
2.1. Theoretical background 51

Each deme runs a sequential EA, and the individuals are able to interact only

with other individuals in the deme.

An additional migration operator is defined: occasionally some selected in-

dividuals are exchanged among subpopulations, introducing a new source of

diversity in the EA (see middle of Figure 2.14).

• The cellular model considers an underlying spatial structure for the individ-

uals in the population, most usually a two-dimensional toroidal grid. The

interactions in the evolutionary search are restricted only to neighboring so-

lutions. The propagation of good characteristics in the solutions follows the

diffusion model, gradually spreading through the grid.

The limited interaction between individuals is useful to provide diversity in

the population, often improving the efficacy of the evolutionary search (see

right of Figure 2.14).

The evolutionary algorithm used in this work to solve the the problem presented

in Section 3.1 follows the distributed subpopulation model.

2.1.3.2 Greedy Randomized Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure (GRASP) is a

well known metaheuristic, which has been applied for solving many

hard combinatorial optimization problems with very good results, see:

[de Aragão 2001, Festa 2004, Mavridou 1998, Martins 2000, Pardalos 1999,

Rosseti 2001, Resende 1998a, Resende 1998b, Ribeiro 2002]. Extensive surveys of

the associated literature are given in [Feo 1995, Resende 2003, Festa 2004].

Before describing the main ideas of GRASP, we formulate a generic combinatorial

optimization problem based on the description introduced in [Resende 2003]. Let

us consider:

i) N = {n1, . . . , nm} is the finite basic set containing the potential elements

which will be able to integrate a feasible solution.

ii) F denotes the set of feasible solutions satisfying: F ⊆ 2N .

iii) f : 2N → R is the objective function. Without loss of generality, we assume

the minimization version, i.e. the aim is to find a global optimal solution

S∗ ∈ F such that f(S∗) ≤ f(S), ∀S ∈ F .

These points will be determined, when specifying the optimization problem to be

studied. For example, in the case of the Minimum Vertex Covering Problem:

• N = {v1, . . . , vn} is the set of nodes to be considered,

• E is the set of edges connecting the nodes of N ,



52 Chapter 2. Fundamental Knowledge

• F is composed of all the subsets of N such that when S ∈ F any edge in E

has at least one endpoint in S,

• f(S) is the number of nodes belonging to S.

A GRASP is an iterative process, where each iteration consists of two phases:

construction and local search. The construction phase builds a feasible solution,

whose neighborhood (in some sense to be defined when adapting the method to each

specific problem) is explored during the second phase, looking for an improvement.

The best solution over all GRASP iterations is returned as the result.

Algorithm 3 GRASP pseudo-code

Procedure GRASP(ListSize,MaxIter,Seed):

1: Read_Input_Instance();

2: for k = 1 to MaxIter do
3: InitialSolution ← Construct_GRSol(ListSize, Seed);

4: LocalSearchSolution ← Local_Search(InitialSolution);

5: if cost(LocalSearchSolution) < cost(BestSolutionFound) then
6: Update_Solution(BestSolutionFound, LocalSearchSolution);

7: return BestSolutionFound;

We describe now a generic GRASP implementation, whose pseudo-code can

be seen in Algorithm 3. This generic implementation serves as a template to be

mapped into the problems introduced in Section 4.2, where specific GRASP methods

customized to our problems are proposed.

The GRASP heuristic has three main parameters: the number of iterations

MaxIter, the candidate list size ListSize, and a third implicit parameter, the

initial seed Seed for the pseudo-random number generator. The first parameter

corresponds to the number of iterations in the outer loop of the algorithm. The

second parameter will be seen in more detail when explaining the construction phase,

but roughly speaking, it is a measure of how many alternatives will be taken into

account at each constructive step.

In some GRASP versions the size of the restricted candidate list is recomputed

dynamically (i.e. the value of ListSize is not fixed), being used in this case a

threshold parameter denoted by α. Later on, we explain in detail both variants.

Looking again at the pseudo-code, it can be seen that GRASP iterations are

carried out between lines 2 and 6. Each GRASP iteration consists of the construction

phase (line 3), the local search phase (line 4) and, if necessary, the solution update

(lines 5-6).

In the construction phase, a feasible solution is built. Algorithm 4 shows a

generic pseudo-code for the construction phase. The solution is usually represented

as a set of elements (the precise meaning of these elements depends on the specific



2.1. Theoretical background 53

problem); the construction phase starts from an empty set and iteratively adds an

element until the set corresponds to a feasible solution.

At each step of the construction phase, a restricted candidate list (denoted by

RCL) is determined by sorting all non already selected elements with respect to a

greedy function that measures the (myopic) benefit of including them in the partial

solution. In general, this function evaluates the incremental increase in the cost func-

tion f(·) when incorporating each new element into the solution under construction.

Specifically, by applying this function, we build the RCL containing those elements

whose addition to the current partial solution induce the smallest incremental costs

(this is the greedy component of GRASP).

Algorithm 4 Pseudo-code for procedure Construct_GRSol (Construct Greedy

Randomized Solution)

Procedure Construct_GRSol(ListSize,Seed):

1: Solution ← ∅;

2: Incremental costs evaluation for the candidate elements;

3: while not_feasible(Solution) do
4: RCL ← the restricted candidate list;

5: s ← select randomly an element from the RCL;

6: Solution ← Solution ∪ {s};

7: Incremental costs revaluation;

8: return Solution;

The next element to be included into the partial solution is randomly chosen

(uniformly or in some biased form) from the RCL (this is the probabilistic component

of GRASP). In this way, GRASP allows for different solutions to be obtained at each

GRASP iteration. When the chosen element is added to the partial solution, the

benefits associated with every element not yet added to the partial solution are

updated in order to reflect the change induced by the insertion of the new element.

Thus, the heuristic recomputes the RCL and reevaluates the incremental costs (this

is the adaptive component of GRASP). Once the construction phase is finished, the

solution built is returned.

The solutions generated by the construction phase are not guaranteed to be

locally optimal with respect to simple neighborhood definitions. Hence, it can be

beneficial to apply a local search to attempt to improve each constructed solution.

A local search algorithm works in an iterative fashion by successively replacing the

current solution by a better one taken from its neighborhood. It finalizes once there

is no better solution found in the neighborhood.

Algorithm 5 shows a generic pseudo-code for the local search phase. It has

as input a feasible solution Solution and searches for a better solution within a

neighborhood N(Solution) previously defined. In most of the cases, the local search

phase takes as entry the feasible solution Solution delivered by the construction



54 Chapter 2. Fundamental Knowledge

phase, but for certain applications, we could have several local search phases working

in a combined form by exploring different neighborhoods, implying thus that their

entries are not necessarily the solutions given by the construction phase.

Algorithm 5 Local_Search pseudo-code

Procedure Local_Search(Solution):

1: while not_locally_optimal(Solution) do
2: Find Neigh_Sol ∈ N(Solution) satisfying f(Neigh_Sol) < f(Solution);

3: Solution ← Neigh_Sol;

4: return Solution;

The success when applying the local search phase is strongly related with the

following points:

• the suitable choice of a neighborhood structure,

• efficient neighborhood search techniques,

• easy evaluation of the cost function when exploring the neighborhood,

• the quality of the starting solution.

The construction phase plays an important role with respect to this last point,

since it must produce good starting solutions for this local search sub-procedure. De-

pending on the problem, the used neighborhoods are generally not complex. There

exist two basic different strategies to explore a neighborhood, which are:

best-improvement: all neighbors are investigated and the current solution is (pos-

sibly) replaced by the best neighbor.

first-improvement: when finding the first better neighbor solution (i.e. whose

cost value is smaller than that of the current solution), the current solution is

replaced by this one.

In [Resende 2003], the authors mention that empirically (when applying both strate-

gies on many applications), in most of the cases, both strategies reach the same final

solution, but in general the first-improvement takes a smaller computational time.

Besides, they observe that is more frequent the premature convergence to a non-

global local optimum by using best-improvement than first-improvement.

One important characteristic of GRASP is its low parametrization; few param-

eters need to be set and tuned. This implies that the main effort can be focused on

implementing efficient data structures to obtain fast iterations. Let us analyze the

influence of the GRASP parameters and the RCL construction.

A GRASP algorithm finalizes once performed MaxIter iterations. Clearly, the

probability of finding a new solution improving the currently best one decreases with

the number of iterations already computed, the quality of the best solution found



2.2. Technical background 55

may only improve with the latter. In general, the computation times from iteration

to iteration are relatively similar, therefore the total computation time depends

linearly on MaxIter. Thus, when increasing MaxIter, the global computation

time will be increased as well as the probability of finding better solutions.

At any GRASP iteration, let us denote by c(e) the incremental cost associated

with the insertion of element e ∈ E into the solution under construction and by cmin

and cmax the smallest and the largest incremental costs respectively. There are two

main variants to compute the RCL used in the construction phase. Next, we shall

describe both approaches.

i) Given a positive integer ListSize, the RCL is composed of the ListSize el-

ements of E with the best (i.e. smallest) incremental costs. In this case, we

say that the RCL is cardinality-based. The size of the RCL can be smaller

than ListSize since, depending on the instance, we could not get to compute

exactly the ListSize best elements.

ii) The second variant uses a threshold parameter denoted by α ∈ [0, 1]. In this

case the size of the RCL is dynamically adapted according to the quality of

the elements to be added (we say that the RCL is value-based). Fixed α, the

RCL is formed by all “feasible” elements e ∈ E which can be inserted into

the partial solution under construction without losing feasibility and whose

quality is superior to the threshold value; that is to say:

e ∈ RCL ⇔ c(e) ∈ [cmin, cmin + α(cmax − cmin)].

If we set α = 0 the resulting algorithm is purely greedy, and with α = 1

we obtain a random construction. Hence, we can infer that α regulates the

amounts of greediness and randomness in the construction phase.

For further details of GRASP the reader may consult the refer-

ences [de Aragão 2001, Feo 1989, Feo 1995, Martins 2000, Resende 2003,

Ribeiro 2002], which provide an extensive analysis of the GRASP metaheuristic

based on many applications. Topics discussed include: successful implementation

techniques, parameter tuning strategies, alternative solution construction mecha-

nisms, techniques to speed up the local search, reactive GRASP, cost perturbations,

bias functions, memory and learning, local search on partially constructed solu-

tions, hashing, filtering, implementation strategies of memory-based intensification

and post-optimization techniques using path-relinking, hybridizations with other

metaheuristics and parallelization strategies.

2.2 Technical background

At this point we summarize several technical concepts and preconditions that were

surveyed during first steps of the analysis and constitute the foundations of models

described in Section 3.1 and Section 3.2.


