential equations:

ẋi = fi(x), i = 1, ..., n

where x ∈ ∆S.

Given that that
∑n

i=1 xi = 1 the number of equation is n− 1

ẋi = fi(x1, ..., xn−1), i = 1, ..., (n− 1).

We assume the hypothesis under which, once fixed the initial

distribution x0 ∈ ∆S the system has one and only one solution.

We will now analyze the relationship between the stability of the

dynamical equilibria of replicator dynamics, the Nash equilibria,

and the evolutionarily stable equilibria in symmetric games with

more than two strategies. We start with an example.

92



'

&

$

%

Example 10 Consider a symmetric game characterized by the

following payoffs table:

A B C

A 0, 0 3, 3 1, 1

B 3, 3 0, 0 1, 1

C 1, 1 1, 1 1, 1

The replicator dynamics is:

ẋi = xi[π(ei, x)− π(x, x)] i = 1, 2, 3.

ẋ1 = x1(3x2 + x3 − π(x, x))

ẋ2 = x2(3x1 + x3 − π(x, x))

ẋ3 = x3(1− π(x, x))
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� π(x, x) = 6x1x2 + x1x3 + x2x3 + x3.

� Writing x1 = x1, x2 = x2, and x3 = 1− x1 − x2 we reduce

this system to the following two variables system:

ẋ1 = x1(1− x1 + 2x2 − π(x1, x2))

ẋ2 = x2(1 + 2x1 − x2 − π(x1, x2))

With π(x, x) = π(x1, x2) = 1 + 4x1x2 − x2
1 − x2

2.

� The fixed points (x∗
1, x

∗
2) for the system are:

(0, 0); (0, 1), (1, 0); (
1

2
,
1

2
).

These points correspond to x = (x∗
1, x

∗
2, 1− x∗

1 − x∗
2) in the

simplex.

� We will see that only one of them is Nash equilibrium.

Precisely x∗ = ( 12 ,
1
2 ) corresponds to the Nash equilibrium

( 12 ,
1
2 , 0).
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Let us now study the stability of the stationary points of the system

considering the behavior of its solutions on the invariant manifolds:

Example 11 For the system

ẋ1 = x1(1− x1 + 2x2 − π(x1, x2))

ẋ2 = x2(1 + 2x1 − x2 − π(x1, x2))

with π(x1, x2) = 1 + 4x1x2 − x2
1 − x2

2.

The following manifold are invariant under this dynamic:

� The fixed points, (0, 0), ( 12 ,
1
2 ); (1, 0) and (0, 1)

� The boundaries of the simplex.

� The line x1 = x2 because ˙x1 − x2 = 0.

� The line x1 + x2 = 1 because ˙x1 + x2 = 0.
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� On y = 0 we have: ẋ = x2(x− 1) so ẋ < 0 for 0 < x < 1.

� On x = 0 we have ẏ < 0 for 0 < y < 1.

� On the line x = y we have ẋ = x2(1− 2x) so x and y are both

increasing for 0 < x, y < 1
2 .

� On the line x+ y − 1 = 0 we have ẋ = x(3− 9x+ 6x2) hence

– x is increasing (y is decreasing for 0 < x, y < 1
2 ,

– and x is decreasing (y is increasing for 1
2 < x, y < 1.

From these considerations we can conclude that the stationary

point x∗ = (1/2, 1/2) is asymptotically stable, and as we will see

corresponds to a symmetric Nash equilibrium σ∗ = ((1/2, 1/2, 0).
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The following subsets are invariant manifolds for the replicator

dynamics:

� The fixed points of the dynamical system.

� The boundaries of the simplex, because xi = 0 imply ẋi = 0.

� The simplex.

Note also that:

The ratio between any two population share xi > 0 and xj > 0

increases (decreases) over time if strategy i earns a higher (lower)

payoff than strategy j :

d

dt

[
xi

xj

]
= [(π(ei, x)− π(ej , x)]

xi

xj
.
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The stability from the first approximation

The qualitative picture of the dynamical system ẋ = f(x)

To obtain a qualitative picture of the solutions we consider the

Taylor expansion of f in a neighborhood of each fixed points x∗ it

is to say that, in each point of X such that f(x∗) = 0, and we

analyze behaviour of the linear approximation, ẋ = Jf(x∗)(x− x∗)

siendo, Jf(x∗) el jacobiano de f ecaluado en x∗. Equivalently:

ẋi =

n∑
i=1

(xj − x∗
j )

∂fi
∂xj

(x∗).

Defining ξi = xi − x∗
i we have: ξ̇i =

∑n
i=1 ξj

∂fi
∂xj

(x∗).
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Provided that the fixed point is not hyperbolic (i.e.: all eigenvalues

have non-zero real part) then in a neighborhood of each fixed point

the behavior of a non-linear system is the same than the linear one.

(This is the Hartman-Grobman Theorem)
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Combining this information with the behavior of the solutions on

the invariant manifold is usually sufficient to determine a complete

qualitative picture to the dynamical system.

� The linear system can be written as ξ̇ = L(x∗)ξ.

Where the matrix L is the Jacobian Matrix of f whose

components are Lij =
∂fi
∂xj

(x∗).

� Form the Hartman-Grobman Theorem, we conclude that the

eigenvalues of the Jacobian matrix of the vector field of the

system evaluated at each hyperbolic fixed point characterizes

the stability of said fixed point
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Returning to our example:

ẋ = x(1− x+ 2y − π(x, y))

ẏ = y(1 + 2x− y − π(x, y))

with π(x, x) = 1 + 4xy − x2 − y2.

� At the fixed point (x∗, y∗) = ( 12 ,
1
2 ) we have the following linear

approximation: ξ̇

η̇

 =

 −1 1
2

1
2 −1

 ξ

η


– The eigenvalues are found from det(L− λI) = 0

– In this case λ1 = − 1
2 ; λ2 = − 3

2 .

– Because the real parts are negative, the fixed point is a

stable node.
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Solving the eigenvector we obtain invariant manifolds for the

system:  −1 1
2

1
2 −1

 ξ

η

 = λ

 ξ

η


� For the eigenvalue λ = − 3

2 the eigenvector is given by ξ = −η

i.e; the subspace generated by (1,−1)is an invariant manifold.

� For the eigenvalue λ = − 1
2 the eigenvector is given by ξ = η i.e;

the subspace generated by (1, 1) is an invariant manifold.
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Close to the fixed point (0, 0) the linear approximation is: ξ̇

η̇

 =

 0 0

0 0

 ξ

η


which is not hyperbolic λ1 = λ2 = 0. The linearization tell us

nothing about the stability of this fixed point.

The fixed points (x∗, y∗) = (1, 0), and (x∗, y∗) = (0, 1),

� both have eigenvalues λ1 = 3 and λ2 = 1 so both points are

instable nodes

Let us now study the behavior of the system on the invariant

manifolds:
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ESS, NE, Fixed Points and Liapunov Stability in symmetric games

with more than two pure strategies

First we show that NE ⊆ F

Theorem 10 If (σ∗, σ∗) is a NE. then the population state

x∗ = σ∗ is a fixed point of the replicator.

Proof: π(ei, σ
∗) = π(σ∗, σ∗), for all si ∈ C(σ∗). Then ẋ = 0.

Next we consider: A ⊆ N :

Theorem 11 If x∗ is an asymptotically stable fixed point of the

replicator dynamics, then the symmetric strategy (σ∗, σ∗) where

x∗ = σ∗ is a Nash equilibrium.

Proof: Since x∗ ∈ A then x∗ is a fixed point for the replicator

dynamic.

� First consider de case where x∗
i > 0 ∀i.
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� Since x∗ = σ∗ >> 0 all pure strategy must earn the same

payoff, i.e, π(ei, σ
∗) = π(σ∗, σ∗) ∀ i ∈ {1, ..., n}.

� Then (σ∗, σ∗) is a NE.

It remains to consider the case where some strategy is absent.

� Since x∗ is a fixed point, then for all si ∈ C(x∗), it follows that

π(ei, σ
∗) = π(σ∗, σ∗).
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� Suppose that (σ∗, σ∗) is not a NE. Then there exist sj ̸∈ C(σ∗)

such that π(ej , σ
∗) > π(σ∗, σ∗).

� We have x∗
j = σ∗

j = 0. This means that there is not actually

individuals in the population using the sj strategy.

� Suppose now that a perturbation affects x∗.

� After this perturbation of x∗ a proportion xj = ϵ of individuals

following the strategy sj appear.

� The new population state is xϵ = x∗ + ϵej .
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� Substituting in ẋj = xj [π(ej , x)− π(x, x)] we obtain:

ϵ̇ = ϵ[π(ej , xϵ)− π(xϵ, xϵ)].

� Let Fj(ϵ) = [π(ej , xϵ)− π(xϵ, xϵ)]. From the Taylor formula it

follows that:

Fj(ϵ) = Fj(0) + ϵF ′
j(0) + ....

� Note that Fj(0) = [π(ej , x
∗)− π(x∗, x∗)]. Then

ϵ̇ = ϵ(π(ej , x
∗)− π(x∗, x∗)) +O(ϵ2).

� Using the first order approximation we conclude that:

� The proportion xj of individuals using sj increases,

contradicting the assumption that x∗ is asymptotically stable.•
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To consider the inclusion E ⊆ A we need to introduce the Liapunov

function, what we will do later

� However for the case of two strategies the proof follows

considering the canonical cases.

More concisely, allowing the abuse of notation that identifies a

strategy with a corresponding population state:

In the case of two pure strategies symmetric games we have already

show that: E = A ⊆ N ⊆ F .

As we shall see for a pairwise contest game with more than two

strategies these relations becomes:

E ⊆ A ⊆ N ⊆ F .
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Liapunov stability

The replicator dynamical system is an autonomous, first-order,

ordinary differential equation system in the form ẋ = ϕ(x), where

� x : T → Rk is a vectorial field where

x(t) = (x1(t), ..., xk(t)) ∈ X ⊂ Rk ∀t ∈ T

� X is the state space (in the replicator dynamics X = Sn).

� T is an open interval in R.

� The function ϕ : X → Rk, given by, ϕ(x) = (ϕ1(x), ..., ϕk(x)).

This vectorial field specifies at each point x ∈ X the direction

and velocity of change of the state.

� A solution of this system describe the state of the system, in

the future and in the past.
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Formally: A local solution trough the point x0 ∈ X to a dynamical

system is a function

ξ(·, x0) : T → X,

where T is an open interval containing t = 0 such that

x(t0) = ξ(t0, x0) = x0, and

d

dt
ξ(t, x0) = ϕ(ξ(t, x0)) ∀t ∈ T.

Just as a triplet Γ(I, S, π) defines a normal form game, a triplet

D = (T,X, ξ) defines a dynamic system

� on the state-space X ⊂ Rk

� over a continuous time t ∈ T ⊂ R,

� with solution mapping ξ.

� The existence and uniqueness of this solution, trough x0 is

guaranteed for a vectorial field sufficient smooth.
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Definition 20 A state x ∈ X is Liapunov stable if every

neighborhood B of x contains a neighborhood, B0 of x such that

ξ(t, x0) ∈ B for all x0 ∈ B0 ∩X and t ≥ 0.

Definition 21 A state x ∈ X is Liapunov asymptotically stable if

it is Liapunov stable and there exists a neighborhood B∗ such that

lim
t→∞

ξ(t, x0) = x, ∀x0 ∈ B∗ ∩X

Proposition 8 If a state is Liapunov stable then it is stationary.

Proof: Suppose that x ∈ X is a no stationary state. Then there

exists y ̸= x such that in a finite time t we have: ξ(t, x) = y. So,

there exist some neighborhood B of x : y ̸∈ B, that is the system

leaves B in finite time, then x is no a stationary state. •
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The Liapunov function

Definition 22 Let ẋ = f(x) be a dynamical system with a fixed x∗,

(i.e., f(x∗) = 0) Then a real function V (x) defined for allowable

states of the system close to x∗, such that:

1. V (x∗) = 0,

2. x∗ is a strict minimum for V,

3. dV
dt (x) ≤ 0 along the solution of the dynamical system and

4. there exist an arbitrarily small neighborhood Ux∗(ϵ) of x∗ and

ϵ > 0 such that dV
dt (x) < 0 for all x ̸∈ U∗

x(ϵ), and t ≥ t0

is called a (strict) Lyapunov function.

� If such function exists, then the fixed point x∗ is asymptotically

stable.

� If only conditions 1 and 2 are fulfilled then the fixed point will

be stable
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Theorem 12 Every ESS corresponds to an asymptotically stable

fixed point in the replicator dynamics. That is, if σ∗ is an ESS,

then the population with x∗ = σ∗ is asymptotically stable.

Proof: If σ∗ is ESS, then

π(σ∗, xϵ) > π(xϵ, xϵ)

where xϵ = (1− ϵ)σ + ϵσ∗. We know that E ⊆ N ⊆ F i.e, σ∗ = x∗

is a fixed point of the replicator dynamics.

� Consider the relative entropy function:

Hx∗(x) = −
n∑

i=1

x∗
i ln

(
xi

x∗
i

)
.

� Clearly Hx∗(x∗) = 0
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� From the Jensen (strict) inequality (for any (strict) convex

function); E[f(x)] ≥ f(E[x]),

� Hx∗(x) = −
∑n

i=1 x
∗
i ln

(
xi

x∗
i

)
≥

≥ − ln

(
n∑

i=1

x∗
i

xi

x∗
i

)
= − ln

(
n∑

i=1

xi

)
= 0

�
d
dtHx∗(x) = −

∑n
i=1

x∗
i

xi
ẋi =

= −
n∑

i=1

x∗
i (π(ei, x)−π(x, x)) = −[π(σ∗, x)−π(x, x)] < 0 ∀x ̸= x∗.

So, V (x) is a Liapunov function for x∗, then the fixed point is

asymptotically stable.•
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We say that a state x ∈ ∆ is reachable if there exist some interior

state from which the solution trajectory converges to x.

Proposition 9 If x0 ∈ int(∆) and ξ(t, x0) → x then x ∈ ∆NE .

Proof: Suppose that x0 ∈ int(∆) and ξ(t, x0) → x but x ̸∈ ∆NE .

� Then there exists some pure strategy

si : π(ei, x)− π(x, x) = π(ei − x, x) = ϵ > 0.

� Since ξ(t, x0) → x and u is continuous, then there exists some

T such that for all t > T

π(ei − ξ(t, x0), ξ(t, x0)) >
ϵ

2
.

� Then ξ̇i(t, x0)) >
ϵ
2ξi(t, x0) ∀t > T.

� Then ξi(t, x0) > ξi(T, x0)exp(
t−T
2 ϵ) ∀t > T.

� So, ξi(t, x0) → ∞. This is a contradiction.•
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Recall that an interior ESS is necessarily unique. Then one may

conjecture that an interior ESS strategy is globally stable.

Proposition 10 If x ∈ int(∆) ∩∆ESS then, ξ(t, x0)t→∞ → x, for

any x0 ∈ int(∆).

Proof: Consider x ∈ int(∆) ∩∆ESS :

� Then π(x− y, y) > 0 for all y ̸= x. (Recall that

x ∈ ESS ↔ x ∈ LS).

� It is easy to verify that Ḣx(y) < 0 for all y ̸= x.

� The subset int(∆) is positively invariant in the replicator

dynamics, and Ḣx(y) < 0 means that ξ(t, x0) → x.•
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Dominate strategy and the replicator’s dynamics

Consider the dynamics system

ẋi = π(ei − x, x)xi, i = 1, ..., n (9)

an let ξ(t, x0) be a solution for this system.

Proposition 11 If a pure strategy si is strictly dominated, then

ξi(t, x0) → 0 when t → ∞ for any x0 ∈ int(∆).

Proof: Suppose that si ∈ S is a strictly dominated action by y ∈ ∆.

Let

ϵ = min
x∈∆

π(y − ei, x) > 0.

Define the function vi : int(∆) → R by:

vi(x) = ln(xi)−
n∑

j=1

yj ln(xj).
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The time derivative along any interior solution of (9) is, at any

point ξ(t, x0),

d
dtvi(ξ(t, x0)) =

∑k
j=1

dvi

dxj
ẋj =

ẋi

xi
+
∑n

j=1 yj
ẋj

xj
=

= π(ei − x, x)− π(y − x, x) =

= π(ei − y, x) ≤ −ϵ.

Then, it follows that vi(ξ(t, x0))t→∞ → −∞. By definition of vi,

ξi(t, x0) → 0.•

Hence one may rephrase this result saying that:

� The evolution selects against irrational behavior, (in the sense

of being a suboptimal behavior.)

Note that the result is valid, only if all pure strategies are initially

present. For instance: if some strategy i is strictly dominated, but

not other pure strategy is initially present then, ξi(t, x0) = 1 ∀t ≥ 0.
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We shall analyze formal modeling of the social evolution of

behaviors in a population of strategically interacting agents.

There are two basic elements common to these models:

� The time rate ri(x) at which at which agents in the population

review their their strategy choice.

This time depend on the performance of the agent’s pure

strategy and other aspects of the current population state.

� The probability pji (x), that un a reviwing i−strategist will

switch to some pure strategy j. The vector of this probabilities

is written as: pi(x) = (p1i (x), ..., p
k
i (x)), and it is a distribution

on the set K of pure strategies. So, pi(x) ∈ ∆.

This distribution may depends on the current performance of

the strategies and other aspects of the population state.
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In a finite population one may imagine that the reviews times of an

agent are the arrival time of a Poisson process with arrival time

ri(x), and that at each such time the agents selects a pure strategy

according to the probability distribution pi(x) over the set K.

Recall that a Poisson process is characterized by:

1. The number of changes in non overlapping intervals are

independent for all intervals.

2. The probability of exactly one change in a sufficiently small

interval h is p = νh, where ν = ri(x) is the probability of one

change.

3. The probability of two or more changes in sufficiently small

interval h is essentially 0.
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Assuming that all agents’ Poisson processes are independent

� The aggregate reviewing times in the subpopulatioon i is

xiri(x) the aggregate process in the subpopulation of

i−strategists is itself a Poisson Process, with arrival rate

λi = xiri(x).

� Assuming independence in switches across agents and then the

process of switches from a strategy i to strategy j is a Poisson

Process with arrival rate: Λij = xirip
j
i .

� Assuming a continuum of agents and, by the large number we

model these aggregate stochastic process as a deterministic

flow:

� The outflow from subpopulation i thus is:∑
j ̸=i

xiri(x)p
j
i (x).
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� The inflow to this subpopulation is:∑
j ̸=i

xjrj(x)p
i
j(x).

� Doing now ẋi = inflow − outflow we obtain:
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Rearranging terms we obtain:

ẋi =
∑
j∈K

xjrj(x)p
i
j(x)− ri(x)xi. (10)

To guarantee that this system of differential equations induced a

well defined dynamics on the space ∆ we assume that

� ri : X → [0, 1] and pi : X ∈ ∆ are Lipschitz continuous

functions.

Then there exists in an open set X containing ∆ one and only one

solution through any initial state x0 ∈ ∆ and such that a solution

trajectory never leaves ∆.

The state space ∆ is forward invariant in this dynamics (10).

We will analyze two models of imitation:

1. Pure imitation driven by dissatisfaction.

2. Imitation of successful agent.
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Pure imitation driven by dissatisfaction

This model assume that al reviewing agent adopt the strategy of

the first man they meet in the street. Formally, for all population

states x ∈ ∆ and pure strategies i, j ∈ K :

pji (x) = xj .

Assume that agent following less successful strategies on average

review their strategy at a higher rate than agents with more

successful strategies, then:

ri(x) = ρ(u(ei, x), x),

for some Lipschitz continuous function ρ strictly decreasing in its

first argument.
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Under the above two assumptions, the population dynamics

become:

ẋi =

(∑
h∈K

xhρ(u(e
h, x), x)− ρ(u(ei, x), x)

)
xi. (11)

As a special case, consider

ρ(u(ei, x), x)) = α− βu(ei, x),

for some α, β ∈ R, β > 0 and α/β ≥ u(ei, x) for all x and i, then:

ẋi = β
[
u(ei, x)− u(x, x)

]
xi.

This is the replicator dynamics.

So all result for the replicator dynamics are valid for this special

case of replication by imitation.
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Imitation of successful agent model

Suppose that every reviewing agent samples another agent at

random from the population, with equal probability for all agents.

� He observe with some noise the average payoff of her own, and

to the sampled agent’s strategy.

� That is he observes payoffs: ū(ei, x) and ū(ej , x)

� ū(ei, x) and ū(ej , x) are random variables.

� The difference ū(ej , x)− ū(ei, x) is a r.v.

� The reviewing agent switches to the sampled strategy if

D̄ = ū(ej , x)− ū(ei, x) > 0.
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� Suppose that the probability to be D̄ > 0 depends on the true

value of ū(ej , x)− ū(ei, x).

� So, the conditional probability that the agent switch to

strategy j is given by a continuously differentiable function

ϕ : R → [0, 1], defined by ϕ(u(ej , x)− u(ei, x)).

� The probability that the agent sample strategy j is xj .

� Then the resulting conditional distribution of probability is

given by:

pji (x) =

 xjϕ(u(e
j − ei, x)) i ̸= j

1−
∑

j ̸=i xjϕ(u(e
j − ei, x)) otherwise
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Assuming that the reviewing rates are constantly equal to one:

ri(x) = 1 we obtain the following selection dynamics:

ẋi =

∑
j∈K

xj

(
ϕ(u(ej − ei, x))− ϕ(u(ei − ej , x))

)xi. (12)

Note that if a stationary x∗ is an interior point for this dynamic,

then is a NE. because if∑
j∈K

x∗
j

(
ϕ(u(ei − ej , x∗))− ϕ(u(ej − ei, x∗))

)
= 0

then there exists λ such that u(ei, x∗) = λ for all i ∈ C(x∗).

This means that for this dynamic the set of interior stationary

states coincides wit the set of interior Nash equilibria:

int(∆0) = int(∆NE).
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The linearization of this system near an stationary point x∗ results

in:

ẋi ≈
∑

j∈K xjϕ
′(0)

[
u(ei − ej , x))− u(ej − ei, x)

]
xi ⇒

ẋi ≈ 2ϕ′(0)u(ei − x, x)xi.

Hence, in a neighborhood of an interior stationary state, the vector

field of the imitation dynamics, is just a positive constant times the

replicator dynamics.
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A model of popularity

As a generalization of pure imitation model, we assume that

the choice of probabilities pji (x) are proportional to j′s popularity

xj .

� We assume that the popularity is proportional to the current

payoff of j−strategy.

� Let the weight factor that a reviewing i−strategist attaches to

a pure strategy j be wi[u(e
j , x), x] > 0, where wi is a Lipschitz

continuous nondecreasing function in the first argument.

pji (x) =
wi[u(e

j , x), x]xj∑
h∈K wi[u(eh, x), x]xh

.
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Assuming that all review rate ri(x) = 1 we obtain the dynamic:

ẋi =

∑
j∈K

wi[u(e
j , x), x]xj∑

h∈K wi[u(eh, x), x]xh
− 1

xi.

As a special case consider: u(z, x) = λ+ µz for some λ ∈ R, µ > 0

and λ+ µu(ei, x) > 0, ∀i, x.

The dynamic become:

ẋi =
µ

λ+ µu(x, x)

[
u(ei, x)− u(x, x)

]
xi.

This dynamic have the form ẋ = g(x)x where x = (x1, ..., xk) and

g(x) = (g1(x), ...., gk(x)). The vectorial field g is called the vector of

growth rates.
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Note that every NE is a fixed point for this system and that every

interior fixed point is a NE.

Using the relative entropy function

Hx(y) =
∑

i∈C(x)

xi log
xi

yi

as a Lyapunov function for the dynamic, it follows that, if a fixed

point x∗ has a neighborhood Ux∗ such that

� if g(y)x∗ > 0 ∀y ̸= x ∈ Ux∗ then is asymptotically stable,

and

� if g(y)x∗ < 0 ∀y ̸= x ∈ Ux∗ then is instable.
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Games against the field.

We are interested in strategies that represent the best possible

behavior of individuals facing a given field (or a player whose

identity is unknow) and that this strategy continue being a best

response, even after perturbations of the field. then the following

two conditions are necessary

Let Γ be a normal game of n populations and that a fixed

population, for example, the i−th follows a strategy σ∗ ∈ ∆Si

while the rest act according to a profile strategic x∗ ∈ ∆−i named

the field.

The expected payoff yhe i−th population is denoted by π(σ, x).

π(σ, x) =
∑
s∈S

σ(s)π(s, x).

This payoff represents the success of an σ−strategist of the i−th

population, plying in a field, given by the distribution x ∈ ∆S−i
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Let x∗ = (x∗
1, ..., x

∗
i−1, σ

∗, x∗
i+1, ...x

∗
n) ∈ ∆ be a Nash equilbrium.

We will say that σ∗
i is evolutionarily stable strategy for popilation i

against the field x∗
−i, if the following two conditions are verified:

1. σ∗ maximize the payoff of the i− th propulation given that the

field is x∗ i.e.;

σ∗ ∈ argmax
σ∈∆

π(σ, x∗).

2. If a small mutation in the field occurs the strategy σ∗ continues

to be a maximizing strategy against the mutated field, i

π(σ∗, xϵ) > π(σ, xϵ) ∀σ ∈ ∆i

for all x ∈ ∆−i such that |x− xϵ| < ϵ.
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Example: Assume that all individual in PII in a given time t0 is

following the strategy x. And in time t1 a small part of the

population, ϵ, start to following a new strategy y.

So

xϵ = ((1− ϵ)x+ ϵy

is called post-entrant population.

Definition 23 A mixed strategy σ∗ is an ESSF (evolutionary

stable strategy, against the field) given by x if (σ, x) is a Nash

equilibrium and the following condition is verified:

� there exists ϵ̄ such that:

π(σ∗, xϵ) > π(σ, xϵ) ∀σ ∈ ∆

for every 0 < ϵ < ϵ̄ and every σ ∈ ∆i
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So, every pure strategy s ∈ S supported by an ESS σ∗ adopted by

individuals playing against a field x∗, must be a best response to

the field.

Then if σ∗ is an equilibrium it follows that s ∈ C(σ∗) if and only if:

π(s, x∗) = π(σ∗, x∗).

If the claim is not true, then at least one strategy s′ ∈ C(σ∗) give a

higher payoff than π(σ∗, x∗), i. e.:

π(s′, x∗) ≥ π(s, x∗)∀s ∈ C(σ∗)

with strict inequality for at least one s ∈ C(σ∗). So,

π(σ∗, x∗) =
∑

s∈C(σ∗) p(s)π(s, x) <

<
∑

s∈C(σ∗),s ̸=s′ p(s)π(s
′, x) + p(s′)π(s′, x) = π(s′, x),

which contradicts the definition.
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In other words σ∗ is an ESS if mutant that adopt any other

strategy σ leave fewer offspring in the post-entry population,

provided that the population of mutants is sufficiently small.

Evolutionary forces select against mutations if and only if

π(σ∗, xϵ) > π(σ, xϵ)

post-entry payoff is lower than that of begin the incumbent

strategy.

Proposition 12 x ∈ (∆)n is evolutionarily stable if and only if x

is a strict Nash equilbrium.
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Proof:

1. First, assume that x ∈ ESS and fix i ∈ I. Let yi ∈ βi(x) and

for all j ̸= i yj = xj . Let w = ϵy + (1− ϵ)x then

ui(xi, w−i) = ui(yi, w−i) and uj(yj , w−j) = uj(xj , w−j) for all

j ̸= i. So y = x by ESS. Thues βi(x) = {x} .

2. Suppose that x is a strict NE, and let y ̸= x.so

ui(xi, x−i) > ui(yi, x−i) for at least one i ∈ I. BY continuity of

ui we have that ui(xi, w−i) > ui(yi, w−i) for all 0 < ϵ < ϵy < 1

and w = ϵy + (1− ϵ)x, showing that x is ESS.
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The replicator dynamics for a multipoputation game

Suppose and n− mutipopulation game and the population state

x = (x1, x2, ..., xn) ∈ ∆ where each component xi ∈ ∆Si. The

vector xi may thus be though of as the state player population iinI

at time t where xih∈[0,1 is the proportion of individuals in

population i playing the pure strategy h ∈ Si. The replicator

dynamics is

ẋih =
[
πi(e

h
i , x−i)− πi(x)

]
xih, for all h ∈ Si, i ∈ I.

The vector field on the right hand is in general qudratic, hence

Lipschitz continuous function in the whole euclidean space ℜm

containing ∆.

So the system has a unique solution ξ(·, x0) : ℜ → ∆, for every

initial state x0 ∈ ∆.
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Example 12 Suppose that two populations of individuals are

interacting in an arbitrary n-players game. Let S1 = {s1, ..., sn1}
and S2 = {s1, ..., sn2} the set of pure strategies or available

behaviors for individuals of each population. Let ∆Si, i ∈ 1, 2 the

respective distribution of probabilities over the set od available pure

strategies.

Let A,B ∈ Mn1×n2
the respective payoff matrix. Reacall taht

u1(x1, x2) = x1Ax2 y u2(x, y) = x2B
Tx1
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Let x1 ∈ ∆S1 and x2 ∈ ∆S2, the replicator dynamics will be:

ẋ1i = x1i(e
i
1Ax2 − x1Ax2) =

=
[∑

j∈S2
aijx2j −

∑
i∈S1

∑
j∈S2

x1iaijx2j

]
x1i, i = 1, 2, ...n1

ẋ2j = x2j(e
j
2B

Tx1 − x2B
Tx1) =

=
[∑

i∈S1
bijx1i −

∑
j∈S2

∑
i∈S1

x2jbijx1i

]
x2j j = 1, 2, ..., n2.
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For the special case where

A =

 a1 0

0 a2

 B =

 b1 0

0 b2


the replicator dyanmics take the form:

ẋ11 = (a1x21 − a2x22)x11x12

ẋ21 = (b1x11 − b2x12)x21x22

Note that xi2 = 1− xi1 thus ẋi2 = −ẋi1.

It can be proved that this system, regardless of the values of the

payoff matrices, has no interior points asymptotically stable.
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For this we must use Liouville’s formula applied to the system

ẋ11 = (a1x21−a2x22)
x21x22

ẋ21 = (b1x11−b2x12)
x11x12

which results from the previous one after dividing the expressions

on the right side by x11x12x21x22.

Remember that the solutions of the system do not change if all the

elements of the vector field are multiplied by the same positive

function. Only its speed is modified along the orbits, without

affecting them

We have the following theorem:
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The Liouville’s Formula

Given any set A a time t ∈ ℜ such that the solution ξ(·, x0)

through any point x0 ∈ A is defined at time t : ξ(t, x0) ∈ X, let

A(t) be the image of A under the solution mapping ξ

A(t) =
{
ξ(t, x0) : x0 ∈ A

}
Then A is measurable, and its volume is vol [A(t)] =

∫
A(t)

dx. are

thero The Liouville’s formula states that

d

dt
vol [A(t)] =

∫
A(t)

div[ϕ(x)]dx,

where div[ϕ(x)] =
∑k

i=1
∂ϕi

∂xi
(x) is the divergence of a vector field ϕ

over the set A ⊂ X. In particular, any divergence-free vector field

(i.e. ϕ(x) = 0 for all x ∈ A) keeps all volume constant over time. In

physics it corresponds to the flow of an incompressible liquid (e.g.;

water at constant temperature and pressure).
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Intuitively we expect that a divergence free vector field to have no

asymptotically stable state. If x ∈ X is asymptotically stable, then

there is some neighborhood B ⊂ X of x that os contracted toward

the point x over time, implying that the volume of the

neighborhood shrinks to zero as time increases toward infinite. By

Liouville formula thsi is not possible ina any divergence free vector.

(The most we van hope is stability)

The following result is stronger, it claim that a vector field that has

non-negative divergence has no compact asymptotically stable set.

Theorem 13 (de Liouville) If X ⊆ ℜl is an open set and

ϕ : X → ℜl is continuously differentiable with div[ϕ(x)] ≥ 0 so the

dynamics ẋ = ϕ(x) has no compact set A ⊆ X asymptotically stable.
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Example 13 Conider the pair of ordianry differential equations:

ẋ = −(1− x)x

ẏ = −(1− y)y

arises in the standard two populations replicator dynamics and

applied to the Prisoner’s Dilemma.

The relevant space is C = (0, 1]2. The vector field is continuously

differentiable function on ℜ2 that has negative divergence:

div [ϕ(x, y)] = 2x+ 2y − 2 < 0

for all (x, y) ∈ int(C). Hence according with the Liouville’s formula

the volume of any measurable set A of initial states in int(C)

shrinks over time in this dynamics . In fact, C is invariant, and all

solutions in int(C) converge to the origin.
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Division of both right-hand sides in this differential equations

system, by some positive and Lipschitz continuos function

π : (0, 1) → ℜ++ does not alter the solutions orbits in int(C). For

instance let ϕ(x, y) = (1− x)(1− y). Then the new dynamics is

given by:

ẋ = − 1
(1−y)y

ẏ = − 1
(1−x)x

The new vector field is continuously differentiable on int(C) but is

divergence-free. Hence in this new dynamics, volume do not shrink

over time, although the solutions orbits are the same as in the first

pair of differential equations.

147



'

&

$

%

The explanation is that although orbits are unchanged, velocities

along these orbits are changed. In particular velocities along orbits

near the boundary of C are increased a lot (to +∞ at the

boundary). Hence forward images of set look very different in the

two dynamics. While the origin in not reached in finite time form

any interior state in the original dynamics, this point is reached in

finite time by all interior initial states in the modified dynamics.

Consequently, for any given set A ⊂ int(C) there is a finite time t

at which the solution through some initial state A leaves the

domain int(C) of the vector field inthe new dynamics. Accordingly

Liouville´s formula no longer applies. However as long the image

A(t) belongs to int(C) its volume is indeed constant by Liouville’s

formula.
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Example 14 Mutipopulation example

� The population of workers split in two types of individuals,

workers with high skills, and workers with low skills.

� Firms split in

firms that invest in R & D and firms that no invest in R & D.

� Workers and firms follow the behavior assuring to himself to

maximize benefits. Rational behavior

� We model the interrelation between firms and workers using a

two population-players normal form game.

� This game has two rational Nash equilibria,

– high investment in R & D, and high skill workers and

– low characteristics, the poverty trap
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The game

� By W we represent workers and

S represents skill workers, by NS repreesnt unskilled worker

� Firms are represented by F there are two classes:

Innovative firms I i.e, firms that invest in R& D

not innovative firms NI, i.e, firms that do not invest in R&D.

� When workers are contracted by a firm, they do not know the

type of contracting firm.

Worker does not know if the contracting firm is I or NI

� but workers must present a certificate of his skills so,

� the employer know the type of workers that he is contracting.
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� The S -type worker get a salary s in both cases when he is

contracted by a firm I or NI.

� The NS-type workers get a salary s′ less than s.

� The innovative firm I at the end of the period, distributes

utilities between their workers.

– Skill employees receive a prize pr.

– Unskill workers receive pr′.

We assume 0 < pr′ < pr.

� But a no innovative firm NI does not give prizes.

� The cost of being a skill worker in each time is given by CS.

� Assume that CS > s̄ so, there is not incentives to be a skill

worker if there is no prizes.

� We assume that s+ pr−CS > pr′ + s′. So, a S-worker engaged

by an innovative firm obtain a higher payoff than a NS-worker.
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The matrix of payoffs of this game is:

I NI

S s+ pr − CS, BI(S)− (s+ pr) s− CS, BNI(S)− s

NS s′ + pr′, BI(NS)− (s′ + pr′) s′, BNI(NS)− s′

� Where Bi(j) is the benefit of a firm of type i ∈ {I,NI}
contracting a worker of type j ∈ {S,NS}.

� The expected payoff of a S−type worker is:

E(S) = p(I) [s+ pr] + p(NI)(s)− CS, (13)

� For a NS−type worker the expected value is:

E(NS) = p(I) [s′+ pr′] + P (NI)(s′). (14)
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Workers would prefer to be S−type if and only if

E(S) > E(NS),

and reciprocally.

This happen if and only if the probability of a firm be innovative

p(I), is large enough, i.e.:

p(I) >
CS + s′ − s

(pr − (pr)′)
= x̄F

I . (15)

In the conditions of the model the inequalities

0 <
CS + s′ − s

(pr − (pr)′)
< 1

hold.
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We assume the following statements:

� The benefits of an I firm contracting a S−worker are higher

than the benefits obtained for a NI firm contracting a

S−worker, i.e.:

BI(S)− pr > BNI(S).

� If the firm is I, the benefits of a S−worker is greater than the

benefits of a NS−worker, i.e.:

s+ pr − CS > s′ + pr′.
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� If the firm is NI the benefits of a NS−worker are higher than

the benefits of a S−worker.i.e.:

s− CS < s′.

� If worker is NS, the benefits of a NI−firms are higher than the

benefits of a innovative one, i.e.;

BI(NS)− (s′ − pr′) < BNI(NS)− s′

� The benefits of a I firm contracting a S−worker are higher

than the benefits of a no innovative firm contracting NS−
worker, i.e.:

BI(S)− pr > BNI

This game has two Nash equilibria one of them is Pareto

dominated by the other.
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The fact that to be one of them Pareto dominant is not enough to

guaranteed that the economy evolve to this mutually beneficial

solution.

The dynamic of the model

� Suppose that the game is repeated and at the end of every

period the workers and firms can change their behavior.

� Unskilled worker need to pay CS to be a skill worker in the

next period.

� If a skill worker wishes to change to be a unskilled worker then

he does no pay the cost CS in the next period.

� The firms can choose also to change their own behavior from

innovative to no innovative or reciprocally.
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Definition 24 We say that the distribution on the population of

workers XW , is an ESSF given by YF , a distribution on the set of

pure strategies of the firms, if there exist ϵ > 0 such that XW

continues being a best response against all distribution Yϵ in a

neighborhood Vϵ of radium ϵ, centered at Y.

� Intuitively, this means that the best response XW against YF

remains the best response against perturbations (in the

distributions of the field).

� Notice that, when YF ≤ π, the degenerate distribution

eUS = (0, 1) (i.e. all workers are unskilled) is an ESS against

the field given by YF .

� Then if, given the initial conditions, a rational worker chooses

to be usnkilled, then he will choose the same behavior even in

the case in which the initial conditions change, as long as said

change is not ”too great”.
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According with the replicator dynamics we can express the

migratory flux in the form of a differential equations system:

ẋW
S = xW

i ϕW (EW (S)− EW (NS))

ẋW
NS = −ẋW

S

ẋF
I = xF

i ϕ
F (EF (NI)− EF ())

ẋF
NI = −ẋF

I

(16)

� Thus, the flux from the subpopulation of the no skilled to the

skilled is positive if the percentage of innovative firms is larger

than the threshold value, i.e; if xF
I > x̄F

i then

(EW (S) > EW (NS)),

� Analogously for innovative firms.

Note that the system can be reduced to one of two equations, for

which the only region of interest is the square C = [0, 1]× [0, 1].
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� Note that for the threshold values (x̄F
I , x̄

W
F ) he have that

EW (S) = EW (NS) and EF (I) = EF (NI).

� If (x̄W
S , x̄F

I ) ∈ C = [0, 1]× [0, 1] then the distributions

x̄ = ((x̄W
S , 1− x̄W

S ); (x̄F
I , 1− x̄F

I )) corresponds to a Nash

equilibrium and to an interior steady state for the replicator

dynamics.

To analyze the trajectories of the system (16) the Vinogradov’s

theorem is of interest for solving this type of system.
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The Vinograd’s Theorem

Theorem 14 Every autonomous equation is equivalent to another

whose second member is bounded. Let

x′ = f(x) (17)

the given differential equation. We form another equation by

writing

x′ =
f(x)

(1 + ∥f(x)∥)
The latter has the second bounded member and both equations are

equivalent.

The claim results from the fact that at each point x the second

members are proportional, that is, they are vectors of the same

direction and sense and are canceled only simultaneously.

Trajectories are therefore identical.

160



'

&

$

%

Theorem 15 ( of Vinograd) Let the equation x′ = f(x) be

defined in an open set A ⊆ X, there is another differential equation

system defined in all the space X that in A is equivalent to the

given one.

Proof: We designate by B the complementary set of A. If ρ(x, y) is

the distance between two points x and y of the space X then the

distance ( minimum) between a point x and a closed set C is

ρ(x,C) = miny {ρ(x, y) : y ∈ C} . Then the function

g(x) =
ρ(x,B)

1 + ρ(x,B)

it is different from zero at all points in the open A, zero at every

point in B and bounded by the unit.
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The differential equation

x′ = f(x)g(x) (18)

satisfies the conditions of the theorem. •
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Being f(x) bounded f(x)g(x) is bounded and tends to zero for x

tending to the border of A.

All the points of B are points of equilibrium because x′ = 0. For

every point of A it is either x′ = 0 for both equations or they have

the same direction and sense since it differs by a positive scalar

factor. The trajectories therefore coincide

When approaching the border of A the trajectories of the equation

(18) do not reach the border but nodding to t → ∞ since the

velocity along the path is an infinitesimal of order greater than or

equal to the distance to the boundary for all finite time.
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